-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Refinement for Signal Flow Graphs

Filippo Bonchi*!, Joshua Holland?, Dusko Pavlovic'®, and
Pawel Sobocinskit*

Ecole Normale Supérieure, Lyon, France
University of Southampton, Southampton, UK
University of Hawaii at Manoa, Honolulu, Hawaii, US

W N =

University of Southampton, Southampton, UK

—— Abstract

The symmetric monoidal theory of Interacting Hopf Algebras provides a sound and complete
axiomatisation for linear relations over a given field. As is the case for ordinary relations, linear
relations have a natural order that coincides with inclusion. In this paper, we give a presentation
for this ordering by extending the theory of Interacting Hopf Algebras with a single additional
inequation. We show that the extended theory gives rise to an abelian bicategory—a concept
due to Carboni and Walters—and highlight similarities with the algebra of relations. Most
importantly, the ordering leads to a well-behaved notion of refinement for signal flow graphs.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.3.2 Semantics of Programming Languages

Keywords and phrases Signal flow graphs, refinement, operational semantics, string diagrams,
symmetric monoidal inequality theory

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2017.24

1 Introduction

Signal Flow Graphs (SFGs) were introduced in the 1940s by Shannon [19] as a formal circuit
model of a class of simple analog computing machines. They are a common abstraction in
control theory and signal processing, used for modelling physical systems and their controllers.
Nowadays, cyber-physical systems are modelled and simulated in graphical environments
such as Simulink and Modelica that can be seen as great-grandchildren of SFGs.

Their ubiquity is merited because SFGs serve both as processors of analogue signals
(analytic functions) in continuous time, and as stream transducers in discrete time. The
latter makes them amenable to techniques developed by computer scientists for programming
language semantics. For instance Rutten [18] showed that coinduction, just as in process
algebra, provides a useful proof principle for SFGs. Another example is the signal flow
calculus [6] where SFGs are represented using string diagrammatic syntax equipped with
both a structural operational semantics and a denotational semantics in terms of linear
relations. Most importantly, denotational equality, which by full abstraction [6] coincides with
observational equivalence (trace equivalence), enjoys a sound and complete axiomatization [4].
The same equational theory was independently proposed by Baez and Erbele [3].
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Refinement for Signal Flow Graphs

The axiomatisation of [4, 3]—a symmetric
monoidal theory (SMT) whose terms are typic-

ally rendered graphically as string diagrams— } Frobenius {

is the starting point of the present work. We — T

zlmdopt tl.le terminology of [5]: the.theory of Hopf] IHOpf (1)
interacting Hopf algebras over a ring R, de-

noted IHg, consists of a pair of monoids (dis- { Frobenius }

tinguished by black and white colouring) and e el

a pair of comonoids (again, black and white).
These black-white (co)monoids satisfy the equations of Frobenius and Hopf algebras, indi-

vidually recalled in Examples 3 and 4, as illustrated in the schematic to the right.

A theorem in [4] states that IHg is a presentation for LinRely the category with arrows
linear relations (a.k.a. additive relations) over k, the field of fractions of R: relations that
are also linear subspaces. This paved the way for an equational study of elementary linear
algebra by means of string diagrams that, in [22], became graphical linear algebra.

Like relations, linear relations are equipped with an ordering that plays a pivotal role in
many applications. It is therefore worth seeing LinRely not as a mere category but rather as
a poset enriched category. In this work, we provide a presentation for the underlying posetal
structure of LinRel,. Our main result states that it is enough to add a single inequation

—o0< —o (2)

to the equational theory of THR in order to obtain a sound and complete axiomatization of
the ordering between the arrows of LinRely. Viewed as linear relations, (2) says that the
unique zero-dimensional subspace {0} of k, considered as a vector space over itself, is a subset
of the unique one-dimensional subspace. Of course, the reverse inequality does not hold.

The focus on the order sheds lights on some interesting properties of IHg. We show that
[HRg forms an abelian bicategory [11, Def. 5.1] and that it supports operations akin to the
algebra of relations [14]. Moreover, the order resolves a mystery surrounding the equational
theory of interacting Hopf algebras. The system summarised in (1) is symmetric. There is
no difference, equationally, between the white (co)monoid and the black (co)monoid, in spite
their different meaning as linear relations: the white is the additive structure, while the black
is “copying”, e.g. —&__is typically the diagonal relation. Crucially, (2) breaks this symmetry.

When R = k[z] (the ring of polynomials with indeterminate « and coefficients from field
k), IHRg provides a sound and complete axiomatisation for SFGs [5]. The addition of (2)
gives a sound and complete axiomatisation for what we call refinement of SFGs.

