
Consistently-Detecting Monitors∗

Adrian Francalanza

CS, ICT, University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Abstract
We study a contextual definition for deterministic monitoring based on consistent detections. It
is defined in terms of the observed behaviour of the monitor when instrumented over arbitrary
systems. We give an alternative, coinductive definition based on controllability which does not
rely on system quantifications, and show that it is fully-abstract wrt. the former definition. We
then develop a symbolic counterpart to the controllability definition to facilitate an automated
analysis for controllable monitors involving data.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.3.2 Semantics of Programming Languages - Process models, D.2.5 Testing and Debug-
ging

Keywords and phrases Runtime Monitoring, Deterministic Behaviour, Controllability, Compos-
itional Reasoning, Symbolic Analysis

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2017.8

1 Introduction

Monitors are computational entities that observe the executions of other entities (referred
to hereafter as systems) with the aim of accruing system information [32, 26], comparing
system executions against some behavioural specification [23, 7], or reacting to the observed
executions via adaptation or enforcement procedures [13, 36]. They are typically considered
to be part of the Trusted Computing Base (TCB) and, consequently, their descriptions
are expected to be correct. A correctness requirement often presumed of monitors is that
they should exhibit deterministic behaviour. Yet, for most monitoring frameworks, such a
requirement is seldom specified in unambiguous terms. In fact, there are a number of viable
alternatives that one could consider (e.g., [44, 29, 25, 1]) and it is unclear how to choose one
over the other in an objective manner. Moreover, these definitions often fail to account for
the instrumentation mechanism used to compose a monitor with the system under scrutiny
which may, in turn, affect monitoring behaviour. All of this leads to a poor understanding
of what should be expected of a monitor, and may give rise to discrepancies between these
expectations and what needs to be guaranteed by the monitor implementer in practice.

Non-determinism is intrinsic to a number of computational models used for expressing
monitors and monitored systems. In fact, a substantial body of work on monitors is either
cast in terms of inherently non-deterministic formalisms such as Büchi automata [45, 17],
or formalisms that admit non-determinism such as process calculi and labelled transition
systems [12, 46, 30, 22, 10, 23]. Non-deterministic computation arises naturally in concurrent
and distributed programming, used increasingly for runtime monitoring [37, 24, 21, 8, 11].
Furthermore, a growing number of monitoring tools employ automata-based specification
languages [16, 5, 41, 18] that offer rudimentary support for ensuring deterministic behaviour:

∗ Partly supported by UoM and RANNIS projects CPSRP05-04 and TheoFoMon:163406-051.

© Adrian Francalanza;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Consistently-Detecting Monitors

their respective implementations are either thread-unsafe [41] or admit arbitrary code for
transition-triggered actions [14, 16].

This paper sets out to investigate deterministic behaviour for monitors. The study is
limited to execution monitors (sequence recognisers) [43, 36], used extensively for Runtime
Verification (RV). Our work is developed in terms of an expository formalism (similar to the
aforementioned work on transition-based descriptions) expressing monitored systems that
can analyse trace events carrying data and admit degrees of non-determinism. We propose
a contextual definition for deterministic monitor behaviour, founded on the observational
behaviour that can be discerned when a monitor is instrumented to execute with any arbitrary
system under scrutiny. The definition serves two purposes. First, its contextual nature allows
us to admit as many correct monitors as possible, as long as these cannot be externally
perceived to behave non-deterministically—we contend that the resulting definition is fairly
intuitive. Second, it allows us to justify design decisions for an alternative definition describing
the deterministic behaviour of monitors, based instead on the notion of controllability [31].
We show a correspondence between these two definitions. In addition, we demonstrate how
the alternative definition (which is arguably less intuitive than its contextual counterpart) is
more amenable to automated analyses for assessing the deterministic behaviour exhibited
by monitors. In particular, we study how this alternative definition can be reformulated in
symbolic terms, to facilitate a tractable handling of infinite-state monitor analysis due to
data.

I Example 1. The monitor description m1 accepts traces from an authenticator, that
challenges (event chl) a supplicant for an arbitrary value x followed by the supplicant’s
authentication (aut) with the (correct) encoding of x, y = enc(x). The authenticator
subsequently acknowledges (ack) using the same value y. The guard construct chl(x) quantifies
over any value x; guards aut〈v〉 and ack〈v〉 require authentications (resp. acknowledgments)
for a specific value v. > denotes acceptance.

m1 , chl(x). let y = enc(x) in
(
aut〈y〉.ack〈y〉.>

)
m2 , chl(x).let y = enc(x) in

(
aut〈y〉.ack〈y〉.> + aut(z).if z 6=y then ack(z′).⊥

)
m3 , chl(x).let y = enc(x) in

(
aut〈y〉.ack〈y〉.>+ aut(z).if z 6=y then ack(z′).⊥ else ack〈z〉.>

)
It is easy to inadvertently introduce non-determinism. Monitor m2 extends m1 (using the
choice operator, +) with the intention of rejecting (note the verdict ⊥) acknowledgments
following authentications whose value is not the encoding of the challenge value x. When
v2 6=enc(v1), the violating trace t=chl〈v1〉.aut〈v2〉.ack〈v2〉 . . . is always rejected by m2. More
subtly, however, when v2=enc(v1) the trace t may cause the monitor to non-deterministically
choose either branch, whereby the unintended branch does not reach a > verdict. But
non-determinism is not necessarily conducive to inconsistent verdicts and, in cases where
verdicts are considered as the only monitor observable behaviour, such non-determinism may
be tolerated. Monitor m3 deterministically accepts trace t when v2=enc(v1), albeit along
different execution paths, and deterministically rejects it whenever v2 6=enc(v1). J

The main contributions of the paper are:
1. A contextual definition for observationally deterministic monitoring behaviour, Defini-

tion 6.
2. An alternative definition based on controllability, Definition 11, that coincides with it,

Theorem 13.
3. Symbolic variants of the latter definition enabling tractable automations, Theorems 21

and 25.

A. Francalanza 8:3

Monitors

w, o ∈ Verd ::= > (accept) | ⊥ (reject)
| 0 (inconclusive)

m,n ∈Mon ::= w (verdict) | let x = e in m (evaluate)
| l〈e〉.m (expression guard) | l(x).m (quantified guard)
| m+ n (choice) | if b thenm else n (conditional)
| recX.m (recursion) | X (monitor variable)

Ver

w
η−→ w

IfT
JbK = true

if b thenm else n τ−−→ m

IfF
JbK = false

if b thenm else n τ−−→ n

Let
JeK = v

let x = e in m τ−−→ m[v/x]

GrE
JeK = v

l〈e〉.m l〈v〉−−−→ m

GrQ

l(x).m l〈v〉−−−→ m[v/x]

Rec

recX.m τ−−→ m[recX.m/X]

Ch1
m

α−−→ m′

m+ n
α−−→ m′

Instrumentation
Mon
s

η−→ r m
η−→ n

s / m
η−→ r / n

Ter
s

η−→ r m 6η−→ m 6τ−−→

s / m
η−→ r / 0

AsS
s

τ−−→ r

s / m
τ−−→ r / m

AsM
m

τ−−→ n

s / m
τ−−→ s / n

Figure 1 A Model for describing Instrumented Systems.

The paper is structured as follows. Section 2 presents the monitor framework used for this
study, allowing us motivate our touchstone definition for deterministic monitor behaviour
in Section 3. Section 4 presents a fully-abstract alternative definition that is amenable to
compositional reasoning. In Sections 5 and 6 symbolic variants are developed for automation
purposes. Section 7 concludes.

2 Systems, Monitors, Instrumentation and Monitored Systems

We perceive systems as entities that generate events while executing. Observable events,
η ∈ Evt, are those visible to a monitor and have the form l〈v〉 where l is an event label taken
from a set l, k ∈ Lab, and v is an event payload taken from some unspecified value domain
v, u ∈ Val. Events capture a number of computational notions such as inputs/outputs in
message-passing programs [22], or method/function calls and returns [13, 38]. To simplify
our technical development, we consider monadic (i.e., single-valued) events but the formalism
can be extended to accommodate polyadicity.

