
On Avoiding Traffic Jams with Dynamic
Self-Organizing Trip Planning∗

Thomas Liebig1 and Maurice Sotzny2

1 TU Dortmund University, Dortmund, Germany
thomas.liebig@tu-dortmund.de

2 TU Dortmund University, Dortmund, Germany
maurice.sotzny@tu-dortmund.de

Abstract
Urban areas are increasingly subject to congestions. Most navigation systems and algorithms that
avoid these congestions consider drivers independently and can, thus, cause novel congestions at
unexpected places. Pre-computation of optimal trips (Nash equilibrium) could be a solution to
the problem but is due to its static nature of no practical relevance.

In contrast, the paper at-hand provides an approach to avoid traffic jams with dynamic self-
organizing trip planning. We apply reinforcement learning to learn dynamic weights for routing
from the decisions and feedback logs of the vehicles. In order to compare our routing regime
against others, we validate our approach in an open simulation environment (LuST) that allows
reproduction of the traffic in Luxembourg for a particular day. Additionally, in two realistic
scenarios: (1) usage of stationary sensors and (2) deployment in a mobile navigation system, we
perform experiments with varying penetration rates. All our experiments reveal that performance
of the traffic network is increased and occurrence of traffic jams are reduced by application of
our routing regime.

1998 ACM Subject Classification I.2.11 Distributed Artificial Intelligence

Keywords and phrases situation-aware trip planning, self-organizing traffic, reinforcement learn-
ing

Digital Object Identifier 10.4230/LIPIcs.COSIT.2017.17

1 Introduction

During the transition towards smart cities, intelligent traffic systems are used to detect current
traffic hazards [10], to predict future traffic states [20] or to provide situation dependent
navigation suggestions to drivers [13]. Due to the complex nature of everyday traffic, precise
travel time prediction has proven to be an algorithmically challenging problem. Its accuracy
is inherently dependent on various inputs, such as spatio-temporal variables, road supply,
road demand, vehicle usage, and overall network quality [4].

The routes, however, should avoid current and upcoming traffic jams. This can easily
be done individually, by a navigation device or a routing app (e.g. Google) but this could
become problematic, as it does not consider greedy route choice amongst the drivers. Every
driver uses comparable edge weights and optimal roads are overrepresented. This may lead
to novel unexpected congestion on optimal roads during peak periods. And, in turn, optimal
roads are no longer optimal.

∗ This research has been financed by the European Union through the Horizon 2020 688380 VaVeL project.

© Thomas Liebig and Maurice Sotzny;
licensed under Creative Commons License CC-BY

13th International Conference on Spatial Information Theory (COSIT 2017).
Editors: Eliseo Clementini, Maureen Donnelly, May Yuan, Christian Kray, Paolo Fogliaroni, and Andrea Ballatore;
Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.COSIT.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 On Avoiding Traffic Jams with Dynamic Self-Organizing Trip Planning

Figure 1 Motivating example to dynamic self-organizing routing. Whereas a car may take the
apparently optimal route from S to D (middle) it may also avoid causing unnecessary congestion
and use the route depicted to the right. Best viewed in color.

This problem could be approached in two ways. If one knows all trips in advance, one
could find optimal static weights amongst the drivers to gain optimal flow through the city.
This approach results in a Nash equilibrium, as discussed in [19]. The second approach is to
apply dynamic routing and perform self-organization, this approach is yet unexplored and
subject to the paper-at-hand.

In contrast to static routing methods, which do not care about other persons decision,
in dynamic self-organizing routing (also from a given start to a target location) the drivers
continuously answer following questions:

Which turn should I make?
Which effects will my decision have?

A visual representation of the expected behaviour is presented in Figure 1. Given a vehicle
travelling from location S to D it might choose amongst two possible paths. Though the
upper route choice (depicted in the middle) uses the main road and may pertain a better
static (also predicted) cost, the vehicle avoids this road as it realizes that it causes unnecessary
congestion on this road. The alternative (right) has a reasonable dynamic cost and avoids
unnecessary congestion on the main road.

Our approach to this problem is to apply reinforcement learning, as we just observe which
decisions the vehicles have done plus their result, but none of the cases that would have
happened if some vehicles would have turned differently. We therefore apply a method for
learning from bandit feedback to the routing problem. Our experiments reveal that this
approach successfully increases performance of the traffic network and reduces traffic jams.

