
On Supergraphs Satisfying CMSO Properties∗

Mateus de Oliveira Oliveira

Department of Informatics, University of Bergen, Bergen, Norway
mateus.oliveira@uib.no

Abstract
Let CMSO denote the counting monadic second order logic of graphs. We give a constructive
proof that for some computable function f , there is an algorithm A that takes as input a CMSO
sentence ϕ, a positive integer t, and a connected graph G of maximum degree at most ∆, and
determines, in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t), whether G has a supergraph G′ of treewidth at
most t such that G′ |= ϕ.

The algorithmic metatheorem described above sheds new light on certain unresolved questions
within the framework of graph completion algorithms. In particular, using this metatheorem, we
provide an explicit algorithm that determines, in time f(d) ·2O(∆·d) · |G|O(d), whether a connected
graph of maximum degree ∆ has a planar supergraph of diameter at most d. Additionally,
we show that for each fixed k, the problem of determining whether G has an k-outerplanar
supergraph of diameter at most d is strongly uniformly fixed parameter tractable with respect
to the parameter d.

This result can be generalized in two directions. First, the diameter parameter can be replaced
by any contraction-closed effectively CMSO-definable parameter p. Examples of such parameters
are vertex-cover number, dominating number, and many other contraction-bidimensional para-
meters. In the second direction, the planarity requirement can be relaxed to bounded genus, and
more generally, to bounded local treewidth.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,
F.4 Mathematical Logic and Formal Languages

Keywords and phrases CMSO Logic, Algorithmic Metatheorems, Graph Completion, Bidimen-
sionality

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.33

1 Introduction

A parameterized problem L ⊆ Σ∗ × N is said to be fixed parameter tractable (FPT) if there
exists a function f : N → N such that for each (x, k) ∈ Σ∗ × N, one can decide whether
(x, k) ∈ L in time f(k) · |x|O(1), where |x| is the size of x [10]. Using non-constructive
methods derived from Robertson and Seymour’s graph minor theory, one can show that
certain problems can be solved in time f(k) · |x|O(1) for some function f : N→ N. The caveat
is that the function f arising from these non-constructive methods is often not known to be
computable. Interestingly, for some problems it is not even clear how to obtain algorithms
running in time f1(k) · |x|f2(k) for some computable functions f1 and f2. In this work we will
use techniques from automata theory and structural graph theory to provide constructive FPT
and XP algorithms for problems for which only non-constructive parameterized algorithms
were known.

∗ This work was supported by the Bergen Research Foundation.

© Mateus de Oliveira Oliveira;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 On Supergraphs Satisfying CMSO Properties

The counting monadic second-order logic of graphs (CMSO) extends first order logic
by allowing quantifications over sets of vertices and sets of edges, and by introducing the
notion of modular counting predicates. This logic is expressive enough to define several
interesting graph properties, such as Hamiltonicity, 3-colorability, connectivity, planarity,
fixed genus, minor embeddability, etc. Additionally, when restricted to graphs of constant
treewidth, CMSO logic is able to define precisely those properties that are recognizable by
finite state tree-automata operating on encodings of tree-decompositions, or equivalently,
those properties that can be described by equivalence relations with finite index [7, 1, 3, 4].

The expressiveness of CMSO logic has had a great impact in algorithmic theory due
to Courcelle’s model-checking theorem [7]. This theorem states that for some computable
function f : N2 → N, one can determine in time1 f(|ϕ|, t) · |G| whether a given graph G of
treewidth at most t satisfies a given CMSO sentence ϕ. As a consequence of Courcelle’s
theorem, many combinatorial problems, such as Hamiltonicity or 3-colorability, which are
NP-hard on general graphs, can be solved in linear time on graphs of constant treewidth. In
this work we will consider a class problems on graphs of constant treewidth which cannot be
directly addressed via Courcelle’s theorem, either because it is not clear how to formulate
the set of positive instances of such a problem as a CMSO-definable set, or because although
the set of positive instances is CMSO-definable, it is not clear how to explicitly construct
a CMSO sentence ϕ defining such set. For instance, sets of graphs that are closed under
minors very often fall in the second category due to Robertson and Seymour’s graph minor
theorem.

1.1 Main Result
Let ϕ be a CMSO sentence, and t be a positive integer. We say that a graph G′ is a
(ϕ, t)-supergraph of a graph G if the following conditions are satisfied: G′ satisfies ϕ, G′ has
treewidth at most t, and G′ is a supergraph of G (possibly containing more vertices than G).

In our main result, Theorem 14, we devise an algorithm A that takes as input a CMSO
sentence ϕ, a positive integer t, and a connected graph G of maximum degree ∆, and
determines in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t) whether G has a (ϕ, t)-supergraph. We note
that our algorithm determines the existence of such a (ϕ, t)-supergraph G′ without the need
of necessarily constructing G′. Therefore, no bound on the size of a candidate supergraph G′
is imposed.

In the next three sub-sections we show how Theorem 14 can be used to provide partial
solutions to certain long-standing open problems in parameterized complexity theory.

1.2 Planar Diameter Improvement
In the planar diameter improvement problem (PDI), we are given a graph G, and
a positive integer d, and the goal is to determine whether G has a planar supergraph G′
of diameter at most d. Note that the set of YES instances for the PDI problem is closed
under minors. In other words, if G has a planar supergraph of diameter at most d, then any
minor H of G also has such a supergraph. Therefore, using non-constructive arguments from
Robertson and Seymour’s graph minor theory [17, 18] in conjunction with the fact planar
graphs of constant diameter have constant treewidth, one can show that for each fixed d,
there exists an algorithm Ad which determines in linear time whether a given G has diameter

1 |G| denotes the number of vertices in G, and |ϕ|, the number of symbols in ϕ.

M. de Oliveira Oliveira 33:3

at most d. The problem is that the non-constructive techniques mentioned above provide
us with no clue about what the algorithm Ad actually is. This problem can be partially
remedied using a technique called effectivization by self-reduction introduced by Fellows and
Langston [13, 10]. Using this technique one can show that for some function f : N → N,
there exists a single algorithm A which takes a graph G and a positive integer d as input,
and determines in time f(d) · |G|O(1) whether G has a planar supergraph of diameter at most
d. The caveat is that the function f : N→ N bounding the influence of the parameter d in
the running time of the algorithm mentioned above is not known to be computable.