1.1 Structure of the paper

The problem of refinement of SFGs is informally explained with an example in Section 2. In
Section 3 we recall the basic concepts of SMTs and, in Section 4, the theory of Interacting
Hopf Algebras. In Section 5 we extend the concept of monoidal theory to handle inequations.
Section 6 is devoted to proving our main result and, in Section 7, we shed light on the
algebraic structure of the resulting theory, drawing parallels with relational algebra. Finally,
in Section 8 we return to our motivating problem and discuss related work in Section 9.

2 Fibonacci’s rabbits and guinea pigs

A signal flow graph of sort (m,n), using the discrete semantics, is a stream transducer that
takes m input streams and produces n output streams. For example, consider the (1,1) SFG
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below, which implements the well-known Fibonacci recurrence relation:

= So—n( jp—)@ (3)

The white circles are adders (two inputs and one output), the black circles are duplicators

(one input and two outputs). The ‘x’ gates are delays, or one-state buffers, which we assume
to be initialised with zero. Given the sequence of inputs 1; 0; 0; 0; 0; 0; ..., the output is the
Fibonacci sequence 1; 2; 3; 5; 8; 13;.... We illustrate the first few steps below: the state of
each delay is illustrated by the number above it, the remaining numbers keep track of the
value on each wire at each iteration. A formal operational semantics is recalled in Section 8.

B R T D T e G St i

This output—according to the Fibonacci’s rule [20] for rabbit reproduction—is the total

number of rabbit pairs in each month, starting with a pair of rabbits (the first input is 1), and
subsequently not adding nor taking away pairs (all further inputs are 0). Other inputs are
possible, in this sense generalising Fibonacci; e.g. adding a pair for two months and taking
away two every third month (input 1; 1; —2; 1; 1; —2;...) yields (1; 3; 3; 5; 10; 14;...).

A trace of an (m,n) SFG c is a pair («, 8) where ¢ is an m-tuple and 3 is the output n-
tuple produced by con a: e.g. (3) has (1; 0; 0;...,1;2; 3;...)and (1; 1; —2;...,1; 3; 3;...)
as traces. The behaviour of a signal flow graph is the set of all its traces. Note that behaviour
is a functional relation on streams; in particular, if an SFG is invertible then its inverse has
the opposite relation as behaviour. Here (3) 4s invertible and has the following inverse, where
the ‘—1 gates’, instances of amplifiers, multiply their input by —1:

s
= (5)

The SFG above thus solves the toy sustainable rabbit farming problem: how many rabbits
must the farmer buy and sell in each month to maintain, say, four pairs in her rabbit pen? The
answer is obtained by using 4; 4; 4; 4; 4;... as input to (5), resulting in 4; —4; 0; —4; 0;...:
i.e. four pairs bought in the first month and, subsequently, four pairs sold every 2nd month.

The proof that —s{rFib)— is the inverse of —{tFib)— consists of an algebraic manipulation
of string diagrams: we shall demonstrate this below, after a brief discussion of the mathematics

behind the approach. As explained in the Introduction, the theory THg of Interacting Hopf
Algebras characterises linear relations, and an example of such a relation is the behaviour of
any signal flow graph when R = k[z]. This algebraic theory is not a classical (finite product)
algebraic theory but a symmetric monoidal theory. This means replacing traditional tree-like
syntax with string diagrams. Concretely, IH,) involves two commutative monoids and two
commutative comonoids, meaning that string diagrams are built up from the following:

Do e e < o D B - @&

where k ranges over the coefficients in k. The different colouring given to the indeterminate
x is inspired by its special semantic role in SFGs.
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The Fibonacci SFG (3), and its inverse (5)—as string diagrams—look as follows:

Note the similarity with SFGs (3) and (5) — the string diagram, roughly speaking, is obtained
by forgetting the direction of flow—i.e. erasing the arrowheads—and by replacing U-turn
wires with so-called ‘cups’ and ‘caps’, formed by composing multiplication with counit, and
unit with comultiplication. We use notation —tFib)—, to emphasise that (undirected)
string diagrams have been obtained by translating SFGs that have a left-to-right signal flow.

Using the equational theory of [4, 3] we show—by diagrammatic reasoning, i.e. algebraic
manipulation of string diagrams—that the inverse of the Fibonacci SFG is as claimed:

Note that is equal to the mirror image of its inverse —{:Fib)—: this, operationally

speaking, means simply that the behaviours of and are opposites as
relations. This worked example demonstrates the power of equational reasoning in IHy,.

Let us now consider a more interesting variant of the sustainable farming problem.
Suppose that the rabbit farmer also keeps guinea pigs, which, for the sake of this paper,
gestate twice as long as rabbits. The SFG for guinea pigs is the following:

- . OJ)”@OE

For instance, on input 1; 0; 0; 0; 0; 0; O;... the output is 1; 1; 2; 2; 3; 3; 5;.... The combined
rabbit and guinea pig pen has SFG (8(i )) with two inputs and one output. The inputs mean

buying or selling a species; the output is the total number of animals in the pen.

