
Arrays and References in Resource Aware ML∗

Benjamin Lichtman1 and Jan Hoffmann2

1 Carnegie Mellon University, Pittsburgh, PA, USA
blichtma@alumni.cmu.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
jhoffmann@cmu.edu

Abstract
This article introduces a technique to accurately perform static prediction of resource usage for
ML-like functional programs with references and arrays. Previous research successfully integrated
the potential method of amortized analysis with a standard type system to automatically derive
parametric resource bounds. The analysis is naturally compositional and the resource consump-
tion of functions can be abstracted using potential-annotated types. The soundness theorem of
the analysis guarantees that the derived bounds are correct with respect to the resource usage
defined by a cost semantics. Type inference can be efficiently automated using off-the-shelf LP
solvers, even if the derived bounds are polynomials. However, side effects and aliasing of heap
references make it notoriously difficult to derive bounds that depend on mutable structures, such
as arrays and references. As a result, existing automatic amortized analysis systems for ML-like
programs cannot derive bounds for programs whose resource consumption depends on data in
such structures. This article extends the potential method to handle mutable structures with
minimal changes to the type rules while preserving the stated advantages of amortized analysis.
To do so, we introduce a swap operation for references and arrays that users can use to make
programs suitable for automatic analysis. We prove the soundness of the analysis introducing a
potential-annotated memory typing, which gathers all unique locations reachable from a refer-
ence. Apart from the design of the system, the main contribution is the proof of soundness for
the extended analysis system.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Resource Analysis, Functional Programming, Static Analysis, OCaml,
Amortized Analysis

Digital Object Identifier 10.4230/LIPIcs.FSCD.2017.26

1 Introduction

Several tools currently exist that can automatically derive loop and recursion bounds for
imperative programs including COSTA and SACO [1, 3], KoAT [8], CoFloCo [14], SPEED [17],
and LOOPUS [35]. These analyses produce impressive results for integer programs, but
mutation, cycles, and the absence of type information make it difficult to automatically
derive bounds that depend on the sizes of pointer-based data structures. One approach to
deal with the problem is to represent the size of data structures with ghost variables [2].

In purely functional programs, reasoning about heap-based data structures is more feasible
since there are strong type guarantees on the shape of the data. For example, we know

∗ This article is based on research that has been supported, in part, by AFRL under DARPA STAC
award FA8750-15-C-0082, by NSF under grant 1319671 (VeriQ), and by the Eric and Wendy Schmidt
Fund for Strategic Innovation. Any opinions, findings, and conclusions contained in this document are
those of the authors and do not necessarily reflect the views of the sponsoring organizations.

© Benjamin Lichtman and Jan Hoffmann;
licensed under Creative Commons License CC-BY

2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017).
Editor: Dale Miller; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Arrays and References in Resource Aware ML

that a functional list is immutable and does not have cycles. As a result, there are several
techniques that can automatically or semi-automatically derive bounds that depend on
the sizes of functional data structures. Automation is often achieved by relying on type
systems [11, 12, 29], recurrence relations [6, 13], and automatic amortized resource analysis
(AARA) [9, 18, 19, 22, 27]. These techniques work well as long as the programs are purely
functional. The only technique that can derive bounds for ML-like programs with references
and arrays is the AARA [21] that is implemented in Resource Aware ML (RAML) [19].
While this analysis works well for higher-order programs that use mutable heap structures to
store functions, it cannot derive bounds for programs if their execution depends on the size
of data structures that are stored in mutable structures.

In this article, we propose an extension of RAML for automatically deriving symbolic
resource bounds that depend on the size of data that are stored in references and arrays.
We build off of previous work on type-based amortized resource analysis, which has been
shown to be able to infer polynomial bounds for functional programs with nested data
structures [22, 18, 19]. Like in previous work, we achieve compositionality by integrating the
analysis with a standard type system. Type inference is reduced to efficient linear constraint
solving and type derivations can be used as certificates that prove the correctness of the
bound. Our technique is also parametric in the resource of interest (e.g., analyzing heap
usage, clock cycles, and so on) and works for non-monotone resources that can become
available during the execution.

The proposed type system is simpler than existing techniques that incorporate AARA
in more imperative settings using separation logic [4] or object-oriented types [23]. One
advantage is that our technique can be smoothly integrated with the efficient LP-based type
inference of RAML. As a result, bound inference is fully automatic. Another advantage is
that the design of our resource-annotated types mirror the design decisions of the ML type
system, which is the basis of RAML. A disadvantage is that our system is less expressive
than other approaches and requires a certain style of programming. However, the advantages
that we get from the automation seem to outweigh the disadvantages, and programming
with our system is relatively straightforward. For example, as we show in Section 5, we can
automatically derive a bound for a graph search algorithm that traverses and mutates a
potentially cyclic data structure.

To illustrate the main ideas of our type system, we describe it for a minimal subset of
RAML and restrict the technical development to linear bounds. As we argue in Section 6,
the proposed techniques carry over to the polynomial and higher-order setting. Apart from
the design of the system, our main contribution is the soundness proof of the analysis with
respect to an operational cost semantics. To properly calculate the potential of data stored
in mutable heap cells at a given program state, we leverage the idea of memory typing [36].
This addition is essential to show the soundness of operations like swap that involve mutable
heap cells.

2 Language Definition and Semantics

We now define a minimal first-order functional language that only contains the features that
are relevant to our contributions. The syntax of our language is defined as follows, where
x ∈ VID (the set of variable identifiers), f ∈ FID (the set of function identifiers), c ∈ CID
(the set of constructor identifiers), and n ∈ Z.

B. Lichtman and J. Hoffmann 26:3

e ::= x | n | f(x1, . . . , xn) | let x = e1 in e2 | true | false | () | c 〈x1, . . . , xk〉
| match x with c 〈x1, . . . , xk〉 ⇒ e1 | e2

| ref x | !x | x1 := x2 | swap(x1, x2) | share x as (x1, x2) in e
| create(x, e) | get(x1, x2) | set(x1, x2, x3) | aswap(x1, x2, x3) | length(x)

F ::= · | (f, ~x, ef) :: F

Function definitions are mutually recursive and given by triples that consist of a function
name f , a vector of formal arguments ~x, and a function body ef . Expressions include function
calls, constructors c 〈x1, . . . , xk〉, pattern matches, and the usual operations on references
and arrays. We use ref x to instantiate a reference, !x to retrieve the value of a reference,
and x1 := x2 to set the value of a reference. However, to enable data that has been stored
in mutable heap cells to be considered in resource analysis, we leverage swap operations [34]
for references, which combines retrieval and update in one operation. Similarly for arrays, we
use create(n,e) to initialize an array of length n with each cell set to the value expression
e, get(A,i) to retrieve the ith value of A, set(A,i,x) to set the ith value of A to be x,
and aswap(A,i,x) to combine retrieval and update like with swap.

To simplify type rules and proofs, we assume programs are in share-let normal form,
where term formers are only applied to variables, as much as it does not restrict expressivity.
Furthermore, we use an affine type system, so that every bound variable can occur at most
once. If some bound value x must be used more than once, the term share x as (x1, x2) in e
must be used to bind the value of x to x1 and x2 in the expression e. We note that in the
implementation of RAML, the programmer is not required to either write in share-let normal
form or use the share expression, as the compiler translates the program into this form
before analysis occurs.

Big-Step Operational Cost Semantics

Let Loc be an infinite set of memory locations and define the set of values v ∈ Val to be

v ::= ` | Null | tt | ff | (constrc, v1, . . . , vk) | (σ, n)

where ` ∈ Loc and an array (σ, n) consists of a size n ∈ N and a map σ : {0, . . . , n−1} → Loc.
We further define a heap H to map locations to values, an environment V to map

variable identifiers to values, and a resource metric M : K × N→ Q to describe the resource
consumption in each evaluation step of the big-step semantics, where K is a set of constants
describing each possible operation in the language. We write Mk

n for M(k, n) and Mk for
M(k, 0) in the style of previous work [19]. A metric defines the constant cost of different
atomic steps in the cost semantics.

