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Abstract
This paper proposes a framework that that allows for the possibility that multiple classically
incompatible states are expressed simultaneously at a given point of a geographic field. The ad-
mission of such superposition states provides the basis for a new understanding of indeterminacy
and ontological vagueness in the geographic world.
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1 Introduction

Classical geography (CG) presupposes that it is possible to identify and to analyze the
distribution of geographic qualities on the surface of the Earth in a way that (a) the different
kinds of geographic qualities can be analyzed and classified using the Aristotelian method
of classification (see below) and (b) the ways in which geographic qualities are instantiated
on the surface of the Earth allows for the delineation of regions ‘on the ground’ at which
distinct geographic qualities are instantiated.

The Aristotelian method of classification [2] is based on the assumption that cate-
gories/kinds of geographic qualities are structured hierarchically in a tree-like manner. Such
trees are called the taxonomic trees or taxonomic hierarchies. Categories farther from the
root in the taxonomic hierarchy of geographic qualities are differentiated from categories
closer to the root by additional additional more specific qualities. Those additional qualities
determine what marks out instances of a more specific category/kind (or species) within the
wider parent category (or genus) [2]. Ideally, the Aristotelian method of classification leads
classification trees which leaf categories are jointly exhaustive and pairwise disjoint.

In the geographic context there are additional constraints that hold in at least some
idealized sense: (i) regions of geographic space at which distinct categories of qualities that are
at the same level of the hierarchy tree (e.g., the leafs of the taxonomic tree) are instantiated
cannot overlap (ii) jointly the regions with geographic qualities of same level of the taxonomic
hierarchy partition the underlying space. That is, the distribution/instantiation of geographic
qualities on the surface of the Earth gives rise to geographic fields. At least at sufficiently
coarse scales those fields will be smooth and relatively homogeneous.

In non-idealized situations geographic fields have granular features and, in addition, the
distribution of geographic qualities displays inhomogeneities. The aspect of granularity is due
to the fact that geographic qualities are instantiated at regions of certain scale, i.e., regions
that are of some minimal size or larger. Geographic fields are subject to inhomogeneities in
the sense that if a quality universal is instantiated at a region of geographic scale then this
does not mean that every part of geographic scale of this region is an instance of that quality
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5:2 Towards a Quantum Theory of Geographic Fields

universal. There may be comparatively small (geographic-scale) regions in which different
and possibly conflicting quality universals are instantiated.

Consider, for example, the geographic region called ‘Central Great Plains’ at which the
land-surface form Irregular plain is instantiated. There are comparatively small (geographic-
scale) regions in which different land-surface forms are instantiated. Analogously for climate
types: There may, for example, exist comparatively small (geographic-scale) regions near
larger water bodies where the average temperature (and thus the climate type) is different
from the larger surroundings.

All of this seems to indicate that many geographic fields are subject to scale dependency,
granularity, and inhomogeneities, all of which seem to be fundamentally vague. It is a
fundamental assumption of this paper that an important aspect of understanding geographic
fields is to understand the interrelations between scale dependency, granularity, inhomogeneity
and the phenomenon of vagueness. This paper aims to contribute to the understanding of
those aspects of geographic fields.

In conjunction scale dependency, granularity, inhomogeneities and vagueness of geographic
fields seem to lead to a fundamental tradeoff between the classification and the delineation
of geographic fields. Consider Fig. 1 in which two ways of delineating the contiguous USA
into ecoregions of sub-regional scale are (partly) displayed. The bold black lines depict the
delineation formed by the ecoregion sections identified by Bailey [1]. The non-bold black lines
depict the delineation of formed by the collection level three regions identified by the EPA
[3]. There is an obvious difference between the generalized and coarse character of Bailey’s
delineation (bold black boundaries) and the more fine-grainedness of the EPA delineation
(non-bold black boundaries).

The smooth and highly generalized boundaries of Bailey’s delineation seem to convey the
intuition that there is a large degree of ‘freedom’ to place boundaries by fiat in the way that
supports best the purpose of a map as a medium for conveying of information. As [11] puts
it, to minimize information decoding error, map designers strive (i) for crisp (non-graduated)
boundaries and (ii) for minimizing boundary complexity by drawing boundaries in highly
generalized ways. Drawing boundaries in highly generalized ways avoids the misinterpretation
of the delineation as realism of a map. By contrast, the non-bold black boundaries are
the result of observations ‘on the ground’ that are aimed at identifying local variations of
qualities and there by identifying boundaries that separate ecoregions of different kinds [7].
The fine-grainedness of the boundaries conveys the preciseness of the delineation.

Both approaches to identifying ecoregions on the surface of the Earth include classification
and delineation operations. Surprisingly, the outcomes of both approaches are very different
as can be seen in the maps displayed in Fig. 1.