The paper is structured as follows. Section 2 discusses other, non–self-organizing, ap-
proaches to congestion preventing traffic control. In Section 3 we present the mapping of the
problem to bandit feedback learning and introduce a recent approach to this problem. Sec-
tion 4 presents the experiments we performed. Here we test the overall achieved performance
and the performance we achieve for different penetration rates and deployment scenarios,
i.e. stationary or moving sensors. Finally, in Section 5 we discuss future research directions.

2 Related Work

In this section we fist present literature on trip planning problems. Afterwards, we will
briefly discuss related approaches for traffic control.

Before digging into our approach on dynamic trip planning, we present some fundamentals
on (static) trip planning. The task to plan a route from one start location to a target location
is called trip planning, when multiple means of transportation (also called ‘travel modes’) are
involved this becomes multi-modal trip planning. The integration of transportation systems
with personal constraints, residential and city services systems can offer real promise for
implementing an intelligent transportation infrastructure that can efficiently address issues

T. Liebig and M. Sotzny 17:3

beyond congestion, resiliency and safety. Trip planning operates on a graph representation
of the road and transit network the so-called traffic network G consisting of vertices V
(e.g. junctions) and connecting edges E (e.g. streets). A cost function maps each edge to a
positive number that denotes how much it would ‘cost’ to travel the corresponding segment.
The cost function needs to be consistent throughout the traffic network, but can be defined in
several ways, such that it holds the most relevant aspects: for example length of the segment,
travel time, or comfortableness. With a given start and end location in the traffic network,
trip planning searches the path that connects start and goal and minimizes the cost.

Several algorithms exist to compute this minimizing path. Dijkstra [5] proposes a best-first
traversal of the graph where the candidates for traversal are hold in a priority-queue. In
the slightly modified version of the algorithm A∗ [8] the order in the priority-queue for the
traversal not only depends on the cumulated costs to reach a vertex in the graph but also
on the expected costs to reach the goal from this vertex. Bound by Minkowski’s inequality,
whereas ||x + y||p ≤ ||x||p + ||y||p (known as triangle inequality for p = 2), A∗ prunes the
search space in comparison to Dijkstra’s Algorithm. A sound heuristic for the remaining cost
estimation is the geographical distance that is always lower than the road-based distance. In
case of static cost functions contraction hierarchies [6] are a data structure that speeds-up the
A∗ algorithm and enables trip calculation in large traffic networks at European scale. Instead
of searching the shortest path directly within the traffic network, contraction hierarchies
reduce the search space to the most important ones. In a preprocessing step these important
segments are identified (based on the topology) and the network is extended by edges between
these important links.

According to Hoogendorn [9], individual movement is performed in three layers:

Strategic Level: In the strategic level the driver chooses its target and the strategy how to
get there. This is the self estimated best route, among a collection of different alternatives.
This can be done based on experience. Examples could be the global shortest path or the
familiar path to a given destination.

Tactical Level: Short-terms decisions are made at the tactical level, avoiding jams
or switching to a faster route for instance. Thus, the person chooses the path to
avoid obstacles. Basic rules for motions are defined at the tactical level, which include
accelerating, decelerating and stopping.

Operational Level: In the operational level, the motion to the next intermediate point is
performed, for example, decision for a movement direction and speed or planning of the
next step.

Based on this characteristic, it is clear that on each layer of this hierarchy smart methods
could improve performance of traffic. The game-theoretic Nash equilibrium [18], applied in
[19] operates on the strategic level and the route is chosen such that any driver may not
get a better travel time by changing its own travel plan. Recently proposed system for
self-organising traffic [22], uses slots instead of traffic lights and operates on the operational
level of motion.

In contrast, our approach works on the tactical level, as it predicts and avoids jams.
As opposed to [13], our approach allows altering the route at driving time and prevents
creation of jams by the given navigation advices. Latter aspect is also focus of the research
performed in [16, 15]. Their approach is to obfuscate the given signals such that the traffic
distributes better, whereas we use regular sensor data as available from traffic loop networks
or navigation devices and provide space time dependent suggestions, which are (based on
the different locations of the traffic participants) individual.