To formalize the notion of tracking resources that can become available during evaluation,
we define the high-water mark of the resource usage to be the maximal number of resource
units under a given metric that are simultaneously used during an evaluation. We use this
information in the soundness proof to relate the bound of resource usage generated by the
type system to the actual cost of program evaluation.

The operational evaluation rules in Appendix A define the evaluation judgement

F, V,HM`e ⇓ (v,H ′) | (q, q′)

FSCD 2017

26:4 Arrays and References in Resource Aware ML

where, given a family of functions F , environment V : VID⇀ Val, initial heap H : Loc⇀ Val,
and resource metric M , the expression e evaluates to the value v and new heap H ′, requiring
q ∈ Q+

0 resource units to evaluate and leaving q′ ∈ Q+
0 resource units available after evaluation.

The net resource consumption is δ = q− q′. Note that δ is negative if more resources become
available than are consumed during the execution of e.

We define the operation (q, q′)·(p, p′) to account for an evaluation made up of an evaluation
with resource consumption (q, q′) followed by an evaluation with resource consumption (p, p′)
as follows:

(q, q′) · (p, p′) =
{

(q + p− q′, p′) if q′ ≤ p
(q, p′ + q′ − p) if q′ > p

We present selected rules from the operational semantics below. We note that the (E:Fun)
and (E:Let) rules are minimally changed from previous work, and the (E:Constr) rule is a
generalized form of the rule for specific datatypes in earlier forms of Resource Aware ML.

(f, ~y, ef) ∈ F F, [y1 7→ V (x1), · · · , yn 7→ V (xn)], HM`ef ⇓ (v,H ′) | (q, q′)
F, V,HM`f(x1, . . . , xn) ⇓ (v,H ′) |M funn

1 · (q, q′) ·M funn
2

(E:Fun)

F, V,HM`e1 ⇓ (v1, H1) | (q, q′) F, V [x 7→ v1], H1M`e2 ⇓ (v2, H2) | (p, p′)
F, V,HM`let x = e1 in e2 ⇓ (v2, H2) |M let

1 · (q, q′) ·M let
2 · (p, p′) ·M let

3
(E:Let)

ci ∈ CID v = (constrci , V (x1), . . . , V (xk)) H ′ = H, ` 7→ v ` /∈ dom(H)
F, V,HM`ci 〈x1, . . . , xk〉 ⇓ (`,H ′) |Mcons (E:Constr)

The rule (E:Fun) can be read as follows. We start evaluating f(x1, . . . , xn) by incurring the
constant resource cost M funn

1 , which depends on the number of function arguments n. If
the function f is available in the current context of functions, associated with parameters
y1, . . . , yn and body ef , then ef is evaluated in an environment where each parameter yi

maps to the value associated with the variable xi in the calling environment. Moreover,
ef evaluates to the value v and new heap H ′ with resource cost (q, q′). Then we incur the
constant resource cost M funn

2 to complete evaluation.
The rule (E:Let) is similar. We first incur the constant resource cost M let

1 to begin
evaluation, and then in the same environment and heap, evaluate e1 to the value v1 and new
heap H1 with resource cost (q, q′). Then, after incurring another constant resource cost M let

2 ,
we evaluate e2 under the new heap and the same environment with the bound variable x
mapping to the value v1. We thus evaluate e2 to the value v2 and heap H2 with resource
cost (p, p′), and then conclude evaluation with the constant cost M let

3 .
Lastly, the rule (E:Cons) can be understood as follows. If ci is a valid constructor identifier,

we create a new value (constrci
, V (x1), . . . , V (xn)) that is a tuple of the constructor name

and the values associated with each of its arguments. We then add a fresh memory location
` and evaluate to our new value and a heap that has been extended with the new location `
pointing to the new value. This all incurs the constant resource cost M cons.

The remaining rules for the operational semantics are presented in Appendix A.

Well-Formed Environments

Our type judgement takes the form Σ; Γ ` e : T ; under the function context Σ, which describes
the types of functions currently in scope, and the variable context Γ, which maps variables
to their types, the expression e has type T . The rules for the judgement are presented in

B. Lichtman and J. Hoffmann 26:5

Appendix B. We note that these rules only differ from those discussed in Section 3 in their
exclusion of resource annotations, which are developed in the next section.

Given a heap H, value v, and type T , the judgement H � v : T means that the value v
under the heap H is well-formed with respect to T . We denote that an environment V and
heap H are well-formed with respect to a context Γ with H � V : Γ if H � V (x) : Γ(x) holds
for every x ∈ dom(Γ).

We show that under any evaluation with a well-formed environment, every location in
the environment remains well-formed and the return value is also well-formed. We include
the proof for Theorem 1 in the technical report [30].

I Theorem 1. If Σ; Γ ` e : T , H � V : Γ, and F, V,HM`e ⇓ (v,H ′) | (q, q′) then H ′ � V : Γ
and H ′ � v : T .

3 Annotated Types for Linear Resource Analysis

The core idea of AARA is to annotate each program point with a potential function which
maps sizes of reachable data structures to non-negative numbers. The potential functions
must ensure that, for every input and every possible evaluation, the potential at a program
point is sufficient to pay for the resource cost of the following transition and the potential at
the next point. It then follows that the initial potential function describes an upper bound
on the resource consumption of the program.

In the examples in this section, we use a resource metric in which we count the number
of constructor applications.

Resource Annotations

To perform AARA for our language, we annotate our types for inductive data structures
with non-negative rational numbers q ∈ Q+

0 , defining the linear resource-annotated data
types. To annotate types in a compact manner, we use a function Q for each inductive type
that maps constructor names to their associated potential annotations. The data types of
our language are defined as follows.

A ::= 1 | B | X | µXQ.{ci : (A1, . . . , Aki
)}i | A ref | A arrayq .

Let Alin be the set of linear resource-annotated data types and T be the set of unannotated
types. We use 1 as the unit type, B for booleans, X for type variables, A ref for references
with data of type A, and A array for arrays with data of type A. We also use recursive
datatypes of the form µXQ.{ci : (A1, . . . , Aki)}i, where the type variable X is bound in the
types A1 through Aki

for each constructor ci.
We define the type Nq = µXQN .{zero : 1 | succ : X} to be used with arrays, where

QN [zero] = 0 and QN [succ] = q. Additionally, for the purpose of the examples in this section,
we use the type Lq(A) = µXQL .{nil : 1 | cons : (A,X)}, where QL[nil] = 0 and QL[cons] = q.
This represents a list containing elements of type A, where each element carries q potential.
We also have linear resource-annotated first-order types, which are defined by the following
grammar.

R ::= (A1, . . . , An) q/q′

−−→ A .

In this notation, q, q′ ∈ Q+
0 and A,Ai ∈ Alin, meaning that q is the constant potential before

a call to the function and q′ is the constant potential after the call to the function. Let Rlin
denote the set of linear resource-annotated first-order types.

FSCD 2017

26:6 Arrays and References in Resource Aware ML

The potential annotation of a type directly determines the potential represented by values
of that type. For example, when we consider a list of length n and of type Lq(T), the
potential carried by that list is qn, where each element carries q resource units. With the
resource metric considered here, we are able to pay for up to q cons operations for each
element in the list (since each element carries q resource units).

