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Abstract
In this paper we extend previous work on using bintrees as an efficient representation for qualit-
ative information about spatial objects. Our approach represents each spatial object as a bintree
satisfying the exact same qualitative relationships to other bintree representations as the corres-
ponding spatial objects. We prove that such correct bintrees always exists and that they can be
constructed as a sum of local representations, allowing a practically efficient construction. Our
representation is both efficient, w.r.t. storage space and query time, and can represent many
well-known qualitative relations, such as the relations in the Region Connection Calculus and
Allen’s Interval Algebra.
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1 Introduction

Spatial and temporal data types are ubiquitous in today’s software, with a growing number
of spatially aware devices gathering and publishing data. Spatial and temporal data are
used in a great number of highly valuable applications, such as route planning, automatic
navigation, and modeling of physical processes. However, temporal and especially spatial
data are normally represented as complex numerical objects, where relationships between
objects are implicit, and advanced algorithms (e.g. from computational geometry) are needed
to determine them. Indexing these objects for efficient query answering is also complex.
During the last decades, several spatial and temporal database systems have been developed,
featuring advanced indexing mechanisms and efficient numerical algorithms for answering
queries over these data types (see e.g. [12, 20, 13]). Despite these advances, spatial and
temporal data are still significantly more difficult to handle than more traditional types of
data, often lag behind when new knowledge representations are introduced and in many
cases need special treatment. The present work stems from the following observations:
1. Many applications of spatial data are mostly concerned with qualitative relations such

as overlaps or containment of spatial objects, rather than quantitative properties like
distance, area, etc.

2. For such qualitative applications, resorting to expensive computations on the numerical
representations for each query seems wasteful. It would be sufficient to store a (pre-
computed) database table for overlap, containment, or any other relations of interest,
treating these relations like any other in a relational database. But this, also seems
wasteful, in terms of space, since such tables could be quadratic in the number of geometries
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(for binary relations, cubic for ternary and so on), despite obvious redundancies, like
e.g. the transitivity of the containment relation or symmetry of the overlaps relation.

3. Numerical representations of spatial objects are often subject to precision errors. E.g. even
though two objects are touching in the real world, their numerical representations might
not, due to insufficient precision in either their numerical representation or the measuring
device reporting the objects’ spatial extent. These errors are difficult or sometimes
even impossible to fix numerically without introducing other errors [3]. However, if we
construct a new qualitative representation of the objects, we can fix such errors during the
translation by using domain knowledge about the objects. For instance, we might know
that every country c touches all countries c′ whenever their numerical representations
have a smallest distance of 1 kilometer, or that the spatial extent of any capital of a
country is contained in the extent of that country.

4. Most approaches to qualitative spatial representation can be divided into two types: they
are either targeted at complex reasoning tasks (consistency checking, entailment, etc.)
and is therefore not suitable as an efficient data structure for qualitative information
extracted from a set of concrete spatial objects; or they focus on a particular set of
relations for a particular type of spatial data. (See Section 7 for more details.)

Our approach is to construct a linear bintree-representation for each spatial object that are
correct w.r.t. any given set of qualitative relations definable from a given first-order language.
This representation scales to real-world datasets without limiting the approach to any fixed
set of relations. The linear bintree [24, 25] consists of a set of bit-strings, each representing
a small chunk of space obtained by recursively dividing space. Thus, bintrees represent a
union of chunks of space, and two bintrees can therefore e.g. spatially overlap or one can
contain the other. We can therefore make one bintree per spatial object that have the same
relationships to each other as the spatial objects have, thereby becoming a representation of
the qualitative relationships between the spatial objects.

Bintrees have the convenient property that they can be stored as a regular relation
in a relational database. Furthermore, the bintrees can themselves be indexed by normal
database index structures, like B-trees, since they only consist of sets of bit-strings where
each bit-string can be represented by one integer. Another desirable feature of bintrees is
that they allow variable resolution, so we can have low resolution (few and short bit-strings)
for homogeneous areas and high resolution (many and long bit-strings) for heterogeneous
areas where more detail is necessary. The bintree has previously been used as an indexing
structure for geometries and as an efficient representation for images. Bintrees are now
considered obsolete as index structures for geometries, as R-trees [8] and their variants (see
e.g. [18] for an overview) have better performance. However, for our purpose of representing
qualitative information, we will see that the bintree is a good fit.

The concrete problem this paper addresses is the following: Given a set of objects with a
spatial interpretation and a set of qualitative relations, construct a bintree representation that
returns the same answers to queries with the given relations over the spatial objects. We have
previously constructed both theory [10] and an implementation [11] for constructing such
qualitatively correct bintrees, with promising results. However, our previous work has been
restricted to the construction of bintree-representations that are correct only w.r.t. part-of
and overlaps relationships (as presented in Section 2). In this paper we will extend the
theoretical foundation to allow for representations that are correct with respect to a more
expressive set of relations.

The paper is outlined as follows: In Section 2 we introduce the spatial objects we work
with and the key notions and results needed for expressing and constructing correct bintrees;
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in Section 3 we explain how to construct correct bintrees and why this is a good representation
for qualitative information; in the Sections 4 and 5 we extend the expressiveness of the
relational language our bintrees are correct w.r.t. in two directions; in Section 6 we show
several examples of common qualitative relations that our bintrees can represent; Section 7
discusses related work and Section 8 concludes the paper.

2 Spatial Objects and Correct Bintrees

We will start by introducing the central concept of spaces, the elements which we aim to
represent correctly.

I Definition 1. A space lattice S = (S,≺S ,>S ,⊥S) is a bounded, distributive lattice with
top element >S and bottom element ⊥S . We will let ⊗S and ⊕S be the induced meet and
join operators respectively, and call the elements of S spaces. We will let S+ := S \ {⊥S}.

