
Confluence of an Extension of Combinatory Logic
by Boolean Constants∗

Łukasz Czajka

DIKU, University of Copenhagen, Copenhagen, Denmark
luta@di.ku.dk

Abstract
We show confluence of a conditional term rewriting system CL-pc1, which is an extension of
Combinatory Logic by Boolean constants. This solves problem 15 from the RTA list of open
problems. The proof has been fully formalized in the Coq proof assistant.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases combinatory logic, conditional linearization, unique normal form prop-
erty, confluence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2017.14

1 Introduction

Combinatory Logic is a term rewriting system defined by two rules:

Kxy → x Sxyz → xz(yz)

Using only S and K, it is possible to encode natural numbers via Church numerals. Any com-
putable function may then be represented by a term in the system. However, a conditional C
encoded in this way does not have a desirable property that Ct1t2t2 = t2 if t1 encodes neither
true nor false. It is therefore interesting to investigate extensions of Combinatory Logic
incorporating a conditional directly. Perhaps the most natural such extension is CL-pc:

Kxy → x CTxy → x Czxx → x

Sxyz → xz(yz) CFxy → y

The system CL-pc is known to be not confluent [7]. One may thus try other ways of adding
a conditional and Boolean constants to Combinatory Logic.

We show confluence of a conditional term rewriting system CL-pc1 defined by the rules:

Kxy → x CTxy → x Czxy → x ⇐ x = y

Sxyz → xz(yz) CFxy → y

Confluence of this system1 appears as problem 15 on the RTA list of open problems [5].
The equality in the side condition for the third rule for C in CL-pc1 refers to equality

in the system CL-pc1 itself, thus the definition is circular. This circularity is an essential
property of CL-pc1 which distinguishes it from CL-pc.

∗ Supported by Marie Skłodowska-Curie action “InfTy”, program H2020-MSCA-IF-2015, number 704111.
1 Strictly speaking, in the literature the systems CL-pc, CL-pc1 and CL-pcL also contain the rule Ix → x.
This rule could be added to our definitions without significantly changing the proofs. However, this
would increase the number of cases to consider, making the proofs less readable. The formalization of
our results uses the definitions from the literature.

© Ł. Czajka;
licensed under Creative Commons License CC-BY

2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017).
Editor: Dale Miller; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Confluence of an Extension of Combinatory Logic by Boolean Constants

A system related to CL-pc1 is CL-pcL, which consists of all rules of CL-pc1 plus:

Czxy → y ⇐ x = y

It is known that CL-pcL is confluent [4]. However, the confluence proof in [4] essentially
depends on a “semantic” argument to first establish T 6=CL-pcL F. We provide a “syntactic”
proof of confluence of both CL-pc1 and CL-pcL.

The systems CL-pc1 and CL-pcL are conditional linearizations of CL-pc. The notion of
conditional linearization was introduced in the hope of providing a simpler proof of Chew’s
theorem [2, 9] which states that all compatible term rewriting systems have the unique
normal form (UN) property. Compatibility imposes certain restrictions on the term rewriting
system, but it does not require termination or left-linearity. In particular, Chew’s theorem
is applicable to many term rewriting systems which are not confluent. For instance, CL-pc
satisfies the conditions of Chew’s theorem, but it is not confluent. As shown in [4], to
prove the unique normal form property of a term rewriting system, it suffices to prove
confluence of one of its conditional linearizations. The proof of Chew’s theorem in [9] is
quite complicated and uses a related but different approach, relying on left-right separated
conditional linearizations instead of the more straightforward ones from [4]. The original
proof by Chew [2] uses yet another different but related method, but Chew’s proof was later
found to contain a gap.

In general, the methods of the present paper are broadly related to the problem of
establishing the UN property for classes of term rewriting systems which include non-left-
linear non-confluent systems. Aside of Chew’s theorem, some other work in this direction
has been carried out in e.g. [8, 12, 13, 10, 6].

In order to increase confidence in the correctness of the main result of this paper,
we have formalized our proof of confluence of CL-pc1 in the Coq proof assistant. The
formalization is available online2. It follows closely the development presented here. We used
the CoqHammer [3] tool and the automated reasoning tactics included with it.

2 Proof overview

In this section we present an informal overview of the proof, trying to convey the underlying
intuitions. Section 3 presents formal definitions of the notions informally motivated here,
and Section 4 provides details of the proof itself.

We assume familiarity with basic term-rewriting [1, 11]. By →∗ we denote the transitive-
reflexive closure of a relation →, by →≡ its reflexive closure, by ↔ the symmetric closure,
and by = the reflexive-transitive-symmetric closure. We use ≡ to denote identity of terms.
By →! we denote reduction to normal form, i.e., t →! s if t →∗ s and s is in normal form.
By · we denote composition of relations, e.g. t → · ← t′ holds iff there exists t0 such that
t→ t0 and t0 ← t′. We use the standard notions of subterms and subterm occurrences, which
could be formally defined by introducing the notion of positions. If t is a redex, i.e. t ≡ σl
for some term l and substitution σ, then a subterm s occurs below a variable position of
the redex t if s occurs in a subterm of t occurring at the position of a variable in l. The
contraction in t1 → t2 occurs at the root if t1 is the contracted redex.

Let u be a normal form w.r.t. a relation →. The relation → (or the underlying rewrite
system) is u-normal if for every t such that t = u we have t→∗ u.

2 http://www.mimuw.edu.pl/~lukaszcz/clc.tar.gz

http://www.mimuw.edu.pl/~lukaszcz/clc.tar.gz

Ł. Czajka 14:3

The most difficult part of our confluence proof is to show that CL-pc1 is F-normal
(Lemma 27). The confluence of CL-pc1 (and CL-pcL) is then obtained by a relatively simple
argument similar to the one used in [4] to derive the confluence of CL-pcL from T 6=CL-pc F.

An important observation is that q1 =CL-pc1 q2 and q1 =CL-pc q2 are in fact equivalent
(Lemma 2). Hence, we will use =CL-pc1 and =CL-pc interchangeably. In particular, we
actually prove that for any term q, if q =CL-pc F then q →∗CL-pc1 F.

A naive approach to prove this could be to proceed by induction on the length of the
conversion q =CL-pc F. In the inductive step we would need to prove:
1. if q →∗CL-pc1 F and q →CL-pc q

′ then q′ →∗CL-pc1 F,
2. if q →∗CL-pc1 F and q CL-pc← q′ then q′ →∗CL-pc1 F.
The second part is obvious, but the first one is hard. The difficulty stems from the existence
of a non-trivial overlap between the rules for C. If t1 =CL-pc1 t2 then CFt1t2 →CL-pc1 t1 by
the third rule of CL-pc1 and CFt1t2 →CL-pc t2 by the second rule of CL-pc. We do not know
enough about t1 and t2 to easily infer that they have a common reduct in CL-pc1.

One may try to strengthen the inductive hypothesis in the hope of making the first part
easier to prove. A naive attempt would be to claim that all reductions starting from q end
in F, instead of claiming that some reduction ends in F. This would make the first part
trivial, but the second one would not go through as this is false in general, e.g., consider
KFΩ where Ω ≡ (SII)(SII) and I ≡ SKK.

The idea is to consider, for a given conversion q =CL-pc F, a certain set S(q =CL-pc F)
of reductions, all starting from q. The set S(q =CL-pc F) depends on the exact form of
q =CL-pc F. Then our two parts of the proof for the inductive step become:
1. if S(q =CL-pc F) is nonempty and all reductions in it end in F, and q →CL-pc1 q′, then
S(q′ CL-pc← q =CL-pc F) is nonempty and all reductions in it end in F,

2. if S(q =CL-pc F) is nonempty and all reductions in it end in F, and q CL-pc← q′, then
S(q′ →CL-pc q =CL-pc F) is nonempty and all reductions in it end in F.