I Hypothesis 1. The reason for different outcomes of the operations of classification and
delineation can be attributed to the fact that the sequence of the application of the operation
of classification and delineation is significant. More precisely, Bailey applies the classification
operation first and then the delineation on the ground second by contrast, the EPA applies
the operation of delineation first and then the operation of classifying the delineated regions
second. In technical terms this is to say that the different maps produced by Bailey and the
EPA are an indication that the operations of classification and delineation do not commute.
The non-commutativity of operations that act on field-like phenomena that are subject to
granularity, inhomogeneity, and vagueness is a fundamental aspect of many types of geographic
fields.

If this hypothesis is true then it is a fundamental criterium for the adequacy of a theory of
geographic fields that it is able to give a satisfying explanation for the non-commutativity
and the tradeoff between classification and delineation.
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Figure 1 Classification and delineation of the central US into ecoregions [4] according to Bailey [1]
(bold boundaries) and [3] (non-bold boundaries).

The non-commutative nature of certain operations is the hallmark of Quantum Me-
chanics [6]. For example, Heisenberg’s uncertainty principle is a consequence of the non-
commutativity of operators that determine the position and the momentum of a particle [9].
It is the aim of this paper to present an adequate theory of geographic fields by applying
ideas and techniques from quantum mechanics to geographic fields. This set of ideas and
techniques applied to geographic phenomena will be called Quantum Geography (QG).

The idea of exploring the quantum nature of the geographic world has been discussed
previously [13, 5]. This paper goes beyond those discussions by showing how a quantum
theory of geographic fields actually could look like in the specific context of Ecoregion
classification and delineation. The author feels that in this more specific context it will be
easier to go beyond mostly philosophical discussions towards developing scientific theories
which predictions can be tested empirically.

2 (Geographic) fields as fiber bundles

In what follows the language of fiber bundles (e.g., [10, 15]) is used to express a theory of
geographic fields. The reasons for this choice are as follows:

Firstly, geographic fields can have the form of scalar fields (temperature, elevation, etc.)
and vector fields (air flow, hydrological flow, etc.), co-vector (gradient) fields (rates of changes
of scalar as well as vector fields) such as slope fields (direction of largest rate of changes
of elevation at every point), temperature gradient fields (direction of largest change of
temperature at every point), etc. Fiber bundles are general enough to include scalar as well
as vector and co-vector fields. Secondly, formalizations of geographic fields need to be able
to integrate multitudes of local descriptions of field phenomena into a global framework. For
example, fiber bundles provide powerful means to deal with globally curved spaces using
locally flat reference systems. Thirdly, a scientific theory of geographic fields must be able
to talk about the class of all geographically possible fields in an efficient manner. Fiber
bundles provide means to formally characterize what it means for a field to be geographically
possible. Finally, ‘Classical’ descriptions of geographic fields based on fiber bundles can
be naturally generalized to the descriptions of geographic fields within the framework of
quantum geography. In this respect the paper will mostly follow [10].
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Figure 2 Fibers of a fiber bundle (left); (local) section of a fiber bundle (right).

M

U1

U2

�1 �2
�12

�21

<2 <2

U12 ×<2

pr

''

ww

ψ12

ψ21
''

π−1(U12) ⊂ E

π

��

ψ2 //
ψ1oo U12 ×<2

pr

ww

U12 ⊂M

Figure 3 Bundle atlas (left: Image licensed under Creative Commons Attribution-Share Alike
3.0 via Wikimedia Commons).

2.1 Fiber bundles

The literature on fiber bundles is vast. In this subsection some basic definitions have been
collected from [10, 15]. A fiber bundle is a structure (E,B, π, F ), where E, B, and F are
topological spaces and π : E → B is a continuous surjection satisfying a local triviality
condition: for every e ∈ E, there is an open (trivializing) neighborhood U ⊂ B of π(e) such
that there is a homeomorphism ψ : π−1(U)→ (U × F ) such that the diagram in the left of
Figure 2 commutes.

The space B is the base space of the bundle, E is the total space, and F is the abstract
fiber. The map π is the bundle projection; B is assumed to be topologically connected;
(U × F ) is a product space; pr : U × F → U is the natural projection; and the trivialization
map is ψ : π−1(U) → U × F . In a fiber bundle (E,B, π, F ) every fiber π−1(x) ∈ E over
x ∈ B is homomorphic to some abstract fiber F . In particular ψ is defined as:

ψ : e ∈ E 7→ (π(e), f(e)) ∈ U × F with f : π−1(x)→ F (1)

such that f is a homomorphism.
An open covering of a fiber bundle (E,B, π, F ) is a system {Uα} of open subsets of B

together with a trivialization maps ψα : π−1(Uα)→ Uα × F . The system ψ = {(Uα, ψα)} is
a bundle atlas. If {(U1, ψ1), (U2, ψ2), . . .} is an atlas then the trivializations for overlapping
members U12 = U1 ∩ U2 6= ∅ of the covering are compatible such that for all e ∈ π−1(U12):
ψ12 ◦ ψ1 = ψ−1