% (@]
(i) —d (iv)

We now pose the sustainable farming problem: how many rabbits and guinea pigs must the

farmer buy and sell in order to keep the total population fixed? To solve the problem, we draw
the strmg diagram that serves as the specification of the inverse of (8(i)), as in (8(ii)). Now
and —{fGui)— are invertible so we can replace (8(ii)) with the equal diagram (8(iii)).

This is as far as we can go in our quest for a SFG, since unfortunately, the specification is
not functional: there is no unique solution to the sustainable farming problem. One simple
solution is to divide the pen in half and limit the species separately. This, as a SFG, is (8(iv)).
As string diagrams (8(iii)) and (8(iv)) are not equal. Yet every trace of the second is a trace
of the first; this is an example of refinement. In this paper, we extend IH and characterise
this refinement relation. Indeed, we will see that, as string diagrams, (8(iv)) < (8(iii)).
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3 Symmetric Monoidal Theories and props

A symmetric monoidal theory (SMT) (X, E) consists of a set ¥ of generators o : m — n,
each with an arity m and coarity n (m,n € N), along with a set E of equations, which are
pairs (t1,t : m — n) of X-terms; t; and t5 must have the same arity and coarity. A X-term
is constructed inductively from generators in 3, together with the identity id : 1 — 1 and the
symmetry o1, : 2 — 2, using composition ; and monoidal product ®. Given X-terms ¢ : k — [,
u:l—mandv:m — n, we construct X-terms t;u:k—>mandt®v:k+m —>1+n.
Y-terms are rendered as diagrams and are considered up to the laws of symmetric strict
monoidal categories. Analogously to SFGs, generators are drawn as “circuit components”
with dangling wires. The identity is drawn — and the symmetry (. Composition of terms
is placing them side-by-side and joining the wires. The monoidal product @ is stacking terms
on top of each other, as in the following examples. Next we introduce some important SMTs,
which are used as building blocks to construct the full SMT for reasoning about SFGs.

» Example 1 (The SMT (X, Ejs) of commutative monoids). X, contains two generators:
multiplication _p— : 2 — 1 and unit o— : 0 — 1. Ejs contains three equations; we show
them both with composition and product explicitly and as diagrams.

(%@id);}:id }201’1;} (}@id);}:(id@});}
i e e O I e S s S

» Example 2 (The SMT (¢, E¢) of commutative comonoids). Again there are two generators,
but this time mirrored: there is a comultiplication —&_ : 1 — 2 and a counit —e: 1 — 0.
The equations are the following, this time given only in the diagrammatic form:

P - -4 S 0)

Hopf and Frobenius (bi)monoids are two important ways that monoids and comonoids
interact; both are needed for the theories we define in this paper.

» Example 3 (R Hopf monoids). The generators of the SMT are simply those in Xy, U X¢,
and to the equations in Fj; and F¢ we add the following bimonoid laws:

o2 }’ng o =3 e = idy (11)

For a commutative ring R, we need to add generators for every k € R and stipulate

D DR ED Do -
D= e "

» Example 4 ((extra special) Frobenius monoids). The generators are X U X¢. Keeping (1)
in mind, we colour all the generators in grey, which will later be instantiated as either black
or white. Our equations are now the Frobenius law, together with the special and extra
equations. We often call the latter the “bone” equation, due to its appearance when drawn.

S - e— eemi 19
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Generators
- L

Generators of HAR Generators of HARP

Equations

Hopf equations for white Hopf equations for black monoid
monoid and black comon- and white comonoid, mirror
oid, (9), (10), (11), (12) images of (9), (10), (11), (12)

extra special Frobenius

equations for white mon- = ._q - Q_q

oid and comonoid, (13)

extra special Frobenius
equations for black mon- =—
oid and comonoid, (13)

Figure 1 The presentation of IHg. k takes all values in R\ {0}. —J}— is the antipode, which is
defined to be either of or —(—1}—; they can be shown to be equal. See [7] for more details.

We can obtain a symmetric monoidal category from an SMT (X, E) as follows:

objects are natural numbers

arrows m — n are L-terms m — n modulo the laws of symmetric monoidal categories

and the (smallest congruence containing) the equations ¢; = t5 for each pair (t1,t2) € E
Such a category is a special type of symmetric monoidal category called a prop.

» Definition 5. A prop (product and permutation category) is a strict symmetric monoidal
category with objects N, where m @& n := m + n. A homomorphism is an identity-on-objects
symmetric monoidal functor, giving a category PROP.