Obtaining a fixed parameter tractability result for the PDI problem with a computable
function f is a notorious and long-standing open problem in parameterized complexity theory
[10, 12, 9]. Indeed, when it comes to explicit algorithms, the status of the PDI problem is
much more elusive. As remarked in [5], even the problem of determining whether PDI can
be solved in time f1(d) · |G|f2(d) for computable functions f1, f2 : N→ N is open.

Using Theorem 14 we provide an explicit algorithm that solves the PDI problem for
connected graphs in time f(d) · 2O(∆·d) · |G|O(d) where f : N→ N is a computable function,
and ∆ is the maximum degree of G. This result settles an open problem stated in [5] in the
case in which the input graph is connected and has bounded (even logarithmic) degree. We
note that our algorithm imposes no restriction on the degree of a prospective supergraph G′.

1.3 k-Outerplanar Diameter Improvement
A graph is 1-outerplanar if it can be embedded in the plane in such a way that all vertices
lie in the outer-face of the embedding. A graph is k-outerplanar if it can be embedded in the
plane in such a way that that deleting all vertices in the outer-face of the embedding yields a
(k − 1)-outerplanar graph. The k-outerplanar diameter improvement problem (k-OPDI) is
the straightforward variant of PDI in which the completion is required to be k-outerplanar
instead of planar. In [5] Cohen at al. provided an explicit polynomial time algorithm for the
1-OPDI problem. The complexity of the k-outerplanar diameter improvement problem was
left open for k ≥ 2. Using Theorem 14 we show that the k-OPDI problem can be solved in
time f(k, d) · 2O(∆·k) · |G|O(k) where f : N×N→ N is a computable function. In other words,
for each fixed k, the k-outerplanar diameter improvement problem is strongly uniformly fixed
parameter tractable with respect to the diameter parameter d for bounded degree connected
input graphs.

1.4 Contraction-Closed Parameters
A graph parameter is a function p that associates a non-negative integer with each graph. We
say that such a parameter is contraction-closed if p(G) ≤ p(G′) whenever G is a contraction
of G′. For instance, the diameter of a graph is clearly a contraction-closed parameter. We
say that a graph parameter p is effectively CMSO-definable if there exists a computable
function α, and an algorithm that takes a positive integer k as input and constructs a CMSO
formula ϕk that is true on a graph G if and only if p(G) ≤ k.

The results described in the previous subsections can be generalized in two directions.
First, the diameter parameter can be replaced by any effectively CMSO-definable contraction
closed parameter that is unbounded on Gamma graphs. These graphs were defined in [15]
with the goal to provide a simplified exposition of the theory of contraction-bidimensionality.
In particular, many well studied parameters that arise often in bidimensionality theory
satisfy the conditions listed above. Examples of such parameters are the sizes of a minimum
vertex cover, feedback vertex set, maximal matching, dominating set, edge dominating set,

CSL 2017

33:4 On Supergraphs Satisfying CMSO Properties

connected dominating set etc. On the other direction, the planarity requirement can be
relaxed to CMSO definable graph properties that exclude some appex graph as a minor.
These properties are also known in the literature as bounded local-treewidth properties. For
instance, embeddability on surfaces of genus g, for fixed g, is one of such properties.

1.5 Proof Sketch And Organization of the Paper
In Section 2 we state some preliminary definitions. In Section 3 we define the notions of
concrete bags, and concrete tree decompositions. Intuitively, a concrete tree-decomposition
is an algebraic structure that represents a graph together with one of its tree decompositions.
Using such structures we are able to define infinite families of graphs via tree-automata
that accept infinite sets of tree decompositions. In particular, Courcelle’s theorem can be
transposed to this setting. More precisely, there is a computable function f such that for
each CMSO sentence ϕ and each t ∈ N, one can construct in time f(|ϕ|, t) a tree automaton
A(ϕ, t) which accept precisely those concrete tree decompositions of width at most t that
give rise to graphs satisfying ϕ (Theorem 4).

In Section 4 we define the notion of sub-decomposition of a concrete tree decomposition.
Intuitively, if a concrete tree decomposition T represents a graph G, then a sub-decomposition
of T represents a sub-graph of G. We show that given a tree-automaton A accepting a
set L(A) of concrete tree decompositions, one can construct a tree automaton Sub(A)
which accepts precisely those sub-decompositions of concrete tree decompositions in L(A)
(Theorem 6).

In Section 5, we introduce the main technical tool of this work. More specifically, we
show that for each connected graph G of maximum degree ∆, one an construct in time
2O(∆·t) · |G|O(t) a tree-automaton A(G, t) whose language L(A(G, t)) consists precisely of
those concrete tree decompositions of width at most t that give rise to G (Theorem 12).

In Section 6 we argue that the problem of determining whether G has a supergraph of
treewidth at most t satisfying ϕ is equivalent to determining whether the intersection of
L(A(G, t+ 1)) with L(Sub(A(ϕ, t+ 1))) is non-empty. By combining Theorems 4, 6 and 12,
we infer that this problem can be solved in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t) (Theorem 14).
Finally, in Section 7, we apply Theorem 14 to obtain explicit algorithms for several supergraph
problems involving contraction-closed parameters.

2 Preliminaries

For each n ∈ N, we let [n] = {1, ..., n}. We let [0] = ∅. For each finite set U , we let P(U)
denote the set of subsets of U . For each r ∈ N and each finite set U , we let P≤(U, r) = {U ′ ⊆
U | |U ′| ≤ r} be the set of subsets of U of size at most r, and P=(U, r) = {U ′ ⊆ U | |U ′| = r}
be the set of subsets of X of size precisely r. If A,A1, ..., Ak are sets, then we write
A = A1 ∪̇ A2 ∪̇...∪̇ Ak to indicate that Ai ∩ Aj = ∅ for i 6= j, and that A is the disjoint
union of A1, .., Ak.

Graphs. A graph is a triple G = (VG, EG, IncG) where VG is a set of vertices, EG is
a set of edges, and IncG ⊆ EG × VG is an incidence relation. For each e ∈ EG we let
endpts(e) = {v | IncG(e, v)} be the set of endpoints of e, and we assume that |endpts(e)| is
either 0 or 2. We note that our graphs are allowed to have multiple edges, but no loops. We
say that a graph H is a subgraph of G if VH ⊆ VG, EH ⊆ EG and IncH = IncG ∩ EH × VH .
Alternatively, we say that G is a supergraph of H. The degree of a vertex v ∈ VG is the
number d(v) of edges incident with v. We let ∆(G) denote the maximum degree of a vertex
of G.