2 as illustrated in Fig. 3.
A local section of (E,B, π, F ) is a continuous map g : U → E where U is an open set

in B and π(g(x)) = x for all x ∈ U . For a local section g there is a map ĝ : U → (U × F )
such that ĝ = ψ ◦ g. This is displayed in the right of Fig. 2. If (U,ψ) is a local trivialization
chart then local sections always exist over U . Given an atlas, local sections can be combined
to cover the base space of the fiber bundle as a whole – covering sections. The set of all
covering sections over the fiber bundle (E,B, π, F ) is denoted by Sect(E).
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2.2 Fiber bundles, determinable and determinate qualities
Fiber bundles provide formal means to represent smoothly distributed qualities (quality
fields). They also very naturally incorporate the ontological distinctions between quality
determinables, quality determinates [14]. Intuitively, a quality field as a whole corresponds
to a quality determinable such as energy, temperature, ecoregion domain, etc. At given
points of the base space then quality determinates such as 10 Joule, 72 degree Fahrenheit,
Dry domain, etc. are instantiated.

Let (E,B, π, F ) be a fiber bundle over the manifold B. The set of all possible instances
of the universal field of type E over B is the set of all covering sections Sect(E) of
(E,B, π, F ) such that

The fiber π−1(x) ⊂ E is the class of quality determinates that fall under the quality
determinable E and that can possibly be instantiated in the neighborhood of x ∈ B.
If g is a covering section of the base space B then there is a field that is geographically
possible and on this possibility it holds that for all x ∈ B : g(x) = e iff the quality
determinate e ∈ π−1(x) is instantiated in the neighborhood of x ∈ B. Neighborhood in
this context does not mean infinitesimal neighborhood but neighborhood in the geographic
sense. Such neighborhoods are specified in the context of the local trivializations.1
The local representation of the possible E-field g is the function ĝ : U → (U × F ) as
depicted in Fig. 2 (right). Here F = F ′ × Γ ×∆ where F ′ is a representation of the
quality determinate instantiated in the neighborhood of a given location x ∈ U ⊆ B. Γ is
the minimal diameter of a region at which an instance of this quality determinate can be
instantiated. ∆ is the distance from x at which F ′ is actually instantiated. (This will be
important to capture the possibility of inhomogeneities.)

That is, every E-field-universal in conjunction with its possible instantiating fields (possible
E-field-particulars) can be thought of as having the structure of a fiber bundle (E,B, π, F ).
Possible E-field-particulars correspond to (covering) sections of the underlying fiber bundle.
A E-field-particular is such that in the neighborhood of every location x ∈ U exactly one
of the quality determinates of π−1(x) is instantiated in a way that is consistent with the
constraints that reflect the granular and locally inhomogeneous nature of geographic fields.
This will be discussed in the next section.

3 Geographic fields in Quantum geography

It is fundamental to classical geography that geographically possible fields are sections in fiber
bundles that take every point in the base space to a member of a set of disjoint possibilities
that constitutes the fiber over that base point. By contrast, in Quantum geography (QG)
the state of a geographic field at a given point of the base space of is not just a point in the
space of disjoint possible states collected in the fiber over that point.

3.1 Superposition states
In QG the state of a geographic field at a given point of the base space is represented by a
vector which is the sum of the base vectors that span the vector space that forms the fiber
over that base point.

I Example 1. Consider Fig. 4. The quality determinable Ecoregion domain has four sub-
classes as determinates. In classical geography exactly one of those of those four possibilities
can be instated at (in the neighborhood of) a given point. In the language of fiber bundles
the class of all possible fields of type Ecoregion domains are sections in a fiber bundle which

COSIT 2017
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Figure 4 Quality base Q = {|P 〉 , |HTe〉 , |HTr〉 , |D〉} (left); Localization base X =
{|∆1〉 , |∆2〉 , |∆3〉 , |∆4〉} (right).

fibers over every point are constituted by the set { Polar, Humid Temperate, Humid Tropical,
Dry }.

What are points in the space of possibilities (the fibers) in classical geography are
dimensions (base vectors) in a vector space of possible states in QG. The fibers of fields of
type Ecoregion domains in QG form a four-dimensional (complex) vector space with base
vectors labeled Polar, Humid Temperate, Humid Tropical, and Dry. In QG a geographic
field at a given point of the base space can be in a superposition of multiple classically
incompatible states. A field of type Ecoregion domains at a given location x can be in the
state

√
0.1 Polar +

√
0.4 Humid Temperate +

√
0.3 Humid Tropical +

√
0.2 Dry.

I Postulate 1. Geographic fields in QG are sections of vector bundles. Every fiber has
the structure of a vector space. The bases (dimensions) of the vector space of each fiber
correspond to what in CG are the points in the space of possible states. In QG states of
geographic fields at given points in the base space include superpositions (vector sums) of
what in CG are distinct states.

The admission of superposition states constitutes a major departure from CG because
it allows for the possibility that multiple classically incompatible states are expressed
simultaneously at a given point of a geographic field. In what follows the existence of
superposition states will provide the basis for a new understanding indeterminacy and
ontological vagueness in the geographic world. To develop the links between ontological
vagueness and superposition states some more technical apparatus about vector bundles is
needed.