Typical examples of such space lattices is the lattice of geometrical objects (polygons, lines
points) where ≺S is geometric containment, the lattice of temporal intervals where ≺S is
temporal containment, the lattice of sets where ≺S is the subset-relation, and so on. Thus,
the goal of this paper is to construct efficient representations of the qualitative relationships
between such structures. In order to do this, we need to compute these relationships between
the spatial objects, however checking all possible relationships between all possible spaces
would be very complex, as this has a complexity of O(nk) (for n elements with relations of
arity k). A property of qualitative relationships like overlaps and contains is that they are
local, that is, they depend only on the spatial parts inside the elements, and nothing more.
Thus, we want to exploit this locality in a similar fashion as the bucket sort-algorithm does,
where the elements to sort are first distributed into a set of of buckets/intervals partitioning
the universe. The buckets are sorted individually, before being gathered into a sorted list.

In a similar fashion, we will construct a set of chunks of space partitioning the space-
lattice’s universe >S , and construct locally correct representations in each chunk. We will
call such a chunk a block. The blocks are most naturally construed in a recursive fashion
where we start with >S and recursively split blocks into two smaller blocks, until we reach
some desired property (e.g. the desired resolution or the desired number of spatial objects
overlapping each block.) This splitting forms a binary tree, so each block can be represented
as the path from the root (>S) down to that block. Furthermore, such a path can be
compactly represented as a bit-string (a 0-bit and 1-bit denotes a left-edge and a right-edge
resp.) Note that every bit-string denotes a chunk of space, and that if s is a bit-string which
is a prefix of s′, then the block denoted by s spatially contains the block denoted by s′. If
we let a set of bit-strings denote their union, we can represent more complex spaces that can
spatially overlap and contain other spaces.

Our representation should allow efficient updates, and since relationships are locally
determined, inserting a new object into our representation should only affect the representation
of the blocks overlapping the object to insert. However, for such a local insert to be possible
we need to know which block each representation was constructed in.

Therefore, it would seem natural to let each element’s local block-representation be a set
of bit-strings, each contained in that block, which satisfies the same qualitative relationships
as the spatial objects they represent. A set of such bit-strings is in fact a linear bintree.
The bintree is thus a binary trie data structure, similar to the quadtree and octree. For a
discussion and comparison of these three structures, see e.g. [24]. Below follows the formal
definition of both bit-strings and bintrees.

C O S I T 2 0 1 7
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Figure 1 The left figure shows the bit-string representation of some blocks and the right figure
the spatial extent (in gray) of the bintree {110, 0110, 00110} in 2D.

I Definition 2. Let B to be the set of bit-strings with ε being the empty bit-string and b ◦ b′
to be the concatenation of the bit-strings b and b′. Let the prefix-relation on blocks, 2, be
defined as b1 2 b2 ⇔ ∃b ∈ B(b2 ◦ b = b1) and the neighbor-relation on blocks, ∼, be defined as
b1 ∼ b2 ⇔ ∃b ∈ B(b1 = b ◦ 0∧ b2 = b ◦ 1). Define a block-set B to be a non-empty, finite set of
bit-strings such that if b ∈ B then B also contains all b′ ∈ B such that either b ∼ b′ or b2 b′.

I Definition 3. Define the T -lattice T := (T,≺T ,>T ,⊥T ) where T = Pfin(B) is the set
of bintrees, (where Pfin is the finite powerset) such that t ∈ T contains no two distinct
elements b1, b2 where either b1 2 b2 or b1 ∼ b2. Furthermore, let >T = {ε}, ⊥T = ∅, and
t ≺T t′ ⇔ ∀b ∈ t∃b′ ∈ t(b2 b′).

It should be easy to see that the T -lattice is a space lattice. Thus, bintrees behave similarly
to spaces, which allows them to be used as representations for spaces.

In Figure 1 we can see an example of both blocks and a bintree, and their spatial extent
(assuming regular splitting in each space division). Note that we put no restriction on the
number of dimensions our spaces has, and the same holds for our bintrees. In the same way
we alternate between splitting along the x- and y-axis in the 2D case, we would cycle through
all k dimensions in a k-dimensional space. We will now introduce our models, which will
allow us to precisely define correctness of bintree-representations.

I Definition 4. Given a space lattice S = (S,≺S ,>S ,⊥S), a finite set of constants C and
a block-set B, an S-model M is a first order model over the similarity type 〈≺;C ∪ B〉
with universe S, but where (∃+z.ϕ)M ⇔ ϕ[s/z]M for some s ∈ S+, and where εM = >S ,
≺M=≺S , and bM 6= ⊥S , (b ◦ 0)M ⊗S (b ◦ 1)M = ⊥S , and (b ◦ 0)M ⊕S (b ◦ 1)M = bM for
any b ∈ B.

Note the interpretation of the new existential quantifier, and that if e.g. ∃+z(z ≺ c1 ∧ z ≺ c2)
holds in some model, then there is a non-empty intersection between c1 and c2 in that model.
Observe also that given a space-lattice S, the only difference between two S-models is their
interpretation of the constants C ∪B. The constants C will be the elements which have a
spatial interpretation that we wish to correctly represent as bintrees. The constants of B
will function as the buckets as described above. However, before we can talk about correct
representations, we need to define the scope of this correctness. Our notion of correctness will
be restricted to a language of first order sentences that nicely captures a core of qualitative
relations, namely overlaps and containment relationships. We will in the later sections of
this paper extend the expressiveness of the language.