» Example 6. Given a commutative ring R, the prop Matg of matrices over R has as arrows
m — n the n X m matrices, composition ; is matrix multiplication and A & B is the matrix

(61 g) In [16, 7] it is shown that Matg is isomorphic to the prop HAg arising from the
SMT of Hopf monoids over R (Example 3). The isomorphism 8’ : HAg — Matg maps

{HG) —o =i o= (k) > (1 1) o— =1 (14)

where ! : 0 — 1 and j : 1 — 0 are given by the universal property of 0 in Matg.

Observe (14) defines 8’ for all arrows A of HAg. More generally, to specify a homomorph-
ism from a prop obtained from an SMT (X, E), it is enough to define it on the generators in
3, and check that the equations E hold in the image. We shall often use this argument.

4 Interacting Hopf Algebras

Zanasi with the first and third authors introduced the SMT of Interacting Hopf Algebras [5, 7]
as a foundation for SFGs [4, 6, 8]. We recall the equational theory in Fig. 1 where R is a
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fixed principal ideal domain, and denote the resulting prop by IHg. As illustrated in (1),
the theory features monoids and comonoids that interact either as extra special Frobenius
monoids (Example 4) or as Hopf monoids (Example 3). One remarkable feature of this
equational theory is that it contains two symmetries: (i) that the mirror image (}) of any
equation is an equation, and (ii) is that the photographic negative (°, white <+ black) of any
equation is an equation. Formally, define prop morphisms (—)': IHg” — IHg mapping

= —« — — —e —(k = o~ — = —o +— o— (15)

and (—)°: THgr — IHRg mapping

The morphism (—)* is related to the self-dual compact closed structure [15] of IHg defined for
each n € N by assigning 7, : 0 = n +n (cap) and ¢, : n +n — 0 (cup) the string diagrams:

n

n
n n 0 n+1 n

T =0€n €= npe 20 =idy a1 = -

» Remark 7. Above we used —e for the n-fold monoidal product of —e, —— forid,, and E@

n
is inductively defined above, and similarly for &— and Eﬂ The same convention will be
used for the white structure. We shall omit the labels when there is no risk of ambiguity.

The contravariant morphism induced by the compact closed structure coincides with (—)T,
as defined in (15), that is for all A : m — n:

Consider the prop LinRely of linear relations over k, the field of fractions of R. An
arrow m — n is a linear subspace of k™ x k™, ; is relational composition and & is direct
sum. Also LinRel, has a self-dual compact closed structure: the induced contravariant
morphism (—): LinRel,°®® — LinRel, maps a linear relation R C k™ x k™ to its opposite
RT C k™ x k™. Let * be the unique element of the 0 dimensional vector space k®. Then

}H«(j),wynx,yek} o s {(+.0)) D (k) |z € k)
{H{(m(i)ﬂxek} —o— {(z,%) | x € k}

defines a unique prop morphism 8§ : [Hgr — LinRely that preserves (—)'. For instance,

S(e—) = 8(—o') = (8(—e)) = { (x, 2)[w € k}.

24:7
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» Theorem 8 ([7]). 8 : IHg — LinRely is an isomorphism.
Let us explain the relationship of 8§ with 8’ from Example 6. Observe that any A : m — n
in IHg built out of the leftmost five generators of Fig. 1 (drawn “[a)") is also in HAg

and, similarly, any term built of the five rightmost generators («(a}-) is in HAZ’. Indeed,
we have prop embeddings HAg — IHg < HAR". Similarly, there are embeddings Matg —
LinRely <+ Matg°® mapping a matrix to its graph, and the following commutes [7]:

HAg THg HASP

o b e

Matr — LinRel, «— Matgr°?

The following result informs us that every arrow of IHg can be written in span form.

» Lemma 9 ([7]). For all in [HR there exist k € N, and such
that = (@A™

Moreover, the following property of HARg also holds in THg.
> Lemma 10 ([7]). For all "2}, — e and A = o

5 Symmetric Monoidal Inequality Theories and Ordered Props

We reviewed the construction of props from SMTs in the previous section. In order to capture
inequalities of terms, however, we need a new notion. We thus introduce the concept of a
Symmetric Monoidal Inequality Theory (SMIT), which allows the specification of a partial
order on terms built out of generators, analogously to how SMTs specify equivalence relations.

» Definition 11 (Symmetric Monoidal Inequality Theory). A SMIT is a pair (X, ). As for
SMTs, X is a collection of generators o : m — n, and I is a set of pairs ({1, t2) of Y-terms with
the same (co)arity, but we now think of them as representing inequalities. That is, where
before the interpretation of a pair (¢1,t2) was that ¢ = to, we now stipulate that ¢; < t.

Set I leads to a preorder on terms by reflexive and transitive closure. A partial order
arises through anti-symmetry: ¢; and t; are equated when t; <ty and to < t;. We will use
<1, or < when [ is clear from context, and write the corresponding equivalence as equality.
The equivalence classes are the arrows of a 2-category T (s 1) that we call an ordered prop.