The hope is that if we define S(q =CL-pc F) appropriately, then showing both parts will
become feasible.

Essentially, the set S(q =CL-pc F) will be encoded in the labeling of certain constants
in q. The labels determine which contractions are permitted when a given constant appears
as the leftmost constant in a redex3. At present the author does not know an “explicit”
characterization of the set of reductions S(q =CL-pc F) implicitly defined by the labelings
described below.

Terms with the leftmost constant labeled will be called “significant”, or s-terms, whereas
others will not contain any labels and will be called “insignificant”, or i-terms (cf. Definition 3).
Reductions occurring in i-terms will be “insignificant”, or i-reductions. A “significant”
contraction, or s-contraction, will be a contraction of a term with the leftmost constant
labeled, in a way permitted by the label of the leftmost constant. Contraction of a redex in
which the leftmost constant is not labeled is not permitted in s-contractions. See Definition 4.
The intuition is that we do not need to care about the expansions and contractions occurring
in “insignificant” subterms of a given term, since they cannot influence the s-reductions
starting from this term and ending in F.

The set S(q =CL-pc F) will be encoded in a labeled variant4 t of q, and it will consist of
all s-reductions starting from t and ending in a normal form (w.r.t. s-contraction). Strictly

3 E.g. in the redex CTt1t2 the constant C is the leftmost constant.
4 By a “labeled variant” of a term q we mean a term with certain constants labeled which is identical
with q when the labels are “erased”.

FSCD 2017

14:4 Confluence of an Extension of Combinatory Logic by Boolean Constants

speaking, we have just silently shifted from considering contractions in “plain” terms of the
system CL-pc1 to contractions in their labeled variants, in a different rewriting system which
we have not yet defined. In particular, we will actually be interested in s-reductions ending
in a labeled variant F1 of F. However, it will be later shown that s-reductions defined on
labeled terms may be “erased” to appropriate reductions in the system CL-pc1. In the next
section we define the system CL-pcs (Definition 4) over labeled terms (Definition 3) which
will give precise rules of s-contraction. In this section we only give informal motivations.

The labels constrain the ways in which s-redexes may be contracted and encode permissible
s-reductions to F1. Each term decomposes into a “significant” prefix and an “insignificant”
suffix (cf. 1 in Definition 8). The “significant” prefix contains all labeled constants and
no unlabeled constants. The “insignificant” suffix consists of all “insignificant” subterms.
All constants in the “insignificant” suffix are unlabeled. This is analogous to the existence
of a needed prefix and a non-needed suffix in orthogonal TRSs [11, Section 9.2.2]. An
“insignificant” subterm does not overlap with any needed redexes. In particular, it does not
contain any needed redexes. No position inside an “insignificant” subterm (dynamically)
traces to F1 along any s-reduction to F1 (cf. [11, Definition 8.6.7]). In contrast, each s-redex
needs to be either s-contracted or erased by a rule for C2 (see Definition 4) in any s-reduction
to F1. Each position of a labeled constant either traces to F1 along a given s-reduction to F1,
or is erased in that s-reduction by a rule for C2. An s-reduct of an s-term is always also an
s-term (cf. 5 in Definition 8).

We write t →s t
′ for one-step reduction in CL-pcs. We use the abbreviation s-NF for

CL-pcs-normal form. We write t ⇓F1 when, among other conditions to be defined later, t
is complete, i.e. terminating and confluent, w.r.t. s-reductions with F1 as the normal form
(cf. Definition 8).

With the set S(q =CL-pc F) coded by labels, the two parts of the inductive step become:
1. if t is a labeled variant of q such that t ⇓F1 , and q →CL-pc q

′, then there exists a labeled
variant t′ of q′ such that t′ ⇓F1 (cf. Corollary 15),

2. if t is a labeled variant of q such that t ⇓F1 , and q CL-pc← q′, then there exists a labeled
variant t′ of q′ such that t′ ⇓F1 (cf. Corollary 25).

Now we provide some explanations on how the terms will be labeled. For this purpose we
analyze why the second part fails when we take S(q =CL-pc F) to be the set of all reductions
starting from q. We indicate how to introduce the labeled variants so as to make the second
part go through while still retaining the feasibility of showing the first part.

Suppose q CL-pc← q′ at the root and we have already decided on the labeled variant t of q.
We need to decide on a labeled variant t′ of q′, and assign appropriate meaning to the labels,
in such a way that the second part goes through. In short, in t′ we preserve the labelings of
the subterms of q′ which are copied to q in q′ →CL-pc q, we do not label the new subterms
of q′ which are erased in q′ →CL-pc q (they become i-terms), and we ensure that i-terms and
cannot influence any s-reduction from t′ to F1. First of all, if t is an i-term, i.e., t ≡ q, then
we may take t′ ≡ q′. So assume t is an s-term. Then there are the following possibilities.

If q′ ≡ CTqq0 →CL-pc q then q0 is a new subterm. We take t′ ≡ C1T1tq0. The labeling C1
of C will be interpreted as not permitting contraction by the third rule, i.e., in CL-pcs we
will only have the rules C1T1xy → x and C1F1xy → y. This ensures that q0 gets erased
in every s-reduction of t′ to F1.
The case when q′ ≡ CFq0q →CL-pc q is analogous: we take t′ ≡ C1F1q0t.
If q′ ≡ Cq0qq →CL-pc q by the third rule, then q0 is a new term. We take t′ ≡ C2q0tt. In

Ł. Czajka 14:5

the system CL-pcs we have two rules for C2

C2zxy → x ⇐ |x| =CL-pc1 |y|
C2zxy → y ⇐ |x| =CL-pc1 |y|

where |x| =CL-pc1 |y| means that the “erasures” of the labeled terms substituted for x
and y must be equal in CL-pc1 for the rule to be applicable. These rules ensure that q0
cannot influence any s-reduction of t′ to F1 – it gets erased in each.
The presence of the second rule for CL-pcs is not a problem, because we will only consider
terms terminating in CL-pcs. Whenever the second rule is applicable, so is the first one,
hence if all maximal s-reductions end in F1, then there is an s-reduction ending in F1
which does not use the second rule for C2 (Lemma 26). It will be easy to “erase” an
s-reduction not using the second rule for C2 to obtain a reduction in CL-pc1 (Lemma 7).
If q′ ≡ Kqq0 →CL-pc1 q then we take t′ ≡ K1tq0. The rule for K1 in CL-pcs is K1xy → x.
If q′ ≡ Sq1q2q3 →CL-pc1 q1q3(q2q3) ≡ q then we run into a problem with our labeling
approach, because the labeled variants of the distinct occurrences of q3 may be distinct.
Suppose t1 is the labeled variant of q1, the term t2 of q2, the term t3 of the first q3, and t′3
of the second q3. We cannot just arbitrarily choose e.g. t3 and say that S1t1t2t3 is the
labeled variant of q′, because contracting S1t1t2t3 yields t1t3(t2t3), not t1t3(t2t′3), and
now the second occurrence of q3 has the wrong labeling.
A solution is to remember both labeled variants of q3. So the labeled variant of q′ would
be e.g. S1t1t2〈t3, t′3〉. In CL-pcs the rule for S1 would be

S1x1x2〈x3, x
′
3〉 → x1x3(x2x

′
3).