I Definition 5. Let an atomic spatial formula be a first order formula on one of the two
forms: x1 ≺ x2 or ∃+z

(∧
i∈I z ≺ xi

)
. A spatial formula is a first order formula ϕ(~x) defined

by the BNF ϕ := ψ | ¬ψ | ϕ1 ∧ ϕ2, where ψ is an atomic spatial formula.
Given a set of constants C and a block-set B, an (atomic) spatial sentence ϕ(~c) is a first

order sentence such that ϕ(~x) is an (atomic) spatial formula and ~c ∈ (B ∪ C)|~c|.
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Figure 2 A figure with three polygons to the left, an example of a Γ-incorrect bintree-representation
in the middle, and an example of a Γ-correct bintree-representation to the right.

I Definition 6. Given a set of spatial formulae Γ, we will say that a T -modelMT is Γ-correct
w.r.t. an S-model MS if MT � ϕ(~c)⇔MS � ϕ(~c) where ~c ∈ (B ∪ C)|~c| and ϕ(~x) ∈ Γ.

I Example 7. Let Γ := {x ≺ y,∃+z (z ≺ x1 ∧ z ≺ x2) }. In Figure 2 we can see an example
of a Γ-incorrect and a Γ-correct bintree model for the constants {A,B,C} ∪ {b ∈ B | |b| ≤ 4}
(where |b| is the length of the bit-string b), w.r.t. a geometric model MG . Mi

T is just an
approximation from above, which is how bintrees are normally used as index structures. We
can see that such a representation is complete w.r.t. Γ, i.e. MG � ϕ(~c) ⇒Mi

T � ϕ(~c) for
any spatial formula ϕ(~x) ∈ Γ and any ~c ∈ (C ∪B)|~c|, but it is not sound, i.e. the converse
implication does not necessarily hold. For instance, Mi

T � ov(A,C) but MG 2 ov(A,C),
and Mi

T � 1011 ≺ B but MG 2 1011 ≺ B. However, MT is an example of a correct model,
and it is easy to check that any spatial sentence is true inMT if and only if it is true inMG .

As stated above, for efficiency reasons we will construct our bintrees locally. Thus, we need a
notion of local correctness, that is, what a locally correct bintree-model is.

I Definition 8. Let �b for a bit-string b, be equivalent to �, but where MS �b c ≺ d ⇔(
bMS ⊗S cMS

)
≺S

(
bMS ⊗S dMS

)
and MS �b ∃+z.ϕ ⇔MS �b ϕ[s/z] for some s ∈ S+

and s ≺S bMS . Given a block-set B, we will call MT locally Γ-correct if MT �b ϕ(~c) ⇔
MS �b ϕ(~c) for all spatial sentences ϕ(~c) where ϕ(~x) ∈ Γ and all 2-smallest elements b of B.

So a locally correct model is a model that is correct if we limit out vision to one block at the
time. We will now show that our qualitative relations are locally determined, that is, locally
correct models are also globally correct.

I Theorem 9. Given a set of constants C and a block-set B, any locally Γ-correct T -model
MT is Γ-correct, w.r.t. an S-model MS .

Proof. Let β be set of 2-smallest elements of B. It is sufficient to prove that for any S-model
MS we have MS � c1 ≺ c2 ⇔ ∀b ∈ β (MS �b c1 ≺ c2 ) and MS � ∃+z

(∧
i≤k z ≺ ci

)
⇔

∃b ∈ β
(
MS �b ∃+z

(∧
i≤k z ≺ ci

) )
for any c1, . . . , ck ∈ C ∪ B. By definition the MS-

interpretation of the elements of β forms a partition on >S , so >S =
⊕

b∈β b
MS and

bM1 ⊗S bM2 = ⊥S . This, together with distributivity, we know that cMS
1 ≺S cMS

2 is
equivalent to ∀b ∈ β

((
bMS ⊗S cMS

1

)
≺S

(
bMS ⊗S cMS

2

) )
for any c1, c2 ∈ C ∪ B. By

similar arguments, we have that ∃z ∈ S+
(∧

i≤k z ≺S c
MS
i

)
is equivalent to the local

∃b ∈ β∃z ∈ S+
(∧

i≤k z ≺
(
bMS ⊗S cMS

i

))
for any c1, . . . , ck ∈ C ∪B. J

I Theorem 10. For any S-model MS there exists a locally Γ-correct bintree-model MT .

C O S I T 2 0 1 7
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Proof. Proof done by model construction: For each b ∈ β, construct the set of all locally
true atomic spatial sentences occurring (either positively or negatively) in some ϕ ∈ Γ:

Tb :=
{
ψ(~c) | MS �b ψ(~c),

∧
1≤i≤|~c|

(
ci ∈ C ∪B ∧ cMS

i ⊗ bMS 6= ⊥S
)}

.

Any T -model of all Tbs is locally Γ-correct. Then, let T ′b be the skolemization of Tb, and T ′′b
be the set of atoms occurring in any sentence in T ′b. Define K+

b to be the set of all constants
occurring in T ′′b , and K⊥b := (C ∪B) \K+

b . So {K+
b ,K

⊥
b } partitions C ∪B and K+

b is the
set of constants that should have a non-empty interpretation, locally in b.