» Definition 12 (Ordered Prop). A 2-prop is a strict symmetric monoidal 2-category whose
objects are natural numbers and monoidal product on objects is addition. An ordered prop
is a 2-prop which is locally posetal, that is, where every hom-category is a poset —i.e. there
is at most one 2-cell (<) between any two arrows. Together with ordered prop morphisms
(identity-on-objects strict monoidal 2-functors) we have a category OrdPROP.

Since ordered props are a kind of 2-category, in any ordered prop, for all f, f', g,g’, we have:
if f<f andg<g'then f;9<f;4 (16)
if f<f andg<g'then fog<f d®g. (17)

» Example 13. The prop LinRely of linear relations has a partial order on arrows given
by inclusion as subspaces. It is straightforward to check (16) and (17). The prop Matg of
matrices (Example 6) can be also regarded as an ordered prop with discrete order.
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Returning to SMITs, the arrows of T(s 1) are the equivalence classes of X-terms; since
arities and coarities are respected, we may use the partial order <; to define the 2-cells in
the hom-category ']I‘(E,I)(m, n). It follows that T(s 1) is an ordered prop. Note that SMITs
are a generalisation of SMTs. First, any prop can be made into a (discrete) ordered prop by
adding identity 2-cells. This gives an embedding (a faithful homomorphism of ordered pros:
a strict identity-on-objects symmetric monoidal 2-functor) PROP — OrdPROP.

» Remark 14. Any SMT (X, E) can considered as a SMIT by taking the symmetric closure
of E: i.e. I = EUE°P. Then the image of the prop generated by the SMT (X, E) under the
embedding is isomorphic to the ordered prop given by SMIT (3,1).

6 Presenting the 2-dimensional structure of LinRely

In this section we prove our main theorem. We extend the SMT of Interacting Hopf Algebras
to a SMIT and the isomorphism of Theorem 8 to a 2-isomorphism of ordered props. In other
words, we characterise the subset order of linear relations (Example 13).

The symmetry discussed in Section 4 is broken in the ordered setting. Indeed, to get from
the SMT to a SMIT we follow the procedure of Remark 14 and add just one inequality (2):
—o < —e. Interpreted as linear relations (via 8 : IHg — LinRely), (2) says that the unique
0O-dimensional subspace {0} of k considered as a k-vector space is included in the unique
1-dimensional subspace, i.e. k itself. This is, of course, a strict inclusion.

» Theorem 15. THR = LinRely as ordered props.

For the proof we need to recall some elementary linear algebra. Regarding an m x n
matrix A as a list of its column vectors ajy, ag, ..., a,, the span of A (Sp(A)) is the linear
subspace of k™ with elements linear combinations Aja; + Asas + - -+ 4+ A\,a,, A\; € k. The
following is a well-known fact of linear algebra (see, e.g. [2, Proposition 2.13]).

» Lemma 16. Suppose that for some m x n matriz A we have Sp(A) C V. Then there exists
m x n' matriz C' such that V = Sp(A, C).

Proof of Theorem 15. Inequation (2) is clearly sound, we thus only have to show complete-
ness; that is (2) suffices to account for any inclusion between arbitrary linear relations.

Let therefore A, B : m — n be arrows of IHg such that §(A) C 8§(B) C k™ x k™. Now
k™ x k™ = kmF7 x kO =2 k™m*7: this, diagrammatically, means the following manipulation:

m n

m n n

=,

Using this “rewiring” argument we may assume w.l.o.g. that A, B : m — 0. Further,
using Lemma 9, we may assume that A, B consist only of the rightmost five generators in
Figure 1: indeed, —{1+e = —GD-e = —Ge by Lemmas 9 and 10. It is thus harmless to
consider A and B as matrices, and our initial assumption means that Sp(A) C Sp(B). By
the conclusion of Lemma 16, there exists C such that Sp(B) = Sp(4, C). Diagrammatically
(via 8), this gives the following, where for readability we omit decorating the wires:

_
—

But we have
cﬂ a
frnd < frnd
Q o Q o ~ Q a

showing that A < B is derivable from (2). <

24:9
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While we have shown that (2) suffices to characterise inclusions between subspaces, it is
convenient to identify some structural properties that our inequational theory satisfies. By
doing so, we are building up a toolbox—useful for reasoning in applications—of principles
for reasoning about the structure of the order between linear relations.

Below we use the notion of adjunction in an ordered prop: arrow f : m — n has a right
adjoint if there exists g : n — m such that id,, < f; g and g; f < id,, in which case we
write f 4g. Right adjoints, if they exist, are unique: if also f - ¢’ then g = ¢'.