However, once we introduce such pairs, terms of the form S1t1t2〈t3, t′3〉 may appear in
the terms being expanded. This is not a problem for any of the rules of CL-pc1 except
the rule for S, because the right sides of all other rules are variables.
Consider for instance q ≡ q0q3(Sq1q2q3) CL-pc1 ← Sq0(Sq1q2)q3 ≡ q′. Suppose t ≡
t0t3(S1t1t2〈t3, t′3〉). Now the term q3 has three possibly distinct labeled variants, and we
need to remember all of them in a tuple. We will thus introduce a new labeling of S for
every possible labeling of the right side xz(yz) of the rule for S in the system CL-pc1.
By introducing the tuples in the labelings we in essence put constraints on the order
in which s-redexes may be contracted (think of all reductions inside a tuple as “really”
occuring after the surrounding S-redex is contracted). At present the author does not
know a precise “explicit” characterization of these constraints.

Note that by labeling C differently in CFq1q2 and Cq0qq we effectively eliminated in CL-pcs

the problematic non-trivial overlap occuring in CL-pc1. Now a new “insignificant” term
created in an expansion cannot later on appear in place of a “significant” term as a result of
an “incompatible” contraction. A redex inside an “insignificant” subterm cannot suddenly
become needed in an s-reduction – it is erased in any s-reduction to normal form.

We also need to ensure that we can handle the first part of the inductive step when
q →CL-pc q

′. Suppose t is the labeled variant of q. We need to find a labeled variant for q′.
For simplicity assume that there is only one position in t which corresponds to the position of
the contraction in q. If the contraction occurs inside an i-term in t, then it does not matter
and we may label q′ in the same way as q. If an s-term is contracted in a way permitted for
significant contraction, then it is also obvious how to label q′ – just take the labeled variant
of q′ to be the reduct of the labeled variant of q. But what if neither of the two holds?

For instance, what if t ≡ C1t0t1t2 but q ≡ Cq0q
′q′ →CL-pc1 q′? This possibility is not

problematic, provided that t0 →∗s T1 or t0 →∗s F1, which will be the case because t0 was

FSCD 2017

14:6 Confluence of an Extension of Combinatory Logic by Boolean Constants

“obtained” from T1 or F1 by a conversion with the intermediate terms labeled appropriately
(cf. 2 in Definition 8 and 6 in Lemma 9). If e.g. t0 →∗s T1 then we take t1 to be the labeling
of q′. We then have C1t0t1t2 →∗s C1T1t1t2 and the contraction C1T1t1t2 →s t1 is permitted
for “significant” contractions.

The last problematic case is when e.g. t ≡ C2Ft1t2 is the labeling of q ≡ CFq1q
′, and

q →CL-pc q
′ by the second rule. However, because C2Ft1t2 was “obtained” from C2qt

′t′ we
will have |t1| =CL-pc1 |t2| (cf. 3 in Definition 8). Then the second rule for C2 in CL-pcs is
applicable and we may take t2 as the labeling of q′.

3 Definitions

This section is devoted to fixing notation and introducing definitions of various technical
concepts. First, we clarify the formal definition of conditional term rewriting systems. For
more background on conditional rewriting see e.g. [11].

I Definition 1. A conditional rewrite rule is a rule of the form l → r ⇐ P (x1, . . . , xn),
where l is not a variable, Var(r) ⊆ Var(l), x1, . . . , xn ∈ Var(l), and P (x1, . . . , xn) is the
condition of the rule, with P a fixed predicate on terms. The predicate P may refer to the
conversion relation = of the conditional term rewriting system being defined. A term t is
a redex (contractum) by this rule if there is a substitution σ such that t ≡ σl (t ≡ σr) and
P (σ(x1), . . . , σ(xn)) holds. A conditional term rewriting system R is a set of conditional
rewrite rules. Because the conditions in the rules may refer to the conversion relation of R,
the definition is circular. Formally, an R-contraction q →R q′ is defined in the following way.
Define R0 to be the system R but using the equality relation in place of = in the conditions,
and Rn+1 to be the system R with the conversion relation =Rn of Rn used in place of =.
We then define q →R q′ to hold if there is n ∈ N with q →Rn

q′. The least such n is called
the level of the contraction. If the conditions are continuous w.r.t. = then the relation →R

is a fixpoint of the above construction, i.e., it is the contraction relation of the system R∞
which uses =R in place of =. Let ∼ be a binary relation on terms. If for any substitution σ
such that P (σ(x1), . . . , σ(xn)) holds, and any σ′ such that σ(x) ∼ σ′(x) for all variables x,
also P (σ′(x1), . . . , σ(x′1)) holds, then the condition P (x1, . . . , xn) is stable under ∼.

The following is a simple but crucial observation, which implies that it suffices to consider
conversions in CL-pc. A generalization of this fact was already shown in [4, Lemma 3.7]. The
proof is by induction on the maximum level of the contractions/expansions in q =CL-pcL q′.

I Lemma 2. The following are equivalent: q =CL-pc q
′, q =CL-pc1 q′, and q =CL-pcL q′.

I Definition 3. We define insignificant terms, or i-terms, to be the terms of CL-pc1, i.e.,
terms over the signature Σ = {@,C,T,F,K, S} where @ is a binary function symbol and the
other symbols are constants. We write t1t2 instead of @(t1, t2). The set of labeled terms,
or l-terms, is the set of terms over the signature consisting of the symbols of Σ, the labeled
constants C1,C2,T1,F1,K1 and Sn0,...,nk for each k, n1, . . . , nk ∈ N+, and an n-ary function
symbol Pn for each n ∈ N+. We write 〈t1, . . . , tn〉 instead of Pn(t1, . . . , tn). We adopt the
convention 〈t〉 ≡ t. If t ≡ 〈t1, . . . , tn〉 with n > 1, then we say that t is a tuple of length n.
Note that 〈t〉 ≡ t is just a notational convention. We say that 〈t1, . . . , tn〉 is a tuple only
when n > 1.

An erasure of an l-term is defined as follows:
an i-term is an erasure of itself,
C is an erasure of C1 and C2; T is an erasure of T1; F is an erasure of F1; K is an erasure
of K1; S is an erasure of Sn1,...,nk ,

Ł. Czajka 14:7

if q1, q2 are erasures of t1, t2, respectively, then q1q2 is an erasure of t1t2,
if qi is an erasure of ti, for some 1 ≤ i ≤ n, then qi is an erasure of 〈t1, . . . , tn〉.

The leftmost erasure of t, denoted |t|, is the erasure in which we always choose i = 1 in the
last point above. We write t � q if every erasure of t is identical with q.

We define significant terms, or s-terms, inductively.
Any labeled constant is an s-term.
If t1 is an s-term and t2 is an l-term, then t1t2 is an s-term.

In other words, an s-term is an l-term whose leftmost constant is labeled.

In what follows t, t1, t2, r, r1, r2, s, s1, etc. stand for l-terms; and q, q1, q2, etc. stand
for i-terms; unless otherwise qualified. Also, whenever we talk about terms without further
qualification, we implicitly assume them to be l-terms.

