
Probabilistic Automata of Bounded Ambiguity∗

Nathanaël Fijalkow1, Cristian Riveros2, and James Worrell3

1 The Alan Turing Institute of Data Science, London, UK and
University of Warwick, Coventry, UK
nfijalkow@turing.ac.uk

2 Pontificia Universidad Católica de Chile, Santiago, Chile
cristian.riveros@uc.cl

3 University of Oxford, Oxford, UK
james.worrell@cs.ox.ac.uk

Abstract
Probabilistic automata are a computational model introduced by Michael Rabin, extending non-
deterministic finite automata with probabilistic transitions. Despite its simplicity, this model
is very expressive and many of the associated algorithmic questions are undecidable. In this
work we focus on the emptiness problem, which asks whether a given probabilistic automaton
accepts some word with probability higher than a given threshold. We consider a natural and
well-studied structural restriction on automata, namely the degree of ambiguity, which is defined
as the maximum number of accepting runs over all words. We observe that undecidability of the
emptiness problem requires infinite ambiguity and so we focus on the case of finitely ambiguous
probabilistic automata.

Our main results are to construct efficient algorithms for analysing finitely ambiguous prob-
abilistic automata through a reduction to a multi-objective optimisation problem, called the
stochastic path problem. We obtain a polynomial time algorithm for approximating the value of
finitely ambiguous probabilistic automata and a quasi-polynomial time algorithm for the empti-
ness problem for 2-ambiguous probabilistic automata.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Probabilistic Automata, Emptiness Problem, Stochastic Path Problem,
Multi-Objective Optimisation Problems

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2017.19

1 Introduction

Probabilistic automata are a simple and natural extension of non-deterministic automata that
were introduced by Rabin [16]. Syntactically, a probabilistic automaton is a non-deterministic
finite automaton in which each edge is annotated by a probability. Such an automaton
associates to every word a value between 0 and 1, which is the total probability that a run
on the word ends in an accepting state. We call this the acceptance probability of the word.

Despite their simplicity, probabilistic automata are very expressive and have been widely
studied. Unfortunately the price of this expressiveness is that almost all natural decision
problems are undecidable. Consequently, various approaches based on restricting resources
such as structure, dimension, or randomness have been studied [5, 8, 7, 4].

∗ This work was supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1, by the
EPSRC grant EP/M012298/1, by the FONDECYT grant 11150653 and the Millennium Nucleus Center
for Semantic Web Research under grant NC120004.

© Nathanaël Fijalkow, Cristian Riveros, and James Worrell;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Probabilistic Automata of Bounded Ambiguity

In this paper, we look at probabilistic automata of bounded ambiguity, where the ambiguity
of a word is the number of accepting runs. We say that a probabilistic automaton is f -
ambiguous, for a function f : N→ N, if every word of length n has at most f(n) accepting
runs. (Note that ambiguity is a property of the underlying nondeterministic finite automata,
and is independent of the transition probabilities.) This restriction has been extensively
studied in automata theory; in particular, the landmark paper of Weber and Seidl [18] gives
respective structural characterisations of the classes finitely, polynomially, and exponentially
ambiguous nondeterministic finite automata, from which polynomial-time algorithms are
obtained for deciding membership in each of these classes.

We focus on the most natural and well-studied problem for probabilistic automata, called
the emptiness problem: given a probabilistic automaton and a threshold, does there exist a
word accepted with probability at least a given threshold? Using a classical construction, we
first observe that the emptiness problem is already undecidable for polynomially ambiguous
probabilistic automata. We are thus led to focus on finitely ambiguous probabilistic automata.

We study the complexity of the emptiness problem on various classes of finitely ambiguous
probabilistic automata. For each positive integer k we consider the class of k-ambiguous
probabilistic automata, i.e., automata with at most k accepting runs on any word. More
generally we fix a polynomial p and consider the class of automata whose ambiguity is at
most p(m), where m is the number of states. More generally still, bearing in mind that
the ambiguity can be exponential in the number of states, we have the class of all finitely
ambiguous automata.

Our main results are as follows. We show that the emptiness problem for finitely
ambiguous probabilistic automaton is, respectively:

in NEXPTIME and PSPACE-hard for the class of all finitely ambiguous automata;
PSPACE-complete for the class of probabilistic automata with ambiguity bounded by a
fixed non-constant polynomial in the number of states.
in NP for the class of k-ambiguous probabilistic automata, for every positive integer k.
in quasi-polynomial time for the class of 2-ambiguous probabilistic automata.

Naturally associated with the emptiness problem we have the function problem of
computing the value of a probabilistic automaton, that is, the supremum over all words of
the acceptance probability of a word. Here we show:

for the class of all finitely ambiguous probabilistic automata, there is no polynomial-time
approximation algorithm for the value problem unless P = NP,
for the class of k-ambiguous probabilistic automata, the value is approximable up to any
multiplicative constant in polynomial time.

The starting point to prove these results is to give an upper bound on the length of a
shortest word whose probability exceeds a given threshold. More precisely, we show that for
a k-ambiguous probabilistic automaton with n states there is a maximum-probability word
of length at most nk. More generally, we show that for a finitely ambiguous probabilistic
automaton with n states, there is a maximum-probability word of length at most n!. The
latter result easily leads to a PSPACE upper bound for the emptiness problem in the
case the ambiguity is bounded by a fixed polynomial in the number of states. Most of the
remainder of the paper is devoted to the case of k-ambiguous automata for a fixed k.