» Definition 17. An abelian bicategory [11] A is a (loc. posetal) monoidal bicategory

where:
a a

a
(i) every object a is a commutative comonoid (EQ, ~e) with right adjoints i@ 4 Eoi,
a

a a
‘oo, and a commutative monoid (D)i, oL) with right adjoints B)i 4 ic@,

o= 4-2o. This translates to the following (labelling on the wires omitted for clarity):

- <—< -, W <<, e0<id;<oo0, 0o-<—<-e00 (18)

a a

(i) (iG, ~e) and (D)i, o%) with their right adjoints satisfy the Frobenius equations:
e S eme a9

(i) every arrow is a lax (—«_, —e)-comonoid homomorphism and a lax (" p—, o—)-
monoid homomorphism:

b

b a
g A< e (20)

a b a
A b b b b
D Pt < P ob <otA 1)

A more concise definition is: A and A°P are both bicategories of relations in the sense of [11].

Below, we show that, as an ordered prop, IHg is an abelian bicategory. For each
object n € N, comonoids and monoid structures are defined inductively as in Remark 7. A
straightforward induction generalises the Frobenius equations for all n in (19), given that
they are present for n = 1 in Fig. 1. Next we tackle the case of the black units (the rightmost
two black inequations of (18)). The unit of the adjunction is a 2-cell witnessing idy < o—e
and these terms are equated in Fig. 1. It remains to show existence of the counit. For n = 1:

e

The above argument easily generalises to all n.

Showing adjointness for the black comultiplication (the leftmost two black inequations
of (18)) amounts to demonstrating that e~ < — and — < -« »—. The second is the
black special equation in Fig. 1. The first follows from the adjointness of the unit and counit:

R T

For the white case in (18), the inequations are opposite. The same proofs with colours
and the sense of the inequality exchanged give the results that -0oo- < — and — < .
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Now, to show that all arrows are lax comonoid homomorphisms, it is enough to check that
each of the generators obeys the conditions of (20). Several of these are in fact equalities.
The derivations for the two interesting cases are given below:

R E e

Again, the white case (21) is symmetric.

7 The 2-dimensional algebra of Linear Relations

The structure identified in the previous sections enables us to highlight some interesting
properties of the ordering <. We start with a few elementary, but useful observations.

» Lemma 18. For all A, B € THg(m,n), the following hold:
(a) If A< B, then AT < BT

(b) (AN =A=(A°)°;

(c) If A< B, then A° > B°;

(d) (Ah)° = (A°)T.

Proof. For all equations A = B in IHg (Fig. 1), one has A" = BT and A° = B°. For the
only inequation of IHg, —o < —e, we clearly have —of < —ef and —o° > —e°: this implies
(a) and (c). The proofs of (b) and (d) are inductions on the definitions of (=)' and (—)°. =

We proceed by showing that every homset IHg(m,n) carries a lattice structure. Given
two arrows A, B: m — n we define AAB, T, AV B and L as follows.

mn ﬂ’ln
A/\B: T = eyl A\/B: L= Mool

» Lemma 19. For all A, B € THg(m,n), the following hold:
(a) (AvB) =ATv B and LT = 1;
(b) (AANB) =ATABl and TT =T;
(c) (AVB)°=A°AB° and L°=T;
(d) (AANB)°=A°VB° and T° = L.

Proof. Trivial by unfolding the definitions. <

» Theorem 20. The operations (V, L, A, T) define a lattice structure on every homset
IHR(m,n) wrt the ordering <.

Proof. First observe that for all A: m — n, we have, by the rightmost inequations in (18)
and (20), that A < A; T < T. By Lemmas 18(b) and 19(d), one deduces A > 1.

Now, it is enough to check that both (IHg(m,n),A, T) and (IHg(m,n),V, L) are com-
mutative and idempotent monoids. Observe that if this holds for (IHr(m,n), A, T) then, by
Lemmas 18(b) and 19(d), it holds also for (IHr(m,n),V,L). The fact that (IHr(m,n), A, T)

m n

is a commutative monoid follows immediately from the fact that ( E@ , Ze)and (n =, e)

are commutative (co)monoids. For idempotency we observe the following chain of inequalities.

I e () i R ST gs s S Is
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> :(1,2) >e:(1,0) — [k (1,1) —PB— (1,1 S0 (2,1) o>: (0, 1)

c:(m,z) d:(z,n) c:(m,n) d:(r,z) c: (14m,14n)

—:(1,1) X :(2,2) c;d:(m,n) c®d: (m+r,n+z) Tr(c): (m, n)

Figure 2 Sort inference rules.

(o) 0 () (ve) > (»0) (o) 55 (Bor) (o) 5 (o>)
(=) 5 (=) (B~ B—>") (=) p () O 7 (OF)

sttt s bt $ oy s
sit— st s@t st Tr(s) = Tr*(s')

Figure 3 Structural rules for operational semantics, with &, ranging over k and u, v, w vectors
of elements of k of the appropriate size.