M. de Oliveira Oliveira 33:5

A path in a graph G is a sequence v1e1v2...en−1vn where vi ∈ VG for i ∈ [n], ei ∈ EG for
i ∈ [n− 1], vi 6= vj for i 6= j, and {vi, vi+1} = endpts(ei) for each i ∈ [n− 1]. We say that G
is connected if for every two vertices v, v′ ∈ VG there is a path whose first vertex is v and
whose last vertex is v′.

Let G and H be graphs. An isomorphism from G to H is a pair of bijections µ =
(µ̇ : VG → VH , µ : EG → EH) such that for every e ∈ EG if endpts(e) = {v, v′} then
endpts(µ(e)) = {µ̇(v), µ̇(v′)}. We say that G and H are isomorphic if there is an isomorphism
from G to H.

Treewidth. A tree is an acyclic graph T containing a unique connected component. To
avoid confusion we may call the vertices of a tree “nodes” and call their edges “arcs”. We let
nodes(T) denote the set of nodes of T and arcs(T) denote its set of arcs. A tree decomposition
of a graph G is a pair (T, β) where T is a tree and β : nodes(T)→ P(VG) is a function that
labels nodes of T with subsets of vertices of G in such a way that the following conditions
are satisfied.
1.

⋃
u∈nodes(T) β(u) = VG

2. For every e ∈ EG, there exists a node u ∈ nodes(T) such that endpts(e) ⊆ β(u)
3. For every v ∈ VG, the set Tv = {u ∈ nodes(T) | v ∈ β(u)}, i.e., the set of nodes of T

whose corresponding bags contain v, induces a connected subtree of T .

The width of a tree decomposition (T, β) is defined as maxu∈nodes(T)|β(u)| − 1, that is,
the maximum bag size minus one. The treewidth of a graph G, denoted by tw(G), is the
minimum width of a tree decomposition of G.

CMSO Logic. The counting monadic second-order logic of graphs, here denoted by CMSO,
extends first order logic by allowing quantifications over sets of vertices and edges, and
by introducing the notion of modular counting predicates. More precisely, the syntax of
CMSO logic includes the logical connectives ∨,∧,¬,⇔,⇒, variables for vertices, edges, sets
of vertices and sets of edges, the quantifiers ∃,∀ that can be applied to these variables, and
the following atomic predicates:
1. x ∈ X where x is a vertex variable and X a vertex-set variable;
2. y ∈ Y where y is an edge variable and Y an edge-set variable;
3. Inc(x, y) where x is a vertex variable, y is an edge variable, and the interpretation is that

the edge x is incident with the edge y.
4. cards,r(Z) where 0 ≤ s < r, r ≥ 2, Z is a vertex-set or edge-set variable, and the

interpretation is that |Z| = s (mod r);
5. equality of variables representing vertices, edges, sets of vertices and sets of edges.

A CMSO sentence is a CMSO formula without free variables. If ϕ is a CMSO sentence, then
we write G |= ϕ to indicate that G satisfies ϕ.

Terms. Let Σ be a finite set. The set Ter(Σ) of terms over Σ is inductively defined as
follows.
1. If a ∈ Σ, then a ∈ Ter(Σ).
2. If a ∈ Σ, and t ∈ Ter(Σ), then a(t) ∈ Ter(Σ).
3. If a ∈ Σ, and t1, t2 ∈ Ter(Σ), then a(t1, t2) ∈ Ter(Σ).

Note that the alphabet Σ is unranked and the symbols in Σ may be regarded as function
symbols or arity 0, 1 or 2. The set of positions of a term t = a(t1, ..., tr) ∈ Ter(Σ) is defined

CSL 2017

33:6 On Supergraphs Satisfying CMSO Properties

as follows.

Pos(t) = {λ} ∪
⋃

j∈{1,...,r}

{jp | p ∈ Pos(tj)}.

Note that if t = a for some a ∈ Σ, then Pos(t) = {λ}. If p, pj ∈ Pos(t) where j ∈ {1, 2},
then we say that pj is a child of p. Alternatively, we say that p is the parent of pj. We say
that p is a leaf if it has no children. We let τ(t) be the tree that has Pos(t) as nodes and
{{p, pj} | j ∈ {1, 2}, p, pj ∈ Pos(t)} as arcs. We say that a subset P ⊆ Pos(t) is connected if
the sub-tree of τ(t) induced by P is connected. If P is connected, then we say that a position
p ∈ P is the root of P if the parent of p does not belong to P .

If t = a(t1, ..., tr) is a term in Ter(Σ) for r ∈ {0, 1, 2}, and p ∈ Pos(t), then the symbol
t[p] at position p is inductively defined as follows. If p = λ, then t[p] = a. On the other hand,
if p = jp′ where j ∈ {1, 2}, then t[p] = tj [p′].

Tree Automata. Let Σ be a finite set of symbols. A bottom-up tree-automaton over Σ is a
tuple A = (Q,Σ, F,∆) where Q is a set of states, F ⊆ Q a set of final states, and ∆ is a set
of transitions of the form (q1, ..., qr, a, q) with a ∈ Σ, 0 ≤ r ≤ 2, and q1, ..., qr, q ∈ Q. The
size of A, which is defined as |A| = |Q|+ |∆|, measures the number of states in Q plus the
number of transitions in ∆. The set L(A, q, i) of all terms reaching a state q ∈ Q in depth at
most i is inductively defined as follows.

L(A, q, 1) = {a | (a, q) ∈ ∆}

L(A, q, i) = L(A, q, i− 1) ∪
{a(t1, ..., tr) | r ∈ {1, 2}, and ∃(q1, ..., qr, a, q) ∈ ∆, tj ∈ L(A, qj , i− 1)}

We denote by L(A, q) the set of all terms reaching state q in finite depth, and by L(A)
the set of all terms reaching some final state in F .

L(A, q) =
⋃
i∈N
L(A, q, i) L(A) =

⋃
q∈F
L(A, q) (1)

We say that the set L(A) is the language accepted by A.
Let π : Σ → Σ′ be a map between finite sets of symbols Σ and Σ′. Such mapping can be

homomorphically extended to a mapping π : Ter(Σ)→ Ter(Σ′) between terms by setting
π(t)[p] = π(t[p]) for each position p ∈ Pos(t). Additionally, π can be further extended to a
set of terms L ⊆ Ter(Σ) by setting π(L) = {π(t) | t ∈ Ter(Σ)}. Below we state some well
known closure and decidability properties for tree automata.

I Lemma 1 (Properties of Tree Automata [6]). Let Σ and Σ′ be finite sets of symbols. Let
A1 and A2 be tree automata over Σ, and π : Σ → Σ′ be a mapping.
1. One can construct in time O(|A1| · |A2|) a tree automaton A1∩A2 such that L(A1∩A2) =
L(A1) ∩ L(A2).