We will now construct the T -model. First, for each b ∈ β, generate a set Wb ⊆ B of
size |K+

b | of pairwise 2-unrelated bit-strings b′ such that b′ 2 b. Then, let wb : K+
b →

Wb ∪ {b} be a bijective function on K+
b \ B and wb(b′) = b for b′ ∈ K+

b ∩ B. Then, define
Ib(c) :=

⊕
T {{wb(c′)} | (c′ ≺ c) ∈ T ′′b , c

′ ∈ K+
b } for each c ∈ K+

b , and Ib(c) := ⊥T for
c ∈ K⊥b . So Ib is the locally correct interpretation of the constants in C ∪B, and it should
be clear that

((
cMS
1 ⊗S bMS

)
≺S

(
cMS
2 ⊗S bMS

))
if and only if Ib(c1) ≺T Ib(c2) and

∃z ∈ S+
(∧

i≤k z ≺S
(
bMS ⊗S cMS

i

))
if and only if ∃z ∈ T+

(∧
i≤k z ≺T Ib(ci)

)
for any

c1, . . . , ck ∈ C ∪B and any b ∈ β. Finally, let cMT :=
⊕
T {Ib(c) | b ∈ β} for each c ∈ C ∪B.

MT is now a Γ-correct T -model w.r.t MS . J

3 How To and Why Construct Correct Bintrees

The proof of Theorem 10 illustrates how one could design an algorithm for construction of
correct bintree-models. We can write an almost direct translation of the steps in the proof
to an algorithm. That is, for each b ∈ β do the following: Find all c ∈ C ∪ B overlapping
b and compute their Γ-relationships, Tb; skolemize and extract the atomic sentences, T ′′b ;
generate a set of blocks and assign each non-empty element a block, and propagate according
to the ≺-relationships in T ′′b ; finally, sum up the local representations to form the model.
The algorithmic complexity of such a model construction is |β| times the complexities of
first constructing T ′′b and then generating and distributing the elements of Wb. It should be
easy to see that the latter has complexity O(|T ′′b |). Note that constructing T ′b from Tb and
T ′′b from T ′b are both linear in the size of Tb. Lastly, we have that constructing Tb requires
computing whether MS � ϕ(~c) holds for each atomic spatial sentence generated from the
atomic spatial formulas of Γ and the constants B ∪ C. This gives us a total complexity of
O(|β| · ok), where o = maxb∈beta |{c ∈ C ∪B | MS � ov(c, b)}|, that is, the largest number
of elements from C ∪B that overlaps any b ∈ β, and k is the largest number of free variables
occurring in any atomic spatial formula occurring in any ϕ ∈ Γ. This means that we in
practice can construct correct bintree-models for any S-model, however, why still remains to
be answered. Below we discuss the main properties of the representation making it suitable
for representing qualitative information.

The bintrees can be stored and queried in a relational database as a binary relation
(id, block), where we encode the bit-strings as integers and where both the IDs and the
bit-string integers can be indexed by a normal B-tree. This allows for highly efficient query
answering, in the complexity class AC0 [1], of queries of the form ”given a ∈ C ∪ B and
R ∈ Γ, find all x such that R(a, x) holds” and ”given a, b ∈ C ∪B and R ∈ Γ, check whether
R(a, b) holds”. In [11] we discuss this representation in more detail and present a benchmark
that shows that overlaps and containment queries are on average 2.7 times faster over our
correct bintrees than over the corresponding geometries. The comparison was done with
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PostGIS [20], a state of the art geospatial database, over real-world datasets where the largest
sets has over a million geometries.

Note that our constructions also allow a more efficient insertion than reconstructing the
entire model upon each insert: Assume we already have constructed a Γ-correct model MT
for the S-model MS and constants C ∪B, but now want to construct a Γ-correct model for
the extended model M′S for C ∪ C ′ ∪ B. Since we only need local Γ-correctness, we only
need to update Ib for each b ∈ β where M′S � ov(c, b) for any c ∈ C ′. Thus, a larger B gives
a more efficient insert-operation as we have a higher resolution. Observe also that the only
requirements we put on the interpretations of the elements of B, is that {b◦0, b◦1} partitions
b. Thus, we are free to interpret b ◦ 0 and b ◦ 1 in such a way that there is approximately the
same number of elements from C that overlap each. This will evenly spread the elements of
C over the elements of β, thus making each Tb about equally complex to compute. This is
important, as it can greatly reduce the value of o in the complexity measure. We present an
algorithm for construction and update of Γ-correct bintrees with such balanced splitting of
B in [11], with Γ = {x ≺ y,∃+z(

∧
i≤k z ≺ xi)} for arbitrary k.

Our representation is also compact, as it does not need to explicitly store reflexive,
symmetric or transitive closures of the containment and overlaps relationships. There are
also many optimizations one can do to get an even more compact and efficient representation:
E.g. we can remove all sentences ϕ from Tb if there is some sentence ϕ′ ∈ Tb such that
ϕ′ → ϕ. This will remove all redundant overlaps-witnesses (either implied by a containment-
relationship or another overlaps-relationship of higher arity) and reduce the overall size of
the bintrees. In the benchmark in [11] we show that our bintree-representation uses only
62% of the space of the corresponding geometry-datasets, and only 22% of the explicit
representations, for the largest datasets.

4 Extension: Roles

We have now seen that we can construct a correct bintree-representation for any space lattice,
but the correctness is only for spatial sentences of containment and overlaps relationships. We
will now see that a small extension to our bintree representations allows us to accommodate
a much more interesting set of relationships. First observe that we, e.g., can express the well
known RCC8-relations (see e.g. [22, 5]) with only containment and overlaps relations, if we
can relate the different types of parts:

DJ(x, y) := ¬ov(x, y) EC(x, y) := ov(x, y) ∧ ¬ov(x◦, y◦)
PO(x, y) := ov(x◦, y◦) ∧ (x ⊀ y ) ∧ (y ⊀ x) EQ(x, y) := x ≺ y ∧ y ≺ x

TPP (x, y) := x ≺ y ∧ ov(∂x, ∂y) ∧ (y ⊀ x) NTPP (x, y) := x ≺ y ∧ ¬ov(∂x, ∂y)

where ov(x, y) := ∃+z(z ≺ x ∧ z ≺ y), ∂x is the boundary of x, x◦ is the interior of x and
x ⊀ y is short for ¬(x ≺ y). We will therefore extend our definitions above with the notion of
roles, which allows us to talk about the different parts of a space, e.g. interior and boundary.