COSIT 2017

17:4 On Avoiding Traffic Jams with Dynamic Self-Organizing Trip Planning

3 Combination of Routing Decisions and Congestion Feedback for
Reinforcement Learning

Traffic closely resembles a bandit feedback learning environment (compare [1] for an in-
troduction to bandit learning). Bandit learning is a reinforcement learning task, where
the behaviour of some blackbox (e.g. a bandit) should be learned just by the feedback we
observe, several actions can be taken (in the bandit problem this equals drawing an arm).
However, only the result of the actions can be observed and it is unknown what would have
happened otherwise. Vehicles serve as agents which move in a road network. The actions are
represented by the roads a vehicle can choose at an intersection. Once a road was chosen, a
reward will be assigned for that particular road depending on its actual state. The reward
for all other roads which could have been chosen remains unknown. This lack of fully labeled
data makes a supervised learning approach particularly complex.

The Policy Optimizer for Exponential Models (POEM) [21] is able to learn solely based
on the reward values provided by the environment. Additionally, POEM does not perform
on-line learning, but rather uses logged data. This abstraction is known from bandit problems,
where a reward should be optimized from the sole information gained after turning the arm of
the bandit. This presents a more robust approach, since a learned model can be thoroughly
tested before deployment. The system will also not evolve over time, which could lead to
unpredictable behavior. This is particularly undesirable in the context of vehicle routing.

The following sections outline how POEM1 can be used to predict congestion in road
networks. The results of POEM are then utilized to dynamically route vehicles around
congested areas using A∗.

3.1 Learning Setting
The choices a vehicle takes at each intersection are made according to a specific policy. The
Nash equilibrium [18] finds a local optimum amongst all policies (using complete knowledge
on future traffic demand) such that no vehicle may gain any advantage over this policy by
altering its own policy, whereas the central idea of the reinforcement learning algorithm
POEM [21] is to use logged data to improve an existent policy h0.

In [21] POEM assigns a structured output to an arbitrary input based on its probability
of being correct. Therefore, before applying POEM to congestion avoidance, a suitable
mapping of the routing problem to a policy h0, along with an input space X and output
space Y must be modeled. Additionally, a cardinal loss feedback mapping δ is required,
which serves as the reward function about all selected input/output combinations.

The input space X was chosen as X := [0, 1]m. Here, each ~x = (x1, . . . , xm)T ∈ X

represents a feature vector of (normalized) sensor measurements for a road segment. For
instance, a road’s density, occupancy, mean speed, vehicle count or waiting time can be used.
Any value not in [0, 1] was scaled using min-max scaling.

The output space must be a set of suitable, structured outputs. As POEM should be
applied to the problem of congestion control, a single label indicating whether a road is
congested or not already provided adequate results. Thus, let Y := {(0), (1)}, where (0)
indicates a road is not congested, and (1) corresponds to congestion, respectively.

The policy h0(Y | ~x) is a probability distribution over the output space. In other words,

1 For implementation and more theoretical information on POEM, we point the interested reader to [21]
and the website at http://www.cs.cornell.edu/~adith/POEM/index.html.

http://www.cs.cornell.edu/~adith/POEM/index.html

T. Liebig and M. Sotzny 17:5

it assigns a probability to each output ~y given any input ~x based on how likely ~y is to be
correct under conditions ~x. Hence, predictions are made by sampling ~y ∼ h0(Y | ~x). The goal
of POEM is then to improve this policy. Initially no such policy exists for the constructed
input and output spaces. This is a common problem when applying POEM. Therefore, a
default policy is used (compare [21]). Let h0(~y | ~x) := 0.5, meaning both labels are assigned
a probability of 0.5 for all ~x.

Lastly, in order to improve an existing policy, POEM requires a cardinal loss feedback
mapping δ : X × Y → R. This was achieved by applying one of the following two primitive
congestion detection methods to the sensor readings: the primitive density congestion metric,
δdensity, would assume a road as congested when its density was greater than one seventh
of its jam density [2]. The primitive mean speed congestion metric, δspeed would assume a
road as congested when its mean speed was less than ten kilometers per hour of its allowed
maximum speed.

3.2 Application
In order to not only detect congestion but also reduce it, vehicles must receive frequent
information updates about the current state of the road network. Then, POEM will be used
to predict the next state of the road network. This information will consequently be used
by vehicles to bypass roads which are deemed congested. Thus, those results must also be
applied in a routing algorithm, such as Dijkstra or A∗.