2. One can determine whether L(A1) 6= ∅ in time |A1|O(1).
3. One can construct in time O(|A1|) a tree automaton π(A1) such that L(π(A1)) =

π(L(A1)).

3 Concrete Tree Decompositions

A t-concrete bag is a pair (B, b) where B ⊆ [t], and b ⊆ B with b = ∅ or |b| = 2. We note
that B is allowed to be empty. We let B(t) be the set of all t-concrete bags. Note that

M. de Oliveira Oliveira 33:7

|B(t)| ≤ t2 · 2t. We regard the set B(t) as a finite alphabet which will be used to construct
terms representing tree decompositions of graphs.

A t-concrete tree decomposition is a term T ∈ Ter(B(t)). We let T[p] = (T[p].B,T[p].b)
be the t-concrete bag at position p of T. For each s ∈ [t], we say that a subset P ⊆ Pos(T)
is s-maximal if the following conditions are satisfied.
1. P is connected in Pos(T).
2. s ∈ T[p].B for every p ∈ P .
3. If P ′ is a connected subset of Pos(T) and s ∈ T[p].B for every s ∈ P ′, then P ′ ⊆ P .

Note that if P and P ′ are s-maximal then either P = P ′, or P ∩ P ′ = ∅. Additionally,
p ∈ Pos(T) and each s ∈ T[p].B, there exists a unique subset P ⊆ Pos(T) such that P is
s-maximal and p ∈ P . We denote this unique set by P (p, s).

I Definition 2. Let T ∈ Ter(B(t)). The graph G(T) associated with T is defined as follows.
1. VG(T) = {vs,P | s ∈ [t], P ⊆ Pos(T), P is s-maximal}.
2. EG(T) = {ep | p ∈ Pos(T), b 6= ∅}.
3. IncG(T) = {(ep, vs,P (p,s)) | ep ∈ EG(T), s ∈ T[p].b}.

Intuitively, a t-concrete tree decomposition may be regarded as a way of representing a
graph together with one of its tree decompositions. This idea is widespread in texts dealing
with recognizable properties of graphs [3, 2, 8, 11, 14]. Within this framework it is customary
to define a bag of width t as a graph with at most t vertices together with a function that
labels the vertices of these graphs with numbers from {1, ..., t}. Our notion of t-concrete bag,
on the other hand, may be regarded as a representation of a graph with at most t vertices
injectively labeled with numbers from {1, ...t} and at most one edge. Within this point of
view, the representation used here is a syntactic restriction of the former. On the other hand,
any decomposition which uses bags with arbitrary graphs of size t can be converted into a
t-concrete decomposition, by expanding each bag into a sequence of t2 concrete bags. The
following observation is immediate, using the fact that if a graph has treewidth t, then it has
a rooted tree decomposition in which each node has at most two children [11].

I Observation 3. A graph G has treewidth t if and only if there exists some (t+ 1)-concrete
tree decomposition T ∈ Ter(B(t+ 1)) such that G(T) is isomorphic to G.

The next theorem may be regarded as a variant of Courcelle’s theorem [8].

I Theorem 4 (Courcelle’s Theorem). There exists a computable function f : N → N such
that for each CMSO sentence ϕ, and each t ∈ N, there is a tree-automaton A(ϕ, t) accepting
the following tree language.

L(A(ϕ, t)) = {T ∈ Ter(B(t)) | G(T) |= ϕ}. (2)

4 Sub-Decompositions

In this section we introduce the notion of sub-decompositions of a t-concrete decomposition.
Intuitively, if a t-concrete tree decomposition T represents a graph G then sub-decompositions
of T represent subgraphs of G. The main result of this section states that given a tree
automaton A over B(t), one can efficiently construct a tree automaton Sub(A) over B(t)
which accepts precisely those sub-decompositions of t-concrete tree decompositions in L(A).

We say that a t-concrete bag (B, b) is a sub-bag of a t-concrete bag (B′, b′) if B ⊆ B′

and b ⊆ b′.

CSL 2017

33:8 On Supergraphs Satisfying CMSO Properties

I Definition 5. We say that a t-concrete tree decomposition T ∈ Ter(B(t)) is a sub-
decomposition of a t-concrete tree decomposition T′ ∈ Ter(B(t)) if the following conditions
are satisfied.
S1. Pos(T) = Pos(T′).
S2. For each p ∈ Pos(T), T[p] is a sub-bag of T′[p].
S3. For each p, pj ∈ Pos(T), and for each s ∈ [t], if s ∈ T′[p].B and s ∈ T′[pj].B, then

s /∈ T[p].B if and only if s /∈ T[pj].B.

The following theorem states that sub-decompositions of T are in one to one correspond-
ence with subgraphs of G(T).

I Theorem 6. Let G and G′ be a graphs and let T′ ∈ Ter(B(t)) be a t-concrete tree
decomposition of G′. Then G is a subgraph of G′ if and only if there exists some T ∈ Ter(B(t))
such that T is a sub-decomposition of T′ with G(T) = G.

Proof.
1. Let G be a subgraph of G(T′). We show that there exists a sub-decomposition T of

T′ such that G(T) = G. Since G is a subgraph of G(T), we have that VG ⊆ VG(T′),
EG ⊆ EG(T′), and IncG = IncG(T′) ∩EG × VG. We define T by setting T[p] as follows for
each p ∈ Pos(T) = Pos(T′).
a. T[p].B = T′[p].B\{s | vs,P (p,s) ∈ VG(T′)\VG}.
b. T[p].b = ∅ if ep ∈ EG(T′)\EG and T[p].b = T′[p].b otherwise.
First, we note that vs,P ∈ VG(T) if and only if vs,P ∈ VG, ep ∈ EG(T) if and only if ep ∈ EG,
and (ep, vi,P) ∈ IncG(T) if and only if (ep, vi,P) ∈ VG. Therefore, G = G(T). We will
check that the t-concrete decomposition T defined above is indeed a sub-decomposition
of T′. In other words, we will verify that conditions S1, S2 and S3 above are satisfied.
The fact that S1 is satisfied is immediate, since we define T[p] for each p ∈ Pos(T′).
Therefore, Pos(T) = Pos(T′). Condition S2 is also satisfied, since by (a) and (b) we have
that T[p].B ⊆ T′[p].B and that T[p].b is either ∅, or equal to T′[p].b. Finally, condition
S3 is also satisfied, since (a) guarantees that for each number s ∈ [t], and each s-maximal
set P ⊆ Pos(T′), if s is removed from T′[p].B for some p ∈ P , then s is indeed removed
from T′[p].B for every p ∈ P .