I Definition 4. The system CL-pcs is defined by the following significant reduction rules:

C1T1xy → x C2zxy → x ⇐ |x| =CL-pc1 |y|
C1F1xy → y C2zxy → y ⇐ |x| =CL-pc1 |y|

K1xy → x

S~nx〈y1, . . . , yk〉〈~z0, . . . , ~zk〉 → x〈~z0〉〈(y1〈~z1〉), . . . , (yk〈~zk〉)〉 ⇐ ϕ

where

ϕ ≡ |zi,j | =CL-pc1 |zi′,j′ | for i, i′ = 0, . . . , k, j = 1, . . . , ni, j
′ = 1, . . . , ni′ , and

|yi| =CL-pc1 |yj | for i, j = 1, . . . , k,

and ~n stands for n0, . . . , nk, and ~zi stands for zi,1, . . . , zi,ni , for i = 0, . . . , k. When dealing
with terms whose leftmost constant is Sn0,...,nk , we will often use this kind of vector notation.
Recall the convention 〈t〉 ≡ t. Hence, if e.g. n0 = 1, then 〈~z0〉 ≡ 〈z0,1〉 ≡ z0,1 in the above rule.
The condition ϕ ensures that the leftmost erasures of all zi,j are convertible in CL-pc1, and
that the leftmost erasures of all yi are convertible in CL-pc1. Some examples of significant
reduction rules for S~n (omitting the conditions) are:

S1,1xy1〈z0,1, z1,1〉 → xz0,1(y1z1,1)
S1,2,1x〈y1, y2〉〈z0,1, z1,1, z1,2, z2,1〉 → xz0,1〈y1〈z1,1, z1,2〉, y2z1,2〉

S2,2xy1〈z0,1, z0,2, z1,1, z1,2〉 → x〈z0,1, z0,2〉(y1〈z1,1, z1,2〉)

For instance, the condition for the second of these rules states that |y1| =CL-pc1 |y2|,
|z0,1| =CL-pc1 |z1,1|, |z0,1| =CL-pc1 |z1,2|, |z0,1| =CL-pc1 |z2,1|, |z1,1| =CL-pc1 |z1,2|, etc.

Note that the equality =CL-pc1 in the conditions refers to the system CL-pc1, not CL-pcs.
Note also that all rules of CL-pcs are linear, disregarding the side-conditions.

Reduction by a rule in CL-pcs is called significant reduction, or s-reduction. One-step
s-reduction is denoted by →s. Analogously, we use the terminology and notation of s-
contraction, s-expansion, s-redex, s-normal form (s-NF), etc. Note that every s-redex is an
s-term. We write t→s− t

′ if t→s t
′ and the s-contraction is not by the second rule for C2

and it does not occur inside a tuple.
An i-redex is a CL-pc1-redex which is also an i-term. An l-term t1 is said to i-reduce

to t2, denoted t1 →i t2, if t1 →CL-pc1 t2 and the redex contracted in t1 is an i-term. An
l-term t1 is said to i-expand to t2 if t2 →i t1. We write t1 →i,s t2 if t1 →i t2 or t1 →s t2.

Actually, we will consider mostly l-terms whose all erasures are identical. For such
a term an s-contraction by a rule for S~n in CL-pcs naturally corresponds to a CL-pc1-
contraction on its erasure. We could get rid of the side conditions in the rules for S~n and

FSCD 2017

14:8 Confluence of an Extension of Combinatory Logic by Boolean Constants

consider exclusively terms whose all erasures are identical. But then we would need to
require i/s-contractions/expansions to always occur “in the same way” (modulo labeling)
in all components of a tuple. This would complicate the inductive proofs concerning the
relations →s, →i, etc. Hence, the role of the conditions in the rules for S~n is purely technical.

I Lemma 5. The system CL-pcs is terminating.

Proof. The number of labeled constants decreases with each s-contraction. J

I Lemma 6. If t1 →s t2 then |t1| =CL-pc1 |t2|.

The above simple lemma implies that the conditions in significant reduction rules are
stable under s-reduction and s-expansion. It is obvious that they are also stable under
i-reduction and i-expansion.

I Lemma 7. If t � q and t→s− t
′ then there is q′ with q →CL-pc1 q′ and t′ � q′.

Proof. Because all erasures of t are identical and the second rule for C2 is not used, the
s−-reduction may be simulated by a CL-pc1-reduction in an obvious way. Because the
s−-contraction does not occur inside a tuple, all erasures of t′ are still identical. J

In the next definition we introduce the predicate ⇓F1 and the notion of standard l-terms.
Intuitively, an l-term t is standard if the labelings in t have the meaning we intend to assign
them, i.e. if t is a term obtained by the process informally described in the previous section.

I Definition 8. An l-term t is standard if for every subterm t′ of t the following hold:
1. t′ is either an i-term, an s-term or a tuple,
2. if t′ ≡ C1t0t1t2 and t0 is in s-NF, then t0 ≡ T1 or t0 ≡ F1,
3. if t′ ≡ C2t0t1t2 then |t1| =CL-pc1 |t2|,
4. if t′ ≡ Sn0,...,nkt0t1t2 then t2 is a tuple of length

∑k
i=0 nk and if k > 1 then t1 is a tuple

of length k,
5. if t′ is an s-term and t′ →∗s t′′, then t′′ is also an s-term,
6. if t′ ≡ 〈t1, . . . , tn〉 with n > 1, then none of t1, . . . , tn is a tuple.
An l-term t is strongly standard if t→∗s t′ implies that t′ is standard. We write t ⇓F1 if t is
strongly standard and has no s-NFs other than F1, i.e. if t→!

s t
′ then t′ ≡ F1.

Point 1 in Definition 8 essentially ensures that a standard term may be decomposed into
a “significant” prefix and an “insignificant” suffix. A labeled term which is not standard
is e.g. CT1, because it is neither an s-term, nor an i-term, nor a tuple. Other examples
of non-standard terms are: C1TFF, C2CTF, S1,1,1TTT, K1FF, C2CT1T, S1,1CC〈T1,T1〉,
K1〈T1,T1〉T1, 〈〈C,C〉,C〉. Examples of standard terms which are not strongly standard are:
S1,1C1C〈T1,T1〉, S1,1C1C〈T,T〉T, (K1C1T)TTT.

I Lemma 9.
1. Any i-term is standard.
2. Any labeled constant is standard.
3. Every subterm of a standard term is also standard.
4. Every subterm of a term to which some strongly standard term s-reduces, is strongly

standard.
5. If t1t2 is standard then t1 is not a tuple.
6. If C1t0t1t2 is a subterm of a strongly standard term, then t0 →∗s T1 or t0 →∗s F1.

Proof. Follows from definitions. For the last point one also needs Lemma 5. J

Ł. Czajka 14:9

4 Confluence proof

We now give technical details of our confluence proof. As outlined in Section 2, we show:
1. if t � q and t ⇓F1 , and q →CL-pc q

′, then there is t′ with t′ � q′ and t′ ⇓F1 (Corollary 15),
2. if t � q and t ⇓F1 , and q CL-pc← q′, then there is t′ with t′ � q′ and t′ ⇓F1 (Corollary 25).
The first part is proven by showing that CL-pc-reductions in q may be simulated by i-
reductions and s-reductions in t, and that i/s-reductions preserve ⇓F1 (Lemma 13 and
Lemma 14). For the second part, we show that CL-pc-expansions in q may be simulated by
i-expansions and a-expansions (Definition 16) in t. The technical notion of a-expansion is
needed to ensure that the new subterms of t′ are labeled appropriately, in the way outlined
in Section 2 (s-contraction by itself does not put any labeling restrictions on the terms erased
in the contraction). Moreover, a-expansion is also needed to facilitate the proof that t′ ⇓F1

(see the discussion before Definition 16). Plain s-expansion does not necessarily preserve ⇓F1 ,
while a-expansion does (Lemma 24).