Let G = (V,E, c, q) be a graph representing a road network. Here, c and q are the
default cost and heuristic functions. Additionally, assume all vehicles have knowledge about
a congestion labeling policy h ∈ Hlin ∪ {h0} [21]. When using dynamic routing, vehicles will
receive updates about roads in regular intervals T ∈ N. The update can then be written as
uT : E 7→ X.2 Then, when a vehicle receives update uT it is able to predict how likely a
road is to be congested during interval T + 1 using h.

The described model receives sensor information only about whole road segments, rather
than individual lanes, which might be problematic, as congestion does not always arise on
every lane equally. That challenging situation is most likely to occur at junctions where
each lane will allow a vehicle to go in a different direction. We address this problem by
aggregating sensor data for each connected edge pair (using a line graph of G, compare
[7]). Additionally, the resulting data allows more precise congestion detection as individual
turning lanes are separated in the model.

In order to bypass arising congestion, a vehicle must recalculate its route with respect to
the newly received update uT . This is achieved by increasing the weight of an edge which
will likely be congested:

p0
(e1,e2) := h((0) | 0.5uT (e1) + 0.5uT (e2)) , (1)

c′ : E2 → R+, (e1, e2) 7→ c(e2)
p0

(e1,e2)
. (2)

The denominator shows the previously mentioned aggregation of sensor data. For notational
simplicity c′ is defined for all elements of E2. However, in practice only a subset of E2 is
used where e1 is incident or equal to e2.

The function c′ calculates the new weight of an edge e2 depending on its preceding edge
it was reached by. For instance, a vehicle on an edge e1 = (u, v) would calculate the weight

2 Here, it is assumed updates are received equally for all edges.

COSIT 2017

17:6 On Avoiding Traffic Jams with Dynamic Self-Organizing Trip Planning

for edge e2 = (v, w) using c′(e1, e2). A vehicle which starts its route on edge e2 would use
c′(e2, e2).

Essentially, c′ divides the default weight of an edge by its probability of not being
congested in interval T + 1. This means the weight of an edge will remain almost unchanged
when no congestion is expected. The increase will conversely depend on how likely congestion
is to arise.

Finally, it was assumed sensor data updates are available for every road. In real-world
road networks permanently installed sensors are much more scarcely distributed throughout
the network. This problem can be partly alleviated by directly implementing sensors in the
vehicle (e.g. using navigation applications provided by smartphones, or self-driving cars).
However, some roads will still remain uncovered. Here, uT can map to {0}m. For the
previously defined features in X (a road’s density, occupancy, mean speed, vehicle count and
waiting time) its dimension m would equal to 5. This will cause h to assign a probability of
0.5 to both labels (as defined by Hlin in [21]). Another solution could be to map uT to the
average of all sensor readings in an interval. Thus, uncovered roads would reflect the average
state of a road network.

3.3 Logging
For POEM, no interactive control over actions is required, as it was specifically designed
to learn using logged data. Hence, with respect to the previously defined setting, POEM
requires a dataset:

D := {(~xi, ~yi, δi, pi) | i ∈ N6n}, pi = h(~yi | ~xi) . (3)

This dataset will be created during the logging phase. All edges are assigned weights using
c′ and routes are calculated using an implementation of A∗, which produces shortest routes
for any admissible heuristic. Additionally, POEM is initially applied using the default policy
h0, which will scale all weights equally by a factor of two. The scaling will not affect A∗,
meaning no route changes will occur, which in turn simplifies learning on previously collected
data.

The data itself can either be collected by each vehicle or a centralized authority monitoring
each vehicle. For both approaches a data entry cannot be created before any feedback is
available. Thus, intermediate results must be cached.

First the aggregated feature vector ~xi is logged. The respective label ~yi with its corres-
ponding probability pi are then determined using:

~yi =

(0), h((0) | ~xi) > 0.5 ,
(1), h((1) | ~xi) > 0.5 ,
random((0), (1)), otherwise .

(4)

Here, random((0), (1)) means a label is chosen randomly, uniformly distributed. Lastly,
the feedback is logged using either δdensity or δspeed. The respective results will inherently
depend on the previously chosen label.

In the next section we test the performance in three cases: complete knowledge, stationary
sensors, and moving sensors.