I Definition 11. A role is a set of names. A role-set is a set of roles containing ∅.

As we will see shortly, we only need roles that consist of a single name to express the relations
of RCC8, namely i for interior and b for boundary. However, we will also see examples where
using multiple names to denote a part is useful.

I Definition 12. Given a role-set R, an R-roled space lattice S is a tuple (S,≺S ,>S ,⊥S , πS)
where (S,≺S ,>S ,⊥S) is a space lattice and πS : R×S → S is a function where πS(∅, s) = s

and πS(r∪u, s) = πS(r, s)⊗S πS(u, s) for any (r, u) ∈ R2 such that r∪u ∈ R and any s ∈ S.

C O S I T 2 0 1 7
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The reader can read πS(r, a) as “a’s r-part”. Intuitively one can think of a {n1, . . . , nk}-part
as an intersection of all the {ni}-parts. For instance the role {i, h}, where h is short for
hole, denotes holes in an interior, whereas {i} denotes all of the interior, both with and
without holes. Observe also that we always have πS(r, s) ≺S s. We will now introduce the
corresponding bintrees.

I Definition 13. Given a role-set R, an R-roled block is a pair (r, b) such that b ∈ B and
r ∈ R. Let BR be the set of R-roled blocks. Also let δ(r, t) := {b | (r, b) ∈ t} for any r ∈ R
and t ⊆ BR and let ΣR(t) :=

⊕
r∈R δ(r, t).

An R-roled bintree t is an element of Pfin(BR), such that for any role r ∈ R we have that
δ(r, t) is a bintree, and δ(r, t)⊗T δ(u, t) = ⊥T for any r 6= u. Let TR be the set of R-roled
bintrees. Furthermore, let >TR

:= {(∅, ε)}, ⊥TR
:= ∅, πTR

(r, t) := {(u, b) ∈ t | r ⊆ u},
t ≺TR

t′ ⇔ ΣR(t) ≺T ΣR(t′) and TR := (TR,≺TR
,>TR

,⊥TR
, πTR

).

While the different roles for the parts are implicitly defined for spaces like geometries, (such
as being the interior of a polygon), we explicitly state the roles each block should have in the
bintree. So the boundary of a bintree t, πT ({b}, t), is the set of blocks having a role r such
that b ∈ r. We can then define the touching relation as ov(π{b}(x), π{b}(y)). So even though
two bintrees seem to touch geometrically (e.g. if one has a block b and the other a block b′
and b ∼ b′) they will not necessarily touch according to our definition. This makes it easier
for us to construct correct bintree-models, as we still only have to care about overlaps and
part-of relationships. Note also that it is possible to construct bintree-models that satisfy
sentences that are unsatisfiable by any S-model for a particular space lattice S. For instance,
it is easy to make a bintree model with two objects that have a partially overlapping interior,
but that have disjoint boundaries, which is impossible for any geometrical model. Thus,
we cannot use our representation for reasoning (that is, make a representation for a set of
sentences and then query for all entailments). However, as our bintrees only function as a
representation of the relationships of a given S-model and is constructed to satisfy exactly
these, this is not a problem.

I Definition 14. Given an R-roled space lattice S, a set of constants C, and a block-set B,
an R-roled S-model M is a first order model over the similarity type 〈≺;π;C ∪B〉, where π
is a family of unary function symbols πr for each r ∈ R, that is an S-model over 〈≺;C ∪B〉
and where πr(c)MS = πS(r, cMS ) for any r ∈ R and c ∈ C ∪B.

I Definition 15. Given a role-set R, an R-roled atomic spatial formula is a first order formula
on one of the forms πr1(x) ≺ πr2(y) or ∃+z

(∧
i≤k z ≺ πri

(xi)
)

for some r1, . . . , rk ∈ R.
Let R-roled formulae and R-roled (atomic) spatial sentences be defined analogously as in
Definition 5, but where ψ is an R-roled (atomic) spatial formula.

Note that (π∅(s))MS = s for any R-roled S-model MS , so we sometimes write x instead of
π∅(x) in the definitions of spatial formulae. To save ink, let r̄ = {r} for any role-name r.

I Example 16 (RCC8). Assume we have the names b for “boundary”, and i for “interior”,
where πb̄(x) denotes x’s boundary and πī(x) denotes x’s interior, we can now express the
RCC8-relations with Γ equal to the set of formulae:

DJ(x, y) := ¬ov(x, y) EC(x, y) := ov(x, y) ∧ ¬ov(πī(x), πī(y))
PO(x, y) := ov(πī(x), πī(y)) ∧ (x ⊀ y ) ∧ (y ⊀ x) EQ(x, y) := x ≺ y ∧ y ≺ x

TPP (x, y) := x ≺ y ∧ ov(πb̄(x), πb̄(y)) ∧ (y ⊀ x) NTPP (x, y) := x ≺ y ∧ ¬ov(πb̄(x), πb̄(y))
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MG MT

πī(A)
πī(B)
πī(C)
πb̄(A)
πb̄(B)
πb̄(C)

Figure 3 Polygons and an RCC8-correct bintree-model.

Let G be set of two-dimensional geometries (i.e. polygons, line-strings, points) contained
in some universe >G and with ≺G being geometric containment, then G is a space lattice.
So a Γ-correct TR-model w.r.t. G-models M will correctly represent all RCC8-relations
between the elements of C as interpreted by M. In Figure 3 we see an example of a correct
bintree-model with respect to the RCC8-relations.