We can more formally define the potential of a value. Let A ∈ Alin, let H be a heap,
and let v ∈ Val be a value with H � v : A. Then, if H(`) = (constrci

, v1, . . . , vki
) and

A = µXQ.{· · · | ci : (A1, . . . , Aki) | . . . }, we have that

ΦH(` : A) = Q[ci] +
ki∑

i=1
ΦH(vi : [A/X]Ai)

where [A/X]Ai represents the substitution of the type A for every instance of the type
variable X in Ai. If H(`) = (σ, n) and A = A′ arrayq, then ΦH(` : A) = qn. Otherwise,
ΦH(v : A) = 0.

We establish the following definition for the amount of potential provided by a typing
context under a particular environment V and heap H.

ΦV,H(Γ) =
∑

x∈dom(Γ)

ΦH(V (x) : Γ(x)) .

In particular, we sum over the potential contributed by each variable in scope by the definition
presented earlier. However, note that this causes data stored within references and arrays to
not be included by the above definition of ΦH .

In order to relate resource-annotated types with different resource annotations, we define
the function | · | : Alin → T that simply removes the potential annotations from a given type.
If we have annotated types A and A′ such that |A| = |A′|, we say that they have the same
underlying types.

The sharing relation .defines how the potential of a variable can be shared by multiple
occurrences of that variable. We have A .(A1, A2) if and only if |A| = |A1| = |A2| and for
every heap H and value v such that H � v : A, ΦH(v : A) = ΦH(v : A1) + ΦH(v : A2) holds.
The sharing relation . is the smallest relation such that the following hold.

A ∈ {1, B,N,A′ ref}
A .(A,A)

(S1)
p = q + r

A arrayp .(A arrayq, A arrayr)
(S2)

Ai .(A′i, A′′i) ∀1 ≤ i ≤ k. P [ci] = Q[ci] +R[ci]
µXP .{ci : (A1, . . . , Ak)}i .(µXQ.{ci : (A′1, . . . , A′k)}i, µX

R.{ci : (A′′1 , . . . , A′′k)}i)
(S3)

I Example 2. Consider the standard append function for our list type. With our resource
metric, the cost of append is n where n is the length of the first argument. To derive a bound
in our type system, we assign the function append the type (L1(T), L0(T))→ L0(T). This
function can also be assigned the type (L2(T), L1(T))→ L1(T) and so forth; as long as the
annotations represent that one resource unit has been consumed for every element of the
first input list and there is enough potential remaining to pay for the potential of the result,
the potential annotations are valid. The second annotation can be used for the inner call of
append in an expression like append(append(x,y),z).

We now consider the following function that calls append.

f l = share l as (l1,l2) in let _ = append(l1,[]) in append(l2,[])

B. Lichtman and J. Hoffmann 26:7

In this example program, we see the results of reusing a value that carries potential. Since
we call append on the same list twice, it must have sufficient potential to be iterated over
twice. In order to do so, when we share the list between two variables, we split the potential
over the two, and thus assign the type L2(T) → L0(T) to f. In the type derivation, the
variable l has type L2(T), and l1 and l2 have type L1(T).

A resource-annotated typing judgement has the form Σ; Γ
q′
q
e : A. This means that,

under environment V and heap H such that H � V : Γ holds, as well as a resource-annotated
signature Σ and resource-annotated context Γ, the expression e has the resource-annotated
data type A. If there are at least q + ΦV,H(Γ) resource units available, then e may be
evaluated. Furthermore, if e evaluates to a value v, resulting in an updated heap H ′, there
are more than q′ + ΦH′(v : A) resource units left.

We define a well-typed program to consist of a resource-annotated signature Σ and
a family F = (f, ~x, ef)f∈dom(Σ) of function identifiers f ∈ FID with variable identifiers
~x = x1, . . . , xn ∈ VID and expression ef such that Σ;x1:A1, . . . , xn:An q′

q
ef : A for each

(A1, . . . , An) q/q′

−−→ A ∈ Σ(f).
We present selected type rules related to the example above. The rules (L:Fun) and

(L:Share) are unchanged from previous work, and the (L:Constr) and (L:Mat) rules are
expanded to handle the more general form of recursive datatypes.

ci ∈ CID
A = µXP .{· · · | ci:(A′1, . . . , A′k) | · · · } ∀1 ≤ j ≤ k.Aj = A′j ∨ (Aj = A ∧A′j = X)

Σ;x1:A1, . . . , xk:Ak q

q+P [ci]+Mcons

ci (x1, . . . , xk) : A
(L:Constr)

Σ; Γ, x1:A1, x2:A2 q′
q
e : A A′ . (A1, A2)

Σ; Γ, x:A′
q′
q share x as (x1, x2) in e : A

(L:Share)

(A1, . . . , An) q/q′
−−−→ A ∈ Σ(f)

Σ;x1:A1, . . . , xn:An
q′−M

funn
2

q+M
funn
1

f(x1, . . . , xn) : A
(L:Fun)

The rule (L:Constr) can be understood as follows. Since the construction of a new list
element costs M cons resource units, we have to pay M cons, as well as the potential that is
available after the evaluation. The potential of each of the components of the constructor
is paid for by the context, and the missing potential P [ci] of the new list element, the
constant cost M cons, and the resulting potential q are paid by the intial constant potential
q + P [ci] +M cons.

The rule (L:Share) incurs no resource consumption. However, the type A′ of the variable
x is split into two new types A1 and A2 for the new variables x1 and x2, which share the
potential associated with x.

Lastly, in the rule (L:Fun), the evaluation of f(x1, . . . , xn) incurs the constant cost
M funn

1 before the evaluation of the body and M funn
2 after the evaluation of the body. Since

(A1, . . . , An) q/q′

−−→ A ∈ Σ(f), we know that the body evaluates with initial constant potential
q. Thus in order to pay for the cost before evaluation, we need to have initial potential
q +M funn

1 for the whole expression. Similarly, we have remaining constant potential q′ after
evaluation of the body, so after evaluating the whole expression, we have remaining constant
potential q′ −M funn

2 .

FSCD 2017

26:8 Arrays and References in Resource Aware ML

Potential in References

We now introduce references by way of the following example, where the function g’ might
use the data in the supplied reference in some unknown way.

g l = let r = ref l in
share r as (r1,r2) in
let _ = g’ r1 in
append(!r2,[])

If we assign a type of the form Lq(T) ref→ 1 to g’, we have a weak contract between g and
g’ concerning the usage of the data referenced by r. Looking only at the type of g’, we
cannot know how g’ consumes the potential of the data referenced by r. Therefore, we also
cannot know how much potential we have left over on the data in r after g’ executes.

The most straightforward way to address the ambiguity of mutable data usage is to
insist that the potential annotations of mutable data must remain invariant. By requiring
this, we are guaranteed that we can freely share, pass around, and alias references without
being concerned with tracking every possible use of the underlying data. This restriction
of invariant potential annotations is precisely in line with the goals of the ML type system.
As opposed to carrying around extra information about effectful computation statically,
the only information that ML tracks is the unchanging type of data that is stored in the
reference. Furthermore, as the number of mutable cells generated in a program scales, so
too does the opportunity for aliased references to be passed to some subroutine. If the
potential annotations of these references could vary, then the system would have to track
all possible combinations of distinct and aliased references in these situations in order to
successfully analyze resource usage. As this approach clearly cannot scale, we resort to
demanding invariant potential annotations for references.

However, when considering the above example, the action of sharing references that
contain lists cannot operate in the same way it does when we directly share lists. We note
that when sharing the reference r, we cannot split the potential of the underlying data
(as we do when sharing a list directly) due to our new requirement of invariant potential
annotations. In other words, since r, r1, and r2 all point to the same heap location, they all
must contain the same potential annotation for the data stored there.

If we suppose now that g’ consumes the potential stored in r in the function g from
before, we find that we have violated the soundness of our system. In this scenario, we see
that the same potential is being used to pay for the call to append in g as well as for whatever
operation occurs in g’. As discussed above, in a situation not involving references, this
duplication would be explicitly handled by using share, but due to our invariant potential
annotations for references, it does not in this case. Therefore, our program uses double the
amount of potential that the type annotations provide.