2. For the converse, let T be a sub-decomposition of T′. We show that the graph G(T) is
a subgraph of G(T′). First, we note that condition S3 guarantees that for each s ∈ [t]
and each P ⊆ Pos(T), if P is s-maximal in T then P is s-maximal in T′. Therefore,
VG(T) ⊆ VG(T′). Now, Condition S2 guarantees that ep ∈ EG(T) implies that ep ∈ EG(T′).
Therefore, EG(T) ⊆ EG(T′). Finally, by definition (ep, vs,P) ∈ IncG(T) if and only if
s ∈ T[p].b for each p ∈ P . Since the fact that s ∈ T[p].b implies that s ∈ T′[p].b, we have
that (ep, vs,P) ∈ IncG(T) implies that (ep, vs,P) ∈ IncG(T′). Therefore, IncG(T) ⊆ IncG(T′).
Additionally, since (ep, vs,P (s,p)) ∈ IncG(T) for each ep ∈ EG(T) and each s ∈ T[p].b, we
have that IncG(T) = IncG(T′) ∩ EG(T) × VG(T). This shows that G(T) is a subgraph of
G(T′). J

The following theorem states that given a tree automaton A over B(t), one can efficiently
construct a tree automaton Sub(A) which accepts precisely those sub-decompositions of
t-concrete tree decompositions in L(A).

I Theorem 7 (Sub-Decomposition Automaton). Let A be a tree automaton over B(t). Then
one can construct in time 2O(t) ·|A| a tree automaton Sub(A) over B(t) accepting the following
language.

L(Sub(A)) = {T ∈ Ter(B(t)) | ∃T′ ∈ L(A) s.t. T is a sub-decomposition of T′}.

M. de Oliveira Oliveira 33:9

Proof. Let A = (Q,B(t), ∆, F) be a tree automaton over B(t). As a first step we create an
intermediate tree automaton A′ = (Q′,B(t), ∆′, F ′) which accepts the same language as A.
The tree automaton A′ is defined as follows.

Q′ = {qB | q ∈ Q, B ⊆ [t]} F ′ = {qB | q ∈ F, B ⊆ [t]}

∆′ = {(q1
B1
, ..., qrBr

, (B, b), qB) | (q1, ..., qr, (B, b), q) ∈ ∆, Bi ⊆ [t] for i ∈ [r]}.

Note that for each q ∈ Q, each B ⊆ [t], and each T ∈ Ter(B(t)), T reaches state qB in A′ if
and only if T reaches state q in A and T[λ].B = B, where T[λ] is the t-concrete bag at the
root of T. In particular, this implies that a term T belongs to L(A′) if and only if T ∈ L(A).

Now, consider the tree automaton Sub(A) = (Q′′,B(t), ∆′′, F ′′) over B(t) where

Q′′ = {qB,B′ | q ∈ Q,B ⊆ B′ ⊆ [t]} F ′′ = {qB,B′ | q ∈ F,B ⊆ B′ ⊆ [t]}

∆′′ = {(q1
B1,B′

1
, ..., qrBr,B′

r
, (B, b), qB,B′) | ∃(q1

B′
1
, ..., qrB′

r
, (B′, b′), qB′) ∈ ∆′ such that

Bi ⊆ B′i, B ⊆ B′,
(B, b) is a sub-bag of (B′, b′)
for each j ∈ [r], if s ∈ B′ ∧ s ∈ B′j then s /∈ B ⇔ s /∈ Bj}.

It follows by induction on the height of terms that a term T ∈ Ter(B(t)) reaches a
state qB,B′ in Sub(A) if and only if there exists some term T′ ∈ Ter(B(t)) such that T′
reaches state qB′ in A′, T[λ].B = B, T′[λ].B = B′, and T is a sub-decomposition of T′. In
particular, T reaches a final state of Sub(A) if and only if T is a sub-decomposition of some
T′ which reaches a final state of A′. J

5 Representing All Tree Decompositions of a Given Graph

In this section we show that given a connected graph G of maximum degree ∆, and a positive
integer t, one can construct in time 2O(∆·t) · |VG|O(t) a tree automaton A(G, t) over B(t) that
accepts precisely those t-concrete tree decompositions of G.

Let G be a graph. A (G, t)-concrete bag is a tuple (B, b, ν, η, y, ρ) where (B, b) is a
t-concrete bag; ν : B → VG is a function that assigns a vertex of G to each element of B;
η : B → P≤(EG, ∆(G)) is a function that assigns to each element s ∈ B, a set of edges
incident with ν(s) of size at most ∆(G); y is a subset of EG such that |y| ≤ 1 and y ⊆ η(s)
whenever s ∈ b; and ρ is a subset of B.

We let B(G, t) be the set of all (G, t)-concrete bags. Note that B(G, t) has at most
2O(∆(G)·t) · |VG|O(t) elements. We let Ter(B(G, t)) be the set of all terms over B(G, t). If T̂
is a term in B(G, t) then for each p ∈ Pos(T), the (G, t)-concrete bag of T̂ at position p is
denoted by the tuple

(T̂[p].B, T̂[p].b, T̂[p].ν, T̂[p].η, T̂[p].y, T̂[p].ρ).

I Definition 8. We say that a term T̂ ∈ Ter(B(G, t)) is a (G, t)-concrete tree decomposition
if the following conditions are satisfied for each each p ∈ Pos(T̂) and each s ∈ [t].
C1. If pj ∈ Pos(T̂) and s ∈ T̂[p].B ∩ T̂[pj].B then T̂[p].ν(s) = T̂[pj].ν(s).
C2. If T̂[p].b = {s, s′} then T̂[p].y = {e} for some edge e with

endpts(e) = {T̂[p].ν(s), T̂[p].ν(s′)}

.

CSL 2017

33:10 On Supergraphs Satisfying CMSO Properties

C3. Let r ∈ {0, 1, 2}, and p1, ..., pr be the children2 of p, then

T̂[p].η(s) = T̂[p].y ∪̇ T̂[p1].η(s) ∪̇ ... ∪̇ T̂[pr].η(s).

C4. If s ∈ T̂[p].ρ then T̂[p].η(s) = {e | (e, T̂[p].ν(s)) ∈ IncG}.
C5. If p = λ then T̂[p].ρ = T̂[p].B. If pj ∈ Pos(T̂) then s ∈ T̂[pj].ρ if and only if s ∈ T̂[pj].B

and s /∈ T̂[p].B.