We give a polynomial-time reduction from the emptiness problem for k-ambiguous
probabilistic automata to a multi-objective optimisation problem, which we call the k-
stochastic path problem. Using this reduction, we obtain a polynomial-time algorithm for
approximating the value of a k-ambiguous probabilistic automata, and a quasi-polynomial
time algorithm for the emptiness problem of 2-ambiguous probabilistic automata.

N. Fijalkow, C. Riveros, and J. Worrell 19:3

2 Preliminaries

Let Σ be a finite alphabet. For any word w ∈ Σ∗, we denote by |w| its length. A distribution
is a function δ : Q → [0, 1] such that

∑
q∈Q δ(q) = 1. The set of distributions over Q is

denoted D(Q).

Probabilistic automata. A probabilistic automaton is a tuple P = (Q, qin,∆, F), where Q
is a finite set of states, qin is the initial state, ∆ : Q×A→ D(Q) is the transition function,
and F is the set of accepting states. Given a word w = a1 · · · an, a run ρ over w is a sequence
of states q0, q1, . . . , qn. The probability of such a run is P(ρ) =

∏
`∈{1,...,n}∆(q`−1, a`)(q`).

We denote by RunP(p w−→ q) the set of runs ρ over w starting in p and finishing in q with
P(ρ) > 0. The number P(p w−→ q) is the probability to go from p to q reading w, defined as
the sum of the probabilities of its runs, namely:

P(p w−→ q) =
∑

ρ∈RunP(p
w−→q)

P(ρ).

A run ρ is accepting if it starts in qin, satisfies P(ρ) > 0, and finishes in an accepting state,
i.e. a state in F . We denote by RunP(w) the set of accepting runs over w. The probability
of w over P is defined as the sum of the probabilities of its accepting runs by:

P(w) =
∑

ρ∈RunP(w)

P(ρ).

Ambiguity. In this paper, we consider different subclasses of probabilistic automata, ob-
tained by restrictions on ambiguity. More specifically, we say that:
P is unambiguous if every word w has at most one accepting run, i.e. |RunP(w)| ≤ 1.
P is k-ambiguous if every word w has at most k accepting runs, i.e. |RunP(w)| ≤ k.
P is finitely ambiguous, if there exists k such that P is k-ambiguous.
P is polynomially ambiguous, if there exists a polynomial P such that for every word w,
we have |RunP(w)| ≤ P (|w|).

Depending on whether the polynomial P is linear or quadratic, we say that a polynomial
ambiguous automaton P is linearly ambiguous or quadratically ambiguous, respectively. Note
that it is decidable in polynomial time whether a probabilistic automaton P is unambiguous,
finitely ambiguous, or polynomially ambiguous [18]. Furthermore, a consequence of the
results of [18] is that an automaton which is not finitely ambiguous is at least linearly
ambiguous.

Emptiness problem and value. Let P be a probabilistic automaton and c a threshold.
Following Rabin [16], we define the threshold language induced by P and c as:

L>c(P) = {w ∈ Σ∗ | P(w) > c} .

The emptiness problem asks, given a probabilistic automaton P and a threshold c, whether
the language L>c(P) is non-empty, that is, whether there exists a word w such that P(w) > c.

A related function problem is to compute the value of a probabilistic automaton P,
defined by val(P) = supw∈Σ∗ P(w). Note that the emptiness problem is equivalent to asking
whether val(P) > c.

CONCUR 2017

19:4 Probabilistic Automata of Bounded Ambiguity

qin

⊥

⊤
0 : 1

2

1 : 1
2

0 : 1
2

1 : 1
2

0 : 1

1 : 1

0 : 1

1 : 1

Figure 1 This probabilistic automaton computes bin.

3 Undecidability for Polynomially Ambiguous Probabilistic Automata

In this section, we show undecidability results for polynomially ambiguous probabilistic
automata, which justifies the focus of our paper on finitely ambiguous probabilistic automata.

I Theorem 1. The emptiness problem is undecidable for quadratically ambiguous probabilistic
automata.

Undecidability of the emptiness problem has long been known for general probabilistic
automata [15, 2, 9]. However, the automata involved in the proof have exponential ambiguity.
We show that the ideas can be reused to obtain Theorem 1. The key ingredient in the
undecidability proof of Bertoni [2] (see [9] for a simple exposition of the ideas) is the
construction of a probabilistic automaton computing the value of a rational number given in
binary with least significant digit on the left:

binR(a1 · · · an) =
n∑
i=1

ai
2n−i+1 .

The automaton proposed by Bertoni has exponential ambiguity. However, it is possible to
construct a linearly ambiguous probabilistic automaton computing the same function but
reversing the input:

bin(a1 · · · an) =
n∑
i=1

ai
2i .

The automaton is represented in Figure 1. Once this automaton is known, it is easy to
prove the undecidability of the emptiness problem following the proof scheme of Bertoni,
streamlined by Gimbert and Oualhadj [9]:

First, show that the following problem is undecidable: given a linearly ambiguous
probabilistic automaton P, does there exist a word w such that P(w) = 1

2? The proof
is by reduction from Post’s Correspondence Problem (PCP), which can be defined as
follows: given a pair of monoid homomorphisms ϕ1, ϕ2 : Σ∗ → {0, 1}∗, does there
exist a word w such that ϕ1(w) = ϕ2(w)? Using the automaton above computing
bin, it is easy to construct a probabilistic automaton P of linear ambiguity such that
P(w)− 1

2 = 1
2 (bin(ϕ1(w))− bin(ϕ2(w))). Since the function bin is (essentially1) injective,

P(w) = 1
2 is equivalent to ϕ1(w) = ϕ2(w), proving the correctness of the reduction.