Introducing Swap

In order to prevent uncontrolled duplication of potential, we use the swap operation to better
track usage of data in mutable structures, as used in previous treatments of substructural
type systems [34, 32], where it is operationally defined as follows:

swap (r,l) ≡ let x = !r in let _ = (r := l) in x .

With swap, we ensure that in order to use data that has been stored in a reference in a way
that consumes potential, it must be “swapped” out for data of the same type that satisfies

B. Lichtman and J. Hoffmann 26:9

the same potential annotation. As a result, for data in a single reference to be used twice, it
must be swapped out, explicitly shared, and swapped back in.

I Example 3. If we use swap to access data in mutable structures, then we must take care
in situations where two references may be, but are not necessarily, aliased so that we do not
mistakenly expect to use data that has already been destructively modified. Consider the
following program representing this situation, in which we append two lists after retrieving
them from references that are possibly aliased to each other. With this, we demonstrate a
programming style that ensures that Resource Aware ML can successfully compute a bound.

f (r1, r2) =
let l2_1 = !r2 in
let l1 = swap(r1,[]) in
let l2_2 = swap(r2,[]) in
match (l2_1,l2_2) with
| ([],_) -> l1
| (_,[]) -> share l1 as (l1_1,l1_2) in

append(l1_1,l1_2)
| (_,_) -> append(l1,l2_2)

Here, we only perform the normal append operation if the data stored in r2 is a non-empty
list before and after l1 is retrieved. Otherwise, if it is non-empty before and empty after, we
know that the two references must be aliased, and therefore, to achieve the proper result,
we duplicate the data retrieved from the first (and therefore explicitly share its potential)
and then append the resulting lists. Therefore, if we assign the type Lp(T) ref to r1 and
Lq(T) ref to r2, we thus assign the type Lp(T) to l1, L0(T) to l2_1, and Lq(T) to l2_2.

It is allowed in our system to dereference data using the usual ! operator. However, we
ensure in our type system that data retrieved in this way has no potential. As is shown by
the above example, while the swap operation places a new burden on the programmer, it is
not unreasonable to work around the unintended effects it may cause.

An interesting observation is that the potential annotations in function types contain
information about aliasing. One possible typing for the function f is (L1(T) ref, L1(T) ref)→
L0(T). Here, r1 and r2 are potentially aliased. Another possible typing for the function f
is (L1(T) ref, L0(T) ref)→ L0(T). This typing implies that the arguments are not aliased;
if they were, they would break the invariant of our type system discussed earlier. We now
present the type rules that are related to references.

Σ;x:A q
q+Mref

ref x : A ref
(L:Ref)

Σ; Γ, x1:A ref, x2:A q
q+Massign

x1 := x2 : 1
(L:Assign)

|A′| = |A| A . (A,A)

Σ;x:A′ ref q
q+Mdref

!x : A
(L:DRef)

Σ;x1:A ref, x2:A q
q+Mswap

swap(x1, x2) : A
(L:Swap)

The rule (L:Ref) can be read as follows. Our context contains just the variable x:A. We
thus create a reference of type A ref. Since the operational semantics state that the cost of
evaluating such a reference is M ref, we need initial constant potential q+M ref to pay for this
cost and the remaining constant potential q. The rules (L:Assign) and (L:Swap) are similar.

(L:DRef) is also similar, but additionally restricts the type of the dereferenced value. The
premise A . (A,A) requires that the type have a potential annotation of zero, thus ensuring
that the return value has no potential. The first premise simply ensures that the type of the
reference and the type of the dereferenced value only differ in their potential annotations.

FSCD 2017

26:10 Arrays and References in Resource Aware ML

Potential for Arrays

The concerns and techniques presented above extend cleanly from references to arrays. As
before, for each cell in an array, we cannot always tell statically how much potential has been
used up by effectful subroutines. Therefore, we maintain the same requirement of invariant
potential for every cell in the array, and use the operation aswap(A,i,x), which is defined
as follows:

aswap(A,i,x) ≡ share A as (A1,A2) in share i as (i1,i2) in

let x’ = get(A1,i1) in let _ = set(A2,i2,x) in x’

The relevant rules follow.

Σ; ∅ 0
p−r

e : A

Σ;x:Np
q

q+Mcreate
create(x, e) : A arrayr

(L:Create)

|A′| = |A| A . (A,A)

Σ;x1:A′ arrayp, x2:Nr
q

q+Mget
get(x1, x2) : A

(L:Get)

Σ;x1:A arrayp, x2:Nr, x3:A q
q+Mset

set(x1, x2, x3) : 1
(L:Set)

Σ;x1:A arrayp, x2:Nr, x3:A q
q+Maswap

aswap(x1, x2, x3) : A
(L:Aswap)

The rule (L:Create) requires the user to specify a default expression to initialize each cell
of the new array. This expression is then evaluated using the potential from the number
specifying the length of the array. Since this pays for the evaluation of each cell, the system
simply requires enough initial constant potential to pay for the constant resource cost,M create,
as well as the remaining constant potential, q. Otherwise, (L:Get), (L:Set), and (L:Aswap)
are analogous to their counterparts for references. The remaining typing rules are provided
in Appendix C.

4 Soundness

We now show that the operational semantics and linear resource-annotated typing rules
cohere, proving that type derivations establish correct bounds. We claim that if an expression
e evaluates to a value v in a well-formed environment then the initial potential of the context
is an upper bound on the watermark of the resource usage. Furthermore, the difference
between the initial and final potential is an upper bound on the consumed resources.

To ensure that aliased references are not double-counted when determining the potential
that they contribute, we use a memory typing ∆: Loc → Alin. Under a given context Γ,
environment V , and heap H, ∆ maps all locations in the heap pointed to by references
contained in Γ to the types of their values. This is similar to the usage of store typing
in previous work on mutable structures in substructural settings [36]. We represent this
relationship with the judgement H,∆ � V : Γ and the operator ⊗ defined by the rules in
Figure 1, using ∅ to represent the empty reference collection.

The most interesting rules in Figure 1 are (∆:Ref), (∆:Array), (∆:Constr), and (∆:Full).
The first of these can be read as follows. When checking that the location ` is well-formed at

B. Lichtman and J. Hoffmann 26:11

∅ ⊗∆ = ∆
(⊗ : U1)

∆⊗ ∅ = ∆
(⊗ : U2)

∀i ∈ {1, 2}.∀` ∈ dom(∆i).∆(`) = ∆i(`) ∀` ∈ dom(∆).(` ∈ dom(∆1)) ∨ (` ∈ dom(∆2))
∆1 ⊗∆2 = ∆

(⊗ : C)

H,∆ � tt : B
(∆ : True)

H,∆ � ff : B
(∆ : False)

H,∆ � Null : 1
(∆ : Unit)

H(`) = (constrci , v1, . . . , vk) H ′ = H \ `
A = µXQ.{· · · | ci:(A1, . . . , Ak) | · · · }

H ′,∆1 � v1 : [A/X]A1 . . . H ′,∆k � vk : [A/X]Ak ∆ =
⊗

1≤j≤k
∆i

H,∆ � ` : µXQ.{· · · | ci:(A1, . . . , Ak) | · · · }
(∆ : Constr)

H(`) = `′ H,∆′ � `′ : A ∆ = ∆′ ⊗ {`′ 7→ A}
H,∆ � ` : A ref

(∆ : Ref)

H(`) = (σ, n) ∀i < n.H,∆′i � H(σ(i)) : A ∆i = ∆′i ⊗ {σ(i) 7→ A} ∆ =
⊗

0≤i<n
∆i

H,∆ � ` : A arrayq (∆:Array)

dom(Γ) ⊆ dom(V) ∀x ∈ dom(Γ).H,∆x � V (x) : Γ(x) ∆ =
⊗

x∈dom(Γ)
∆x

H,∆ � V : Γ
(∆:Full)

Figure 1 Rules Defining the ⊗ operator and the well-formed reference collection.

type A ref under heap H, we first ensure that the location points to some other location `′

and then check that `′ is well-formed at type A under the same heap. If this check gives us
back the memory typing ∆′, we add the mapping `′ 7→ A to ∆′ to make ∆. As discussed
above, we do this because there exists a reference that points to `′, and so we track it as
intended. We thus return ∆ as the memory typing for the location `. The (∆:Array) rule is
similar, but we check each location pointed to by the array and combine the resulting memory
typings. Likewise, the (∆:Constr) rule checks that each value included in the constructor is
well-formed and combines the the resulting memory typings. Lastly, the (∆:Full) rule checks
each value included in the environment V is well-formed and returns the combination of the
constructed memory typings.