Systems may be described as Labelled Transition Systems (LTSs) [2, 34], triples
〈Sys,Act,−→〉 consisting of a set of states, s, r ∈ Sys, a set of actions, α, β ∈ Act =
Evt ∪ {τ} that include all observable events Evt and a distinguished silent action τ 6∈ Evt
for unobservable events, and a transition relation, −→⊆ (Sys×Act× Sys). The suggestive
notation s α−−→ s′ denotes (s, α, s′) ∈−→, whereas s 6α−−→ denotes ¬(∃s′ · s α−−→ s′). As usual,
we write s =⇒ s′ in lieu of s(τ−→)∗s′ and s η=⇒ s′ for s =⇒ · η−→ · =⇒ s′, referring to s′ as a
η-derivative of s; s t=⇒ stands for ∃s′ · s t=⇒ s′. We let traces, t, u ∈ Evt∗, range over (finite)
sequences of observable events and write s η1=⇒ . . .

ηn=⇒ sn as s t=⇒ sn, where t = η1, . . . , ηn.
The notation u . . . is occasionally used to denote the existence of some trace t with a prefix u.

We presuppose an expression language e, d ∈ Exp that ranges over the (event) value
domain Val and a denumerable set of expression variables x, y, z ∈ Vars; ~e and ~x resp.

CONCUR 2017

8:4 Consistently-Detecting Monitors

denote lists of expressions and variables. We also assume a boolean expression language
b, c ∈ BExp defined over Exp that includes standard constructs for conjunctions, b ∧ c, and
negations, ¬b, but also equality predicates over expressions e=d. The meta-functions fv(e)
and fv(b) return the free variables in the resp. expressions; expressions are closed whenever
fv(e) = ∅ and open otherwise, and similarly for boolean expressions. Valuations are total
maps from variables to values, ρ ∈ (Vars → Val) whereas substitutions are partial maps
from variables to expressions σ ∈ (Vars ⇀ Exp); substitutions are denoted as [~e/~x], where
d[~e/~x] represents the (simultaneous) substitution of all occurrences of xi ∈ ~x in d by the
corresponding ei ∈ ~e. We assume an evaluation function that takes an expression and a
valuation and returns a value, JeρK = v. Similarly, boolean expressions have a semantic
function mapping them to the boolean domain via a valuation, JbρK ∈ {true, false}, where we
presume the expected properties, e.g., J(b∧c)ρK = true iff JbρK = true and JcρK = true. We also
assume a classical interpretation of boolean expressions, i.e., J(¬b)ρK = true iff JbρK = false.
To alleviate the presentation, we often work up to associativity and commutativity for
conjunctions, treating 〈BExp,∧, true〉 as an abelian monoid. For closed expressions, we elide
the valuation and write JeK and JbK for JeρK and JbρK resp. The satisfiability judgement for
boolean expressions, sat(b) def= ∃ρ ·JbρK = true, plays a central role in subsequent development.

Monitors, here defined by the syntax in Figure 1, constitute the focus of our study.
They may reach two kinds of verdicts, Verd. Conclusive verdicts consist of acceptances,
>, and rejections, ⊥. In addition, a monitor may also reach the inconclusive verdict, 0,
a form of premature termination used when the generated system events of the monitor
specification itself does not yield sufficient information so as to reach a definite conclusion.
The monitor expression guard l〈e〉.m expects events with label l and a payload value matching
the evaluation of e, whereas the quantified guard l(x).m allows the monitor to dynamically
learn the payload of an event with label l. Monitors may branch (externally) depending on the
events observed,m+n, or branch (internally) based on data predicates, if b thenm else n. They
may also perform internal computation themselves by evaluating expressions, let x = e in m,
or recurse, recX.p, via term variables X,Y, Z ∈ TVars. The constructs l(x).m and recX.m
act as binders for x and X resp. in m, inducing the usual notions of open/closed (monitor)
terms. We work up to alpha-conversion of bound expression/term variables and use the
shorthand if b thenm for if b thenm else 0 and τ.m for let x = v in m where x 6∈ fv(m).

The semantics of closed monitors is also defined in terms of an LTS, via the transition rules
in Figure 1: for each m ∈Mon we have a dedicated LTS 〈M,Act,−→〉 where M ⊆Mon
are the monitors reachable from m via transitions. The rules model the monitor analysis of
observable events. Rule Ver describes how verdicts are irrevocable, meaning that a verdict
can analyse any observable event but always transition to itself. In rule GrE, an expression
guard l〈e〉.m only transitions to the continuation m when observing an event matching the
label l with the payload equal to JeK. By contrast, a quantified guard l(x).m transitions by
analysing any event with label l, binding x to the event payload v in the continuation, m[v/x];
see rule GrQ. The remaining rules are as expected where the term m[recX.m/X] denotes the
term substitution of recX.m for free occurrences of X in m.

A system s instrumented with a monitor m is referred to as a monitored system and
denoted as s / m. The semantics of monitored systems is defined by the instrumentation
rules in Figure 1. We here adopt the composition relation studied in [22, 23], even though
other instrumentation relations could have been used. Note that the chosen composition
relation is still quite general: it is parametric wrt. the system and monitor abstract LTSs
and it is largely independent of their specific language specifications, since it only requires the
monitor LTS to contain an inconclusive (persistent) verdict state, 0. The instrumentation

A. Francalanza 8:5

relation of Figure 1 is asymmetric: a monitored system can transition with an observable
event only when the system can produce that event i.e., monitors are passive and cannot
instigate transitions. When the system generates an (observable) event that can be analysed
by the monitor, the two transition in lockstep according to their respective LTSs (rule Mon).
When the monitor cannot analyse the event generated 1 and cannot internally transition
to a state that enables it to do so (i.e., it is already stable, m 6τ−→), the instrumentation
does not block the monitored system: instead, it allows the system to transition but aborts
monitoring to the inconclusive verdict (rule Ter). System-monitor synchronisations are
limited to observable events, and the specific entities can transition independently wrt. their
respective internal moves (rules AsS and AsM).

I Example 2. Monitor m4 below listens for input and output events in〈v〉 and out〈v〉 where
the (integer) payload v ∈ N reports the port number over which the communication operation
is performed.

m4 , recX.
((

out〈80〉.⊥
)

+
(
in(x). if x=80 then out〈81〉.> else out〈x〉.X

))
(1)

The monitor rejects system executions starting with an output on port 80 but accepts
traces containing an input on port 80 followed by an output on port 81, preceded by an
arbitrary number of input-output operations on any matching port other than 80. The
execution below shows an accepted monitored computation for a system s generating the trace
in〈85〉 · out〈85〉 · in〈80〉 · out〈81〉. In monitor m4, the binding on in(x) acts as a freeze-variable
[19] for the subsequent out〈x〉 guard in the else branch.

s / m4
τ−−→ s /

(
out〈80〉.⊥

)
+
(
in(x). if x=80 then out〈81〉.> else out〈x〉.m4

)
Rec

in〈85〉−−−→s′ / if 85=80 then out〈81〉.> else out〈85〉.m4 ChR+GrQ

τ−−→ s′ / out〈85〉.m4
out〈85〉−−−−→ s′′ / m4

in〈80〉·out〈81〉========⇒ s′′′ / > IfF, . . .

The instrumentation of Figure 1 delays system transitions to allow the monitor to internally
transition to a state that can process the event. E.g., if a system r can generate event out〈80〉,
r / m4 postpones this transition (Mon and Ter cannot be applied) until m4 unfolds.

r / m4
τ−−→ r /

(
out〈80〉.⊥

)
+
(
in(x). if x=80 then . . .

) out〈80〉−−−−−→ r′ / ⊥ AsM,Mon

Rule Ter is crucial both for allowing monitored computations to proceed when the monitor
cannot analyse an event, but also to avoid unintended detections. E.g., if system r can
generate the trace out〈90〉 · in〈80〉 · out〈81〉, this behaviour should still be permitted when
instrumented with the monitor m4, but the behaviour should not be detected according to
the description in Equation 1. After the initial unfolding of m4, Ter allows r to transition
with out〈90〉 but transitions m4 to the inconclusive state, 0, since neither guard out〈80〉 nor
guard in(x) can process the event.

r / m4
τ−−→ r /

(
out〈80〉.⊥

)
+
(
in(x). if x=80 then . . .