Now to see that A defines a meet, note that A A B < A: < =

and, by a symmetric argument, A A B < B. Assuming that A < C and B < C we have
< =
& 2
The argument showing that V defines a join is again symmetric. |

» Lemma 21. For all A, B,C € IHg(m,n), the following hold:

(a) C; (A/\B) (C; A)N(C; B) and C; T < T;
(b) (AAB); _(A,C)/\(B,C) and T; C < T;
(c) (AvB);C>(A;CYV(B;C)and L; C < L;
(d) C; (AvB)>(C; A)V(C;B)and C; L < 1

Proof. Part (a) follows from (20). With (a), Lemmas 18(a) and 19(b) imply (b). With (b),
Lemmas 18(b) and 19(d) imply (c). With (c), Lemmas 18(a) and 19(a) imply (d). <

To summarise, we have a well-behaved set of operations
T7 Jﬂ /\7 \/7 (_)T7 (_)Oa . id

which, because of its similarity to the algebra of relations [14], we call the algebra of linear
relations. Observe that the operations T, A, (=)', ; and id have exactly the same meaning:
full relation, intersection, inverse, composition and identity relation. Instead L, Vv, (-)°
which in the algebra of relations denote, respectively, empty relation, union and complement,
do not coincide. The reason is that, in general, these operations cannot be defined on linear
relations: e.g., the union of two linear relations may not be linear.
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8 Back to Signal Flow Graphs

We recall from [6] the Directed Signal Flow Calculus. The syntax is given by the grammar
below where k ranges over a fixed field k.

cu= 0| >« | )| P> | Jo> o> | > | > | e | c;e| Tr(e)

A sort is a pair (m, n), with m,n € N. We shall consider only terms that are sortable,
according to the rules of Fig. 2. An inductive argument confirms uniqueness of sorts: if
¢: (m,n)and c: (m/,n) then m = m’ and n = n’. We will refer to sortable terms as
circuits since, intuitively, a term ¢ : (m, n) represents a circuit with m inputs on the left
and n outputs on the right.

In the syntax specification we used a graphical rendering of the components: we will
seldom write terms in the traditional way and instead represent them as diagrams:

c® c is drawn Tr(c) is drawn )
f.C : ] :

The graphical notation identifies some syntactically different terms, e.g. (¢1 ® ¢2); (d1 @ da)

/.
c; ¢ is drawn

and (c1; dy) @ (ca; d2). This is harmless (see Remark 1 in [6]) since such circuits are
observationally equivalent wrt the operational semantics that we introduce next.

The operational semantics interprets terms as stream transducers. The wires carry
elements of a field k that enter and exit through input and output ports. Formally, it is a
transition system that has augmented circuits as states: each delay component (—Jg—) and
each guarded feedback (Tr) are assigned some value k € k. States are obtained by replacing
delays and feedbacks in the syntax specification with —J—* and TrF for each k € k. We
only consider sortable states; the discipline is obtained by adding the following to Fig. 2.

c: (1+m,1+4n)
—-Pp—":(1,1) and ——
Tr*(e): (m, n)

The structural rules for operational semantics are given in Fig. 3 where we use strings of
length n to represents vectors in k™. If state s : (m, n) is the source of a transition —» ¢
then ¢ is also a state with sort (m, n) and v and w are strings (vectors) in k™ and k",
respectively. Intuitively, s — ¢ means that s can become ¢ in one step whenever it inputs v
on the m ports on the left and outputs w on the n ports on the right. Each circuit ¢ then
yields a transition system with a chosen initial state sg of ¢, obtained by replacing delays
and feedbacks in ¢ with —J@—° and Tr: this means that we only consider executions where
the registers are initialised with 0. A different semantics is considered in [13] where registers
can be initialised with arbitrary values.

A computation of a circuit ¢, is an infinite path sg 3—2> S1 :—1> ... in the transition
system of ¢, starting from its initial state so. When ¢ has sort (m, n), each u; and v; are

strings over k, say k;i ... kim and l;1 ... l;,, respectively. The trace, also called trajectory, of
o B1

this computation is then a pair of vectors a = | © |,8=| : where o = kojkij...
an Bm
and 3; = lo;lij.... For example, consider the (1,1) circuit in (3): the first three steps

of an infinite computation are illustrated in (4). The trace for this computation is thus
(1;0;0;0;... ,1;2;3;5;...).

We write it(c) for the set of traces, and this is our notion of observable behaviour. Two
circuits ¢ and d are observationally equivalent, written c ~ d, iff it(c) = it(d).