1 One needs to ensure that the last letter is a 1, which is achieved using a small modification of ϕ1 and ϕ2

N. Fijalkow, C. Riveros, and J. Worrell 19:5

Second, show that the emptiness problem is undecidable by reduction to the problem
above. Given a linearly ambiguous probabilistic automaton P, one can construct a
quadratically ambiguous probabilistic automaton P ′ such that P ′(w) = P(w) · (1−P(w)).
Since for x in [0, 1], the following equivalence holds: x = 1

2 if, and only if, x · (1− x) ≥ 1
4 ,

the first undecidability result implies the undecidability of the emptiness problem for
quadratically ambiguous probabilistic automata.

Given a probabilistic automaton P, we say that a threshold c is isolated if there exists
ε > 0 such that for all words w, we have |P(w)−c| > ε. Rabin [16], proved that if a threshold
c is isolated then the corresponding language L≥c(P) is regular. The isolation problem asks
to determine whether a given threshold is isolated for a given automaton. This problem was
shown to be undecidable by Bertoni [2]. We can refine the result of [2] to obtain:

I Theorem 2. The isolation problem is undecidable for linearly ambiguous probabilistic
automata.

Proof. We construct a reduction from a variant of the Post Correspondence’s Problem,
called the infinite PCP, and shown to be undecidable in [17]. The problem asks, given
two homomorphisms ϕ1, ϕ2 : Σ∗ → {0, 1}∗, does there exist an infinite word w in Σω such
that ϕ1(w) = ϕ2(w) (where ϕ1, ϕ2 are extended to continuous Σω maps on with respect to
product topology). We first observe that equivalently, we ask whether for every ε > 0 there
exists w in Σ∗ such that |bin(ϕ1(w))− bin(ϕ2(w))| ≤ ε.

Indeed, if there exists an infinite word w such that ϕ1(w) = ϕ2(w), then the sequences
obtained by considering the images under ϕ1 and ϕ2 of prefixes of w have arbitrarily long
common prefixes, so the difference of their binary values converges to 0. Conversely, assume
that for any ε > 0 there exists a finite word w such that |bin(ϕ1(w))− bin(ϕ2(w))| ≤ ε, then
we construct a solution to the infinite PCP using König’s lemma. To this end, for each n let
wn be a finite word such that |bin(ϕ1(wn))− bin(ϕ2(wn))| < 2n, i.e., such that ϕ1(wn) and
ϕ2(wn) coincide on the first n letters. Applying König’s Lemma to the infinite tree defined
by the prefix closure of the set {wn | n ≥ 0} (i.e., each node in the tree is the prefix of some
word wn), there exists an infinite word w such that ϕ1(w) = ϕ2(w).

We now construct the reduction from the infinite PCP to the isolation problem for linearly
ambiguous probabilistic automata. Given two homomorphisms ϕ1 and ϕ2 we construct the
linearly ambiguous probabilistic automaton P such that for every w in Σ∗,

P(w) = 1
2 (bin(ϕ1(w)) + 1− bin(ϕ2(w))) .

Then2 for every ε > 0 there exists w in Σ∗ such that |bin(ϕ1(w))− bin(ϕ2(w))| ≤ ε if, and
only if, |P(w)− 1

2 | ≤ ε. J

An automaton is either finitely ambiguous, or at least linearly ambiguous. We proved
undecidability results for linearly and quadratically ambiguous automata; the focus of the
present paper is on decidability results for finitely ambiguous automata.

4 Decidability and Complexity of Finitely Ambiguous Probabilistic
Automata

In this section we study threshold languages and the emptiness problem for finitely ambiguous
probabilistic automata. We start by showing regularity of the threshold language L>c(P) for

2 The same trick as for the proof above is required, to ensure that bin is injective.

CONCUR 2017

19:6 Probabilistic Automata of Bounded Ambiguity

a finitely ambiguous probabilistic automaton P and threshold c. A classical result, due to
Rabin [16], shows that the threshold languages need not be regular in general. Unfortunately
the proof of regularity, while constructive, is not useful for determining the complexity of
the emptiness problem. However we are able to give a direct simple argument that bounds
the length of witnesses for the emptiness problem. We then use these bounds to analyse the
complexity of the emptiness problem.

I Theorem 3. Let P be a finitely ambiguous probabilistic automaton and c a threshold. Then
L>c(P) is a regular language.

Proof. Consider the set Nk under the pointwise order. Recall that I ⊆ Nk is an ideal if it is
downward closed and directed. Every ideal I has the form

I = {(n1, . . . , nk) ∈ Nk : ni1 ≤ a1 ∧ . . . ∧ nis ≤ as} (1)

for certain indices 1 ≤ i1 < . . . < is ≤ k and natural numbers a1, . . . , as. From the fact
that Nk is a well-quasi-order it follows that every downward closed subset of D ⊆ Nk can be
written as a finite union of ideals. Indeed such a decomposition can easily be computed from
the finite set of minimal elements of Nk \D [12].