In other words, we show that CL-pc-reductions (expansions) in unlabeled terms may
be simluated by i/s-reductions (i/a-expansions) in their labeled variants, and that i/s-
reductions (i/a-expansions) preserve ⇓F1 . A conversion q =CL-pc F can then be translated
into a conversion t =i,s,a F1 with no s-expansions or a-reductions, and with t � q. For
instance, a conversion in CL-pc

F← C(KFΩ)FF← C(KFΩ)F(CTF(KFΩ))→ CFF(CTF(KFΩ))←
CFF(C(KTF)F(KFΩ))→ C(KTF)F(KFΩ)→ C(KTF)FF→ F←
KF(CF)← SKCF← SKC(KFΩ)→ SKCF

will be translated to

F1 a← C2(KFΩ)F1F1 a← C2(KFΩ)F1(C1T1F1(KFΩ))→i C2FF1(C1T1F1(KFΩ)) a←
C2FF1(C1(K1T1F)F1(KFΩ))→s C1(K1T1F)F1(KFΩ)→i C1(K1T1F)F1F→∗s F1 a←
K1F1(CF) a← S1,1K1C〈F1,F〉 ∗a,i← S1,1K1C〈K1F1Ω,KFΩ〉 →∗s,i S1,1K1C〈F1,F〉

Since F1 ⇓F1 and we prove that i/s-reductions and i/a-expansions preserve ⇓F1 , we may
conclude that t ⇓F1 . Then by the definition of ⇓F1 we obtain a significant reduction t→∗s F1.
In fact, the reduction may be assumed to be a s−-reduction (Lemma 26). By Lemma 7
this reduction t→∗s− F1 may be translated into a CL-pc1-reduction by erasing the labelings.
Hence finally q →∗CL-pc1 F (Lemma 27).

We first show that a CL-pc-contraction may be simulated by i-reductions and s-reductions.

I Lemma 10. If t is strongly standard, t � q and q →CL-pc q
′, then there exists a term t′

such that t→∗i,s t′ and t′ � q′.

Proof. Induction on the size of t. First assume t is not a tuple and q is the CL-pc-redex
contracted in q →CL-pc q

′. If t ≡ q then t ≡ q →i q
′ and we may take t′ ≡ q′. If t 6≡ q then t

is not an i-term because t � q. Hence by 1 in Definition 8 we conclude that t is an s-term.
We have the following possibilities.

If q ≡ CTq1q2 →CL-pc q1 ≡ q′ then the leftmost constant in t is either C1 or C2.
If t ≡ C1T1t1t2 then t→s t1 and t1 � q1, so we may take t′ ≡ t1.
The case t ≡ C1Tt1t2 is impossible by 2 in Definition 8.
If t ≡ C2t0t1t2 then t1 � q1 and |t1| =CL-pc1 |t2| by 3 in Definition 8. Thus t →s t1
and we may take t′ ≡ t1.

If q ≡ CFq1q2 →CL-pc q2 then the argument is analogous. Note that the presence of the
second rule for C2 is necessary here.

FSCD 2017

14:10 Confluence of an Extension of Combinatory Logic by Boolean Constants

If q ≡ Cq0q1q1 →CL-pc q1 then t ≡ C′t0t1t2 with C′ ∈ {C1,C2}, t0 � q0, t1 � q1 and
t2 � q1.

If C′ ≡ C1 then t0 →∗s T1 or t0 →∗s F1 by Lemma 9. Hence t→∗s t1 or t→∗s t2. In the
first case we may take t′ ≡ t1, and in the second we take t′ ≡ t2.
If C′ ≡ C2 then t→s t1 because |t1| ≡ |t2| ≡ q1. Thus we take t′ ≡ t1.

If q ≡ Kq1q2 →CL-pc q1 then t ≡ K1t1t2 →s t1 with t1 � q1. We take t′ ≡ t1.
If q ≡ Sq0q1q2 →CL-pc q0q2(q1q2) then t ≡ S~ns〈t1, . . . , tk〉〈~r0, . . . , ~rk〉 where the conven-
tions regarding the vector notation are as in Definition 4, and s � q0, and ti � q1 for
i = 1, . . . , k, and ri,j � q2 for i = 0, . . . , k, j = 1, . . . , i. Thus

t→s s〈~r0〉〈t1〈~r1〉, . . . , tk〈~rk〉〉 � q0q2(q1q2)

and we may take t′ ≡ s〈~r0〉〈t1〈~r1〉, . . . , tk〈~rk〉〉.
If t is a tuple or q is not the contracted CL-pc-redex, then the claim follows from the inductive
hypothesis. J

The following technical lemma shows that ↔i may be postponed after →s.

I Lemma 11. If t↔i · →∗s t′ then t→∗s · ↔≡i t′.

Proof. Suppose t1 ↔i t2 →s t3. We proceed by induction on the definition of t2 →s t3.
If t2 is the contracted s-redex then, because an i-redex (i-contractum) is an i-term, it

is easy to see by inspecting Definition 4 that the i-redex (i-contractum) in t2 must occur
below a variable position of the s-redex. Since significant reduction rules are linear and
their conditions are stable under i-reductions (i-expansions), the claim holds. Note that we
need ↔≡i instead of ↔i in the conclusion, because the i-redex (i-contractum) may be erased
by the s-contraction.

If t2 is not the s-redex, then t2 ≡ s1s2 or t2 ≡ 〈s1, . . . , sn〉 with n > 1, and the claim is
easily established possibly appealing to the inductive hypothesis. J

The next lemmas show that i-reductions/expansions and s-reductions preserve ⇓F1 .

I Lemma 12. If t is standard and t↔i t
′ then t′ is standard.

Proof. We check that the conditions in Definition 8 hold for every subterm s′ of t′. Note
that because i-redexes and i-contracta are i-terms, s′ is an i-term or there is a subterm s

of t such that s↔≡i s′.
1. If s′ is not an i-term, then there is a subterm s of t such that s↔≡i s′. If s is an i-term

or a tuple then so is s′. Otherwise, s is an s-term by 1 in Definition 8. Then s′ is also an
s-term.

2. Suppose s′ ≡ C1t
′
0t
′
1t
′
2 with t′0 in s-NF. Since s′ is not an i-term, there is a subterm s of t

such that s ≡ C1t0t1t2 and ti ↔≡i t′i for i = 0, 1, 2. Since t′0 is in s-NF and t0 ↔≡i t′0, the
term t0 is also in s-NF. Thus t0 ≡ T1 or t0 ≡ F1 by 2 in Definition 8. Hence t′0 ≡ T1 or
t′0 ≡ F1.

3. Suppose s′ ≡ C2t
′
0t
′
1t
′
2. Since s′ is not an i-term, there is a subterm s of t such that

s ≡ C1t0t1t2 and ti ↔≡i t′i for i = 0, 1, 2. By 3 in Definition 8 we have |t1| =CL-pc1 |t2|.
Hence also |t′1| =CL-pc1 |t′2|, because ti ↔≡i t′i implies |ti| =CL-pc1 |t′i|.

4. Suppose s′ ≡ Sn0,...,nkt′0t
′
1t
′
2. Since s′ is not an i-term, there is a subterm s of t such that

s ≡ Sn0,...,nkt0t1t2 and ti ↔≡i t′i for i = 0, 1, 2. By 4 in Definition 8 we conclude that t2
is a tuple of length n =

∑k
i=0 ni, and if k > 1 then t1 is a tuple of length k. The same

holds for t′2 and t′1, because a tuple cannot be an i-redex or an i-contractum.

Ł. Czajka 14:11

5. Suppose s′ is an s-term. There is a subterm s of t such that s ↔≡i s′. Since s′ is an
s-term, so is s. Suppose s′ →∗s r′. By Lemma 11 there is r such that s→∗s r ↔≡i r′. By 5
in Definition 8, the term r is an s-term. Hence, r′ is also an s-term.

6. Suppose s′ ≡ 〈t′1, . . . , t′n〉 with n > 1. Since s′ is not an i-term, there is a subterm s of t
such that s ≡ 〈t1, . . . , tn〉 and ti ↔≡i t′i for i = 1, . . . , n. By 6 in Definition 8 none of
t1, . . . , tn is a tuple. Hence, none of t′1, . . . , t′n is a tuple either. J

I Lemma 13. If t ⇓F1 and t↔i t
′ then t′ ⇓F1 .