Note that H,∆ � V : Γ implies H � V : Γ. Furthermore, we intentionally allow extra
locations to be present in ∆, as this simplifies the soundness proof without contributing
extra potential. We now define the potential of ∆ as follows:

ΦD
H(∆) =

∑
`∈dom(∆)

ΦH(` : ∆(`)) .

By defining the potential of mutable cells in this way, we ensure that every reachable heap
cell is counted exactly once, thereby disallowing the possibility of aliasing leading to extra
potential.

Given this additional method of contributing potential, the typing judgement Σ; Γ
q′
q
e : A

now means that there must be q + ΦV,H(Γ) + ΦD
H(∆) resource units available to evaluate e,

and after evaluation to a value v, there will be q′ + ΦH′(v : A) + ΦD
H′(∆ret) units available,

where H,∆ � V : Γ and H ′,∆ret � v : A. We can now formally state our soundness claim.

I Theorem 4. Let H,∆ � V : Γ and Σ; Γ
q′
q
e : A hold. If F, V,HM`e ⇓ (v,H ′) | (p, p′)

then there exists some ∆ret such that the following hold:

FSCD 2017

26:12 Arrays and References in Resource Aware ML

p ≤ ΦV,H(Γ) + ΦD
H(∆) + q

p− p′≤ΦV,H(Γ) + ΦD
H(∆) + q − (ΦH′(v:A) + ΦD

H′(∆⊗∆ret) + q′)
H ′,∆ � V : Γ and H ′,∆ret � v : A

Theorem 4 is proved by a nested induction on the derivation of the evaluation judgement
and the type judgement, with the latter being needed due to the structural rules. We present
the proof of Theorem 4 in the technical report [30]. Moreover, we note that the proof is
similar to the soundness proof for resource analysis for the language without mutable heap
cells [18].

The soundness proof uses Lemma 5 to show the soundness of the rule L:Let, stating that
the potential of a context is invariant during the evaluation.

I Lemma 5. Let H,∆ � V : Γ, Σ; Γ
q′
q
e : A, and F, V,HM`e ⇓ (v,H ′) | (p, p′). It follows

that ΦV,H(Γ) = ΦV,H′(Γ).

Proof. We get that H ′ � V : Γ by Theorem 1. Thus, the lemma follows directly by this fact
and the definition of the potential Φ. J

5 Graphs and Graph Search

We now discuss graph search as an example of reference usage in RAML. Rather than
explicitly showing occurrences of sharing, we use standard OCaml syntax.

We use the following set of user defined types as our graph representation.

type ‘a node = Not_Visited of ‘a * ‘a node ref list
| Visited of ‘a * ‘a node ref list
| TEMP

type ‘a graph = ‘a node ref list

Here, we represent a graph as an adjacency list, where each node contains some data,
as well as a list of references to the nodes to which it has edges. We wrap each node by
either Not_Visited or Visited so that we can consume the potential of the list of children
and then place the node back in its reference. We now build the following graph using the
function make_graph.

a

c

b

d

let make_graph () : int graph =
let c_ref = ref (Node (Not_Visited (3, []))) in
let b_ref = ref (Node (Not_Visited(2, [c_ref]))) in
let a_ref = ref (Node (Not_Visited(1, [b_ref]))) in
let _ = swap(c_ref, Node (Not_Visited(3, [a_ref]))) in
let d_ref = ref (Node (Not_Visited (4, []))) in
let _ = swap(d_ref, Node (Not_Visited (4, [d_ref]))) in
[a_ref; b_ref; c_ref; d_ref]

We now show how to write DFS over this graph representation. In this implementation,
we use the function iter : (’a -> 1) -> ’a list -> () which sequentially applies a
function to every element of a list. This implementation could easily be extended to apply a
function to the data at each node, but here we simply traverse the graph.

At a not-yet-visited node in the graph, this function will iterate over its list of out-edges.
For each, it will swap the node out of its particular reference and replace it with TEMP,
recursively traverse that node and its respective out-edges, and then place the Visited
version of that node back into the reference when it has completed its search on that subtree.

B. Lichtman and J. Hoffmann 26:13

As a result, if the search finds TEMP within a reference, it must have been swapped out further
up the current call stack and therefore must have already been visited.

let rec DFS(n : int node) : int node =
match n with
| TEMP -> n (* node was visited further up current call stack *)
| Visited _ -> n (* node was visited in diff. branch of search *)
| Not_Visited (d,cs) ->

let _ = iter (fun n_ref ->
let n’ = swap(n_ref, TEMP) in
let n’’ = DFS n’ in
n_ref := n’’) cs in

Visited (d,cs)

We now consider tracking the number of recursive calls as a resource metric. Due to
the structure of the node datatype, the list in a not-visited node is able to carry a different
amount of potential than the list in a visited node. Therefore, we can define the type node
as follows in order to pay for one full run of DFS.

A node = µX [0,0,0].{Not_Visited : (A,L1(X ref)) | Visited : (A,L0(X ref)) | TEMP : 1} .

Since the list contained within the Not_Visited constructor has a potential annotation of 1,
each element can pay for one recursive call to DFS. When looking at the code, we see that
this is exactly what occurs.

After running our DFS operation on every member of the list of nodes produced by
make_graph, we have flipped each node to be marked with Visited and therefore have
exhausted all the potential in each of the nodes. If we wish to refresh the graph and set
each node back to Not_Visited with the intent to run our graph search again, we could
once again iterate over the top-level list of nodes as returned by make_graph. However, if
our program did this, then the potential annotation of the return type of make_graph would
have to be increased, where our metric now tracks the number of times a node is changed
from Visited to Not_Visited and vice versa. In summary, the type of make_graph is as
follows (assuming we have some type int).

make_graph (() : 1) : L1(int node) [With no refresh]
make_graph (() : 1) : L3(int node) [With one refresh]

6 Type Inference for Linear and Polynomial Bounds and
Higher-Order Functions

The main advantage of the resource-annotated type system we introduce here is that type
inference can be reduced to efficient linear programming in the same way as for classic
AARA for purely functional programs. This is also true for more complex polynomial type
annotations [18].

The type inference works as follows. We first perform a standard, unification-based type
inference for simple types. We then annotate the derivation tree with (yet unknown) potential
annotations that will be determined by an LP solver. To generate the linear program, we
apply the annotated type rules from Section 3 and collect the local constraints that need to
hold for the annotations. We then minimize the initial potential using the LP solver.

FSCD 2017

26:14 Arrays and References in Resource Aware ML

To make the material more accessible, we have presented the potential annotations for
references in the first-order setting. However, the proposed technique scales to higher-order
programs and polynomial bounds [19].