4 Experiments

The deployment of our self-organizing routing algorithm in an urban area could be done in
two ways. Either the data of an existing stationary traffic information system is used (e.g. a

T. Liebig and M. Sotzny 17:7

SCATS [10] system) and fed into a navigation platform that can be used by the citizens. The
other option is to turn vehicles directly into sensors and retrieve segment-wise statistics on
travel-time, density and traffic flow directly from the navigation app. In the latter case, one
might be worried about individual privacy because mobility statistics are recorded centrally,
however recent work [12] provides an approach to protect individual privacy in this case
using homeomorphic encryption. This approach encrypts the data such that it still allows
for analysis on the cryptotext but just the result can be decrypted. In the following we will
test these two deployment settings using stationary and moving sensors and compare it to
Nash equilibrium and uninformed routing.

For comparability of experiments with different routing algorithms it is essential to
guarantee the same traffic demand (i.e. origin/destination pairs) over time. For repeatability
of the same origin/destination setting, we perform analysis with a microscopic traffic simulator,
SUMO [11]. The simulator models individual vehicles (on a microscopic level, so it controls
also acceleration and deceleration) and is largely applied in traffic simulation and applications.
It allows us to control traffic demand and provides us complete knowledge on the performance
of the street network and on the routing performance. In contrast to arbitrary toy experiments,
we aim at modeling sound traffic scenarios, thus, we use an open simulation scenario in the
city of Luxembourg [3] which enables reproduction of 24 hours of mobility in this city.

The common procedure of SUMO is to generate the route of each vehicle before the
simulation starts, which is why its live routing capabilities are rather limited. However,
SUMO provides the Traffic Control Interface (TraCI), a network interface which allows full
control over the current simulation. We used this to implement a Java application (SUMO-
CA) which simulates a central authority. In order to calculate vehicle routes, SUMO-CA
loads a road network and converts it to a directed, weighted multi-graph. When running a
simulation, SUMO-CA will receive and parse sensor measurements in regular intervals. This
information is utilized to predict the next state of the road network using POEM (compare
Section 3). Finally, those results are used to update vehicle routes as shown in Section 3.2.
SUMO-CA is additionally capable of logging the dataset discussed in Section 3.3.

Unless stated otherwise, each experiment will start at 7:45 o’clock (simulation time) and
runs over a period of roughly 35 minutes, or exactly 2048 seconds. The reason why this
particular window was chosen is that roads generally are more susceptible to congestion
during rush hour. Additionally, a size of 2048 seconds allows rerouting intervals to be easily
scaled using a factor of two. Finally, in order to create more realistic jams on arterial roads,
SUMO was set to scale the original demand by a factor of 1.3.

4.1 Measuring Relative-Weighted Difference

Evaluating vehicle detours is problematic. Neither absolute nor relative differences will
adequately represent measured detours. The reasoning behind this is that long routes will
allow longer, absolute detours, whereas, short routes will allow longer, relative detours.
Hence, a different metric is required. We propose usage of the weighted relative detour as
follows.

Let yA, yB ∈ R∗+ be arbitrary measurements of one vehicle when algorithms A and B were
applied respectively. Then weighted relative detour diff rw will then calculate the relative
difference, while at the same time weighting it using the absolute difference.

diff rw(yA, yB) := |yA − yB | ∗
yA − yB

yA + yB
(5)

COSIT 2017

17:8 On Avoiding Traffic Jams with Dynamic Self-Organizing Trip Planning

4.2 Charts
Various charts present the evaluation results.3 The x-axis shows multiple methods which
were evaluated. The baseline is a uninformed uniform cost search (UCS), where each road
was assigned its static, default weight and every vehicle chooses its path individually by A∗.
In this case congestions are likely to appear. Next, our approach with all evaluated rerouting
interval sizes is presented. Lastly, a Nash equilibrium (NASH) is shown as a baseline.

On the y-axis we use different metrics. Vehicle throughput is measured in number of cars
that reach their goal within the simulation time. Edge travel time, trip detour duration, and
trip wait time duration are, if not stated otherwise, denoted in seconds. Edge travel time
is a traffic network indicator and denotes the travel time per street segment. Trip detour
duration highlights the deviation of each traveled trip in comparison to the UCS routing.
The wait time is the time the vehicle is actually waiting in a jam.

In order to adequately present distributions box plots [23, 17] were used. Here, boxes
represent the lower, middle and upper quartiles, whereas whiskers will represent the second
and 98th percentiles. The outliers were omitted in the graphs.