)
out〈90〉−−−−→ r′′ / 0 in〈80〉·out〈81〉=======⇒ r′′′ / 0 AsM, Ter, . . .

Had rule Ter been designed otherwise (leaving the monitor state unaltered when transiting
with out〈90〉) the ensuing events in〈80〉 · out〈81〉 would lead to the unintended acceptance of
the trace. J

1 This may be due to a number of reasons, such as event knowledge gaps or knowledge disagreements [6].

CONCUR 2017

8:6 Consistently-Detecting Monitors

3 Deterministic Monitoring Behaviour

In a monitored system, non-deterministic behaviour can be caused by either the system or
the monitor. We focus on identifying non-determinism attributed to monitors, teasing it
apart from non-determinism caused by system behaviour. This is motivated by the fact
that, generally, one has limited control over the behaviour of a system under scrutiny. We
target a definition that admits monitor non-determinism that is not externally observable.
Concretely, we consider detections (i.e., conclusive verdicts) as the only externally visible
aspect of a monitor and base our definition on the notion of deterministic detections—in
applications such as RV, detections are associated with property satisfactions and violations
[23, 7]. This immediately rules out a number of candidate definitions for deterministic monitor
behaviour. For instance, a definition that considers a monitor m to be deterministic whenever,
for all systems s and traces t, s / m t=⇒ s′ / m′ and s / m t=⇒ s′ / m′′ implies m′ = m′′ is
too stringent: it precludes the monitor description below (a slight modification on m1 of
Example 1)

m5 , chl(x).
((

let y = enc(x) in aut〈y〉.ack〈y〉.>
)

+
(
aut〈enc(x)〉.ack〈enc(x)〉.>

))
(2)

even though m5 deterministically accepts traces of the form chl〈v1〉 · aut〈v2〉 · ack〈v2〉 where
v2 =enc(v1). In fact, after an event chl〈v〉 (for some value v), monitor m5 can reach two pos-
sible internal states, namely

(
let y = enc(v) in aut〈y〉.ack〈y〉.>

)
+
(
aut〈enc(v)〉.ack〈enc(v)〉.>

)
or aut〈v′〉.ack〈v′〉.> where v′=enc(v). Other candidates (e.g., confluence defined over trans-
itions [25, 40]) are either inadequate or not immediately applicable because they do not
account for executions that do not lead to detections. E.g., m6 (below) would not be confluent
(consider event in〈81〉), even though it consistently rejects any trace with the prefix u=in〈80〉
(and consistently does not detect all the other traces).

m6 ,
(
in〈80〉.⊥

)
+
((

in〈81〉.out〈81〉.0
)

+
(
in〈81〉.out〈81〉.in〈82〉.0

))
(3)

I Definition 3 (Detected Computations). The transition sequence

s / m
t==⇒ s0 / m0

τ−→ s1 / m1
τ−→ s2 / m2

τ−→ . . .

is called a t-computation if it is maximal i.e., either it is infinite or it is finite and cannot
be extended further using τ -transitions. The t-computation above is called accepted whenever
∃i ∈ N ·mi = > and rejected when ∃i ∈ N· mi = ⊥. A detected t-computation is either an
accepted or a rejected one. J

Detected computations are indexed by their trace to allow us to partition computations
according to the system behaviour exhibited at runtime, thus accounting for system non-
determinism. Definition 3 also permits monitors to stabilise and reach verdicts in the trailing
τ -sequence following a t-trace.

I Definition 4 (Deterministic Detection and Withholding). Monitorm deterministically accepts
(resp. deterministically rejects) for system s along trace t ∈ Evt∗, denoted as da(m, s, t) and
dr(m, s, t) resp., iff all t-computation from s / m are accepting (resp. rejecting). Monitor m
deterministically detects for s along t, dd(m, s, t), whenever da(m, s, t) or dr(m, s, t). Monitor
m deterministically withholds for s along trace t, dw(m, s, t), iff no t-computation from s / m

is accepting or rejecting. J

A. Francalanza 8:7

I Example 5. For arbitrary system s, monitors m1 of Example 1 and m5 of Equation 2
deterministically accept traces with the prefix t = chl〈v1〉.aut〈v2〉.ack〈v2〉 where v2=enc(v1)
and deterministically withhold on all the other traces. Monitor m2 deterministically rejects
traces with the prefix t above when v2 6=enc(v1) but does not deterministically detect traces
with prefix t when v2=enc(v1). For arbitrary s, monitor m3 deterministically detects
any trace with the above prefix t (accepting or rejecting the trace depending on whether
v2 = enc(v1) or not) and deterministically withholds otherwise. For any system s, monitorm4
of Example 2 satisfies dr(m4, s, t) when the trace t is of the form t = out〈80〉 . . ., da(m4, s, t)
when t =

(
in〈vi〉 · out〈vi〉

)i · in〈80〉 · out〈81〉 . . . for some i ∈ N, and dw(m4, s, t) otherwise.
Similarly, for all systems s, m6 satisfies dr(m, s, t) when t = in〈80〉 . . . and dw(m, s, t)
otherwise. J

For the rest of our study, monitors with deterministic behaviour are defined as consistently-
detecting.

I Definition 6 (Consistent Detection). Monitor m consistently detects for system s, denoted
as cd(m, s) iff for all traces t we have dd(m, s, t) or dw(m, s, t). A monitor m is consistently-
detecting, denoted as cd(m), whenever cd(m, s) holds for any system s. J

I Example 7. Monitors m1,m3,m4,m5 and m6 are consistently-detecting, but m2 is not.
Definition 6 does not require monitors to perform any detections. The monitor m7 ,
recX.

(
in〈81〉.X

)
+
(
in〈81〉.out〈81〉.X

)
can consistently analyse an infinite number of traces for

any s, cd(m7), even though it never flags. J

A few comments are in order. First, Definition 6 abstracts away from the particular
instances of the systems considered, the specifics of the monitor language and instrumentation
mechanism used; this makes is applicable to arbitrary monitoring setups. Second, cd(m, s)
may be seen as requiring an ambiguity of d=1 from automata theory [29, 4], for the observable
behaviour specified in Definition 4. Our setting is however more general, allowing for
infinite states and alphabets (actions). Moreover, cd(m) quantifies over all possible system
compositions. Third, since Definition 6 is defined over monitored system behaviour, it allows
us to assess the actual monitor behaviour at runtime. Particularly, the system quantification
in cd(m) accounts for any (indirect) effects of a system on the execution of a monitor.

I Example 8. Whereas monitor m8 , in〈81〉.⊥ is (trivially) consistently-detecting in the
framework of Figure 1, the monitor m9 , in(x).if x = 81 then⊥ else 0 is, perhaps surprisingly,
not. Consider a (diverging) system s with behaviour s in〈81〉−−−−→ s′

τ−→ s′. Although s / m9
can reject the t-computation for t=in〈81〉, another possible t-computation of s / m9 is

s / m9
in〈81〉−−−−→ (s′ / if 81=81 then⊥ else 0) τ−−→ (s′ / if 81=81 then⊥ else 0) τ−−→ . . .

which never reaches a verdict. Therefore, we have ¬cd(m9) according to Definition 6. J

Fourth, consistently-detecting monitors are not compositional, affecting the subsequent
machinery.

I Example 9. Although m8 (from Example 8) and monitor m10 = in〈81〉.> are both
consistently-detecting according to Definition 6, their composition, i.e., m8 +m10, is clearly
not. J

CONCUR 2017

8:8 Consistently-Detecting Monitors

4 Controllability

In spite of its generality and intuitive nature, Definition 6 it is hard to automate directly as a
correctness analysis. One major obstacle is the inherent universal quantification over systems
and traces defining cd(m). In this section, we set out to give an alternative definition for
describing consistently-detecting monitors that does not suffer from these shortcomings. It is
based on the notion of controllability [20, 31] which, in discrete event settings, roughly refers
to the ability to steer a (passive) entity to designated terminal states via a series of admissible
controls. In our case, the monitors will constitute the passive entities to be steered, whereas
the monitored systems assume the controller’s role: the admissible controls are effectively the
observable events in a monitoring setup that cause the monitor to transition, whereas the
terminal states of interest are the conclusive verdicts. The proposed definition thus inverts
the focus from how a system is monitored to how a monitor can be driven.