Let π : B(G, t)→ B(t) be a function such that π(B, b, ν, η, y, ρ) = (B, b) for each (G, t)-
concrete bag (B, b, , ν, η, y, ρ) ∈ B(G, t). In other words, π transforms a (G, t)-concrete bag
into a t-concrete bag by erasing the four last coordinates of the former. If T̂ is a term
in Ter(B(G, t)) then we let π(T̂) be the term in Ter(B(t)) which is obtained by setting
π(T̂)[p] = π(T̂[p]) for each position p ∈ Pos(T̂).

I Theorem 9. Let G be a connected graph and let T ∈ Ter(B(t)). Then T is a t-concrete
tree decomposition of G if and only if |VG(T)| = |VG| and there exists a (G, t)-concrete tree
decomposition T̂ ∈ Ter(B(G, t)) such that T = π(T̂).

Note that conditions C1-C5 are local in the sense that they may be verified at each
position p ∈ Pos(T̂) by analysing only the concrete bags T̂[p], T̂[p1], ..., T̂[pr] where p1, ..., pr
are the children of p. This allows us to define a tree automaton Â(G, t) over B(G, t) that
accepts a term T̂ ∈ Ter(B(G, t)) if and only if T̂ is a (G, t)-concrete tree decomposition.

I Lemma 10. For each positive integer t and each graph G of maximum degree ∆, one
can construct in time 2O(∆) · |VG|O(t) a tree automaton Â(G, t) over B(G, t) accepting the
following language.

L(Â(G, t)) = {T̂ ∈ Ter(B(G, t)) | T̂ is a (G, t)-concrete tree decomposition.} (3)

The next lemma states that for each positive integers t and n, one can efficiently construct
a tree automaton A(t, n) which accepts precisely those t-concrete tree decompositions which
give rise to graphs with n vertices.

I Lemma 11. Let t and n be positive integers with t ≤ n. One can construct in time 2O(t) ·n3

a tree automaton A(t, n) over B(t) accepting the following language.

L(A(t, n)) = {T ∈ Ter(B(t)) | |VG(T)| = n}

The main result of this section (Theorem 12), follows by a combination of Theorem 9,
Lemma 10 and Lemma 11.

I Theorem 12. Let G be a connected graph of treewidth t and maximum degree ∆. Then
one can construct in time 2O(∆·t) · |VG|O(t) a tree automaton A(G, t) over B(t) such that for
each T ∈ Ter(B(t)), T ∈ L(A(G, t)) if and only if T is a concrete tree decomposition of G.

6 (ϕ, t)-Supergraphs

Let ϕ be a CMSO sentence, and t be a positive integer. Let G and G′ be graphs. We say
that G′ is a (ϕ, t)-supergraph of G if the following three conditions are satisfied: G′ |= ϕ, G′
has treewidth at most t, and G is a subgraph of G′.

2 If r = 0 then p has no child.

M. de Oliveira Oliveira 33:11

I Lemma 13. Let ϕ be a CMSO sentence and t be a positive integer. Then a graph G

has a (ϕ, t)-supergraph if and only if there exists a (t + 1)-concrete tree decomposition
T ∈ L(Sub(A(ϕ, t+ 1)) such that G(T) is isomorphic to G.

Proof. Assume that G is a graph that has a (ϕ, t)-supergraph G′. Then G′ satisfies ϕ, G′ has
treewidth at most t, and G is a subgraph of G′. By Observation 3, G′ has a (t+ 1)-concrete
tree decomposition T′ ∈ Ter(B(t+1)), and therefore by Theorem 4, T′ ∈ L(A(ϕ, t)). Since G
is a subgraph of G′, by Theorem 6, T′ has a sub-decomposition T which is a (t+ 1)-concrete
tree decomposition of G. Therefore, T belongs to Sub(A(ϕ, t+ 1)).

For the converse, let T ∈ L(Sub(A(ϕ, t+ 1))) and let T be a (t+ 1)-concrete tree decom-
position of G. Then T is a sub-decomposition of some (t+ 1)-concrete tree decomposition
T′ in L(A(ϕ, t + 1)). By Theorem 4, T′ is a (t + 1)-concrete tree decomposition of some
graph G′ of treewidth at most t such that G′ |= ϕ. Since T is a sub-decomposition of T′, by
Theorem 6, G is a subgraph of G′. Therefore, G′ is a (ϕ, t)-supergraph of G. J

We note that Lemma 13 alone does not provide us with an efficient algorithm to determine
whether a graph G has a (ϕ, t)-supergraph. If G does not admit such a supergraph, then
no (t + 1)-concrete tree decomposition G belongs to L(Sub(A(ϕ, t + 1))). However, if G
does admit a (ϕ, t)-supergraph, then Theorem 6 only guarantees that some (t+ 1)-concrete
tree decomposition T of G belongs to Sub(A(ϕ, t+ 1)). The problem is that G may have
exponentially3 many such decompositions, and we do not know a priori which of these should
be tested for membership in L(Sub(A(ϕ, t+ 1))).

The issue described above can be remedied with the results from Section 5. More
specifically, from Theorem 12 we have that for any given connected graph G of treewidth t
and maximum degree ∆, one can construct a tree automaton A(G, t+ 1) over B(t+ 1) which
accepts a (t+ 1)-concrete tree decomposition T if and only if the graph G(T) is isomorphic
to G. Therefore, a connected graph G has a (ϕ, t)-supergraph if and only if

L(A(G, t+ 1)) ∩ L(Sub(A(ϕ, t+ 1))) 6= ∅. (4)

The next theorem states that Equation 4 yields an efficient algorithm for testing whether
connected graphs of bounded degree have a (ϕ, t)-supergraph.

I Theorem 14 (Main Theorem). There is a computable function f , and an algorithm A that
takes as input a CMSO sentence ϕ, a positive integer t, and a connected graph G of maximum
degree ∆, and determines in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t) whether G has a (ϕ, t)-supergraph.

Proof. By Lemma 13, G has a (ϕ, t)-supergraph if and only if there exists some T ∈
L(Sub(A(ϕ, t+1))) such that T is a (t+1)-concrete tree decomposition of G. By Theorem 12,
L(A(G, t+ 1)) accepts a (t+ 1)-tree decomposition of G if and only if G(T) is isomorphic to
G. Therefore, G has a (ϕ, t)-supergraph if and only the intersection of L(A(G, t+ 1)) with
L(Sub(A(ϕ, t+ 1))) is nonempty.