4.3 Experiment One – Complete Knowledge
This experiment will route 100%, 75%, 50% and 25% of vehicles, chosen randomly, uniformly
distributed, using 100% of available live sensor data. In other words, every road is equipped
with a permanent sensor, which measures its vehicle count, average speed, occupancy, density
and waiting time. This represents the best case scenario regarding information availability.
The feedback was created using δdensity.

The results show that vehicle throughput increases considerably, even at a usage rate of
25%, which can be seen in Figure 2. It additionally confirms that long update intervals may
cause more congestion at high penetration rates. This is particularly visible in Figures 2, 3
and 4.

4.4 Experiment Two – Stationary Sensors
The results in previous experiment one were achieved by placing a sensor on every road. In
real-world, sensors are much more scarcely distributed throughout the network [10]. This
scenario with stationary traffic sensors is evaluated in experiment two and described in this
section. Here, we evaluate sensor coverage of 25% or 10% of the roads. The locations were
chosen randomly, uniformly distributed. Just like in experiment one, each sensor measures
every vehicle. However, just 40% of vehicles will receive navigation updates, which is a more
attainable penetration rate of navigation systems.

The results of experiment two, depicted in Figures 5, 6 and 7, reveal that even at lower
penetration rates, the POEM algorithm successfully labels congested roads. Although the
travel time per edge does not decrease as noticeable as it did in experiment one, road users
still have a time-wise advantage. The results could possibly be improved by placing sensors
not evenly throughout the road network, but rather around congestion prone areas. This
sensor placement is subject to future research. Here we assume that the intelligent traffic
system (pertaining the traffic loops) is already installed in the city (as is in most major cities)
and situation of the loops cannot easily be altered.

3 The charts are placed at the end of the paper in two-column layout.

T. Liebig and M. Sotzny 17:9

 7000

 8000

 9000

 10000

 11000

 12000

UCS 1024 512 256 128 64 32 16 NASH

v
e
h

Reroute Interval Size

Vehicle Throughput

100%
75%
50%
25%

Figure 2 This chart shows results of exper-
iment one. For an interval size of 64 seconds,
throughput increases by over 50% when 100%–
50% of vehicles were rerouted. Interestingly,
an interval size of 1024 seconds noticeably de-
creased throughput when 100% of vehicles were
rerouted. Here, vehicles are rerouted only once
and most likely chose similar diversions on small
byways, which creates more congestion.

 0

 20

 40

 60

 80

 100

 120

 140

 160

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Edge Travel Time Distribution

100%
75%
50%
25%

Figure 3 This chart shows results of experi-
ment one. The noticeable increase in the 98th
percentile for a routing interval of 1024 seconds
where 100% of vehicles were routed coincides
with results in chart 2. The same applies to the
gradual decrease in travel times per edge.

-400

-300

-200

-100

 0

 100

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Trip Detour Duration Distribution

100%
75%
50%
25%

Figure 4 This chart shows results of experi-
ment one. Here, the relative, weighted detours
with respect to UCS are presented. It shows
most vehicles are unaffected. However, it also
shows the benefits considerably outweigh the
drawbacks.

 7000

 8000

 9000

 10000

 11000

 12000

UCS 1024 512 256 128 64 32 16 NASH

v
e
h

Reroute Interval Size

Vehicle Throughput

25%
10%

Figure 5 This chart shows results of exper-
iment two. The chart shows that even with
sensor data collected at only 10% of all roads,
throughput was increased by as much as 10%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Edge Travel Time Distribution

25%
10%

Figure 6 This chart shows results of experi-
ment two. Although a general decrease in travel
time per edge can be seen, it is not as noticeable
as it was with a sensor on each road, shown in
figure 3. However, this can likely be improved
by placing sensors on particularly congested
roads.

-400

-300

-200

-100

 0

 100

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Trip Detour Duration Distribution

25%
10%

Figure 7 This chart shows results of experi-
ment two. Here, the relative, weighted detours
with respect to UCS are presented. Again, the
benefits outweigh the drawbacks.

COSIT 2017

17:10 On Avoiding Traffic Jams with Dynamic Self-Organizing Trip Planning

-400

-300

-200

-100

 0

 100

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Trip Detour Duration Distribution at 40% Penetration Rate

Users
Non-Users

Figure 8 This chart shows results of exper-
iment three. The users of such a navigation
system have a clear advantage over non-users
compared to UCS. However, non-users also be-
nefit noticeably.