Before giving the actual definition, we first need to lift the technical machinery of Figure 1
to sets of monitors, M,N ⊆Mon: this allows us to express the status whereby a monitor
that can be in a number of potential states after being driven by a sequence of steering
controls, which facilitates the analysis of non-compositional properties such as ours (see
Example 9).

I Definition 10. A monitor-set M potentially reaches a verdict w, pr(M,w), when ∃m ∈
M ·m =⇒ w, and potentially analyses an event η, pa(M,η), when ∃m ∈M ·m η=⇒. Function
aft(M,η) is defined as:

aft(M,η) def=
⋃
m∈Maft(m, η)

aft(m, η) def= {n | m =⇒ · η−→ n } ∪ {0 | ∃n ·m =⇒ n 6τ−→ and n 6η−→}

J

Intuitively, aft(M,η) computes the set of reachable states from every m ∈M when it is
asked by the instrumentation of Figure 1 to analyse an event η. The two conditions defining
aft(m, η) correspond to the monitored system transitions dictated by the respective rules
Mon and Ter in Figure 1.

I Definition 11 (Controllability). A relation R ⊆ P(Mon) is controllable iff for all M ∈ R:
1. pr(M,w) and w ∈ {>,⊥} implies M = {w};
2. pa(M,η) implies aft(M,η) ∈ R.
Controllability, denoted as the relation C, is the largest controllable relation. A monitor m
(resp. monitor-set M) is said to be controllable iff {m} ∈ C (resp. M ∈ C). J

Controllability is coinductive: to show that a monitor m is controllable, i.e., {m} ∈ C,
it suffices to provide a witness controllable relation R such that {m} ∈ R. Condition (i)
in Definition 11 requires that if some m ∈M can reach a conclusive verdict, then every
m′ ∈M must be able to do so immediately, without requiring any preceding τ -moves (hence
M = {w}); this rules out the possibility of inconsistent detections and, at the same time,
prohibits diverging systems from interfering with the reaching of such verdicts (see Example 8).
Condition (ii) in Definition 11 intuitively requires that this condition is satisfied for any
event η observed, by all the states that any m ∈M may transition to when analysing η.

A. Francalanza 8:9

I Example 12. We can show that m6 (Equation 3) is controllable via the controllable
relation R1 below:

R1 =
{
{m6} , {>} , {0, in〈82〉.0} , {0} ,
{out〈81〉.0, out〈81〉.in〈82〉.0}

}
R2 =

{
{m7} , {m7, out〈81〉.m7} , {0,m7} ,
{0,m7, out〈81〉.m7} , {0}

}
Note that {m6} ∈ R1. We can also finitely determine that the recursive monitor m7 (Ex-
ample 7) is controllable via the relation R2. The reader may want to check that R2 is
controllable. For instance,
aft({m7, out〈81〉.m7} , in〈81〉) = {0,m7, out〈81〉.m7}, aft({m7, out〈81〉.m7} ,
out〈81〉) = {0,m7} and, importantly, aft({0,m7, out〈81〉.m7} , in〈81〉) = {0,m7, out〈81〉.m7}
itself. J

Controllability coincides with Definition 6: we can use Definition 11 as a sound and
complete proof technique to determine whether a monitor m satisfies cd(m), side-stepping
universal quantifications over systems.

I Theorem 13 (Consistent Detection Full Abstraction). cd(m) iff {m} ∈ C J

I Example 14. As a result of Theorem 13, we can show that m6 and m7 are consistently-
detecting via the controllable relations R1 and R2 of Example 12. We can also indirectly
show that ¬cd(m8 +m10) from Example 9, by arguing that there cannot be a controllable
relation R with {m8 +m10} ∈ R. For suppose that such an R exists. By Definition 11(ii)
the monitor-set aft({m8 +m10} , in〈81〉) = {>,⊥} must also be in R; this, in turn, would
necessarily mean that R is not controllable since {>,⊥} violates Definition 11(i). J

5 Symbolic Controllability

Controllability, Definition 11, is still not adequate for a fully automated analysis of consistently-
detecting monitors. Particularly, whenever the resp. event value domain is infinite, quantified
guards induce an infinite number of transitions, e.g., l(x).m generates a transition with the
label l〈v〉 for every v ∈ Val (see rule GrQ). As a result, condition Definition 11(ii) may
require the monitor analysis to consider a potentially infinite number of monitor-set states
whenever monitor descriptions use quantified guards.

To this end, we define a symbolic semantics over both open2 and closed monitor terms
using symbolic events, θ ∈ SEvt. These are similar to the events of Section 2 except that
they carry variables instead of values as payloads, l〈x〉. Symbolic transitions, m µ−−→

b
n are

defined by the rules in Figure 2, where µ ∈ SEvt ∪ {τ} ranges over both symbolic and τ
events, and the boolean expression b records the condition under which the LTS action may
take place. For instance, the term recX.m may unfold in all circumstances (i.e., b = true in
rule sRec) whereas the term if b thenm else n can either τ -transition to m when b holds, or
to n when the converse, ¬b, holds (rules sIfT and sIfF). The other key rules in Figure 2
are sGrE and sGrQ: the former transitions with a symbolic event l〈x〉 under the condition
x=e, whereas the latter transitions with a similar symbolic event under any circumstance.
Figure 2 also defines rules for weak symbolic transitions, m θ=⇒

b
p n, and reductions, m =⇒

b
n,

2 Open wrt. expression variables x, y, . . . ∈ Vars not term variables X,Y . . . ∈ TVars.

CONCUR 2017

8:10 Consistently-Detecting Monitors

where both relations aggregate boolean constraints via conjunctions. Note that weak symbolic
transitions describe transition sequences where τ -transitions must precede the (final) symbolic
event transition. The predicate m 6µ−−→ denotes 6 ∃ b, n ·m µ−→

b
n whereas m θ=⇒

b
p stands for

∃n ·m θ=⇒
b
p n.

A constrained monitor-set 〈b,M〉 is a tuple where every m ∈M may be open, and b is a
condition constraining free variables in M . Every 〈b,M〉 abstractly represents a (potentially
infinite) set of closed monitor-sets for every valuation ρ satisfying b,

{mρ | JbρK = true and m ∈M } (4)

In this sense, the monitor-sets in Section 4 are special cases of constrained monitor-sets where
b = true and M is closed. Note that whenever ¬sat(b), the constrained monitor-set 〈b,M〉
denotes the empty set of monitor-sets, ∅, which is trivially controllable by Definition 11. We
lift functions such as that for free variables fv(−) to constrained monitor-sets in the obvious
manner, e.g., fv(〈b,M〉) def= fv(b) ∪ fv(M).

I Example 15. The constrained monitor-set 〈x ≥ 3, {if x = 2 then> else ⊥}〉 abstractly
describes all monitor-sets {if x = 2 then> else ⊥} ρ where ρ(x) ≥ 3. For any such ρ, no
monitor of the form (if x = 2 then> else ⊥)ρ can transition to a > verdict according to the
concrete semantics of Figure 1. Symbolically, this may be expressed as ¬sat(x ≥ 3∧x = 2). J

We abstractly model controllability, Definition 11, in terms of constrained monitor-sets,
the symbolic semantics of Figure 2 and the satisfiability judgement sat(b) defined earlier in
Section 2.

I Definition 16. A constrained monitor-set 〈b,M〉 potentially reaches a verdict w, denoted
as spr

(
〈b,M〉, w

)
, whenever ∃m ∈M, c ·m =⇒

c
w and sat(b∧c). Moreover, 〈b,M〉 potentially

analyses a symbolic event θ along c, denoted as spa
(
〈b,M〉, θ, c

)
, whenever ∃m ∈M · m θ=⇒

c
p

and sat(b∧c). J

Defining the symbolic counterpart to aft(M,η) of Definition 10 is less straightforward.
Intuitively, from all the valuations ρ satisfying (and represented by) b in 〈b,M〉, only a subset
of them may satisfy the condition c in a potentially-analyses judgement spa(〈b,M〉, θ, c) from
Definition 16. A correct modelling of Definition 11 therefore requires us to take this fact into
account.