Proof. Suppose t′ →∗s t′0. By Lemma 11 there is t0 with t→∗s t0 and t0 ↔≡i t′0. Because t
is strongly standard, t0 is standard. Hence t′0 is standard by Lemma 12. Therefore t′ is
strongly standard.

Suppose t′ →∗s t′0 with t′0 in s-NF. By Lemma 11 there is t0 with t→∗s t0 ↔≡i t′0. Since t′0
is in s-NF, so is t0, because an i-contraction or an i-expansion cannot create an s-redex.
Since t ⇓F1 we obtain t0 ≡ F1. Thus t′0 ≡ t0 ≡ F1. J

I Lemma 14. If t ⇓F1 and t→s t
′ then t′ ⇓F1 .

I Corollary 15. If t ⇓F1 , t � q and q →CL-pc q
′ then there is t′ with t′ � q′ and t′ ⇓F1 .

Proof. Follows from Lemma 10, Lemma 13 and Lemma 14. J

With the above corollary we have finished the first half of the proof. Now we need to
show an analogous corollary for CL-pc-expansions. First, we want to prove that CL-pc-
expansions in unlabeled terms may be simulated by i-expansions and a-expansions in their
strongly standard labeled variants. We have already shown in Lemma 13 that i-expansions
preserve ⇓F1 . We need to show that a-expansions also preserve ⇓F1 .

One trivial reason why s-expansions do not necessarily preserve ⇓F1 is that if t s← t′

then t′ may be not standard even if t is, e.g., consider F1 s← K1F1(CT1). A more profound
reason is that with s-expansion we do not sufficiently “control” the expansion by a rule for C2.
E.g. F1 s← C2ΩF1(KFΩ). Then C2ΩF1(KFΩ)→s KFΩ but KFΩ does not s-reduce to F1.

Hence, we use a-expansions which put additional restrictions on the s-redexes, essentially
implementing the labeling of expansions described in Section 2. They also allow to “delay”
the reductions in a contractum of C2t0t1t1 to facilitate the proof of an analogon of Lemma 11.

Like in the proof of Lemma 13 we show that if t′ →a t then any reduction t′ →∗s s′

may be simulated by a reduction t→∗s s with s′ →≡a s. The most interesting case is when
t′ ≡ E[C2t0t1t1] →a E[t1] ≡ t (where E is a context), which is obtained from a CL-pc-
expansion by the rule Cxyy → y. We now informally describe the idea for the proof in this
case. Thus suppose t′ →∗s s′. If a contracted s-redex does not overlap with a descendant5
of C2t0t1t1, then the s-reduction is simulated by the same s-reduction. If a descendant
of C2t0t1t1 occurs inside a contracted s-redex, but it is different from this redex, then the
descendant must occur below a variable position of the s-redex, because there are no non-root
overlaps between the rules of significant reduction. Thus we may simulate this s-reduction by
the same s-reduction. If a contracted s-redex occurs inside a descendant C2t

′
0t
′
1t
′
2 of C2t0t1t1,

but it is different from this descendant, then it must occur in t′0, t′1 or t′2. In this case
we ignore the s-contraction while at all times maintaining the invariant: if C2t

′
0t
′
1t
′
2 is a

descendant of C2t0t1t1 then t1 →∗s t′1 and t1 →∗s t′2, and the descendant of t1 in the simulated
reduction is always identical with t1, i.e. t1 (the a-contractum of C2t0t1t1) is not changed by

5 Note that because the rules of significant reduction are linear there may be at most one descendant.

FSCD 2017

14:12 Confluence of an Extension of Combinatory Logic by Boolean Constants

the simulated s-reduction. Finally, if a descendant C2t
′
0t
′
1t
′
2 of C2t0t1t1 is s-contracted, then

either C2t
′
0t
′
1t
′
2 →s t

′
1 or C2t

′
0t
′
1t
′
2 →s t

′
2. In any case we can s-reduce t1 to t′1 or t′2. In other

words, we defer the choice of the simulated reduction path till the descendant of the a-redex
is actually contracted.

I Definition 16. An l-term t′ is an a-redex and t its a-contractum, if t is an s-term and one
of the following holds:

t′ ≡ C1T1tq and q is an i-term,
t′ ≡ C1F1qt and q is an i-term,
t′ ≡ C2qt1t2, t→∗s t1, t→∗s t2 and q is an i-term,
t′ ≡ K1tq and q is an i-term,
t′ ≡ S~nt0〈s1, . . . , sk〉〈~r0, . . . , ~rk〉 where the conventions regarding vector notation are as in
Definition 4, |si| =CL-pc1 |sj | for i, j = 1, . . . , k, |ri,j | =CL-pc1 |ri′,j′ | for i, i′ = 0, . . . , k, j =
1, . . . , ni, j′ = 1, . . . , ni′ , none of the si or ri,j is a tuple, and t ≡ t0〈~r0〉〈s1〈~r1〉, . . . , sk〈~rk〉〉.

Because of the third point, an a-contractum of an a-redex is not unique. The notations →a,
→∗a, →i,a, etc. are used accordingly. Note that any a-redex is an s-redex.

I Lemma 17. If t′ →a t then t′ →s · ∗s← t, and hence |t′| =CL-pc1 |t|.

The above simple lemma implies that the conditions in significant reduction rules are
stable under a-reduction and a-expansion. Note that if t′ →a t then not necessarily t′ →s t

because of the third point in Definition 16.

I Lemma 18. If t is standard, t � q and q CL-pc← q′ then there is t′ with t′ →∗i,a t and
t′ � q′.

Proof. Induction on the size of t. First assume t is not a tuple and q is the CL-pc-contractum
expanded in q CL-pc← q′. If t is an i-term, then t ≡ q i← q′ and we may take t′ ≡ q′. If t is
not an i-term, then it is an s-term by 1 in Definition 8. We have the following possibilities,
depending on the rule of CL-pc used in the expansion.

If q′ ≡ CTq1q2 →CL-pc q1 ≡ q then we take t′ ≡ C1T1tq2 and we have t′ →a t and t′ � q′.
If q′ ≡ CFq1q2 →CL-pc q2 ≡ q then we may take t′ ≡ C1F1q1t.
If q′ ≡ Cq0q1q1 →CL-pc q1 then we may take t′ ≡ C2q0tt.
If q′ ≡ Kq0q1 →CL-pc q0 then we may take t′ ≡ K1tq1.
If q′ ≡ Sq0q1q2 →CL-pc q0q2(q1q2) then t � q0q2(q1q2) and t is an s-term. Hence t ≡ tatbtc
with ta � q0, tb � q2 and tc � q1q2. Recalling the convention 〈s〉 ≡ s for any term s, we
may assume

tb ≡ 〈s1, . . . , sm〉, tc ≡ 〈t1, . . . , tk〉, for k,m ∈ N+,

if k = 1 then t1 is not a tuple, and if m = 1 then s1 is not a tuple. (?)