3.2 Vector bundles
A vector bundle (E,M, π,Kn) has fibers with the structure of vector spaces. Local trivializa-
tions are of the form Uij ×Kn where Kn is assumed to be Rn or Cn. Consider Diag. 2. If
Vx =df π

−1(x) is a concrete fiber (i.e., an internal space) over M with vector elements v, the
linear map fi : π−1(x)→ Kn is equivalent to choosing a base eiµ and to express the vectors
v ∈ Vx as components with respect to the base eiµ. That is, fi(v) = vµi , such that

v0
i ei0 + . . .+ vn−1

i ein−1 ≡
n−1∑
µ=0

vµi eiµ ≡ vµi eiµ = v ∈ Vx.

Usually, there are a multitude of possible bases for a given vector space. Thus it makes sense
to transform the representation of a vector space in one base to a representation of the same
space in another base. A change of basis can be defined as vjej = (viei)trij where trij is a
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linear map that transforms the coordinate vi in the base ei to the coordinate vj in the base
ej .
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3.3 Hilbert bundles
Like quantum mechanics, quantum geography requires that the vector spaces that constitute
the fibers of the vector bundles are Hilbert spaces [10]. A Hilbert space H is a complex vector
space with an inner product. In what follows Dirac’s notation for vectors in Hilbert spaces
[6] is used. The members of a Hilbert space H are written as ket vectors of the form |φ〉
where φ is a name/label. As vector spaces Hilbert spaces are closed under vector addition
and scalar multiplication. That is if |φ〉 , |ψ〉 ∈ H then α |φ〉+ β |ψ〉 ∈ H, where α and β are
complex numbers that modify the length of a vector via scalar multiplication and + is the
vector addition. The inner product 〈ψ|φ〉 of the vectors |ψ〉 , |φ〉 ∈ H (defined below) is a
complex number.

A base Q = |Q1〉 , . . . , |Qn〉 of a n-dimensional Hilbert space H is a system of vectors
such that every member of H can be expressed as a vector sum of the base vectors. A
base is orthonormal if the inner product of distinct base vectors is zero and all base vectors
are of unit length, i.e., 〈Qi|Qj〉 = 1 if i = j and 〈Qi|Qj〉 = 0 otherwise. If the vector
|φ〉 = α1 |Q1〉+ . . .+ αn |Qn〉 then there exists a dual vector 〈φ| = α1 |Q1〉+ . . .+ αn |Qn〉
where αi is the complex conjugate of αi. Thus if |φ〉 = α1 |Q1〉 + . . . + αn |Qn〉 and
|ψ〉 = β1 |Q1〉+ . . .+ βn |Qn〉 then the inner product of |φ〉 and |ψ〉 designated by 〈ψ|φ〉 is
the sum of the products of the components of 〈ψ| and |φ〉 computed as

∑
i βiαi. In what

follows |qiqi| is an abbreviation for the squared modulus of the scalar product | 〈Qi|Qi〉 |2.1
A Hilbert bundle is a vector bundle (EH, B, π, Cn) with base space B, bundle space EH

and abstract fiber HQ – the Hilbert space H in the Q-base. A section of a Hilbert bundle
(EH, B, π, Cn) is a mapping of signature U ⊂ B → U × Cn.

{|φ〉} ⊂ π−1(U) ⊂ EH
π

��

ψQ
// U × Cn pr2

// {vµ} ⊂ Cn

f−1
Q (vµ)=

∑
vµ|Qµ〉

vv

U ⊂ B
ĝ

55

g

DD
(3)

I Postulate 2. The representation of a geographic field g in the Q-base of a Hilbert space
H is a smooth section g ∈ Sect(EQH) of a Hilbert bundle (EH, B, π, Cn). The section ĝ is a
vector field such that for every x ∈ B, ĝ(x) ∈ Hx is a vector of unit length of expressed in
the base Q, i.e., ĝ = {x ∈ U 7→

∑
αi |Qi〉 ∈ Hx |

∑
i |αiαi| = 1}.

1 Details can be found in any text book on quantum mechanics. The classic reference is [6].
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The constraint
∑
i |αiαi| = 1 ensures that possible states of geographic fields are such that

the contributions of all the orthogonal possibilities captured in the system of base vectors Q
jointly add up to 1.

I Remark. There are more restrictions needed to ensure that the Hilbert bundles that are
intended to represent geographic fields are ‘well behaved’ in the sense that the Hilbert spaces
at neighboring points are compatible, that the section representing the geographic fields
are smooth, and others more. In particular the notion of ‘connection’ [10] is needed to
compare vectors in different fibers of the fiber bundle. This goes beyond the scope of this
paper. A very good discussion of many relevant aspects can be found in [10]. Whether or
not those requirements are necessary/sufficient in the context of geographic fields is still an
open question.

I Definition 2. Consider a geographic field ĝ in the Q-base: ĝ is maximally determinate
with respect to the Q-base at x iff ĝ(x) = 1 |Qi〉 for the i-th base vector and 0 |Qj〉 for
i 6= j. The field ĝ is minimally determinate with respect to the Q-base at x iff ĝ(x) =

1√
n
|Q1〉+ . . .+ 1√

n
|Qn〉.