I Example 17. Consider the constrained monitor-set 〈true,M〉 where M = {m10,m11} and

m10 , if x=2 then k〈1〉.> else k〈1〉.⊥ m11 , if x≤1∨x≥3 then k〈1〉.⊥ else k〈1〉.>

It turns out that for any ρ satisfying true, Mρ is controllable. Therefore, for the judgement
spa(〈true,M〉, k〈y〉, (x=2 ∧ y=1)) of Definition 16, which holds since m10

k〈y〉======⇒
x=2∧y=1

p and
sat(true∧x=2 ∧ y=1), the reachable states to be considered by a corresponding symbolic
analysis (modelling Definition 11(ii)) should not include the residual state ⊥, even though
it may be reached after the event k〈y〉 with y = 1 (see rule sGrE). The reason for this
is that the conditions required to symbolically reach this state, i.e., (¬(x=2)∧y=1) or
((x≤1 ∨ x≥3)∧y=1), cannot be satisfied by any ρ that also satisfies the spa(−) condition
(x=2∧y=1). Symbolically, this may be expressed as ¬sat(

(
x=2∧y=1

)
∧
(
(¬(x=2)∧y=1)

)
)

and ¬sat(
(
x=2∧y=1

)
∧
(
(x≤1 ∨ x≥3)∧y=1

)
). J

A. Francalanza 8:11

Symbolic Transitions

sVer

w
η−−→

true
w

sIfT

if b thenm else n τ−→
b
m

sIfF

if b thenm else n τ−→
¬b

n

sRec

recX.m τ−−→
true

m[recX.m/X]

sCh1

m
µ−−→
b

m′

m+ n
µ−−→
b

m′

sCh2

n
µ−−→
b

n′

m+ n
µ−−→
b

n′

sGrE

l〈e〉.m l〈x〉−−−→
e=x

m

sGrQ

l(y).m l〈x〉−−−→
true

m[x/y]

sLet

let x = e in m τ−−→
true

m[e/x]

Weak Symbolic Transitions and Reductions

sWTr1

m
θ−→
b
m′

m
θ=⇒
b
p m′

sWTr2

m
τ−→
b
m′ m′

θ=⇒
c
p m′′

m
θ==⇒
b∧c

p m′′

sWRd1

m ==⇒
true

m

sWTr2
m

τ−→
b
m′ m′ =⇒

c
m′′

m ==⇒
b∧c

m′′

Figure 2 A Symbolic Semantics for Monitors.

The complications elicited in Example 17 are even more intricate. For instance, for a
particular judgement spa(〈b,M〉, θ, c), one could have some m1,m2 ∈M whereby mi

θ=⇒
ci

p m′i
and sat(b∧c∧ci) for i ∈ {1, 2}, but at the same time having c1 and c2 being incompatible
with one another, i.e., ¬sat(c1∧c2). In such cases, the respective residual states m′1 and m′2
should be analysed separately.

I Definition 18. The relevant conditions for a monitor-set M wrt. a symbolic event θ are:

rc(M, θ) def= { c | ∃m ∈M ·
(
m

θ=⇒
c
p or ∃n · (m =⇒

c
n and n 6τ−−→ and n 6 θ−−→)

)
}

The satisfiability combinations for a condition-set {c1, . . . , cn} wrt. a condition b are:

sc(b, {c1, . . . , cn})
def= { {b, c′1, . . . , c′n} | ∀i ∈ 1..n · (c′i=ci or c′i=¬ci) }

The reachable constrained monitor-sets from 〈b,M〉 after θ with condition c are:

saft(〈b,M〉, θ, c) def= { 〈∧B, saft(M,B, θ)〉 | B ∈ sc(b∧c, rc(M, θ)) and sat(∧B) }

saft(M,B, θ) def=
{
n
∃m ∈M, c · sat((∧B) ∧ c) and(
m

θ=⇒
c
p n or (∃n′ ·m =⇒

c
n′ 6τ−−→ and n′ 6 θ−−→ and n = 0)

) }

J

In Definition 18, the relevant conditions for M wrt. θ, denoted as rc(M, θ), are all the
symbolic conditions that need to be considered to assess the reachable states from M for
the symbolic event θ — they are the symbolic counterpart to the transition sequences
defining aft(m, η) in Definition 10. The satisfiability combinations of a condition-set B wrt.
a condition b, denoted as sc(b, B), capture the maximal condition subsets in B that any
valuation ρ satisfying condition b also satisfies. Every condition set B′ returned by sc(b, B)

CONCUR 2017

8:12 Consistently-Detecting Monitors

contains b itself and one condition c′ for every boolean condition c ∈ B (either c itself or
its negation); these combination sets partition all the valuations ρ satisfying b. Symbolic
reachability for 〈b,M〉 after θ with condition c, saft(〈b,M〉, θ, c) in Definition 18, is defined
wrt. all the satisfiability combinations B of rc(M, θ) for the (fixed) condition b∧c. Although
sc(b∧c, rc(M, θ)) partitions all the ρ satisfying b∧c, some of these partitions are empty.
Accordingly, saft(〈b,M〉, θ, c) only considers the non-empty partitions via the satisfiability
condition sat(∧B), where ∧B returns the syntactic conjunction formula c1∧. . .∧cn for a
boolean set B = {c1, . . . , cn}.

It is worth remarking that the symbolic LTS of Figure 2, is image-finite [42], and thus
finitely branching when considering the τ -transition graph of a term m. By König’s Infinity
Lemma [33] the set of constraints { c | m θ=⇒

c
p or ∃n · (m =⇒

c
n and n 6τ−−→ and n 6 θ−−→) } must

be finite and, as a result, rc(M, θ) is finite too for a finite monitor-set M . This ensures that
saft(〈b,M〉, θ, c) is well-defined.

I Definition 19 (Symbolic Controllability). The relation S ⊆
(
BExp× P(Mon)

)
is called a

symbolically-controllable relation iff for all constrained monitor-sets 〈b,M〉 ∈ S:
1. spr(〈b,M〉, w) and w ∈ {>,⊥} implies M = {w};
2. spa(〈b,M〉, l〈x〉, c) where frsh(fv(〈b,M〉)=x implies saft(〈b,M〉, l〈x〉, c) ⊆ S.
Symbolic Controllability, denoted as Csym, is the largest symbolically-controllable relation. A
(closed) monitor m is symbolically-controllable iff 〈true, {m}〉 ∈ Csym. J

The clause Definition 19(ii) assumes a function frsh(V) that (deterministically) returns
the next fresh variable x that is not in the variable set V . When compared to Definition 11(ii),
this allows us to just consider one (symbolic) event, l〈x〉, for a finite set of constraints, as
opposed to a potentially infinite set of events, i.e., l〈v〉 for every v ∈ Val.

I Example 20. Recall m10 and m11 from Example 17. The monitor m12 , l(x).m10 +
l(x).m11 can be shown to be symbolically-controllable via the relation S1 defined below, where
b1 =(x=2∧y=1), b2 = (¬(x=2)∧y=1), b3 = ((x≤1∨x≥3)∧y=1) and b4 = (¬(x≤1∨x≥3)∧y=
1); these are obtained from the relevant conditions rc({m10,m11} , k〈y〉) = {b1, b2, b3, b4}.

S1 =

〈true, {m12}〉, 〈true, {m10,m11}〉,
〈(true∧b1)∧b1¬b2∧¬b3∧b4, {>}〉, 〈(true∧b4)∧b1∧¬b2∧¬b3∧b4, {>}〉,
〈(true∧b2)∧¬b1∧b2∧b3∧¬b4, {⊥}〉, 〈(true∧b3)∧¬b1∧b2∧b3∧¬b4, {⊥}〉

For illustrative purposes, we do not simplify the constraints in the constrained monitor-sets of
S to show how these are derived. E.g., 〈(true∧b1)∧b1¬b2∧¬b3∧b4, {>}〉 is obtained as a result of
saft(〈true, {m10,m11}〉, l〈x〉, true∧b1). In fact, the combination {(true∧b1), b1,¬b2,¬b3, b4} is
the only satisfiable condition-set and all the others are filtered out by
saft(〈true, {m10,m11}〉, l〈x〉, true∧b1). J

Symbolic Controllability, Definition 19, is sound and complete wrt. Controllability,
Definition 11.