Let P = (Q, qin,∆, F) be a finitely ambiguous probabilistic automaton with transition
function ∆ : Q×Σ→ D(Q). Say that a triple (p, a, q) ∈ Q×Σ×Q is an edge if ∆(p, q)(q) > 0.
Suppose that P has s edges for some s ∈ N and fix a linear ordering on these edges. We say
that m = (mi,j) ∈ Ns×k is admissible for a word w ∈ Σ∗ if there exist k distinct accepting
runs of P on w such that mi,j is the number of times that the i-th edge is taken in the j-th
accepting run.

For any ideal I ⊆ Ns×k the set of w ∈ Σ∗ such that some m ∈ I is admissible for w
is a regular language. A non-deterministic automaton for this language guesses k distinct
accepting runs of P and counts the number of times each edge is taken on each accepting
run, up to a finite threshold N , where N is the largest integer appearing in the description
of I in the form (1). It follows that for any downward closed subset D ⊆ Ns×k the set of
w ∈ Σ∗ such that some m ∈ D is admissible for w is a regular language.

Now let λ1, . . . , λs be the transition probabilities occuring in P, listed according to the
ordering on the edges. Given k ∈ N, consider the set of tuples

Sk =

(mi,j) ∈ Ns×k :
k∑
j=1

λ
m1,j

1 . . . λms,j
s > c

 .

For any word w ∈ Σ∗, w ∈ L>c(P) if and only if there exists some k up to the (finite) degree
of ambiguity of P and some m ∈ Sk that is admissible for w. Since each set Sk is downwards
closed, it follows that L>c(P) is regular. J

The threshold language L>c(P) of a finitely ambiguous probabilistic automaton is regular,
however, this does not say anything on how to decide efficiently whether L>c(P) is empty or
not. Therefore, the next step is to bound the size of a witness word whenever L>c(P) 6= ∅.
This will lead to upper bounds on the complexity of the emptiness problem restricted to
k-ambiguous.

I Lemma 4. Let P be a k-ambiguous probabilistic automaton with n states. For every word
w, there exists a word w′ of length at most nk such that P(w) ≤ P(w′).

This implies that the value of P is reached by some word of length at most nk.

N. Fijalkow, C. Riveros, and J. Worrell 19:7

Proof. Let P = (Q, qin,∆, F) and suppose that there are exactly k′ accepting runs on w
for some k′ ≤ k. If w has length strictly greater than nk′ then there exists a factorization
w = xyz for x, y, z ∈ Σ∗, with y non-empty and xz of length at most nk, such that for each
of the accepting runs on w, the infix corresponding to the factor y starts and ends in the
same state. Then we have

P(w) =
∑
q∈F

∑
p∈Q P(qin

x−→ p)P(p y−→ p)P(p z−→ q)
≤

∑
q∈F

∑
p∈Q P(qin

x−→ p)P(p z−→ q)
= P(xz) .

J

Note that if k is fixed, then the size of a witness for L>c(P) is polynomial in the size of
the automaton (i.e. nk where n is the number of states of P). Unfortunately, it has been
shown in [18] that the ambiguity of a finitely ambiguous automata can be exponential in
the number of states and, thus, the previous lemma gives a double exponential bound for a
witness of L>c(P) when k is not fixed. The next result shows that the size of a witness is at
most exponential in the number of states.

I Theorem 5. Let P be a finitely ambiguous probabilistic automaton with n states. For
every word w, there exists a word w′ of length at most n! such that P(w) ≤ P(w′).

This implies that the value of P is reached by some word of length at most n!.

Proof. Consider a word w = a1 · · · a` of length at least n!. For any position i over the runs
of P over w, denote Ri the set of states participating in at least one accepting run over w.
Furthermore, we equip Ri with the order defined by p ≤ q if P(q0

a1···ai−−−−→ p) ≤ P(q0
a1···ai−−−−→ q),

i.e. the probability of reading the prefix of w until position i reaches p with smaller probability
than q (ties are resolved in a consistent way).

Since w has length at least n!, there exist two positions i < j such that the ordered sets
Ri and Rj coincide, denoted by R, and there exists a factorization w = xyz, with y the word
in between positions i and j. Then we look at the runs of y from R to R, and make the
following claims:
1. For every p ∈ R, there exists a run over y from p to a state in R.
2. For every p ∈ R, there exists at most one run over y from p to a state in R.
3. For every p ∈ R, we have P(q0

uv−→ p) ≤ P(q0
u−→ p).

The first claim follows from the fact that R is the set of states participating in at least one
accepting run over w. For the second claim, if this would not be the case, then the number
of runs from R to R would increase unboundedly, contradicting that P is finitely ambiguous.
Then it follows that for any state p ∈ R there exists a unique run over y from p to some
state in R, which is written p′.

For the last item, pick a state p ∈ R and note that P(q0
xy−→ p′) = P(q0

x−→ p) · P(p y−→
p′) ≤ P(q0

x−→ p). This reduce the analysis to two cases. On one hand, p ≤ p′ and then
P(q0

xy−→ p) ≤ P(q0
xy−→ p′) ≤ P(q0

x−→ p). On the other hand, p > p′ and then there exists a
state q in R such that q ≤ p and p ≤ q′. This is because for any state r ∈ R there exists a
unique run over y from r to some state in R. It follows that P(q0

xy−→ p) ≤ P(q0
xy−→ q′) ≤

P(q0
x−→ q) ≤ P(q0

x−→ p).
Finally, the proof of the theorem follows from the last claim (see Lemma 4). J

With the previous bounds in hand, we can study the computational complexity of the
emptiness problem for various classes of finitely ambiguous probabilistic automata. For each
fixed positive integer k we consider the class of k-ambiguous probabilistic automata. More

CONCUR 2017

19:8 Probabilistic Automata of Bounded Ambiguity

generally, we can let the ambiguity of an automaton depend on the number n of states: we
consider for each fixed polynomial p the class of all automata that have ambiguity at most
p(n). We call this the class of automata of p-bounded ambiguity. More generally still, we
have the class of all finitely ambiguous probabilistic automata. (Recall that the ambiguity
can be exponential in the number of states in general.)