I Theorem 17. Any R-roled TR-model MT is Γ-correct if and only if it is locally Γ-correct,
w.r.t. an R-roled S-model MS . Furthermore, for any R-roled S-model MS there exists a
locally Γ-correct R-roled TR-model MT .

Proof. The arguments for the first part are analogous to the proof of Theorem 9, just
substitute ci with πri

(ci).
The second part is done by a similar model construction as for the proof of Theorem 10.

So, construct T ′′b in the same way, but note that now the elements of T ′′b are on the forms
πr(c1) ≺ πu(c2) and v ≺ πr(c). Now, define K+

b to be the set of expressions (v and πr(c) where
v is a skolem-constant and c ∈ C ∪B) occurring in T ′′b , and K⊥b as before. Let Wb be a set of
size |K+

b | of pairwise 2-unrelated bit-strings b′ where b′2b. Then, let wb : K+
b →Wb∪{b} be

a function such that assigns a unique element from Wb to each e ∈ K+
b \{π∅(b′) | b′ ∈ B}, and

wb(e) := b for each e ∈ K+
b ∩{π∅(b′) | b′ ∈ B}. We then define Ib(πr(c)) :=

⊕
TR
{{(r, wb(e))} |

(e ≺ πr(c)) ∈ T ′′b , e ∈ K+
b } for each πr(c) ∈ K+

b and Ib(e) := ⊥TR
for e ∈ K⊥b . It

should now be clear that
(
bMS ⊗S (πr(c1))MS

)
≺S

(
bMS ⊗S (πu(c2))MS

)
if and only if

Ib(πr(c1)) ≺TR
Ib(πu(c2)) and ∃z ∈ S+

(∧
i≤k z ≺S

(
bMS ⊗S (πri(ci))

MS
) )

if and only if

∃z ∈ T+
R

(∧
i≤k z ≺TR

Ib(πri(ci))
)

for any c1, . . . , ck ∈ C ∪B and any b ∈ β. Finally, we let
cMT :=

⊕
b∈β

⊕
r∈R Ib(πr(c)) for each c ∈ C ∪ B. MT is now an R-roled TR-model that

satisfies exactly the true spatial sentences of MS generated from Γ and C ∪B. J

From the above proof, we can see that the construction of correct roled bintrees is done in a
similar fashion as the normal bintrees, and we only need a minor update of any algorithm
used for constructing normal correct bintrees.

Observe also that we can compress our roled bintrees in the following manner: Assume
that in the set of skolemized atoms T ′′b we have a πr(c) such that (πr(c) ≺ e1) ∈ T ′′b ⇔
(πu(c) ≺ e1) ∈ T ′′b and (e2 ≺ πr(c)) ∈ T ′′b ⇔ (e2 ≺ πu(c)) ∈ T ′′b for any expressions
e1, e2 ∈ K+

b . If then there is no formula ϕ(~x) ∈ Γ such that eq(πr(c), πu(c)) ⇔ ϕ(~c), we
can let wb(r, c) = wb(u, c), thus reducing the size of our bintree-representation. This can
for instance be done for the RCC8-relations (letting eq(πb̄(c), πī(c)) cannot introduce a new
relationship, if πb̄(c) and πī(c) has the exact same relationships to other elements).

Note also that any role can be represented as a fixed length bit-string by enumerating
all role-names occurring in Γ and represent each role r as the bit-string having 1s at the
bit-positions corresponding to the numbers given to the role-names in r, and 0 everywhere
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else. We can then represent our roled bintrees as ternary relations (id, block, role) where each
column can be index by a normal B-tree. Thus, querying roled bintrees is almost as efficient
as querying our normal bintrees, as we only need to consult one additional index-structure
(the B-tree over the role-column) during query execution.

5 Extension: Order

Introducing roles allows us to construct much richer bintree-models. However, having only the
part-of relations allows only relations based on sharing of different types of parts, we are still
unable to describe many interesting qualitative relationships, such as temporal relationships,
relative size and relative direction. In this section we will extend our language to also include
a different type of partial order which will enable us to express these relationships.

I Definition 18. An ordered R-roled space lattice S is a tuple (S,≺S , <S ,>S ,⊥S , πS) where
(S,≺S ,>S ,⊥S , πS) is an R-roled space lattice and <S is a strict partial order such that if
a <S b then a⊗S b = ⊥S and for any pair c, d ∈ S we have c ≺S a ∧ d ≺S b → c <S d.

The reader can read the statement x < y as “x is before y”. The rest of the definitions are
analogous to before:

I Definition 19. Let t <T t′ ⇔ ∀b ∈ t∀b′ ∈ t′(b <B b
′) where b <B b

′ for bit-strings b, b′ iff
there exists some b′′ such that b2 b′′ ◦ 0 and b′2 b′′ ◦ 1. Then let t <TR

t′ ⇔ ΣR(t) <T ΣR(t′)
and T <R := (TR,≺TR

, <TR
,>TR

,⊥TR
, πTR

).

I Definition 20. Given an ordered R-roled space lattice S, a set of constants C, and a
block-set B, an ordered R-roled S-model M is a first order model over the similarity type
〈≺, <;π;C ∪B〉 that is an R-roled S-model over 〈≺;π;C ∪B〉, and where (<)M =<S and
(b ◦ 0)MS <S (b ◦ 1)MS for any (b ◦ 0), (b ◦ 1) ∈ B.