Assume we would add references of ML type T ≡ (T1 → T2) ref to our language, which
we can use to store first-order functions. In the annotated type system we would simply
replace T with the annotated version A q/q′

−−→ A ref. Like previous work [19], we can basically
leave the rules L:Swap, L:Assign, L:DRef, and L:Ref unchanged; the same is true for the
rules concerning array operations. This means that we fix a function annotation for each
heap location that is referenced by a higher-order reference. Intuitively, every function that
is stored in such a location would have to adhere to the resource behavior that is specified
by the type. On the other hand, we can assume that a function has the specified worst-case
behavior if we dereference a function value. Since we often need to use a function with
different valid potential annotations, we implemented a generalization in RAML; functions
are typed with a set of annotated function types A q/q′

−−→ A. However, the type rules remain
conceptually identical.

Similarly, we do not have to alter the type rules for references and arrays when switching
to univariate polynomial potential annotations [20]. In this scenario, we have potential
annotations that are coefficients for more complex terms like

(
n
k

)
rather than just the number

of nodes n. Fortunately, swap does not alter the size of data structures, and therefore the
rules do not have to be changed.

The situation is more complex when we consider multivariate polynomial potential
annotations [18]. The difficulty is to decide how to handle mixed potential of the form n·m
where m corresponds to the size of a list stored in a reference and n corresponds to the size
of another data structure. Our current approach to this is to simply require that such a
potential annotation is zero. This amounts to deriving multivariate bounds for data that
is entirely stored within a single reference but not for data that is stored across multiple
different references.

7 Related Work

Automatic amortized resource analysis (AARA) has been introduced to derive linear bounds
on the number of heap allocations in a simple, strict, and first-order functional language [22].
Linear AARA has been extended to work with higher-order functions [27], object-oriented
programs [23], lazy evaluation [37], imperative integer programs [9], pointer-based data
structures [4], polynomial bounds [18], and term rewriting [25]. Many of the features for
strict functional programs have been combined in Resource Aware ML [19]. In contrast to
the presented technique, none of the aforementioned works allow the derivation of bounds
that depend on the sizes of data structures that are stored in references and arrays.

Most closely related to our work is the treatment of references in recent work on RAML [21,
19]. Previous techniques allow references but statically ensure that the cost of computation
does not depend on the sizes of data structures that have been retrieved from references
and arrays. However, the higher-order system [19] derives bounds for programs whose cost
depend on applications of functions that have been stored in and dereferenced from references
and arrays. The innovation in this work is to allow the cost of computation to depend on
data that is stored in references and arrays. There also exist AARAs for mutable heap data
structures that are integrated in separation logic [4] and object-oriented type systems (in
RAJA) [23, 26]. These type systems are somewhat incomparable but in many ways more
expressive compared to the introduced system. The price they pay is that automatic bound

B. Lichtman and J. Hoffmann 26:15

inference is challenging and often only possible when user annotations are provided. An
advantage of our method is that it can naturally and automatically derive bounds that
depend on the size of cyclic data structures, as demonstrated in Section 5.

There are also other type-based approaches to bound analysis. They are based on linear
dependent types [28, 29] and type annotations [12, 31]. Cicek et al. [11] study a type system
for incremental complexity. Moreover, there are analyses for functional programs that are
based on solving and deriving (potentially higher-order) recurrence relations [6, 13]. None
of these analysis systems can deal with side-effects and most have only basic support for
automation.

Another research direction is to apply techniques from term rewriting to complexity
analysis [33, 8, 5]; sometimes in combination with amortized analysis [24]. However, existing
techniques seem to be restricted to purely functional programs and time complexity.

Approaches to resource analysis based on abstract interpretation [1, 3, 7, 10, 15, 16, 35]
focus on bounds that depend on integers. There are techniques that take into account
mutable heap structures by abstracting their sizes with ghost variables [2]. However, it is
unclear how well these techniques scale to data with cycles, as well as with nested data
structures that are potentially stored in arrays.

8 Conclusion

We have extended automatic amortized resource analysis to determine bounds for programs
whose resource consumption depends on data stored in mutable heap cells. Moreover, we
have followed the design philosophy of the ML type system in the sense that we refrain from
tracking effects within the type system itself. In order to track resource usage that depends
on the size of data stored in mutable cells, we require that the potential annotations for the
types of these cells are invariant during the execution. We used a primitive swap operation
that allows us to make use of the potential in references and arrays. The type rules ensure
that we “swap in” data with the same potential annotation when we extract potential from
a memory cell. To prove the non-trivial soundness theorem, we have used memory typing,
which allows us to track relevant heap cells while not falling victim to aliasing.

Our analysis preserves the benefits of AARA such as compositionality and reduction
of type inference to linear constraint solving. However, our work is also a departure from
previous work in the sense that we extend the programming language with a new construct
that guides the resource bound analysis instead of purely focusing on making the analysis
work well for existing code. The additional burden that we put on the programmer is
balanced by an elegant, clear, and transparent type system. A user of our system only needs
to remember one simple rule: if the resource usage of the program depends on the size of
dereferenced data, then the data has to be dereferenced using swap.

References
1 Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. Cost

Analysis of Java Bytecode. In 16th Euro. Symp. on Prog. (ESOP’07), pages 157–172, 2007.
2 Elvira Albert, Richard Bubel, Samir Genaim, Reiner Hähnle, and Guillermo Román-Díez.

Verified Resource Guarantees for Heap Manipulating Programs. In 15th Int. Conf. on
Fundamental Approaches to Software Engineering (FASE’12), pages 130–145, 2012.

3 Elvira Albert, Jesús Correas Fernández, and Guillermo Román-Díez. Non-cumulative Re-
source Analysis. In Tools and Algorithms for the Construction and Analysis of Systems –
21st Int. Conf., (TACAS’15), pages 85–100, 2015.

FSCD 2017

26:16 Arrays and References in Resource Aware ML

4 Robert Atkey. Amortised Resource Analysis with Separation Logic. In 19th Euro. Symp.
on Prog. (ESOP’10), pages 85–103, 2010.

5 Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the Complexity of Functional
Programs: Higher-Order Meets First-Order. In 29th Int. Conf. on Functional Programming
(ICFP’15), 2012.

6 Ralph Benzinger. Automated Higher-Order Complexity Analysis. Theor. Comput. Sci.,
318(1-2):79–103, 2004.

7 Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. ABC: Algebraic
Bound Computation for Loops. In Logic for Prog., AI., and Reasoning – 16th Int. Conf.
(LPAR’10), pages 103–118, 2010.

8 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. Al-
ternating Runtime and Size Complexity Analysis of Integer Programs. In Tools and Alg.
for the Constr. and Anal. of Systems – 20th Int. Conf. (TACAS’14), pages 140–155, 2014.

9 Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional Certified Re-
source Bounds. In 36th Conference on Programming Language Design and Implementation
(PLDI’15), 2015. Artifact submitted and approved.

10 Pavol Cerný, Thomas A. Henzinger, Laura Kovács, Arjun Radhakrishna, and Jakob Zwirch-
mayr. Segment Abstraction for Worst-Case Execution Time Analysis. In 24th European
Symposium on Programming (ESOP’15), pages 105–131, 2015.

11 Ezgi Çiçek, Deepak Garg, and Umut A. Acar. Refinement Types for Incremental Com-
putational Complexity. In 24th European Symposium on Programming (ESOP’15), pages
406–431, 2015.

12 Nils Anders Danielsson. Lightweight Semiformal Time Complexity Analysis for Purely
Functional Data Structures. In 35th ACM Symp. on Principles Prog. Langs. (POPL’08),
pages 133–144, 2008.

13 Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. Denotational Cost Semantics for
Functional Languages with Inductive Types. In 29th Int. Conf. on Functional Programming
(ICFP’15), 2012.

14 Antonio Flores-Montoya. Upper and Lower Amortized Cost Bounds of Programs Expressed
as Cost Relations. In Formal Methods – 21st International Symposium (FM’16), pages 254–
273, 2016.