-400

-300

-200

-100

 0

 100

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Trip Detour Duration Distribution at 20% Penetration Rate

Users
Non-Users

Figure 9 This chart shows results of experi-
ment three. It can be seen that a penetration
rate of 20% still provides users with similar ad-
vantages. However, performance is considerably
lower for smaller interval sizes.

-600

-500

-400

-300

-200

-100

 0

 100

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Trip Wait Time Difference Distribution at 40% Penetration Rate

Users
Non-Users

Figure 10 This chart shows results of exper-
iment three. For smaller interval sizes, a user’s
waiting time will generally decrease more than
that of a non-user. However, it is considerably
outperformed by a Nash equilibrium.

-600

-500

-400

-300

-200

-100

 0

 100

UCS 1024 512 256 128 64 32 16 NASH

s

Reroute Interval Size

Trip Wait Time Difference Distribution at 20% Penetration Rate

Users
Non-Users

Figure 11 This chart shows results of exper-
iment three. The chart shows that even at a
lower penetration rate of 20%, it is still possible
for users to outperform non-users with respect
to waiting time.

4.5 Experiment Three – Moving Sensors

The sensors used in previous experiments measure every vehicle on their respective position.
This information could be gathered using one of many permanently installed sensors, such as
an induction loop. Alternatively, smartphone navigation applications can be used as sensors.
The measured data will be incomplete, as its only collected for a subset of roads and vehicles.
The incompleteness results in erroneous measurements of density values. However, measured
vehicle mean speeds will remain largely unaffected. Hence, δspeed was used as feedback. The
experiment will evaluate penetration rates of such applications of 40% and 20%.

For vendors of such applications, routing performance regarding all users is not particularly
interesting. Their interest mostly focuses on how great of an advantage users will have
compared to non-users. This is why the focus lies primarily on those results.

Figures 8 and 9 show that, compared to UCS, users and non-users of such an application
would benefit from its use. However, users will have a considerably greater advantage.
Figures 10 and 11 show that, when looking only at medium sized intervals, time spent waiting
due to congestion or traffic lights also decreases more for users. Generally, larger intervals
perform poorly compared to UCS. Here, many vehicles most likely chose similar diversions
and did not distribute evenly throughout the network. In turn more congestion is created on
low-capacity roads.

T. Liebig and M. Sotzny 17:11

5 Discussion and Future Work

Previous experiments revealed that the application of reinforcement learning to the routing
problem is beneficial. All our experiments highlight that, by usage of our self-organizing
routing regime, performance of the traffic network is increased and occurrence of traffic jams
are reduced. We used regular update intervals at which the route could become updated,
but this does not imply that in each step the route is altered. However, in order to achieve
acceptance of the users, the travel times per user have to be reduced. Future research has
to show whether or not the models learned in one geographic region could be transferred
to another; we plan evaluation in the city of Cologne. In this case the demand data and
road network is provided by TAPAS Cologne [24]. However, the road network quality in this
scenario is considerably worse than that of Luxembourg, as it was not manually revised, but
rather is a raw OpenStreetMap import.

High performing navigation systems have many advantages. An individual person
benefits directly, as more precise predictions would shorten travel times and simplify travel
planning. This also applies to logistics providers, which could optimize routing schedules
and thus increase overall performance. These individual advantages would then extend to
the community. Self-organized routes decrease overall traffic volume and congestion, which
would serve not only the people, but also the environment [14].

References

1 Jean-Yves Audibert and Rémi Munos. Introduction to bandits: Algorithms and theory.
ICML Tutorial on bandits, 2011.

2 Harideo Chaudhary. Application of the theory of a single first order equation to traffic flow.
Journal of the Institute of Engineering, 9(1):175–181, 2014.

3 Lara Codeca, Raphaël Frank, and Thomas Engel. Luxembourg SUMO traffic (LuST)
scenario: 24 hours of mobility for vehicular networking research. In Vehicular Networking
Conference (VNC), 2015 IEEE, pages 1–8. IEEE, 2015.

4 Serdar Çolak, Antonio Lima, and Marta C González. Understanding congested travel in
urban areas. Nature communications, 7, 2016.

5 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

6 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In International
Workshop on Experimental and Efficient Algorithms, pages 319–333. Springer, 2008.