24:13
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A few considerations are in order about the role of the denotational semantics given in [6].
The signal flow calculus is canonical in the sense that it enjoys a Kleene-like theorem [8,
Thorem 7.4]: it denotes all and only the rational functions on streams (see [18] and [17]).
Moreover the denotational semantics is fully abstract with respect to the observational
equivalence (Corollary 2 and Proposition 4 in [6]) and, from this correspondence, a sound
and complete axiomatization for ~ follows. We focus on some technical details of this
axiomatisation below.

The idea is to translate circuits of sort (m,n) into arrows m — n of IHy,), where k[z]
is the principal ideal domain of polynomials with indeterminate x and coefficients from k.
Intuitively, the inductively defined translation £ “erases directions” from the wires:

>0 —o, »&L — & , 0> +>0—, Jor— D,
> = BB >~ — D X
c1;ca E(e1); E(ea), c1 B e E(cr) ®E(ea), Tr(c) — - (22)

where and —f@—, in IHyg,), correspond to polynomials k£ and z in k[z].

For an example consider the circuits and in (3) and (5): the
corresponding string diagrams £(—{tFib)—) and €(—{tGui}—) are shown in (6).

The following ensures that the theory of Fig. 1 is sound and complete for trace equivalence.
» Theorem 22 ([6]). ¢ ~ d iff E(c) = E(d), for all circuits c,d.

To prove equivalence of signal flow calculus terms it is thus enough to view them as string
diagrams in [H,[,) by forgetting flow direction, and use the equational theory of Fig. 1.

The reader may wonder why we introduced the directed signal flow calculus rather then
using string diagrams directly. The reason is that string diagrams of IH,,] are undirected
and flow directionality is essential to execute them (see Remark 2 in [6]). String diagrams,
however, do provide a useful language to reason about signal flow graphs. For instance, using
the algebra of linear relations from Section 7, the opposite of an arbitrary circuit ¢ can be
specified by the string diagram &£(c)t.

It is therefore natural to think of string diagrams in IHy[,) as specifications and of
circuits in the directed signal flow calculus as implementations. More formally, we say that a
specification A (an arrow of IHy,)) refines a specification B whenever A < B and we say
that a circuit ¢ implements a specification A whenever £(c) refines A, i.e., £(c) < A.

» Remark 23. One could have defined ¢ = d iff it(c) C it(d) but this notion would collapse
to ~, since the observational behaviour of any circuit, which we have defined as a relation, is
actually the graph of a function. To see this, note that the operational semantics of Fig. 3
is deterministic: given any state s and transitions s — , s %) , it follows that v =v'. A
similar, but non-deterministic, semantics subsuming that of Fig. 3 was given in [6, Fig. 2]
for arbitrary string diagrams. In fact, losing direction of signal flow makes the definition
simpler, since the feedback becomes expressible in terms of the more basic components and
does not thus need a separate structural rule. It is the possibly non-deterministic nature of
string-diagrams-as-SFG-specifications that makes the refinement relation interesting.

We now return to the motivating example of Section 2. The fact that the circuit in
(5) solves the sustainable rabbit farming problem is witnessed by the fact that it is an
implementation of &(—{tFib)—)T. Here, since the behaviour of is invertible,
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there is an equivalence: see the derivation in (7). Instead, the sustainable farming problem
for rabbits and guinea pigs cannot be solved by equational reasoning since the combined
SFG (8(ii)) (henceforth —s{comb)—) is not invertible. To prove that SFG (8(iv)) (henceforth

) is a solution, we should show that it implements &(—{comb)—)T, namely we
should check that &(—»[comb)—) < E(—>[comb)—)T. It follows from the general fact shown

below; taking A = % gives the claimed solution.

G G- ol-C

9 Related work

Although we concentrated on the discrete semantics, signal flow graphs also have a continuous
incarnation where delays act as integrators; for this reason they are a useful foundational
model in signal processing and control theory: as a consequence, for computer scientists [1]
they are also important as models of cyber-physical systems that can be analysed and verified
in concert with discrete models. For example, in loc. cit. the authors study SFGs with the
aid of block diagrams that are closely related to the Signal Flow Calculus of Section 8.

The operation (22) of passing from the directed calculus to string diagrams by “erasing
arrowheads” is similar in spirit to the ideas of Willems [23], who argued that concepts
of input and output are inherently non-compositional, complicate the mathematics, and—
perhaps most importantly—do not actually exist in the underlying physical reality. It is this
realisation that gives rise to the equational theory of Interacting Hopf Algebras. Moreover,
Baez and Erbele [3] prove that the same equational theory is suitable for the continuous
behaviour. Remarkably similar symmetric monoidal theories appear in concurrency [9, 10, 21]
and quantum computing [12]. None of these works, however, investigates the underlying
posetal structure. We believe that the structure of cartesian and abelian bicategories [11]
may be successfully exploited in those fields.
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