By Theorem 12, the tree-automaton A(G, t+1) can be constructed in time 2O(∆·t) ·|G|O(t),
and therefore the size of A(G, t + 1) is bounded by 2O(∆·t) · |G|O(t). By Theorem 6 and
Theorem 4, the tree-automaton Sub(A(ϕ, t + 1)) can be constructed in time f(|ϕ|, t) for
some computable function f : N2 → N, and therefore, the size of Sub(A(ϕ, t)) is bounded by
f(|ϕ|, t).

3 In fact a graph G of treewidth t may have infinitely many (t + 1)-concrete tree decompositions, but we
only need to consider those which have at most |VG| + |EG| nodes.

CSL 2017

33:12 On Supergraphs Satisfying CMSO Properties

Finally, given tree automata A1 and A2, one can determine whether L(A1) ∩ L(A2) 6= ∅
in time O(|A1| · |A2|) (Lemma 1). In particular, one can determine whether L(A(G, t+ 1))∩
L(Sub(A(ϕ, t+ 1))) 6= ∅ in time f(|ϕ|, t) · 2O(∆·t) · |G|O(t). � J

7 Contraction Closed Graph Parameters

In this section we deal with simple graphs, i.e., graphs without loops or multiple edges.
Therefore, we may write {u, v} to denote an edge e whose endpoints are u and v.

Let G be a graph and {u, v} be an edge of G. We let G/uv denote the graph that is
obtained from G by deleting the edge {u, v} and by merging vertices u and v into a single
vertex xuv. We say that G/uv is obtained from G by an edge-contraction. We say that a
graph G′ is a contraction of G if G′ is obtained from G by a sequence of edge contractions.
We say that G′ is a minor of G if G′ is a contraction of some subgraph of G. We say that a
graph G is an appex graph if after deleting some vertex of G the resulting graph is planar.

A graph parameter is a function p mapping graphs to non-negative integers in such a
way that p(G) = p(G′) whenever G is isomorphic to G′. We say that p is contraction closed
if p(G′) ≤ p(G) whenever G′ is a contraction of G.

A graph property is simply a set P of graphs. We say that a property P is contraction-
closed if for every two graphs G,G′ for which G′ is a contraction of G, the fact that G ∈ P
implies that G′ ∈ P.

7.1 Diameter Improvement Problems

Let u and v be vertices in an graph G. The distance from u to v, denoted by dist(u, v)
is the number of edges in the shortest path from u to v. If no such path exists, we set
dist(u, v) =∞. The diameter of G is defined as diam(G) = maxu,v dist(u, v). In the planar
diameter improvement problem (PDI), we are given an graph G and a positive integer
d, and the goal is to determine whether G has a planar supergraph G′ of diameter at most
d. As mentioned in the introduction, there is an algorithm that solves the PDI problem in
time f(d) · |G|O(1), where f : N→ N is not known to be computable. Additionally, even the
problem of determining whether PDI admits an algorithm running in time f1(d) · |G|f2(d)

for computable functions f1, f2 remains open for more than two decades [13, 5]. The next
theorem solves this problem in when the input graphs are connected and have bounded
degree.

I Theorem 15. There is a computable function f : N→ N, and an algorithm A that takes as
input, a positive integer d, and a connected graph G of maximum degree ∆, and determines
in time f(d) · 2O(∆·d) · |G|O(d) whether G has a planar supergraph G′ of diameter at most d.

Proof. It should be clear that there is an algorithm that takes a positive integer d as input,
and constructs, in time O(d), a CMSO formula Diamd which is true on a graph G′ if and
only if G′ has diameter at most d. Additionally, using Kuratowski’s theorem, and the fact
that minor relation is CMSO expressible, one can define a CMSO formula Planar which
is true on a graph G′ if and only if G′ is planar. Finally, it can be shown that any planar
graph of diameter at most d has treewidth O(d). Therefore, by setting ϕ = Diamd ∧ Planar ,
t = O(d), and by renaming f(|ϕ|, t) to f(d) in Theorem 14, we have an algorithm running in
time f(d) · 2O(∆·d) · |G|O(d) to determine whether G has a planar supergraph G′ of diameter
at most d. J

M. de Oliveira Oliveira 33:13

We note that the algorithm A of Theorem 15 does not impose any restriction on the
degree of a prospective supergraph G′ of G. Theorem 15 can be generalized to the setting of
graphs of constant genus as follows.

I Theorem 16. There is a computable function f : N × N → N, and an algorithm A that
takes as input, positive integers d, g, and a connected graph G of maximum degree ∆, and
determines in time f(d, g) · 2O(∆·d) · |G|O(d·g) whether G has a supergraph G′ of genus at
most g and diameter at most d.

A graph is 1-outerplanar if it can be embedded in the plane in such a way that every
vertex lies in the outer face of the embedding. A graph is k-outerplanar if it can be embedded
in the plane in such a way that after deleting all vertices in the outer face, the remaining
graph is (k − 1)-outerplanar. In [5] Cohen et al. have considered the k-outerplanar
diameter improvement problem (k-OPDI), a variant of the PDI problem in which the
target supergraph is required to be k-outerplanar instead of planar. In particular, they have
shown that the 1-OPDI problem can be solved in polynomial time. The complexity of the
k-OPDI problem with respect to explicit algorithms was left as an open problem for k ≥ 2.
The next theorem states that for each fixed k, k-OPDI is strongly uniformly fixed parameter
tractable with respect to the parameter d on connected graphs of bounded degree.

I Theorem 17. There is a computable function f : N × N → N, and an algorithm A that
takes as input, positive integers d, k, and a connected graph G of maximum degree ∆, and
determines in time f(k, d) · 2O(∆·k) · |G|O(k) whether G has a k-outerplanar supergraph G′ of
diameter at most d.

Finally, the series-parallel diameter improvement problem (SPDI) consists in
determining whether a graph G has a series parallel supergraph of diameter at most d. The
parameterized complexity of this problem was left as an open problem in [5]. The next
theorem states that SPDI is strongly uniformly fixed parameter tractable with respect to the
parameter d on connected graphs of bounded degree.

I Theorem 18. There is a computable function f : N→ N, and an algorithm A that takes
as input, a positive integer d and a connected graph G of maximum degree ∆, and determines
in time f(d) · 2O(∆) · |G|O(1) whether G has a series-parallel supergraph G′ of diameter at
most d.