I Theorem 6.
For each fixed positive integer k, the emptiness problem for the class of k-ambiguous
probabilistic automata is in NP.
For each fixed polynomial p, the emptiness problem for the class of probabilistic automata
with p-bounded ambiguity is in PSPACE. This problem is PSPACE-hard already in
case p(n) = n.
The emptiness problem for the class of finitely ambiguous probabilistic automata is in
NEXPTIME and is PSPACE-hard.

Proof. The algorithm for all three cases exploits Lemma 4 and Theorem 5 to guess and
check a word witnessing that threshold language is non-empty.

For k-ambiguous we know by Lemma 4 that a witness for checking whether L>c(P) 6= ∅
is of polynomial size in P and, therefore, we can guess a polynomial size word w and check if
P(w) ≥ c, that is, the problem is in NP.

Similarly, for finitely ambiguous we know by Theorem 5 that the witness is of size at
most exponential, so we can guess and check if L>c(P) is non-empty in NEXPTIME.

To show that emptiness is in PSPACE for probabilistic automata of p-bounded ambiguity,
one can guess a word w “on the fly” of size exponential and check whether P(w) ≥ c. The
problem here is that the value P(w) (written in binary) could be of size exponential in the
size of P. To check if P(w) ≥ c with polynomial space one can guess w, and keep a set of
counters {cit} that stores how many times each transition t is used on the i-th run of P over w.
Since w is of size at most exponential and P has at most p(n) accepting runs, then we need
polynomially many counters, each with at most polynomially many bits, namely, polynomial
space to store these counters during the simulation of P over w. After we conclude guessing
w, we can construct a polynomial-size circuit that receives {cti} and outputs P(w). Checking
that the value of the circuit is greater or equal than a constant c correspond to decide
PosSLP which can be solved in PSPACE [1].

Next we consider a fixed polynomial p(n) = n, and prove PSPACE-hardness of emptiness
for the class of probabilistic automata of p(n)-bounded ambiguity. The proof is by reduction
from the emptiness problem of the intersection of a finite collection of deterministic finite
automata: given as input a collection of deterministic finite automata, does there exist a
word accepted by each of them? This problem has been shown PSPACE-complete in [11].
Given N deterministic automata, we construct a probabilistic automaton P whose first letter
leads with probability 1

N to the initial state of each automaton. The probabilistic automaton
P is N -ambiguous (note that N is at most the number of states of P), and there exists a
word w such that P(w) = 1 if, and only if, there exists a word accepted by each of the N
deterministic automata. J

The aim of the last section is to give better algorithms for the k-ambiguous case: in
particular, we show that the emptiness problem is in quasi polynomial time for 2-ambiguous
probabilistic automata.

N. Fijalkow, C. Riveros, and J. Worrell 19:9

5 Algorithms and Approximations for Finitely Ambiguous
Probabilistic Automata

This section is devoted to the construction of algorithms for both the emptines problem and
approximating the value of finitely ambiguous probabilistic automata. The first step is a
reduction to a multi-objective optimisation problem that we call the stochastic path problem.
We construct algorithms for this problem relying on recent progress on the literature of
multi-objective optimisation problems, and thus obtain algorithms for finitely ambiguous
probabilistic automata.

5.1 The Stochastic Path Problem
The stochastic path problem is an optimisation problem on multi-weighted graphs. It is
parametrised by a positive integer constant k, giving rise to the k-stochastic path problem,
and the bi-stochastic path problem for k = 2. An instance is a triple consisting of an acyclic
k-weighted graph G and two vertices s and t. A k-weighted graph is given by a set of
vertices V of size n and a set of weighted edges E ⊆ V × (Q ∩ [0, 1])k × V . Note that the
same pair of vertices (v, v′) can have different edges between them and the weight of an edge
is a k-tuple of rational numbers between 0 and 1.

A path π in G is a sequence of consecutive edges, and the set of feasible solutions of
the problem are all paths from s to t. We denote by (p1(π), . . . , pk(π)) the component-
wise product of the weight vectors along the edges of π, namely, weights are computed
multiplicatively along each component. In our applications we think of each component of a
weight vector of an edge as the probability of a single event, and each component of a weight
vector of a path as the probability of a sequence of events. The value of the path π, denoted
by val(π), is obtained by summing each component of the weight vector of the path, namely,
val(π) =

∑k
i=1 pi(π).

As a running example, on the left-hand side of Figure 2 we represent an instance of the
bi-stochastic path problem. There are five paths from s to t, and their values are plotted in
the right-hand side. For instance, the path s, p, q, t using the left edge from p to q has weight
(.4× .9× .9, .6× .1× .9) = (.324, .054).

The objective of the k-stochastic path problem is to maximize the sum of the objective
functions, namely, val(π). The value of the above path is .324 + .054 = .378. Finally, the
decision problem associated with the k-stochastic path problem is the following:

The k-stochastic path problem: given a k-weighted graph G, two vertices s and
t and a threshold c in Q ∩ [0, 1], does there exist a path π from s to t in G whose value
is at least c, i.e. such that val(π) ≥ c?