In other words, if e.g. tb is a tuple, then tb ≡ 〈s1, . . . , sm〉 for some s1, . . . , sm. If tb is
not a tuple then we take s1 ≡ tb and consider tb ≡ 〈tb〉 ≡ 〈s1〉. This is chiefly to reduce
the number of cases to consider. Let 1 ≤ i ≤ k. Because tb � q2, we have si � q2 for
i = 1, . . . ,m. Also none of s1, . . . , sm is a tuple, by condition 6 in Definition 8, or by (?)
if m = 1. Since tc � q1q2, we have ti � q1q2. Also ti cannot be a tuple, by condition 6 in
Definition 8, or by (?) if k = 1. Thus ti ≡ ui〈~ri〉 where ~ri stands for ri,1, . . . , ri,ni

, and
ui � q1 and ri,j � q2 for j = 1, . . . , ni, where none of the ri,j is a tuple, by definition
(if ni = 1) or by condition 6 in Definition 8. By Lemma 9 also none of u1, . . . , uk is a
tuple. We may thus take t′ ≡ Sm,n1,...,nkta〈u1, . . . , uk〉〈~r0, ~r1, . . . , ~rk〉 where ~r0 stands for
s1, . . . , sm. We have t′ →a t and t′ � q′.

Ł. Czajka 14:13

If t is a tuple or q is not the CL-pc-contractum, then the claim follows from the inductive
hypothesis. J

I Lemma 19. If t a← · →s t
′ and t is standard then t→∗s · ≡a← t′.

Proof. Suppose t′ →s t
′
1, t′ →a t and t is standard. By induction on the definition of t′ →s t

′
1

we show that there is t1 with t→∗s t1 and t′1 →≡a t1. The base case is when the s-contraction
in t′ →s t

′
1 occurs at the root.

If the s-contraction occurs at the root, but the a-contraction in t′ →a t does not occur at
the root, then it is easy to see by inspecting the definitions that the a-redex in t′1 must occur
below a variable position of the s-redex. Since significant reduction rules are linear and their
conditions are stable under a-reduction, the claim holds in this case.

Assume that both the s-contraction and the a-contraction occur at the root. If t′ ≡
C2qs1s2 →a t then t →∗s s1, t →∗s s2 and the s-contraction of t′ yields either s1 or s2. We
may thus take either t1 ≡ s1 or t1 ≡ s2, and we have t→∗s t1 ≡ t′1. If t′ ≡ C1T1tq →a t then
the s-contraction must be by the first rule of CL-pcs, so t′1 ≡ t and we may take t1 ≡ t′1 ≡ t.
All other cases are analogous.

If neither the s-contraction nor the a-contraction occurs at the root, then the claim is
easily established, possibly appealing to the inductive hypothesis.

Finally, assume that the a-contraction occurs at the root, but the s-contraction does not
occur at the root. We have the following possibilities.

If t′ ≡ C1T1tq →a t then the s-contraction must occur inside t. So t →s t1 for some
term t1. Note that t is an s-term by definition of a-contraction. Therefore t1 is also an
s-term, by 5 in Definition 8. Thus t1 satisfies the required conditions.
If t′ ≡ C2qs1s2 →a t then t →∗s s1, t →∗s s2 and the s-contraction must occur inside s1
or s2. We may take t1 ≡ t and we still have t′1 →a t1.
The cases t′ ≡ C1F1qt→a t and t′ ≡ K1tq →a t are analogous to the first case.
If t′ ≡ S~nt0〈s1, . . . , sk〉〈~r0, . . . , ~rk〉 then |si| =CL-pc1 |sj |, |ri,j | =CL-pc1 |ri′,j′ | for i, j, i′, j′
as in Definition 16, none of the si or ri,j is a tuple, and t ≡ t0〈~r0〉〈s1〈~r1〉, . . . , sk〈~rk〉〉.
The s-contraction must occur inside one of the si or the ri,j , or in t0. For instance,
assume s1 →s s

′
1. Since s1 is a subterm of t and it is not a tuple, it cannot s-reduce to a

tuple by Definition 8. Hence s′1 is not a tuple. Take t1 ≡ t0〈~r0〉〈s′1〈~r1〉, s2〈~r2〉, . . . , sk〈~rk〉〉.
Note that t→s t1. Thus t1 is an s-term, because t is an s-term and it s-reduces only to
s-terms, by 5 in Definition 8. J

I Corollary 20. If t a← · →∗s t′ and t is strongly standard then t→∗s · ≡a← t′.

I Lemma 21. If r is a strongly standard a-contractum of an a-redex r′, and s′ is a proper
subterm of r′, then s′ is standard.

Proof. It suffices to show that s′ is a subterm of some standard term.
Suppose r′ ≡ C1T1rq →a r with q an i-term. Both C1T1r and q are standard and s′ is a
subterm of one of them. The cases r′ ≡ C1F1qr and r′ ≡ K1rq are analogous.
Suppose r′ ≡ C2qr1r2 →a r with q an i-term. Because r →∗s ri and r is strongly standard,
r1, r2 are standard. Also q is an i-term. This implies that C2qr1 is also standard. Since s′
occurs in C2qr1 or r2, it is standard.
Suppose r′ ≡ S~nt0〈s1, . . . , sk〉〈~r0, . . . , ~rk〉 →a t0〈~r0〉〈s1〈~r1〉, . . . , sk〈~rk〉〉. The term t0 and
each of si and ri,j (with i, j as in Definition 16) is standard. Note that none of si or ri,j

is a tuple by Definition 16. Since each si is also standard, by inspecting Definition 8
we may conclude that 〈s1, . . . , sk〉 is standard. Similarly 〈~r0, . . . , ~rk〉 is standard. Also

FSCD 2017

14:14 Confluence of an Extension of Combinatory Logic by Boolean Constants

S~nt0〈s1, . . . , sk〉 is standard. This implies that s′ is standard, because it occurs in
S~nt0〈s1, . . . , sk〉 or 〈~r0, . . . , ~rk〉. J

I Lemma 22. If s is an s-term and s′ →a s then s′ is also an s-term.

Proof. Induction on the structure of s. J

I Lemma 23. If t is strongly standard and t′ →a t then t′ is standard.

Proof. We check that the conditions in Definition 8 hold for every subterm s′ of t′. We may
assume that s′ does not occur in t, as otherwise the claim follows from the fact that t is
standard. Therefore, s′ occurs in the a-redex contracted in t′ →a t, or the a-redex occurs
inside s′. If s′ is a proper subterm of the a-redex, then our claim holds by Lemma 21. Hence,
we may assume that the a-redex r′ is a subterm of s′. Then s′ →a s with s a subterm of t
(so s is strongly standard).
1. Suppose r is the a-contractum of r′ and s′ →a s. By Definition 16, the term r is an

s-term. Thus s cannot be an i-term. If s is a tuple, then so is s′. Otherwise, s is an
s-term, by 1 in Definition 8. Hence s′ is also an s-term by Lemma 22.

2. Suppose s′ ≡ C1t
′
0t
′
1t
′
2 and t′0 is in s-NF. If s′ ≡ r′ then s′ ≡ C1T1t

′
1t
′
2 or s′ ≡ C1F1t

′
1t
′
2,

hence t′0 ≡ T1 or t′0 ≡ F1. If r′ is a proper subterm of s′, then r′ must be a subterm of t′1
or t′2, because a-redexes are not in s-NF. Thus, s′ →a s ≡ C1t

′
0t1t2 for some terms t1, t2,

where s is a subterm of t. Hence, t′0 ≡ T1 or t′0 ≡ F1 by 2 in Definition 8.
3. Suppose s′ ≡ C2t

′
0t
′
1t
′
2. If s′ ≡ r′ then s→∗s t′1 and s→∗s t′2. Hence |t′1| =CL-pc1 |s| =CL-pc1

|t′2|. If s′ 6≡ r′ then s ≡ C2t0t1t2 with t′i →≡a ti. Because s is standard, |t1| =CL-pc1 |t2|
by 3 in Definition 8. Thus also |t′1| =CL-pc1 |t′2| by Lemma 17.