I Theorem 21 (Controllability Full Abstraction). {m} ∈ C iff 〈true, {m}〉 ∈ Csym J

I Example 22. Recall m3 , chl(x).m′3 from Example 1, recast in terms of m′3 defined below
as:

m′3 , let y=enc(x) in
(
aut〈y〉.ack〈y〉.>+ aut(z).if z 6= y then ack(z′).⊥ else ack〈z〉.>

)
Example 7 stated that m3 is consistently-detecting. This fact is hard to determine using
Definition 6, whereas analyses using Definition 11 are complicated by quantifications over

A. Francalanza 8:13

the values of events. By Theorems 13 and 21, we can show that m3 is consistently-detecting
via the symbolic controllability relation:

S2 =

〈true, {m3}〉, 〈true,m′3〉 ,
〈z = enc(x), {ack〈enc(x)〉.>, if z 6=enc(x) then ack(z′).⊥ else ack〈z〉.>}〉 ,
〈(z = enc(x))∧(w = z)∧(w = enc(x)), {>}〉,
〈¬(z = enc(x)), {if z 6=enc(x) then ack(z′).⊥ else ack〈z〉.>}〉 , 〈¬(z = enc(x)), {⊥}〉

In S2 and the ensuing discussion, we alleviate our presentation by simplifying the boolean
conditions used, e.g., we simply write (z = enc(x)) in lieu of

(
true∧(z = enc(x))

)
. We

highlight a few points.
First, consider the second constrained monitor-set in S2, namely 〈true,m′3〉. Since

the semantics of Figure 2 allows expression guards and quantified guards to transition
with the same symbolic event (albeit with different conditions) we are able to consider
the resp. continuations in unison for the event aut〈z〉. Concretely, according to Defini-
tion 19(ii), for spa(〈true,m′3〉, aut〈z〉, (z=enc(x))) generated by the expression guard weak
transition of m′3, we need to ensure that the resulting monitor-set 〈z = enc(x), saft({m′3} ,
{(z = enc(x)), true} , aut〈z〉)〉 (which evaluates to the third constrained monitor-set in S2) is
also in the symbolic relation. At the same time, for spa(〈true,m′3〉, aut〈z〉, true) generated
by the quantified guard weak transition of m′3, we need to ensure that two monitor-sets are
in S2, namely 〈z = enc(x), saft({m′3} , {(z = enc(x)), true} , aut〈z〉)〉 (as before) but also the
constrained monitor-set 〈¬(z = enc(x)), saft({m′3} , {¬(z = enc(x)), true} , aut〈z〉)〉 (which
evaluates to the fifth constrained monitor-set in S2).

The second point we highlight about S2 concerns its third constrained monitor-set. In
particular, the left branch of the conditional term in this set, namely ack(z′).⊥ in the
term if z 6= enc(x) then ack(z′).⊥ else ack〈z〉.>, is not considered by our analysis since its
condition, z 6=enc(x), is incompatible with the constraining condition of the monitor-set, i.e.,
¬sat((z = enc(x))∧(z 6=enc(x))).

Third, we also note how the condition aggregation mechanism for the consecutive sym-
bolic events aut〈z〉 and ack〈w〉 — transferring us from the second constrained monitor-set,
〈true,m′3〉, to the fourth, 〈(z = enc(x))∧(w = z)∧(w = enc(x)), {>}〉, via the third con-
strained monitor-set in S2 — enables us to symbolically relate the expression guards in m3,
which impose a condition such as (z = enc(x)) upon transition, with the quantified guard
that imposes the same condition after the transition (by means of a conditional branch
in its continuation). We leave it up to the interested reader to check that the remaining
monitor-sets in S2 satisfy the conditions required by Definition 19. J

6 On Automating Symbolic Controllability

Despite its merits, a direct implementation of the symbolic controllability from Definition 19
still would not perform well for certain recursive monitor descriptions, as shown in the
following example.

I Example 23. Recall monitor m4 from Example 2. To show that it is controllable, we
need to exhibit a symbolic relation that includes 〈true, {m4}〉. For some fresh variable x
where frsh(fv(〈true, {m4}〉) = x, since the judgement spa(〈true, {m4}〉, in〈x〉, true) holds,
this relation needs to include the ensuing monitor-set 〈true, {m′4}〉 as well, where m′4 , if x=
80 then out〈81〉.> else out〈x〉.m4. In turn, since spa

(
〈true, {m′4}〉, out〈y〉, (¬(x = 80)∧y = x)

)
(where frsh(fv(〈b, {m′4}〉) = y), the symbolic relation must also contain 〈¬(x = 80)∧y =
x, {m4}〉. We thus reach the original monitor set {m4} but with a stronger condition, namely

CONCUR 2017

8:14 Consistently-Detecting Monitors

¬(x= 80)∧y= x. By extension of this reasoning, it is not hard to see that the symbolic
relation required by Definition 19 needs to be infinitely large. J

The problem exhibited by Example 23 is that the condition aggregating mechanism of
Definition 19 does not specify any means for consolidating the boolean condition b constraining
a monitor set M in 〈b,M〉, i.e., a form of garbage collection of redundant conditions. For
instance, in the constrained monitor-set 〈¬(x=80)∧y=x, {m4}〉 of Example 23, the condition
(¬(x=80)∧y = x) plays no effective role in constraining the free variables in {m4}, of which
there are none. We therefore optimise Definition 19 in a sound (and complete) manner by
taking into consideration boolean sub-conditions that can be isolated and discarded. This
leads to an improved automated analysis for consistently-detecting monitors.

I Definition 24 (Optimised Symbolic Controllability). The consolidation of a boolean expres-
sion b wrt. a variable set V , denoted as cns(b, V), is defined as:

cns(b, V) def= b1 whenever prt(b, V) = 〈b1, b2〉 for some b2

where the boolean expression partitioning operation prt(b, V) is defined as:

prt(b, V) def=
{
〈b1, b2〉 if sat(b) and b = b1∧b2 and

(
fv(b1) ⊆ V

)
and

(
V ∩fv(b2)=∅

)
〈b, true〉 otherwise

Let the optimised symbolic reachability from 〈b,M〉 for θ and c, osaft(〈b,M〉, θ, c), be defined
as:

osaft(〈b,M〉, θ, c) def=
{
〈cns(∧B, V), saft(M,B, θ)〉 B ∈ sc(b∧c, rc(M, θ)) and sat(∧B)

and V = fv(saft(M,B, θ))

}
A relation S ⊆

(
BExp× P(Mon)

)
is called optimised symbolically-controllable iff for all

〈b,M〉∈S:
1. spr(〈b,M〉, w) and w ∈ {>,⊥} implies M = {w};
2. spa(〈b,M〉, l〈x〉, c) where frsh(fv(〈b,M〉))=x implies osaft(〈b,M〉, l〈x〉, c) ⊆ S.
The largest optimised symbolically-controllable relation is denoted by Coptsym. A (closed)
monitor m is said to be optimised symbolically-controllable iff 〈true, {m}〉 ∈ Coptsym. J

We highlight the salient points from Definition 24. First, boolean consolidation in a
constrained monitor-set, 〈cns(b),M〉, should not change the set of concrete monitor sets
represented by 〈b,M〉 and, for this reason, we cannot consolidate unsatisfiable boolean
conditions. For instance, even if x 6∈ fv(M), it is still unsound to optimise 〈true∧(x 6=x),M〉
to 〈true,M〉 based on the fact that ¬sat(x 6=x). Concretely, from Equation 4 of Section 5
we know that 〈true∧x 6=x,M〉 denotes the empty set of monitor-sets, ∅, whereas 〈true,M〉
represents the set {mρ | JtrueρK = true and m ∈M }. Second, consolidation should ideally
filter out as much redundant constraints as possible, e.g., in 〈b1∧b2,M〉 we should remove b2
whenever fv(b2)∩ fv(M) = ∅. In Definition 24 we require the strongest possible condition for
the residual condition b1 in 〈b1∧b2,M〉, i.e., fv(b1) ⊆ fv(M), which indirectly implies that
the resp. condition variables are partitioned fv(b1) ∩ fv(b1) = ∅. This partitioning is crucial
for a sound consolidation, e.g., in 〈(¬(x=80)∧y=x),M〉, it is unsound to just remove the
subcondition ¬(x=80) when x 6∈ fv(M) and y ∈ fv(M). Although prt(b, V) can be refined
further (while still observing core requirements for soundness such as variable condition
partitioning), in Definition 24 we opted for a less elaborate condition that suffices our
exposition. Third, we highlight the fact that the conditions specifying cns(b) in Definition 24
yield a unique consolidated condition up to semantic equivalence meaning that, in an
implementation of the framework, this can be defined as a function.