Towards finding efficient algorithms and approximations of k-ambiguous probabilistic
automata, we show a polynomial time reduction from the emptiness problem of k-ambiguous
probabilistic automata to the k-stochastic path problem. Intuitively, the reduction consists
in constructing the powerset graph of the paths, restricting to at most k paths.

I Lemma 7. The emptiness problem of a k-ambiguous probabilistic automaton P reduces
in polynomial time to a k-stochastic path problem (GP , s, t). In particular, the reduction
satisfies that
1. for any word w there exists a path π in G from s to t such that P(w) ≤ val(π),
2. for any path π in G from s to t there exists a word w such that val(π) ≤ P(w).

CONCUR 2017

19:10 Probabilistic Automata of Bounded Ambiguity

s

p

q

t

(.4, .6)

(.2, .3)

(.3, .2)

(.5, .35)

(.5, .3)(.9, .1)

(.9, .9)

.2 .3

.2

.3

Figure 2 An instance of the bi-stochastic path problem on the left, and the values of all paths
from s to t on the right. The four red dots are the Pareto curve, and the three connected red dots
the convex Pareto curve.

Proof. Let P = (Q, qin,∆, F) be a k-ambiguous probabilistic automaton with n states. The
set of vertices of the k-weighted graph GP is defined as Qk × {0, . . . , nk} × {0, 1}k×k where
{0, 1}k×k is the set of k × k matrices over {0, 1}, plus a special source vertex s and a special
target vertex t.

Intuitively, being in the vertex ((q1, . . . , qk), `,M) means that we are simulating k runs
which are now in the states (q1, . . . , qk), that the run so far has length `, and the matrix
M indicates which of two k runs are different: M(i, j) = 1 if, and only if, the i-th run is
different from the j-th run.

The set of edges is defined accordingly to the previous explanation as follows. For the
source vertex, there is an edge from s to ((qin, . . . , qin), 0, 0) with weight (1, . . . , 1), where 0
is the zero matrix. There is an edge from ((q1, . . . , qk), `,M) to ((q′1, . . . , q′k), `+ 1,M ′) with
weight (p1, . . . , pk) if there exists a letter a in Σ such that for each i ∈ {1, . . . , k} we have
∆(qi, a)(q′i) = pi, and M ′(i, j) = 1 if, and only if, M(i, j) = 1 or q′i 6= q′j . Finally, there is an
edge from ((q1, . . . , qk), `,M) to t with weight (p1, . . . , pk) where for each i ∈ {1, . . . , k} we
have pi = 1 if qi ∈ F and M(i, j) = 1 for every j < i, and pi = 0 otherwise. Note that GP is
acyclic and of polynomial size given that k is a fixed value.

We prove the correctness of the construction. Let w be a word. Thanks to Lemma 4, we
can assume without loss of generality that w has length at most nk. Its set of accepting runs
induces a path π in GP from s to t with val(π) = P(w). Conversely, a path π in GP from s

to t corresponds to a set of accepting runs for some word w with val(π) ≤ P(w). J

By the previous result, we can see that the emptiness problem of k-ambiguous probabilistic
automata is closely related to the k-stochastic path problem. In the following we use this
problem as a proxy to give approximation and efficient algorithms for the emptiness problem.

5.2 Approximating the Value in Polynomial Time
Multi-objective optimisation problems have long been studied; see Papadimitriou and Yan-
nakakis [14] and Diakonikolas and Yannakakis [6] among many others. Since there is typically
no single best solution, a natural notion for multi-objective optimisation problems is Pareto
curves, which is the set of undominated solutions. To make things concrete, we illustrate
the notion of Pareto curves on the k-stochastic path problem. We fix an instance (G, s, t) of
the k-stochastic path problem. A Pareto curve is a set of paths P such that for every path
π, there exists a path π′ in P dominating π, i.e. such that for all i in {1, . . . , k}, we have

N. Fijalkow, C. Riveros, and J. Worrell 19:11

pi(π) ≤ pi(π′). In Figure 2, we can see that the Pareto curve of our running example is given
by the four red dots. Here dominating means being to the right and higher, so only one path
is dominated by others. Unfortunately, the size of Pareto curves in discrete multi-objective
optimisation problems is exponential in the worst case. Hence the introduction of two
relaxations: convex and approximate Pareto curves.

A convex Pareto curve is a set of paths C such that for every path π, there exists a family
of paths π1, . . . , πm ∈ C such that π is dominated by a convex combination of π1, . . . , πm
in the sense that there exist non-negative coefficients λ1, . . . , λm that sum to 1 such that
pi(π) ≤

∑
j λjpi(πj) for all components i in {1, . . . , k}.

Convex Pareto curves have been studied in a general setting by Diakonikolas and Yan-
nakakis [6]. They are in general smaller than Pareto curves, yielding efficient algorithms for
convex optimisation problems.

In Figure 2, there exists a convex Pareto curve consisting of only three paths, the fourth
one being dominated a convex combination of two other paths. The figure connects the three
dots, showing which is sometimes called the Pareto front.

Fix ε > 0, an ε-Pareto curve is a set of paths C such that for every path π, there exists a
path π′ in C such that for all i in {1, . . . , k}, we have pi(π) ≤ (1 + ε) · pi(π′).

The notion of approximate Pareto curves is very appealing in our case for two reasons:
first, knowing an approximate Pareto curve usually gives an approximately optimal solution,
and second, a very general result of Papadimitriou and Yannakakis [14] shows that in most
multi-objective optimisation problems, there exists a polynomially succinct approximate
Pareto curve.