4 Quality base vs. localization base

Given the structure of the Hilbert spaces that form the fibers of a Hilbert bundle, every
geographic field g ∈ Sect(EH) can be expressed in (at least) two complimentary systems of
base vectors: the quality base and the localization base. Roughly, when g is expressed in the
quality base, then the field is a map of signature ĝ : U → CnQ taking locations of the base
space to superpositions of qualities that are represented by the n-tuples CnQ. By contrast,
if g is expressed in the localization base, then the field is a map of signature ĝ : U → CnX
taking locations of the base space to superpositions of possible deviations from x that are
represented by the n-tuples CnX . That is, in the quality base ĝ maps locations of the base
space to information about quality pattern while in the localization base ĝ maps locations of
the base space to information about the (metric) closeness to which the information about
the quality pattern contained in g(x) is linked to the location x of the base space (details in
Sec. 4.2). In what follows the term ‘deviation’ is used to describe the distance between the
point x to which the quality q is attributed by the field to the closest point at which q is
actually expressed. To say that the quality and localization bases are complimentary is to
say that if the information expressed in the quality base is maximally determinate then the
information expressed in the localization base is minimally determinate and vice versa.

I Remark. Examples 3 and 4 below will illustrate that, when compared with the quantum
mechanics of a free particle, the quality of a geographic field at a given position in the base
space of the underlying fiber bundle is like the position of a free particle. The (degree of)
localization a geographic field at that position in the base space is like the momentum of a
free particle. Usually the quantum mechanics of a free particle allows for a continuum of
possible positions and momenta. For the purpose of this paper it will be sufficient to consider
discrete quality spaces and finitely many possible distinct qualities. Roughly, to go from the
discrete to the continuous case is to replace sums by integrals.

QG allows for geographic fields that are in indeterminate states and thereby provides
means for the expression of ontological vagueness. According to QG ontological vagueness
has two interrelated aspects: quality indeterminacy and localization indeterminacy.
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4.1 Geographic fields in the quality base
Let Q1, . . . , Qn be quality determinates that are pairwise disjoint and jointly exhaust some
quality determinable ξ. A geographic ξ-field is a section in a Hilbert bundle (EH , B, π, Cn)
such that fibers π−1(x) = Hx over each point x ∈ B have the structure of a Hilbert space.
The vectors in this space are expressed in the quality base Q = |Q1〉 , . . . , |Qn〉 of the abstract
fiber of the associated local trivialization. The base vectors |Q1〉 , . . . , |Qn〉 could, for example,
be qualities at the same level of a universal hierarchy identified by the Aristotelian method
of classification. Consider the left of Fig. 4. The geographic field associated with the quality
determinable Ecoregion Domain has at every point of the base space a Hilbert space HDx
which vectors can be expressed in the quality base Q = {|P 〉 , |HTe〉 , |HTr〉 , |D〉}.

I Postulate 3. A ξ-field of the form x ∈ B 7→ q1 |Q1〉+ . . . + qn |Qn〉 ∈ Hx is interpreted
as: The quality Qi is expressed in the neighborhood of x to the degree |qiqi| in a way such
that

∑
j |qjqj | = 1.

As pointed out above, in QG it is possible that in the neighborhood of a given point
x a combination of incompatible qualities are expressed at any given time. This captures
the aspect of quality indeterminacy of the underlying ontological vagueness. For example,
for the geographic field associated with the quality determinable Ecoregion Domain the
maximally indeterminate state in the quality base at a given point of the base space is
1√
4 (|P 〉+ |HTe〉+ |HTr〉+ |D〉). By contrast, maximally determinate states in the quality

base include the state 1 |P 〉+0 |HTe〉+0 |HTr〉+0 |D〉. A state of intermediate indeterminacy
is
√

0.1 |P 〉 +
√

0.4 |HTe〉 +
√

0.3 |HTR〉 +
√

0.2 |D〉.

Classification

Classification in QG, is the assignment of a determinate classification value to all the locations
of the base space of a geographic field. That is, classification is an operation that takes as
input a geographic field ĝ that, when represented in the quality base, is in a state in which
superpositions of classically contradicting qualities are expressed in the neighborhoods of
the points in the base space. The classification operation then maps ĝ to a field ĝ′ in the
same fiber bundle in which exactly one of the possible qualities is exclusively expressed in
the respective neighborhoods.

I Postulate 4. A classification operator Ĉx is an operator on the Hilbert space HQx with the
following properties: (a) Ĉx is a self-adjoint2 operator on HQx ; (b) the set of base vectors of
the quality base Q = |Q1〉 , . . . , |Qn〉 ⊂ HQx are eigenvectors of Ĉx such that Ĉ |Qi〉 = Qi |Qi〉
where Qi is a non-complex number; and (c) Ĉx = |φ〉 ∈ HQx 7→ |Qi〉 ∈ Q for some i.