7.2 Contraction Bidimensional Parameters
Fomin, Golovach and Thilikos [15] have defined a sequence {�k}k∈N of graphs and have
shown that these graphs serve as obstructions for small treewidth on H-minor free graphs,
whenever H is an appex graph. More precisely, they have proved the following result.

I Theorem 19 (Fomin-Golovach-Thilikos [15]). For every apex graph H, there is a cH > 0
such that every connected H-minor-free graph of treewidth at least cH · k contains �k as a
contraction.

We say that a graph parameter p is Gamma-unbounded if there is a computable function
α : N→ N such that α ∈ ω(1), and p(�k) ≥ α(k) for every k ∈ N.

We say that a parameter p is effectively CMSO definable if there is a computable function
f : N→ N, and an algorithm A that takes as input a positive integer k and constructs, in
time at most f(k), a CMSO-sentence ϕ which is true on an graph G if and only if p(G) ≤ k.
The following theorem is a corollary of Theorem 14 and Theorem 19.

I Theorem 20. Let p be a Gamma-unbounded effectively CMSO definable graph parameter,
and let P be a CMSO definable graph property excluding some appex graph H as a minor.

CSL 2017

33:14 On Supergraphs Satisfying CMSO Properties

Then there is a computable function f : N → N and an algorithm A that takes as input a
positive integer k, and a connected graph G of maximum degree ∆, and determines, in time
f(k) · 2O(∆·f(k)) · |G|f(k), whether G has a supergraph G′ such that G′ ∈ P and p(G′) ≤ k.

Note that similarly to the case of diameter improvement problem, if p is an unbounded
effectively CMSO definable graph parameter, then we can determine whether a graph G has
an r-outerplanar supergraph G′ with p(G′) ≤ k in time f(r, k) · 2O(∆·r) · |G|O(r) for some
computable function f : N× N→ N. In other words, this problem, for connected bounded
degree graphs, is strongly uniformly fixed parameter tractable with respect to the parameter
p for each fixed r.

I Definition 21. A graph parameter p is contraction-bidimensional if the following conditions
are satisfied.
1. p is contraction-closed.
2. If G is a graph which has �k as a contraction, then p(G) ≥ Ω(k2).

For instance, the following parameters are contraction bidimensional.

1. Size of a vertex cover.
2. Size of a feedback vertex set.
3. Size of a minimum maximal matching.
4. Size of a dominating set.
5. Size of a edge dominating set.
6. Size of a clique traversal set.

I Theorem 22 ([15, 16]). Let p be a bidimensional parameter. Then if p(G) ≤ k, the
treewidth of p is at most O(

√
k).

I Theorem 23. For each effectively CMSO-definable contraction-bidimensional parameter
p, there exists a computable function f : N→ N and an algorithm A that takes as input a
positive integer k, and a connected graph G of maximum degree ∆, and determines in time
f(k) · 2O(∆·

√
k) · |G|O(

√
k) whether G has a planar supergraph G′ with p(G′) ≤ k.

For instance, Theorem 23 states that for some computable function f : N→ N, one can
determine in time f(k) · 2O(∆·

√
k) · |G|O(

√
k) whether G has a planar supergraph G′ with

feedback vertex set at most k. We note that in view of Theorem 22, the planarity requirement
of Theorem 23 can be replaced for any CMSO definable property P which excludes some
apex graph as a minor.

Acknowledgements. This work was supported by the Bergen Research Foundation. The
author thanks Michael Fellows, Fedor Fomin, Petr Golovach, Daniel Lokshtanov and Saket
Saurabh for interesting discussions.

References
1 Karl Abrahamson and Michael Fellows. Finite automata, bounded treewidth, and well-

quasiordering. Contemporary Mathematics, 147:539–539, 1993.
2 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proc.

of SODA 2008, pages 641–650. SIAM, 2008.
3 Mikołaj Bojańczyk and Michal Pilipczuk. Definability equals recognizability for graphs of

bounded treewidth. In Proc. of LICS 2016, pages 407–416. ACM, 2016.
4 Mikołaj Bojańczyk and Michal Pilipczuk. Optimizing tree decompositions in MSO. In

Proc. of STACS 2017 (To appear), 2017.

M. de Oliveira Oliveira 33:15

5 Nathann Cohen, Daniel Gonçalves, Eunjung Kim, Christophe Paul, Ignasi Sau, Di-
mitrios M. Thilikos, and Mathias Weller. A polynomial-time algorithm for outerplanar
diameter improvement. In Proc. of the 10th International Computer Science Symposium
in Russia (CSR 2015), volume 9139 of LNCS, pages 123–142, 2015.

6 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available at http://www.grappa.
univ-lille3.fr/tata, 2007. Release October, 12th 2007.

7 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

8 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic. A
language-theoretic approach. HAL, June 14 2012. URL: http://hal.archives-ouvertes.
fr/hal-00646514.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

11 Michael Elberfeld. Context-free graph properties via definable decompositions. In Proc. of
the 25th Conference on Computer Science Logic (CSL 2016), volume 62 of LIPIcs, pages
17:1–17:16, 2016.

12 Michael R. Fellows and Rodney G. Downey. Parameterized computational feasibility. Feas-
ible Mathematics II, 13:219–244, 1995.

13 Michael R. Fellows and Michael A. Langston. On search decision and the efficiency of
polynomial-time algorithms. In Proc. of STOC 1989, pages 501–512. ACM, 1989.

14 Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions.
Journal of the ACM (JACM), 49(6):716–752, 2002.

15 Fedor V. Fomin, Petr Golovach, and Dimitrios M. Thilikos. Contraction obstructions for
treewidth. Journal of Combinatorial Theory, Series B, 101(5):302–314, 2011.

16 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. of SODA 2010, pages 503–510, 2010.

17 Neil Robertson and Paul D. Seymour. Graph minors. XIII. the disjoint paths problem.
Journal of combinatorial theory, Series B, 63(1):65–110, 1995.

18 Neil Robertson and Paul D Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004.

CSL 2017

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://hal.archives-ouvertes.fr/hal-00646514
http://hal.archives-ouvertes.fr/hal-00646514

	Introduction
	Main Result
	Planar Diameter Improvement
	k-Outerplanar Diameter Improvement
	Contraction-Closed Parameters
	Proof Sketch And Organization of the Paper

	Preliminaries
	Concrete Tree Decompositions
	Sub-Decompositions
	Representing All Tree Decompositions of a Given Graph
	(varphi,t)-Supergraphs
	Contraction Closed Graph Parameters
	Diameter Improvement Problems
	Contraction Bidimensional Parameters