15 Antonio Flores-Montoya and Reiner Hähnle. Resource Analysis of Complex Programs
with Cost Equations. In Programming Languages and Systems – 12th Asian Symposiu
(APLAS’14), pages 275–295, 2014.

16 Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: Precise and Effi-
cient Static Estimation of Program Computational Complexity. In 36th ACM Symp. on
Principles of Prog. Langs. (POPL’09), pages 127–139, 2009.

17 Sumit Gulwani and Florian Zuleger. The Reachability-Bound Problem. In Conf. on Prog.
Lang. Design and Impl. (PLDI’10), pages 292–304, 2010.

18 Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized Resource
Analysis. In 38th Symposium on Principles of Programming Languages (POPL’11), 2011.

19 Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards Automatic Resource Bound
Analysis for OCaml. In 44th Symposium on Principles of Programming Languages
(POPL’17), 2017.

20 Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polynomial Po-
tential. In 19th European Symposium on Programming (ESOP’10), 2010.

21 Jan Hoffmann and Zhong Shao. Type-Based Amortized Resource Analysis with Inte-
gers and Arrays. In 12th International Symposium on Functional and Logic Programming
(FLOPS’14), 2014.

B. Lichtman and J. Hoffmann 26:17

22 Martin Hofmann and Steffen Jost. Static Prediction of Heap Space Usage for First-Order
Functional Programs. In 30th ACM Symp. on Principles of Prog. Langs. (POPL’03), pages
185–197, 2003.

23 Martin Hofmann and Steffen Jost. Type-Based Amortised Heap-Space Analysis. In 15th
Euro. Symp. on Prog. (ESOP’06), pages 22–37, 2006. doi:10.1007/11693024_3.

24 Martin Hofmann and Georg Moser. Amortised Resource Analysis and Typed Polynomial
Interpretations. In Rewriting and Typed Lambda Calculi (RTA-TLCA;14), pages 272–286,
2014.

25 Martin Hofmann and Georg Moser. Multivariate Amortised Resource Analysis for Term
Rewrite Systems. In 13th International Conference on Typed Lambda Calculi and Applica-
tions (TLCA’15), pages 241–256, 2015.

26 Martin Hofmann and Dulma Rodriguez. Efficient Type-Checking for Amortised Heap-Space
Analysis. In 18th Conf. on Comp. Science Logic (CSL’09). LNCS, 2009.

27 Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static Deter-
mination of Quantitative Resource Usage for Higher-Order Programs. In 37th ACM Symp.
on Principles of Prog. Langs. (POPL’10), pages 223–236, 2010.

28 Ugo Dal Lago and Marco Gaboardi. Linear Dependent Types and Relative Completeness.
In 26th IEEE Symp. on Logic in Computer Science (LICS’11), pages 133–142, 2011.

29 Ugo Dal Lago and Barbara Petit. The Geometry of Types. In 40th ACM Symp. on
Principles Prog. Langs. (POPL’13), pages 167–178, 2013.

30 Benjamin Lichtman and Jan Hoffmann. Arrays and references in resource aware ml. Tech-
nical report, Carnegie Mellon University, 2017.

31 Ravichandhran Madhavan, Sumith Kulal, and Viktor Kuncak. Contract-based resource
verification for higher-order functions with memoization. In 44th Symposium on Principles
of Programming Languages POPL’17, 2017.

32 Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3: A linear language with locations. In
Typed Lambda Calculi and Applications: 7th International Conference, TLCA 2005, Nara,
Japan, April 21-23, 2005. Proceedings, pages 293–307, 2005.

33 Lars Noschinski, Fabian Emmes, and Jürgen Giesl. Analyzing Innermost Runtime Com-
plexity of Term Rewriting by Dependency Pairs. J. Autom. Reasoning, 51(1):27–56, 2013.

34 Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The MIT
Press, 2004.

35 Moritz Sinn, Florian Zuleger, and Helmut Veith. A Simple and Scalable Approach to Bound
Analysis and Amortized Complexity Analysis. In Computer Aided Verification – 26th Int.
Conf. (CAV’14), pages 743–759, 2014.

36 Frederick Smith, David Walker, and J. Gregory Morrisett. Alias types. In Proceedings of
the 9th European Symposium on Programming Languages and Systems, ESOP’00, pages
366–381, London, UK, UK, 2000. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=645394.651903.

37 Pedro B. Vasconcelos, Steffen Jost, Mário Florido, and Kevin Hammond. Type-Based
Allocation Analysis for Co-recursion in Lazy Functional Languages. In 24th European
Symposium on Programming (ESOP’15), pages 787–811, 2015.

FSCD 2017

http://dx.doi.org/10.1007/11693024_3
http://dl.acm.org/citation.cfm?id=645394.651903
http://dl.acm.org/citation.cfm?id=645394.651903

26:18 Arrays and References in Resource Aware ML

A Rules Defining the Big-Step Operational Semantics

We use n to denote the unary representation of the number n ∈ N (as defined in Section 3)
for use in the rules for array operations. For example, 0 = zero, 1 = succ(zero), and so on.

V (x) = `

F, V,HM`x ⇓ (`,H) |Mvar (E:Var)
F, V,HM`() ⇓ (Null, H) |M triv (E:Triv)

F, V,HM`true ⇓ (tt, H) |M true (E:True)
F, V,HM`false ⇓ (ff, H) |M false (E:False)

(f, ~y, ef) ∈ F F, [y1 7→ V (x1), · · · , yn 7→ V (xn)], HM`ef ⇓ (v,H ′) | (q, q′)
F, V,HM`f(x1, . . . , xn) ⇓ (v,H ′) |M funn

1 · (q, q′) ·M funn

2
(E:Fun)

F, V,HM`e1 ⇓ (v1, H1) | (q, q′) F, V [x 7→ v1], H1M`e2 ⇓ (v2, H2) | (p, p′)
F, V,HM`let x = e1 in e2 ⇓ (v2, H2) |M let

1 · (q, q′) ·M let
2 · (p, p′) ·M let

3
(E:Let)

ci ∈ CID v = (constrci , V (x1), . . . , V (xk)) H ′ = H, ` 7→ v ` /∈ dom(H)
F, V,HM`ci 〈x1, . . . , xk〉 ⇓ (`,H ′) |Mcons (E:Constr)

H(V (x)) = (constrci , v1, . . . , vk) F, V [x1 7→ v1, . . . , xk 7→ vk], HM`e1 ⇓ (v,H ′) | (q, q′)
F, V,HM`match x with ci 〈x1, . . . , xk〉 ⇒ e1 | e2 ⇓ (v,H ′) |MmatT

1 · (q, q′) ·MmatT
2

(E:Mat1)

H(V (x)) 6= (constrci , v1, . . . , vk) F, V,HM`e2 ⇓ (v,H ′) | (q, q′)
F, V,HM`match x with ci 〈x1, . . . , xk〉 ⇒ e1 | e2 ⇓ (v,H ′) |MmatF

1 · (q, q′) ·MmatF
2

(E:Mat2)

V (x) = v′ V ′ = V \ x F, V ′[x1 7→ v′, x2 7→ v′], HM`e ⇓ (v,H ′) | (q, q′)
F, V,HM`share x as (x1, x2) in e ⇓ (v,H ′) | (q, q′)

(E:Share)

H ′ = H, ` 7→ V (x) ` 6∈ dom(H)
F, V,HM` ref x ⇓ (`,H ′) |M ref (E:Ref)

` = H(V (x1)) H ′ = H[V (x1) 7→ V (x2)]
F, V,HM`swap(x1, x2) ⇓ (`,H ′) |M swap (E:Swap)

` = H(V (x))
F, V,HM` !x ⇓ (`,H) |Mdref (E:DRef)