Here Qi is a classification value and |Qi〉 is the state in which the quality determinate that
is represented by the number Qi is exclusively expressed in the neighborhood of x associated
with the underlying Hilbert space HQx . That is, the quality values that a field in a determinate
state can possibly have at a given location of the base space are given by the eigenvalues of
the classification operator. The base vectors of the Hilbert spaces in the quality base are
the eigenvectors of the classification operator. If a geographic field is in an eigenstate at

2 A self-adjoint operator on a complex vector space H with inner product 〈·|·〉 is a linear map Â from H to
itself with a unique corresponding operator Â† such that: (〈φ| Â†) |ψ〉 = 〈φ| (Â |ψ〉) for all |φ〉 , |ψ〉 ∈ H.
If Â is represented by a square matrix with complex values, then Â† is the matrix obtained from Â by
complex conjugation and transposition.

COSIT 2017



5:10 Towards a Quantum Theory of Geographic Fields

a given location x of the base space then the field value at this point is the corresponding
eigenvalue. According to the classification the quality corresponding to this eigenvalue is
exclusively expressed in the neighborhood assigned to x.

I Example 3. Consider3 the Hilbert space HXy with the base vectors |P 〉 , |HTe〉 , |HTr〉 , |D〉.
In analogy to the position base in QM let X = {0, 1, 2, 3} be the set of possible qualities
(possible positions in QM) such that 0 stands for Polar Domain, 1 stands for Humid Temperate
Domain, 2 stands for Humid Tropical Domain, and 3 stands for Dry Domain. Let the base
vectors be functions of the form |P 〉 : X → {0, 1} where |P 〉 ≡ λx. x = 0, |HTe〉 ≡ λx. x = 1,
|HTr〉 ≡ λx. x = 2, and |D〉 ≡ λx. x = 3. For example, |D〉 : X → {0, 1} is a function
that yields 1 if the value of its argument is 3 (3 = 3 is true) and 0 otherwise (e.g., 3 = 2 is
false). Functions of this kind form a Hilbert space the members of which are all the functions
that can be formed by adding the complex multiples of the functions that save as base
vectors. In analogy to the position operator in QM, the classification operator C is defined as
(C |φ〉) the multiplication of the state vector |φ〉 with the location x at which the operator
C is evaluated. If the operator is evaluated at position x of the underlying quality space
then one has (C |φ〉)x ≡ (x |φ〉)x. If x takes its values from the set X = {0, 1, 2, 3} then
the eigenvalues are 0, 1, 2 and 3 such that 0 stands for Polar Domain, 1 stands for Humid
Temperate Domain, 2 stands for Humid Tropical Domain, and 3 stands for Dry Domain.

On this view, classification is an operation that takes as input a geographic field that is
subject to indeterminacy and maps it to a different field that is not subject to indeterminacy.
That is, the classification operator Ĉ collapses a superposition state |φ〉 into one of its
eigenstates |Qi〉. According to Quantum Mechanics the collapse of a superposition state into
an eigenstate as the result of a measurement (in the widest sense) is, on the standard (the
‘Kopenhagen’) interpretation, inherently indeterministic in nature (e.g., [12]). In QM this
indeterminacy is expressed in a probabilistic way. If one were to follow this view in QG one
would have:

I Hypothesis 2. If |φ〉 = q1 |Q1〉+ . . .+ qn |Qn〉 ∈ HQx is the state of a geographic field in
the neighborhood of x then the probability that the neighborhood of x is classified as Qi is
|qiqi|.

That is, the more dominant the expression of Qi in the neighborhood of x the more likely it
is that this neighborhood is classified as having the quality Qi.

Unlike measurement in Physics, classification in geography seems to be more the result
of the deliberative actions of cognitive agents that include a certain degree of fiat. To
understand the deliberative action of a cognitive agent as a random process may not be
appropriate. An alternative way of interpreting the collapse a superposition state |φ〉 into
one of its eigenstates |Qi〉 could be:

I Hypothesis 3. If |φ〉 = q1 |Q1〉 + . . . + qn |Qn〉 ∈ HQx is the state of a geographic field
in the neighborhood of x then this neighborhood is classified as Qi if a maximum |qiqi| =
max{|qjqj | | 1 ≤ j ≤ n} exists.

On this interpretation one assumes that a cognitive agent is able to perceive the degrees to
which certain qualities are expressed at a certain location of a geographic field. One also

3 This example in conjunction with Example 4 is intended to illustrate the ways in which the math of
QM/QG with their operators, eigenvectors and eigenvalues is designed to achieve a formalism with
properties that (at least in the case of QM) yields surprisingly accurate predictions. Details can be
found in any introductory textbook on QM (e.g., [8]).
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allows for the possibility that the cognitive agent is unable or unwilling to make a judgement
when there is no unique maximum.

Whether or not the first or the second hypothesis or neither of them is actually true of
the geographic world is in the opinion of the author an empirical question and can (at least
in principle) be determined by experiments.