I Definition 21. Let an atomic ordered R-roled spatial formula be a first order formula
that is either an atomic R-roled spatial formula or a formula on the form x < y. Let
ordered R-roled spatial formulae and (atomic) ordered R-roled spatial sentences be defined
analogously as R-roled spatial formulae and (atomic) R-roled spatial sentences, but where
each ψ is an atomic ordered R-roled spatial formula.

I Example 22 (Allen’s Interval Algebra). Assume we have the role-names i for interior, f
for first, l for last, and the role-set R := {∅, ī, f̄ , l̄}. Let πf̄ (x) denote the interval consisting
of only x’s first point, and πl̄(x) denote the interval consisting of only x’s last point, and
πī(x) is the interior of x’s interval. We can then express the relations of Allen’s Interval
Algebra [2]:

before(x, y) := πl̄(x) < πf̄ (y) meets(x, y) := eq(πl̄(x), πf̄ (y))
overlaps(x, y) := ov(πī(x), πī(y)) ∧ (x ⊀ y) ∧ (y ⊀ x) equal(x, y) := eq(x, y)

starts(x, y) := eq(πf̄ (x), πī(y)) ∧ πl̄(x) ≺ πī(y) during(x, y) := πf̄ (x) ≺ πī(y) ∧ πl̄(x) ≺ πī(y)
ends(x, y) := eq(πl̄(x), πl̄(y)) ∧ πf̄ (x) ≺ πī(y) after(x, y) := πl̄(y) < πf̄ (x)

Given the set I of time intervals contained in some universe >I , with ≺I being temporal
containment, and x <I y is the temporal before, it should be obvious that this forms an
ordered R-roled space lattice. Thus, any correct T <R -model w.r.t. such an I-model M will
correctly represent all Allen’s Interval-relations between the elements of C ∪B as M.

I Theorem 23. Any ordered R-roled T <R -model MT is Γ-correct if and only if it is locally
Γ-correct, w.r.t. an ordered R-roled S-model MS . Furthermore, for any ordered R-roled
S-model MS there exists a locally Γ-correct ordered R-roled T <R -model MT .
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Proof. For the first part, note that, since β is a partition of >S and (b ◦ 0) <S (b ◦ 1) for any
(b◦0), (b◦1) ∈ B, we have that <S is a total order on β. This implies that eMS

1 <S e
MS
2 if and

only if ∀b ∈ β
((
eMS

1 ⊗S bMS
)
<S

(
eMS

2 ⊗S bMS
) )

. The rest of the proof is analogous
to the proof of Theorem 9.

For the second part, we again have to construct a locally correct model. So, construct
T ′′b in the same way as before for each b ∈ β, but this time the elements of T ′′b can also
be on the form e1 < e2. Let Wb be as before but now with size 2|K+

b |. We then let
c <b d ⇔ (c < d) ∈ T ′′b , and <tb be some strict total ordering on K+

b containing <b.
Now, define wb(c) := {bfc } ⊕ {blc} (intuitively, one can think of bfc and blc as representing
the <-first and last part of c, respectively) for some bfc , blc ∈ Wb such that bfc <B b

l
c and

c <b d⇒ blc <B b
f
d and c 6<b d ∧ c <tb d⇒ (bfc <B b

f
d <B b

l
c <B b

l
d). Now wb(c) and wb(d) are

disjoint and c <b d ⇔ wb(c) <TR
wb(d) for any pair of distinct c, d ∈ K+

b . We then define
Ib(e) and MT in the same way as before. Now, MT is an ordered R-roled model satisfying
exactly the same ordered R-roled sentences generated from Γ as MS . J

Again we see that the construction of correct bintrees with order requires only a small
extension to the previous algorithm. Furthermore, a nice feature of encoding bit-strings as
integers as described in Section 3 is that the <-ordering of the blocks corresponds to the
normal <-ordering on their integer representations, thus we can reuse the B-tree index over
the blocks to efficiently answer <-queries as well.

6 Expressiveness and More Examples

I Example 24 (Holes). To both G and I we can add an additional role-name, h, for “hole”,
that can be combined with e.g. i to represent holes in the interior of a polygon or interval, or
with b to represent geometries that have an open boundary. We can now express:

surroundedBy(x, y) := x ≺ π{h,i}(y) hasHoles(x) := ∃+z(z ≺ πh̄(x))
hasOpenBoundary(x) := πb̄(x) ≺ π{b,h}(x) hasHole(x, y) := eq(π{h,i}(x), y)

I Example 25 (Relative size and direction). One dimensional attributes like size, length,
projection down to the north-south and east-west axis can easily be represented by introducing
an appropriate role-name, e.g. d, and let πS(d̄, x) <S πS(d̄, y) hold if x has a smaller value
than y on the d-axis. If we then also let for each b ∈ β, πS(d̄, b) be an interval along this
axis such that β contains both the smallest and largest values, our constructing algorithm
will be a normal bucket-sort with β being the set of buckets.

If we introduce the role-names n for the projection along the north-south and e for the
projection down to the east-west, we can express the following relations from the Cardinal
Direction Calculus[14], e.g.:

northOf (x, y) := πn̄(y) < πn̄(x) ∧ ov(πē(x), πē(y))
northEastOf (x, y) := πn̄(y) < πn̄(x) ∧ πē(y) < πē(x)

and the rest of the directional-relations are defined similarly. Note that πS(n̄, x) and πS(ē, x)
is the projection of a two-dimensional object down to the each dimension. We can of course
also do this for three-dimensional (or higher) objects and introduce a role-name, u for the
up-down axis, and relations such as above(x, y) and between(x, y, z). If we combine the
directional roles with the interior-role, e.g. {i, u}, we can express

onTopOf (x, y) := ov(π{i,n}(x), π{i,n}(y)) ∧ ov(π{i,e}(x), π{i,e}(y)) ∧
ov(π{b,u}(x), π{b,u}(y)) ∧ π{i,u}(y) < π{i,u}(x)
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that is, x and y overlap in the two-dimensional plane, but x and y are touching along the
up-down axis, yet x’s interior is above y’s.