A. Francalanza 8:15

I Theorem 25 (Optimised Controllability). 〈true, {m}〉 ∈ Copt
sym iff 〈true, {m}〉 ∈ Csym J

I Example 26. As a result of Theorems 13, 21 and 25, we can show that m4 of Example 2
is consistently-detecting by exhibiting the optimised symbolic relation S3 below (m′4 is
the monitor defined earlier in Example 23). For expository purposes, we show how the
consolidated boolean expressions are calculated. In particular, the first constrained monitor-
set in S3 denotes both the starting pair 〈true, {m4}〉, but also the pair 〈cns(x = 80∧y =
81, fv({m4})), {m4}〉.

S3 =
{
〈 true︸︷︷︸

cns(¬(x=80)∧y=x,∅)

, {m4}〉, 〈 true︸︷︷︸
cns(x=80,∅)

, {⊥}〉, 〈true,
{
m′4
}
〉, 〈 true︸︷︷︸

cns(x=80∧y=81,∅)

, {>}〉
}

The interested reader may check that the conditions of Definition 24 are satisfied by S3. J

Using standard techniques [42, 3], an algorithm constructing symbolically-controllable
relations from Definition 24 can be extracted more easily. Moreover, the completeness
aspect in Theorems 13, 21, and 25 should enable such an automation to infer a counter-
example (system and trace) from failed attempts, thereby explaining why a monitor is not
consistently-detecting.

I Example 27. Recall monitor m2 from Example 1. Assuming the shorthand abbreviations
m′2 , aut〈y〉.ack〈y〉.>+ aut(z).if z 6=y then ack(z′).⊥ and
M = {if z 6=enc(x) then ack(z′).⊥, ack〈enc(x)〉.>}, compiling a relation satisfying Definition 24
fails because it needs to include:

〈true,
{

let y=enc(x) in m′2
}
〉 since spa(〈true, {m2}〉, chl〈x〉, true)

〈z = enc(x),M〉 since spa(〈true,
{

let y=enc(x) in m′2
}
〉, aut〈z〉, z = enc(x))

〈true, {>,0}〉 since spa(〈z = enc(x),M〉, ack〈w〉, (w = enc(x)))

The final pair 〈true, {>,0}〉 violates Definition 24(i) and, via the symbolic events on right-hand
column conatining the spa(−) assertions that lead to it, one can construct the counter-example
inducing the inconsistent detection, i.e., a system s producing the trace chl〈v〉 · aut〈u〉 · ack〈u〉
where u=enc(v). J

7 Conclusion

Monitors should provide guarantees that they will operate correctly when instrumented with
any system [35]. At the same time, for this requirement to be scalable, the corresponding
correctness analysis that determines it must also be compositional: monitors should be verified
separately, independent of the systems they may be instrumented with. The fact that monitors
tend to be considerably smaller (in size and complexity) than the systems they observe further
justifies this point. This paper provides two definitions that formalise deterministic monitoring
behaviour, Definition 6 (consistently-detecting monitors) and Definition 11 (controllable
monitors), that address these seemingly conflicting concerns; it also shows that the two
definitions coincide, Theorem 13. In addition, the paper also studies alternative definitions for
controllability, Definitions 19 and 24, that enable the implementation of sound and complete
symbolic analyses, Theorems 21 and 25.

Our methods provide a systematic way for factoring out auxiliary reasoning on data from
the analysis relating to the branching structure of the monitors; the former kind of reasoning
can be determined by calling on an independent satisfiability solver. In fact, for the specific
case of our expository monitor language in Figure 1, one can show that our methods yield
finite symbolic transition graphs, making the latter reasoning decidable modulo the expression
and boolean language used. The results obtained in this work should also be general enough

CONCUR 2017

8:16 Consistently-Detecting Monitors

to be applicable to other monitoring systems. For instance, Definitions 6, 11, 19, and 24
are independent of the kind of systems monitored, the syntax of the monitor language,
and the event value domains and expression languages used. Instead, they are defined in
terms of generic characteristics such as their LTS semantics. As a result, extending the
monitor language with constructs such as parallel composition would not affect the existing
framework. The instrumentation relation one adopts for composing monitors with systems
necessarily affects the compositional properties and the correspondence between the respective
definitions. However, these changes do not impinge on the general structure of our definitions
and should be local to the detection condition in the resp. controllability definitions, namely
Definition 11(i), 19(i) and 24(i), and the reachability-set definitions aft(−), saft(−) and
osaft(−) of Definitions 10, 18, and 24.

Future work. We will further investigate the implementability aspects of our analysis,
possibly as an extension to existing model-checking tools. This may raise further issues and
adjustments to our definitions e.g., it may be more efficient to batch the satisfiability checks
in Definition 24. We plan to apply this to existing transition-based monitor specifications
such as [5, 46] and validate its feasibility as an automated specification assistant.

Related Work. The need for determinising monitor syntheses from logical specifications is
frequently discussed in the literature [7, 23]. In [1], the authors employ a trace-based definition
of deterministic monitors that takes into consideration verdicts (similar to our definition
for consistent detections of Definition 6 but without considering universal quantification
over system instrumentations) and establish complexity bounds for determinising monitors
wrt. this definition. Set-simulations, which are related to our monitor-sets, have been used
as a proof technique for testing preorders in [15] but do not consider symbolic analyses.
Acceptor ambiguity [29] is closely related to our notion of consistent detection with respect
to the three outcomes of acceptance, rejection and withholding, as specified in Definition 6.
Crucially, however, our definition universally quantifies over all possible system compositions.
Subsequently, the main endeavour of our work was that of developing sound and complete
compositional techniques to alleviate the analysis for consistent detection; we are unaware
of any compositional or coinductive techniques used for determining acceptor ambiguity.
Symbolic LTSs were studied extensively for value-passing CCS in [27, 28], but their use in
controllability for reasoning about consistent monitor detections is, to our knowledge, novel.
The particular setting where it is used, namely the instrumentation composition relation and
the use of monitor-sets, also require new technical machinery, such as that of Definition 18.
Our definition of controllability, Definition 11, is related to viability (usability) for clients
in contract compliance [39] and must-testing [9]. Particularly, in the case of compliance,
viability is defined coinductively and is satisfied whenever there exists a server that can
engage with the client so as to lead it to success whenever interaction terminates. Apart
from the universal quantifications over systems (viability existentially quantifies over servers),
our work differs from [39, 9] wrt. the treatment of verdicts considered, the composition
relation used (i.e., instrumentation), and the development of a symbolic analysis for handling
of action/event data.

Acknowledgements. The author acknowledges the Dagstuhl seminar 17051 and would like
to thank Luca Aceto, Antonis Achilleos, Duncan Attard, Giovanni Bernardi, Ian Cassar,
Anna Ingólfsdóttir, Giles Reger and anonymous reviewers for their help and suggestions.

A. Francalanza 8:17

References

1 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sævar Örn
Kjartansson. On the Complexity of Determinizing Monitors. In CIAA, pages 1–13, 2017.
doi:10.1007/978-3-319-60134-2_1.

2 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge Univ. Press, 2007.

3 Luca Aceto, Anna Ingolfsdottir, and Jiri Srba. Advanced Topics in Bisimulation and Coin-
duction, chapter The Algorithmics of Bisimilarity. Cambridge Univ. Press, 2011.

4 Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi. General algorithms for test-
ing the ambiguity of finite automata. In DTL, pages 108–120, 2008. doi:10.1007/
978-3-540-85780-8_8.

5 Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard.
Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors. In FM,
pages 68–84, 2012. doi:10.1007/978-3-642-32759-9_9.

6 David Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zălinescu. Monitoring com-
pliance policies over incomplete and disagreeing logs. In RV, pages 151–167, 2013.
doi:10.1007/978-3-642-35632-2_17.

7 Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL
and TLTL. TOSEM, 20(4):14, 2011.

8 Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fischmeister. Runtime verification
with minimal intrusion through parallelism. Formal Methods in System Design, 46(3):317–
348, 2015. doi:10.1007/s10703-015-0226-3.