4.2 Geographic fields in the localization base
In QG, a state vector |φ〉 ∈ Hx, which in the quality base takes the form q1 |Q1〉+. . .+qn |Qn〉,
not only encodes information about the expression of geographic qualities Q1, . . . , Qn in
the neighborhood of the position x in the base space. The state vector |φ〉 also encodes
information about possible inhomogeneities that may affect the expression of these qualities
in the neighborhood of x. The information about possible inhomogeneities of the field g
at x that is encoded in the state vector |φ〉 ∈ Hx is accessible when |φ〉 is expressed in the
localization base. The localization base X of HXx is a set X = |∆1〉 , . . . , |∆n〉 such that every
field state |φ〉 ∈ Hx can be expressed in this base as |φ〉 = δ1 |∆1〉 + . . . + δn |∆n〉 ∈ HXx
with the additional normalization constraint

∑
i |δiδi| = 1. The idea that the state |φ〉 of a

geographic field g at a given location x ∈ B can be described in the quality base Q as well
as the localization base X is visualized in Diag 4.

state vector in the
localization base
ĝ(x) =

∑
i δi |∆i〉

state vector
g(x) = |φ〉

state vector in the
classification base
ĝ(x) =

∑
i qi |Qi〉

{δ} ⊂ Cn

f−1
X

##

D̂
��

{|φ〉} ⊂ Hx = π−1(x)

π

��

fQ
//

fXoo {q} ⊂ Cn

f−1
Q

{{

Ĉ
��

|∆i〉 {x} ⊂ U ⊆ B |Qj〉

(4)

Intuitively, the base vectors |∆i〉 can be thought of as the various degrees of inhomogeneity
that are possible for the field at a given location of the base space. That is, the localization
base vectors |∆i〉 represent states of the field g at x ∈ U ⊆ B where possible ranges of
deviation from x due to inhomogeneities of the field g at that location corresponds to
a collection of nested rings that are centered at x (Fig. 4 right). In general the state
|φ〉 =

∑
i δi |∆i〉 will be a superposition state that is subject to the constraint

∑
i |δiδi| = 1.

That is, to the degree quantified by the value of the expression |δiδi| all of the possible ranges
of deviation ∆i are realized. These superpositions are expressions of the indeterminacy
associated with the underlying ontological vagueness of the inhomogeneities of geographic
fields. In the localization base a section of the fiber bundle is a mapping of the form

ĝ : x ∈ U ⊂ B 7→ δ1 |∆1〉+ . . .+ δn |∆n〉 ∈ HXx .

Delineation

Delineation in Quantum Geography, is the assignment of determinate localization information
to all the points of the base space of a geographic field. That is, delineation is an operation
that takes a geographic field ĝ that is represented in the localization base and which is in
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superposition states at all (or many) points in the base space. The delineation operator D̂
maps the field ĝ to a field ĝ′′ in the same fiber bundle. At all positions of the base space the
field ĝ is in in a state that corresponds to one of the members of the localization base.

I Postulate 5. If D̂x is a delineation operator on the Hilbert space HXx then: (a) D̂ is a
self-adjoint operator on HXx ; (b) the vectors of the localization base X = |∆1〉 , . . . , |∆n〉 are
eigenvectors of the operator D̂ such that D̂ |∆〉i = di |∆〉i for the eigenvalues di; and (c)
D̂ = |φ〉 ∈ HXx 7→ |∆i〉 ∈ X .

As depicted in Fig. 4 (right), di is a distance range from x ∈ U and |∆i〉 is the state in
which the qualities associated with |∆i〉 when expressed in the quality base is definitively
expressed within the range of distances from x ∈ U that are associated with di. The possible
deviation from the base point is due to inhomogeneities of the underlying geographic field.
Numerically possible deviation correspond to the eigenvalues di of the delineation operator
D̂. The base vectors |∆i〉 of the Hilbert spaces in the localization base are the eigenvectors of
D̂. If a geographic field is in an localization eigenstate at a given location x in the base space
then the field value expressed in the localization base at this point will be the eigenvalue
corresponding to this state.

I Example 4. Consider the Hilbert space HXy at the point y ∈ B of the field’s base
space. Assume that the HXy is expressed in the localization base formed by the vectors
|∆1〉 , |∆2〉 , |∆3〉 , |∆4〉. In analogy to the definition of the momentum eigenstates in QM
these vectors have the form |∆k〉 ≡ λx. 1√

2πΩe
i
Ωdkx for 1 ≤ k ≤ 4 where i =

√
−1 the

imaginary unit and x ranges over the possible locations in quality space, i.e., the eigenvalues
of the classification operator of Example 3. The constant Ω is a scale factor and plays
the role of Plank’s constant in QM (more on Ω in Sec. 5). Functions of this kind form a
Hilbert space analogous to Example 3. The delineation operator is defined in analogy to
the momentum operator in QM as: (D |φ〉) ≡ (−i ∂∂x |φ〉). The eigenvalues are given by:
D |∆k〉 = −i ∂∂x

1√
2πΩe

i
Ωdkx = dk

Ω
√

2πΩe
i
Ωdkx = dk

Ω |∆k〉. On the intended interpretation the
eigenvalues dk label the concentric circles in Fig. 4 (right) that indicate possible degrees of
deviation due to the inhomogeneities in the underlying field.