The two relaxations are combined to give rise to the notion of ε-convex Pareto curves: it
is a set of paths C such that for every path π, there exists a family of paths π1, . . . , πm ∈ C
such that there exist non-negative coefficients λ1, . . . , λm that sum to 1 such that pi(π) ≤
(1 + ε)

∑
j λjpi(πj) for all components i in {1, . . . , k}.

The following result shows the way to find an ε-approximation of the value of a k-
ambiguous probabilistic automaton P.

I Theorem 8. For any fixed k, there exists a polynomial time algorithm which given an
instance of the k-stochastic path problem and ε > 0, returns an ε-convex Pareto curve in
time polynomial in the instance and 1

ε .

Proof. We rely on general results of Papadimitriou and Yannakakis [14], which give a
sufficient condition for the existence of a polynomial time algorithm constructing an ε-convex
Pareto curve in time polynomial in the instance and 1

ε : it is enough to construct a pseudo-
polynomial time algorithm solving the exact version in pseudo-polynomial time. Recall here
that an algorithm is pseudo-polynomial if it runs in polynomial time when the numerical
inputs are given in unary.

In our case, the exact k-stochastic path problem reads: given an instance (G, s, t) and a
value c in [0, 1]∩Q, does there exist a path π in G from s to t such that

∑
i∈{1,...,k} pi(π) = c?

If all transition probabilities are written using B bits, then it is enough to consider paths
such that each weight uses at most |V | ·B bits with V the set of vertices of G. Hence one can
fill in a polynomially large table indexed by (p, q, p1, . . . , pk), which checks for the existence
of a path from p to q of weights (p1, . . . , pk) using at most |V | ·B bits. J

CONCUR 2017

19:12 Probabilistic Automata of Bounded Ambiguity

v1 v2

v3 v4

qin

v1

v2

v3

v4

1
4

1
4

1
4

1
4

a : 1
a : 1

2

b : 1
2

a : 1
2

b : 1
2

a : 1
2

b : 1
2

a : 1
2

b : 1
2

a : 1
a : 1

2

b : 1
2

b : 1
2

a : 1
2

b : 1
2

a : 1
2

b : 1
2

a : 1 b : 1
2

a : 1
2

b : 1
2

b : 1
2 b : 1

2 a : 1

Figure 3 On the left a graph G and on the right the corresponding finitely ambiguous probabilistic
automaton P such that MaxClique(G) = 4 · 23 · val(P).

Interestingly, the algorithm of Theorem 8 for the k-stochastic path problem yields a
polynomial time algorithm to approximate the value of a k-ambiguous probabilistic automaton.
Recall that the value of a probabilistic automaton P is defined by val(P) = supw∈Σ∗ P(w).

I Theorem 9. For a fixed k, there exists an algorithm which given a k-ambiguous probabilistic
automaton and ε > 0, outputs an ε-approximation of the value in time polynomial in the size
of the automaton and 1

ε , i.e. a value Output such that

Output ≤ val(P) ≤ (1 + ε) ·Output.

Proof. Given a k-ambiguous probabilistic automaton P, the algorithm for finding an ε-
approximation of val(P) is as follows:
1. construct an instance (GP , s, t) of the k-stochastic path problem using Lemma 7.
2. construct an ε-convex Pareto curve C for (GP , s, t) thanks to Theorem 8.
3. output Output = maxπ∈C

∑
i∈{1,...,k} pi(π).

A direct application of Lemma 7 shows that Output is an ε-approximation of val(P). J

Can we approximate the value of any finitely ambiguous probabilistic automaton in
polynomial time? Unfortunately, by reformulating the hardness result of [13] (that paper
uses a different framework), we can give a negative answer to this question, justifying the
relevance of Theorem 9.

I Theorem 10 ([13]). For every ε > 0, there is no polynomial time algorithm computing the
value of finitely ambiguous probabilistic automata up to a factor O(n 1

2−ε) unless P = NP.

The paper [13] constructs a reduction from the size of the maximum clique, for which
we know that no polynomial time approximation algorithm exists unless P = NP. The
construction is given in [13] for Hidden Markov models; we illustrate in Figure 3 how to
adapt it to probabilistic automata.

Given a graphG with n vertices, we construct a finitely ambiguous probabilistic automaton
P with n2 states such that for each m smaller than n, the automaton accepts a word with
probability at least m

n2n−1 if, and only if, the graph contains a clique of size at least m.
We give an intuitive explanation for the construction. A word over {a, b}∗ represents a

set of vertices in the graph; a means in the set and b outside. For instance, the word aaab

N. Fijalkow, C. Riveros, and J. Worrell 19:13

represents the set of vertices {v1, v2, v3}, it has probability 3
4·23 . The automaton P on input

w has n runs, one for each vertex, chosen each with probability 1
n . Each accepting run has

probability 1
2n−1 , and the run corresponding to a vertex v is successful if, and only if, v and

all its neighbours belong to the set of vertices represented by the word w. Hence a clique of
size m induces a word accepted with probability m

n2n−1 , and conversely.
Let MaxClique(G) denote the size of the largest clique in G, the equivalence above reads

MaxClique(G) = n2n−1val(P). It follows that a K(n)-approximation algorithm for the value
of finitely ambiguous probabilistic automata induces a K(n2)-approximation algorithm for
the size of the largest clique. It has been proved that MaxClique(G) cannot be approximated
within a factor better than O(n1−ε) for every ε > 0, unless P = NP [19], implying our result.