H ′ = H[V (x1) 7→ V (x2)]
F, V,HM`x1 := x2 ⇓ (Null, H) |Massign (E:Assign)

H(V (x)) = n F, V,HM`e ⇓ (v,H ′) | (q, q′)
H ′′ = H ′, ` 7→ (σ, n), `1 7→ v, . . . , `n 7→ v ∀i : σ(i) = `i+1 `, `1, . . . , `n 6∈ dom(H)

F, V,HM`create(x, e) ⇓ (`,H ′′) |Mcreate · (q, q′)n (E:Create)

H(V (x1)) = (σ, n) H(V (x2)) = i 0 ≤ i < n

F, V,HM`get(x1, x2) ⇓ (H(σ(i)), H) |Mget (E:Get)

H(V (x1)) = (σ, n) H(V (x2)) = i 0 ≤ i < n H ′ = H[σ(i) 7→ V (x3)]
F, V,HM`set(x1, x2, x3) ⇓ (Null, H ′) |M set (E:Set)

H(V (x1)) = (σ, n) H(V (x2)) = i 0 ≤ i < n
v = H(σ(i)) H ′ = H[σ(i) 7→ V (x3)]

F, V,HM`aswap(x1, x2, x3) ⇓ (v,H ′) |Maswap (E:Aswap)

H(V (x)) = (σ, n) H ′ = H, ` 7→ n ` 6∈ dom(H)
F, V,HM`length(x) ⇓ (`,H ′) |M len (E:Len)

B. Lichtman and J. Hoffmann 26:19

B Rules Defining the Simple Typing Judgement

(T:True)
Σ; ∅ ` true : B

(T:False)
Σ; ∅ ` false : B

(T:Triv)
Σ; ∅ ` () : 1

(T:Var)
Σ;x:T ` x : T

n ∈ N (T:Nat)
Σ; ∅ ` n : N

Σ(f) = (T1, . . . , Tn)→ T
(T:Fun)

Σ; Γ, x1:T1, . . . , xn:Tn ` f(x1, . . . , xn) : T

Σ; Γ1 ` e1 : T ′ Σ; Γ2, x:T ′ ` e2 : T
(T:Let)

Σ; Γ1,Γ2 ` let x = e1 in e2 : T

c ∈ CID
T = µX.{· · · | ci:(T ′1, . . . , T ′k) | · · · } ∀1 ≤ j ≤ k. Tj = T ′j ∨ (Tj = T ∧ T ′j = X)

Σ;x1:T1, . . . , xk:Tk ` ci (x1, . . . , xk) : T
(T:Constr)

c ∈ CID T ′ = µX.{· · · | ci:(T ′1, . . . , T ′k) | · · · }
Σ; Γ, x1:[T ′/X]T ′1, . . . , xk:[T ′/X]T ′k ` e1 : T Σ; Γ, x:T ′ ` e2 : T

Σ; Γ, x : T ′ ` match x with ci 〈x1, . . . , xk〉 ⇒ e1 | e2 : T
(T:Mat)

Σ; Γ ` e : T
(T:Weaken)

Σ; Γ, x:T ′ ` e : T
Σ; Γ, x1:T ′, x2:T ′ ` e : T

(T:Share)
Σ; Γ, x:T ′ ` share x as (x1, x2) in e : T

(T:Ref)
Σ;x:T ` ref x : T ref

(T:DRef)
Σ;x:T ref `!x : T

(T:Assign)
Σ;x1:T ref, x2:T ` x1 := x2 : 1

(T:Swap)
Σ;x1:T ref, x2:T ` swap(x1, x2) : T

(T:Create)
Σ;x1:N, x2:T ` create(x1, x2) : T array

(T:Get)
Σ;x1:T array, x2:N ` get(x1, x2) : T

(T:Set)
Σ;x1:T array, x2:N, x3:T ` set(x1, x2, x3) : 1

(T:Aswap)
Σ;x1:T array, x2:N, x3:T ` aswap(x1, x2, x3) : T

(T:Len)
Σ;x:T array ` length(x) : N

FSCD 2017

26:20 Arrays and References in Resource Aware ML

C Rules Defining the Annotated Typing Judgement

Σ; ∅ q
q+Mtrue

true : B
(L:True)

Σ; ∅ q
q+M false

false : B
(L:False)

Σ; ∅ q
q+Mtriv

() : 1
(L:Triv)

Σ;x:A q
q+Mvar

x : A
(L:Var)

(A1, . . . , An) q/q′

−−−→ A ∈ Σ(f)

Σ;x1:A1, . . . , xn:An
q′−M funn

2

q+M funn
1

f(x1, . . . , xn) : A
(L:Fun)

Σ; ∅ q
q+Mnat

n : N
(L:Nat)

Σ; Γ1 p

q−M let
1

e1 : A′ Σ; Γ2, x:A′
q′+M let

3

p−M let
2

e2 : A

Σ; Γ1,Γ2 q′
q let x = e1 in e2 : A

(L:Let)

c ∈ CID
A = µXP .{· · · | ci:(A′1, . . . , A′k) | · · · } ∀1 ≤ j ≤ k.Aj = A′j ∨ (Aj = A ∧A′j = X)

Σ;x1:A1, . . . , xk:Ak q
q+P [i]+Mcons

ci (x1, . . . , xk) : A
(L:Constr)

c ∈ CID A′ = µXP .{· · · | ci:(A′1, . . . , A′k) | · · · }

Σ; Γ, x1:[A′/X]A′1, . . . , xk:[A′/X]A′k q′+MMatT
2

q+P [i]−MmatT
1

e1 : A Σ; Γ, x:A′
q′+MmatF

2

q−MmatF
1

e2 : A

Σ; Γ, x : A′
q′
q match x with ci 〈x1, . . . , xk〉 ⇒ e1 | e2 : A

(L:Mat)

Σ; Γ
q′
q
e : A

Σ; Γ, x:A′
q′
q
e : A

(L:Weaken)
Σ; Γ, x1:A1, x2:A2 q′

q
e : A A′ . (A1, A2)

Σ; Γ, x:A′
q′
q share x as (x1, x2) in e : A

(L:Share)

Σ; Γ
p′
p
e : A q ≥ p q − p ≥ q′ − p′

Σ; Γ
q′
q
e : A

(L:Relax)
Σ;x:A q

q+Mref

ref x : A ref
(L:Ref)

|A′| = |A| A . (A,A)

Σ;x:A′ ref q
q+Mdref

!x : A
(L:DRef)

Σ; Γ, x1:A ref, x2:A q
q+Massign

x1 := x2 : 1
(L:Assign)

Σ;x:A arrayp
q

q+M len

length(x) : Np
(L:Len)

Σ;x1:A ref, x2:A q
q+Mswap

swap(x1, x2) : A
(L:Swap)

Σ; · 0
p−r

e : A

Σ;x:Np
q

q+Mcreate

create(x, e) : A arrayr
(L:Create)

|A′| = |A| A . (A,A)

Σ;x1:A′ arrayp, x2:Nr
q

q+Mget

get(x1, x2) : A
(L:Get)

Σ;x1:A arrayp, x2:Nr, x3:A q
q+Mset

set(x1, x2, x3) : 1
(L:Set)

Σ;x1:A arrayp, x2:Nr, x3:A q
q+Maswap

aswap(x1, x2, x3) : A
(L:Aswap)

	Introduction
	Language Definition and Semantics
	Annotated Types for Linear Resource Analysis
	Soundness
	Graphs and Graph Search
	Type Inference for Linear and Polynomial Bounds and Higher-Order Functions
	Related Work
	Conclusion
	Rules Defining the Big-Step Operational Semantics
	Rules Defining the Simple Typing Judgement
	Rules Defining the Annotated Typing Judgement