4. Suppose s′ ≡ Sn0,...,nkt′0t
′
1t
′
2. If s′ ≡ r′, then s′ ≡ Sn0,...,nkt′0〈s1, . . . , sk〉〈~r0, . . . , ~rk〉,

as in Definition 16, so the claim holds. If r′ is a proper subterm of s′, then s′ ≡
Sn0,...,nkt′0t

′
1t
′
2 →a s ≡ Sn0,...,nkt0t1t2 where t′i →≡a ti for i = 0, 1, 2, and s is a subterm

of t. By 4 in Definition 8, the term t2 is a tuple of length
∑k

i=0 ni, and if k > 1 then t1 is
a tuple of length k. Since an a-contractum is an s-term, and hence not a tuple, t2 is not
an a-contractum, and if k > 1 then t1 is not an a-contractum. Thus we may conclude
that t′2 is a tuple of length

∑k
i=0 ni, and if k > 1 then t′1 is a tuple of length k.

5. Suppose s′ is an s-term and s′ →∗s s′1. Because also s′ →a s and s is strongly standard,
by Corollary 20 there is s1 with s′1 →≡a s1 and s→∗s s1. By Definition 16, the term s is
an s-term, so s1 is also an s-term by 5 in Definition 8. So s′1 is an s-term by Lemma 22.

6. Suppose s′ ≡ 〈t′1, . . . , t′n〉 with n > 1. We have s′ →a s ≡ 〈t1, . . . , tn〉 where t′i →≡a ti for
i = 1, . . . , n. By 6 in Definition 8, none of t1, . . . , tn is a tuple. Thus it is easy to see by
inspecting Definition 16 that none of t′1, . . . , t′n can be a tuple. J

I Lemma 24. If t ⇓F1 and t′ →a t then t′ ⇓F1 .

Proof. Suppose t′ →∗s t′0. By Corollary 20 there is t0 with t→∗s t0 and t′0 →≡a t0. Since t is
strongly standard, so is t0. Therefore, t′0 is standard by Lemma 23.

Suppose t′ →∗s t′0 with t′0 in s-NF. By Corollary 20 there is t0 with t→∗s t0 and t′0 →≡a t0.
Since an a-redex is an s-redex and t′0 is in s-NF, we conclude that t′0 ≡ t0. But then
t′0 ≡ t0 ≡ F1, because t ⇓F1 . J

I Corollary 25. If t ⇓F1 , t � q and q CL-pc← q′ then there is t′ with t′ ⇓F1 and t′ � q′.

Proof. Follows from Lemma 18, Lemma 13 and Lemma 24. J

I Lemma 26. If t has no s-NFs other than F1 then t→∗s− F1.

Ł. Czajka 14:15

Proof. Since s-reduction is terminating, by reducing s-redexes outside any tuples and not
using the second rule for C2 we will ultimately obtain a term t′ with all s-redexes inside
tuples, and such that t →∗s− t′. Note that an s-redex in t′ may only occur inside a tuple,
because any s-redex by the second rule for C2 is also an s−-redex by the first rule for C2. If t′
is in s-NF then t′ ≡ F1. Otherwise, any s-NF of t′ must contain a tuple, because s-reduction
inside a tuple cannot erase this tuple or create an s-redex outside of it. But since any s-NF
of t′ is an s-NF of t, this contradicts the fact that t has no s-NFs other than F1. J

We now have everything we need to show the central lemma of the confluence proof.

I Lemma 27. The system CL-pc1 is F-normal, i.e., if q =CL-pc1 F then q →∗CL-pc1 F.

Proof. If q =CL-pc1 F then by Lemma 2 we have q =CL-pc F. Note that F1 ⇓F1 and |F1| ≡ F.
Thus, using Corollary 15 and Corollary 25 it is easy to show by induction on the length of
q =CL-pc F that there is t with t � q and t ⇓F1 . By Lemma 26 we have t→∗s− F1. But then,
because t � q, using Lemma 7 it is easy to show by induction on the length of t→∗s− F1 that
q ≡ |t| →∗CL-pc1 |F1| ≡ F. J

It remains to derive the confluence of CL-pc1 and CL-pcL from Lemma 27. We use a
trick with an auxiliary term rewriting system R, in a way similar to how the confluence
of CL-pcL is derived from the condition T 6=CL-pcL F in [4]. The idea is to eliminate the
non-trivial overlap between the rules of CL-pc1 by imposing additional side conditions.

I Definition 28. The term rewriting system R is defined by the following rules:

Kxy → x CTxy → x

Sxyz → xz(yz) Czxy → y ⇐ z =CL-pc1 F
Czxy → x ⇐ z 6=CL-pc1 F ∧ x =CL-pc1 y

I Lemma 29. If q →CL-pc q
′ then q →R q′.

I Lemma 30. If q →R q′ then q →∗CL-pc1 q′.

Proof. Follows from definitions and Lemma 27. J

I Lemma 31. The system R is confluent.

Proof. Because T 6=CL-pc1 F by Lemma 27, the system R is weakly orthogonal (i.e. it is
left-linear and all its critical pairs are trivial). By Lemma 30 the conditions are stable under
reduction. Weakly orthogonal conditional term rewriting systems whose conditions are stable
under reduction are confluent [11, Chapter 4]. J

I Theorem 32. The systems CL-pc1 and CL-pcL are confluent.

Proof. Since q1 →CL-pc1 q2 implies q1 →CL-pcL q2, it suffices to show that if q1 =CL-pcL q2
then there is q with q1 →∗CL-pc1 q and q2 →∗CL-pc1 q. So suppose q1 =CL-pcL q2. Then by
Lemma 2 we have q1 =CL-pc q2. By Lemma 29 we obtain q1 =R q2. By Lemma 31 there is q
with q1 →∗R q and q2 →∗R q. By Lemma 30 we have q1 →∗CL-pc1 q and q2 →∗CL-pc1 q. J

FSCD 2017

14:16 Confluence of an Extension of Combinatory Logic by Boolean Constants

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1999.
2 P. Chew. Unique normal forms in term rewriting systems with repeated variables. In STOC

’81, pages 7–18. ACM, 1981.
3 Ł. Czajka and C. Kaliszyk. Hammer for Coq: Automation for dependent type theory.

Submitted. Available at http://cl-informatik.uibk.ac.at/cek/coqhammer/, 2017.
4 R.C. de Vrijer. Conditional linearization. Indagationes Mathematicae, 10(1):145–159, 1999.
5 N. Dershowitz, J.-P. Jouannaud, and J.W. Klop. Open problems in rewriting. In RTA ’91,

pages 445–456, 1991.
6 S. Kahrs and C. Smith. Non-omega-overlapping TRSs are UN. In FSCD 2016, pages

22:1–22:17, 2016.
7 J.W. Klop. Combinatory reduction systems, volume 127 of Mathematical Centre Tracts.

Amsterdam, 1980.
8 J.W. Klop and R.C. de Vrijer. Unique normal forms for lambda calculus with surjective

pairing. Inf. and Comp., 80(2):97–113, 1989.
9 K. Mano and M. Ogawa. Unique normal form property of compatible term rewriting

systems: a new proof of Chew’s theorem. Theor. Comp. Sci., 258(1):169–208, 2001.
10 K. Støvring. Extending the extensional lambda calculus with surjective pairing is conser-

vative. Logical Methods in Computer Science, 2(2), 2006.
11 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
12 Y. Toyama and M. Oyamaguchi. Church-Rosser property and unique normal form property

of non-duplicating term rewriting systems. In CTRS-94, pages 316–331, 1995.
13 R. Verma. Unique normal forms for nonlinear term rewriting systems: Root overlaps. In

FCT ’97, pages 452–462. Springer, 1997.

http://cl-informatik.uibk.ac.at/cek/coqhammer/

	Introduction
	Proof overview
	Definitions
	Confluence proof