5.3 A Quasi-Polynomial Time Algorithm for 2-ambiguous Probabilistic
Automata

The previous results show that one can always ε-approximate the value of k-ambiguous
probabilistic automaton. This is however not enough to decide the emptiness problem. On
this direction, Theorem 6 shows that for any fixed k the emptiness problem of k-ambiguous
probabilistic automata is in NP. We show that for k = 2 there exists a quasi-polynomial
time algorithm for the emptiness problem. For this, we start by showing a quasi-polynomial
time algorithm for the bi-stochastic path problem.

I Theorem 11. There exists an algorithm which given an instance of the bi-stochastic path
problem, returns a convex Pareto curve in quasi-polynomial time.

The advantage of using k = 2 relies on the existence of a quasi-polynomial bound on the
size of convex Pareto curves. More precisely, if (G, s, t) is an instance of the bi-stochastic path
problem with n vertices, then it can be shown that there exists a convex Pareto curve of size
at most nlog(n). This result was proved by Gusfield in his PhD thesis [10], and a matching
lower bound was developed by Carstensen [3]. Note that they use a different framework,
called parametric optimisation: in the parametric shortest path problem each edge has cost
c+ λd, where λ is a parameter. The length of the shortest path is a piecewise linear concave
function of λ, whose pieces correspond to the vertices of the convex Pareto curve for the
bi-objective shortest path problem with weights (c, d). It is then easy to obtain an upper
bound on the size of convex Pareto curves for the bi-stochastic path problem by reducing it
to a bi-objective shortest path problem, mapping the weights (p, q) to (− log(p),− log(q)).
Finally, the upper bound on the size of convex Pareto curves yields a quasi-polynomial time
algorithm, by constructing them in a standard divide-and-conquer manner.

The algorithm of Theorem 11 yields a quasi-polynomial time algorithm for the emptiness
problem of 2-ambiguous probabilistic automata.

I Theorem 12. There exists a quasi-polynomial time algorithm for the emptiness problem
of 2-ambiguous probabilistic automata.

Proof. Given a 2-ambiguous probabilistic automaton P and a threshold c, the algorithm for
deciding the emptiness of P is the following:

construct an instance (GP , s, t) of the bi-stochastic path problem using Lemma 7.
construct a convex Pareto curve C for (GP , s, t) thanks to Theorem 11.
check whether Output = maxπ∈C

∑
i pi(π) > c.

A direct application of Lemma 7 shows that Output = val(P). J

We do not know whether there exist quasi-polynomial time algorithms for every k > 2,
and leave this as an open problem.

CONCUR 2017

19:14 Probabilistic Automata of Bounded Ambiguity

References
1 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.
2 Alberto Bertoni. The solution of problems relative to probabilistic automata in the frame

of the formal languages theory. In GI Jahrestagung, pages 107–112, 1974.
3 Patricia June Carstensen. The Complexity of Some Problems in Parametric Linear and

Combinatorial Programming. PhD thesis, University of Michigan, 1983.
4 Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. Emptiness under isolation

and the value problem for hierarchical probabilistic automata. In FoSSaCS, pages 231–247,
2017.

5 Krishnendu Chatterjee and Mathieu Tracol. Decidable problems for probabilistic automata
on infinite words. In LICS, pages 185–194, 2012.

6 Ilias Diakonikolas and Mihalis Yannakakis. Succinct approximate convex pareto curves. In
SODA, pages 74–83, 2008.

7 Nathanaël Fijalkow, Hugo Gimbert, Edon Kelmendi, and Youssouf Oualhadj. Deciding the
value 1 problem for probabilistic leaktight automata. Logical Methods in Computer Science,
11(2), 2015.

8 Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. Deciding the value 1 problem
for probabilistic leaktight automata. In LICS, pages 295–304, 2012.

9 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable
and undecidable problems. In ICALP (2), pages 527–538, 2010.

10 Daniel Mier Gusfield. Sensitivity Analysis for Combinatorial Optimization. PhD thesis,
University of California, Berkeley, 1980.

11 Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266, 1977.
12 Ranko Lazić and Sylvain Schmitz. The ideal view on Rackoff’s coverability technique. In

International Workshop on Reachability Problems, pages 76–88. Springer, 2015.
13 Rune B. Lyngsø and Christian N. S. Pedersen. The consensus string problem and the

complexity of comparing hidden Markov models. Journal of Computer and System Sciences,
65(3):545–569, 2002.

14 Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs
and optimal access of web sources. In FOCS, pages 86–92, 2000.

15 Azaria Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
16 Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
17 Keijo Ruohonen. Reversible machines and Post’s correspondence problem for biprefix

morphisms. Elektronische Informationsverarbeitung und Kybernetik, 21(12):579–595, 1985.
18 Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theor-

etical Computer Science, 88(2):325–349, 1991.
19 David Zuckerman. Linear degree extractors and the inapproximability of max clique and

chromatic number. Theory of Computing, 3(1):103–128, 2007.

	Introduction
	Preliminaries
	Undecidability for Polynomially Ambiguous Probabilistic Automata
	Decidability and Complexity of Finitely Ambiguous Probabilistic Automata
	Algorithms and Approximations for Finitely Ambiguous Probabilistic Automata
	The Stochastic Path Problem
	Approximating the Value in Polynomial Time
	A Quasi-Polynomial Time Algorithm for 2-ambiguous Probabilistic Automata