9 Giovanni Bernardi and Adrian Francalanza. Full-abstraction for must testing preorders. In
COORDINATION, pages 237–255, 2017. doi:10.1007/978-3-319-59746-1_13.

10 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. TCS, 669:33–58, 2017. doi:10.
1016/j.tcs.2017.02.009.

11 Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and
Corentin Travers. Decentralized asynchronous crash-resilient runtime verification. In CON-
CUR, pages 16:1–16:15, 2016. doi:10.4230/LIPIcs.CONCUR.2016.16.

12 Ian Cassar and Adrian Francalanza. Runtime Adaptation for Actor Systems. In RV, volume
9333, pages 38–54. Springer, 2015.

13 Ian Cassar and Adrian Francalanza. On Implementing a Monitor-Oriented Programming
Framework for Actor Systems. In iFM, pages 176–192, 2016.

14 Feng Chen and Grigore Roşu. MOP: An Efficient and Generic Runtime Verification Frame-
work. In OOPSLA, pages 569–588, 2007. doi:10.1145/1297027.1297069.

15 Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisimulation equival-
ence. FACS, 5(1):1–20, 1993.

16 Christian Colombo, Adrian Francalanza, Ruth Mizzi, and Gordon J. Pace. polylarva:
Runtime verification with configurable resource-aware monitoring boundaries. In SEFM,
pages 218–232, 2012.

17 Marcelo d’Amorim and Grigore Roşu. Efficient monitoring of ω-languages. In CAV, pages
364 – 378, 2005.

18 Søren Debois, Thomas Hildebrandt, and Tijs Slaats. Safety, liveness and run-time re-
finement for modular process-aware systems with dynamic sub processes. In FM, pages
143–160, 2015. doi:10.1007/978-3-319-19249-9_10.

19 Normann Decker and Daniel Thoma. On freeze LTL with ordered attributes. In FOSSACS,
pages 269–284, 2016. doi:10.1007/978-3-662-49630-5_16.

20 John Dorsey. Continuous and Discrete Control Systems: Modeling, Identification, Design,
and Implementation. McGraw-Hill, 2001.

CONCUR 2017

http://dx.doi.org/10.1007/978-3-319-60134-2_1
http://dx.doi.org/10.1007/978-3-540-85780-8_8
http://dx.doi.org/10.1007/978-3-540-85780-8_8
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-642-35632-2_17
http://dx.doi.org/10.1007/s10703-015-0226-3
http://dx.doi.org/10.1007/978-3-319-59746-1_13
http://dx.doi.org/10.1016/j.tcs.2017.02.009
http://dx.doi.org/10.1016/j.tcs.2017.02.009
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.16
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1007/978-3-319-19249-9_10
http://dx.doi.org/10.1007/978-3-662-49630-5_16

8:18 Consistently-Detecting Monitors

21 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. On the number of opinions
needed for fault-tolerant run-time monitoring in distributed systems. In RV, pages 92–107,
2014. doi:10.1007/978-3-319-11164-3_9.

22 Adrian Francalanza. A Theory of Monitors. In FoSSaCS, pages 145–161, 2016.
23 Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir. Monitorability for the Hennessy–

Milner logic with recursion. FMSD, pages 1–30, 2017. doi:10.1007/s10703-017-0273-z.
24 Adrian Francalanza and Aldrin Seychell. Synthesising Correct concurrent Runtime Monit-

ors. FMSD, 46(3):226–261, 2015. doi:10.1007/s10703-014-0217-9.
25 Jan Friso Groote and M.P.A. Sellink. Confluence for process verification. TCS, 170(1):47

– 81, 1996. doi:10.1016/S0304-3975(96)80702-X.
26 Yuqin He, Xiangping Chen, and Ge Lin. Composition of monitoring components for on-

demand construction of runtime model based on model synthesis. In Internetware, pages
1–5, 2013. doi:10.1145/2532443.2532472.

27 Matthew Hennessy and Anna Ingolfsdottir. A Theory of Communicating Processes with
Value Passing. Information and Computation, 107(2):202 – 236, 1993. doi:10.1006/inco.
1993.1067.

28 Matthew Hennessy and Huimin Lin. Symbolic bisimulations. TCS, 138(2):353 – 389, 1995.
doi:10.1016/0304-3975(94)00172-F.

29 Oscar H. Ibarra and Bala Ravikumar. On Sparseness, Ambiguity and other decision prob-
lems for Acceptors and Transducers. In STACS, pages 171–179, 1986. doi:10.1007/
3-540-16078-7_74.

30 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment
for higher-order session types. In POPL, pages 582–594, 2016. doi:10.1145/2837614.
2837662.

31 Jerzy Klamka. Control System, Robotics and Automation, volume 7, chapter System Char-
acteristics: Stability, Controllability, Observability. EOLLS, 2009.

32 John Klein and Ian Gorton. Runtime Performance Challenges in Bigdata Systems. In
WOSP, pages 17–22, 2015. doi:10.1145/2693561.2693563.

33 D. König. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Litt. ac. sci.
Szeged, 3, 1927.

34 Dexter Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.
35 Jonathan Laurent, Alwyn Goodloe, and Lee Pike. Assuring the Guardians. In RV, pages

87–101, 2015.
36 Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms

for run-time security policies. Int. J. Inf. Secur., 4(1-2):2–16, 2005. doi:10.1007/
s10207-004-0046-8.

37 Qingzhou Luo and Grigore Roşu. EnforceMOP: A Runtime Property Enforcement System
for Multithreaded Programs. In ISSTA, New York, NY, USA, 2013. ACM. doi:10.1145/
2483760.2483766.

38 Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu.
An overview of the MOP runtime verification framework. STTT, 14(3):249–289, 2012.
doi:10.1007/s10009-011-0198-6.

39 Luca Padovani. Contract-based discovery of web services modulo simple orchestrators.
TCS, 411(37), 2010.

40 Anna Philippou and David Walker. On confluence in the π-calculus. In ICALP, pages
314–324, 1997. doi:10.1007/3-540-63165-8_188.

41 Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at Runtime
with QEA. In TACAS, pages 596–610, 2015. doi:10.1007/978-3-662-46681-0_55.

42 Davide Sangiorgi. An introduction to Bisimulation and Coinduction. Cambridge University
Press, 2012.

http://dx.doi.org/10.1007/978-3-319-11164-3_9
http://dx.doi.org/10.1007/s10703-017-0273-z
http://dx.doi.org/10.1007/s10703-014-0217-9
http://dx.doi.org/10.1016/S0304-3975(96)80702-X
http://dx.doi.org/10.1145/2532443.2532472
http://dx.doi.org/10.1006/inco.1993.1067
http://dx.doi.org/10.1006/inco.1993.1067
http://dx.doi.org/10.1016/0304-3975(94)00172-F
http://dx.doi.org/10.1007/3-540-16078-7_74
http://dx.doi.org/10.1007/3-540-16078-7_74
http://dx.doi.org/10.1145/2837614.2837662
http://dx.doi.org/10.1145/2837614.2837662
http://dx.doi.org/10.1145/2693561.2693563
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1145/2483760.2483766
http://dx.doi.org/10.1145/2483760.2483766
http://dx.doi.org/10.1007/s10009-011-0198-6
http://dx.doi.org/10.1007/3-540-63165-8_188
http://dx.doi.org/10.1007/978-3-662-46681-0_55

A. Francalanza 8:19

43 Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,
2000. doi:10.1145/353323.353382.

44 Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition,
2012.

45 Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf.& Comp.,
115(1):1–37, 1994. doi:10.1006/inco.1994.1092.

46 Yoriyuki Yamagata, Cyrille Artho, Masami Hagiya, Jun Inoue, Lei Ma, Yoshinori Tanabe,
and Mitsuharu Yamamoto. Runtime monitoring for concurrent systems. In RV, pages
386–403, 2016. doi:10.1007/978-3-319-46982-9_24.

CONCUR 2017

http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1007/978-3-319-46982-9_24

	Introduction
	Systems, Monitors, Instrumentation and Monitored Systems
	Deterministic Monitoring Behaviour
	Controllability
	Symbolic Controllability
	On Automating Symbolic Controllability
	Conclusion