Similarly to the collapse of a superposition state in the quality base, the collapse of a
superposition state |φ〉 into an eigenstate |∆i〉 ∈ X can be understood in a probabilistic way
as follows:

I Hypothesis 4. If |φ〉 = Σi δi |∆i〉 is the state of a geographic field in the neighborhood of
x then the probability that the localization deviation associated with |φ〉 has the value di is
|δiδi|.

On this hypothesis the value |δiδi| specifies the probability that the quality pattern associated
with the state |φ〉 that is attributed to the point x ∈ B can actually deviate from x by the
distance range corresponding to di.

Similar to classification, delineation in geography seems to be more the result of the
deliberative actions of cognitive agents that include a certain degree of fiat. The degree of fiat
was particularly persuasive in the way in which the boundaries in Fig. 1 were drawn as the
result of delineation operations. But, again, despite the indeterminacy there does not seem
to be a random process at the heart of the collapse the superposition states. An alternative
way of interpreting the collapse a superposition state |φ〉 into one of its eigenstates |∆i〉 could
be the following:
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I Hypothesis 5. If |φ〉 = Σi δi |∆i〉 is the state of a geographic field in the neighborhood of
x then the localization deviation associated with |φ〉 has the degree di if there is a maximum
of the form |δiδi| = max{|δjδj | | 1 ≤ j ≤ n}.

On this interpretation one assumes that a cognitive agent is able to perceive the localization
deviation when drawing boundaries that delineate inhomogeneous regions with distinct
qualities. This interpretation also allows for the possibility that the cognitive agent is unable
or unwilling to make a judgement.

As in the case of classification, whether or not the first or the second hypothesis or neither
is actually true of the geographic world is an empirical question and can (at least in principle)
be determined by experiments.

4.3 Classification and delineation do not commute
After performing a classification or delineation operation on a geographic field, intermediate
fields are generated (to a certain degree by fiat) that are such that all locations of the
base space of the underlying fiber bundle are mapped to eigenstates of the classification or
delineation operators that correspond to the classification of delineation values assigned to
the point of the base space.

{δ} ⊂ Cn
f−1
X //

D̂
��

{|φ〉} ⊂ Hx = π−1(x) {q} ⊂ Cn
f−1
Q

oo
&&

Fourier
transform

xx
Ĉ // |Qi〉

D̂
��

|∆i〉
Ĉ //

∑
k qk |Qk〉 ks ĈD̂6=D̂Ĉ +3∑

k δk |∆k〉

(5)

Consider Diag. 5. If classification and delineation operations are performed in sequence
(in either order) then the input of the second operation is a field that at all locations of the
base space is in eigenstates of the preceding operator. States represented in the localization
base are related to equivalent descriptions in the quality base via (discrete) Fourier transforms
and vice versa [8]. States related by Fourier transforms are complementary in the sense
that if one state is maximally determinate then its Fourier transform will be minimally
determinate [8]. Consequently, the order of the sequence of the application of classification
and delineation operations (ĈD̂ vs. D̂Ĉ) to geographic fields is significant. Performing the
classification operation first will result in precise classification and an imprecise delineation.
By contrast, performing the delineation operation first will result in a precise delineation and
an imprecise classification. That is, the operators representing classification and delineation
operations do not commute. That the operators representing classification and delineation
operations do not commute is captured in the formalism of QG as follows:

∀ |φ〉 ∈ Hx : (ĈD̂ − D̂Ĉ) |φ〉 =df [Ĉ, D̂] |φ〉 ≥ iΩ (6)

As above, i =
√
−1 is the imaginary unit and Ω is a scale factor. Equation (6) a restatement

of Heisenberg’s uncertainty principle [8] for classification and delineation operations.

5 More open questions . . .

An important open question is how to understand the role of the scale factor Ω in QG. In
concluding the following preliminary ideas are offered in contexts where geographic fields
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5:14 Towards a Quantum Theory of Geographic Fields

are considered at time scales at which they can assumed to be in stationary states. In such
a stationary state a geographic field does not change in ways that affect its classification
and delineation. That is, structurally complex (but real valued) terms of the form |qiqi| and
|δiδi| remain unchanged in stationary states. By contrast, their constituting terms – the
complex valued qi and δi – are not constant and change in ways that is governed by the
time-independent Schrodinger Equation [8]. According to this equation the phase factors
of the complex values qi and δi change and form a standing wave which frequency depends
on the scale factor Ω in ways that mirrors Plank’s constant in QM. This suggests that the
complex values of a geographic field in a stationary state corresponds to the frequency of
the processes that give rise to the geographic quality determinables associated with the
underlying geographic field. This would fundamentally link the aspects of granularity and
inhomogeneity of geographic fields with the frequency of the underlying processes that give
rise to those fields.
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