7 F. Harary and R. Norman. Some properties of line digraphs. Rendiconti del Circolo Matem-
atico di Palermo, 9(2):161–168, May 1960. doi:10.1007/BF02854581.

8 Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determ-
ination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

9 S. P. Hoogendoorn, P.H. L. Bovy, and W. Daamen. Microscopic Pedestrian Wayfinding
and Dynamics Modelling. In M. Schreckenberg and S. D. Sharma, editors, Pedestrian and
Evacuation Dynamics, pages 123–155, 2002.

10 Dermot Kinane, François Schnitzler, Shie Mannor, Thomas Liebig, Katharina Morik, Jakub
Marecek, Bernard Gorman, Nikolaos Zygouras, Yannis Katakis, Vana Kalogeraki, et al.
Intelligent synthesis and real-time response using massive streaming of heterogeneous data
(insight) and its anticipated effect on intelligent transport systems (its) in dublin city,
ireland. ITS, Dresden, Germany, 2014.

COSIT 2017

http://dx.doi.org/10.1007/BF02854581

17:12 On Avoiding Traffic Jams with Dynamic Self-Organizing Trip Planning

11 Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. Recent develop-
ment and applications of SUMO – Simulation of Urban MObility. International Journal
On Advances in Systems and Measurements, 5(3&4):128–138, December 2012.

12 Thomas Liebig. Privacy preserving centralized counting of moving objects. In Fernando
Bacao, Maribel Yasmina Santos, and Marco Painho, editors, AGILE 2015, Lecture Notes
in Geoinformation and Cartography, pages 91–103. Springer International Publishing, 2015.
doi:10.1007/978-3-319-16787-9_6.

13 Thomas Liebig, Nico Piatkowski, Christian Bockermann, and Katharina Morik. Dynamic
route planning with real-time traffic predictions. Information Systems, 2016.

14 Ruilin Liu, Hongzhang Liu, Daehan Kwak, Yong Xiang, Cristian Borcea, Badri Nath, and
Liviu Iftode. Themis: A participatory navigation system for balanced traffic routing. In
2014 IEEE Vehicular Networking Conference (VNC), pages 159–166. IEEE, 2014.

15 Jakub Mareček, Robert Shorten, and Jia Yuan Yu. Signalling and obfuscation for congestion
control. International Journal of Control, 88(10):2086–2096, 2015.

16 Jakub Mareček, Robert Shorten, and Jia Yuan Yu. r-extreme signalling for congestion
control. International Journal of Control, pages 1–13, 2016.

17 R. McGill, J.W. Tukey, and W.A. Larsen. Variations of Box Plots. The American Statist-
ician, 32(1):12–16, 1978.

18 John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.
19 Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM

(JACM), 49(2):236–259, 2002.
20 Marco Stolpe, Thomas Liebig, and Katharina Morik. Communication-efficient learning of

traffic flow in a network of wireless presence sensors. In Proceedings of the Workshop on
Parallel and Distributed Computing for Knowledge Discovery in Data Bases (PDCKDD
2015), CEUR Workshop Proceedings, page (to appear). CEUR-WS, 2015.

21 Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback
through counterfactual risk minimization. Journal of Machine Learning Research, 16:1731–
1755, 2015.

22 Remi Tachet, Paolo Santi, Stanislav Sobolevsky, Luis Ignacio Reyes-Castro, Emilio Frazzoli,
Dirk Helbing, and Carlo Ratti. Revisiting street intersections using slot-based systems. PloS
one, 11(3):e0149607, 2016.

23 J.W. Tukey. Exploratory Data Analysis. Number 1 in Exploratory Data Analysis. Addison
Wesley Publishing Company, 1970.

24 Sandesh Uppoor, Oscar Trullols-Cruces, Marco Fiore, and Jose M. Barcelo-Ordinas. Gen-
eration and analysis of a large-scale urban vehicular mobility dataset. IEEE Transactions
on Mobile Computing, 13(5):1061–1075, 2014.

http://dx.doi.org/10.1007/978-3-319-16787-9_6

	Introduction
	Related Work
	Combination of Routing Decisions and Congestion Feedback for Reinforcement Learning
	Learning Setting
	Application
	Logging

	Experiments
	Measuring Relative-Weighted Difference
	Charts
	Experiment One – Complete Knowledge
	Experiment Two – Stationary Sensors
	Experiment Three – Moving Sensors

	Discussion and Future Work