I Example 26 (Orientation). If we have the directional roles {n, e} as described above, we
can introduce two more role-names f for front and b for back, and then introduce orienta-
tional relations, e.g northOriented(x) := π{n,b}(x) < π{n,f}(x)∧ ov(π{e,b}(x), π{e,f}(x)) and
similarly for the rest of the directions. If we allow unions of relations in our query language
(this is trivial in SQL), we can express relative orientation, that is, orientedTowards(x, y) as
the union of the 8 relations on the form northOf (x, y) ∧ southOriented(x).

I Example 27 (Egg-Yolk). If we have a space-lattice S with indeterminate boundaries (that
is, an inner and outer boundary where the real boundary is somewhere in between) we can
introduce two new role-names y, for yolk, and w, for white, and let πS(ȳ, s) be the region
within the inner boundary and πS(w̄, s) be the region within the outer boundary. We can
then introduce all the 46 relations from the Egg-Yolk RCC5 calculus [6], e.g.:

R2(x, y) := PO′(πw̄(x), πw̄(y)) ∧ ¬ov(πȳ(x), y) ∧ ¬ov(πȳ(y), x)
R11(x, y) := PO′(πw̄(x), πw̄(y)) ∧ PO′(πw̄(x), πȳ(y)) ∧ (πȳ(x) ≺ πw̄(y)) ∧ ¬ov(πȳ(x), πȳ(y))

where PO′(x, y) := ov(x, y) ∧ (x ⊀ y) ∧ (y ⊀ x). R2(x, y) states that the white of the two
partially overlap whereas the yolks are disjoint from each other’s eggs, and R11(x, y) that x’s
white partially overlap both y’s white and yolk, and x’s yolk is contained in y’s white.

It is also possible to combine any of the above relation-sets whenever the underlying space-
lattice has a natural interpretations for each relation-set’s roles. For instance, for spatio-
temporal objects one could combine Allen’s Interval Algebra and RCC8.

There is, of course, qualitative information that cannot be represented by our bintrees,
e.g. unknown data via disjunctions, such as EC (a, b) ∨ PO(a, b) but where we do not know
which, since our representation is a concrete model (note that we can model certain types of
unknown data by introducing appropriate roles, such as done in Example 27); unions such
as a ≺ b ⊕ c ∧ a ⊀ b ∧ a ⊀ c, we can only state that ov(a, b) ∧ ov(a, c); space-lattices that
require infinite sets of roles, such as fuzzy sets with membership-roles in [0, 1]; formulae with
role-variables, such as R(z, x, y) := πz(x) ≺ y; or shape-relations, we have not found a way
to express formulae that can state e.g. concavity.

7 Related Work

There has been done much work on efficient representations of transitive relations and
structures for reachability queries in directed graphs (see e.g. [19, 27, 9]) which can be used
to represent our containment relationships. However, these representations do not facilitate
efficient construction or update of these structures from a set of spatial objects. They are
also less expressive, as they do not have any concept similar to our roles or the <-ordering.
In [21] the authors developed a qualitative representation of spatial data based on arrays of
representative points. However, this representation has the same drawbacks as above.

There has also been done a lot of work on representing qualitative spatial information as
a set of assertions in some spatial logic, whereby the main information extraction method is
logical reasoning based on either logical calculi or constraint solving (see e.g. [7, 4] for an
overview). These representations are more focused on complex reasoning problems rather
than efficient query answering. These reasoning problems are normally at least NP-hard in
general, but tractable restrictions exists (see e.g. [23, 26, 17] for RCC8) that can scale to large
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datasets. However, as the related work above, these approaches presupposes the existence of
a constraint network, and does not themselves provide any efficient construction algorithm
of these constraint networks, nor any efficient update of already constructed networks.

In [15] the authors construct a compact representation for the RCC8 and CDC (Cardinal
Direction Calculus) relations over polygons using a combination of minimum bounding
rectangles (MBR) for each polygon and normal relational database tables when a relation
cannot be computed from the MBRs. The authors of [16] provide an efficient construction
of a representations of RCC8-relationships between spatial objects via sets of rectangular
pseudo-solutions. Each pseudo-solution consists of a partial interpretation of spatial objects
into rectangles that encodes one part of an RCC8-network. Both of the approaches above
give an efficient method for constructing their respective representations from a set of spatial
objects, the former using MBRs and the latter using quadtrees. However, they are both
limited to RCC8 and CDC relations over two dimensional objects, whereas our approach can
handle a more expressive set of relations over elements from any space lattice.

8 Conclusion and Future Work

We have seen that we always can construct a bintree representation for any space-lattice that
is correct w.r.t. any predefined set of qualitative relations expressible in our formula language.
This formula language is expressive enough to express most of the common qualitative
spatial relations. Our bintree representations are compact, can be stored naturally in any
tuple-based representation (relational databases, triple-stores, etc.) and allow highly efficient
query answering as they can be stored in a relational database and indexed by B-trees.

In the future we want to extend our implementation [11] (that currently handles all
relations definable from the formulae of Definition 5) to also handle the role and order
extensions and test these against real-world datasets with expressive relation-sets. We also
want to compare our approach to the related representations for RCC8 and CDC described
in Section 7.

It would also be interesting to try to extend the language of our relations, to for instance
allow intersections, unions, or some restricted form of universal quantification in our formulae
without effecting the computational properties of the representation.
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