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Abstract
Ludics is a logical framework in which types/formulas are modelled by sets of terms with the
same computational behaviour. This paper investigates the representation of inductive data types
and functional types in ludics. We study their structure following a game semantics approach.
Inductive types are interpreted as least fixed points, and we prove an internal completeness
result giving an explicit construction for such fixed points. The interactive properties of the ludics
interpretation of inductive and functional types are then studied. In particular, we identify which
higher-order functions types fail to satisfy type safety, and we give a computational explanation.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic

Keywords and phrases Ludics, Inductive types, Fixed point, Linear logic, Game semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.34

1 Introduction

1.1 Context and Contributions
Context. Ludics was introduced by Girard [10] as a variant of game semantics with
interactive types. Game Semantics has successfully provided fully abstract models for various
logical systems and programming languages, among which PCF [11]. Although very close
to Hyland–Ong (HO) games, ludics reverses the approach: in HO games one defines first
the interpretation of a type (an arena) before giving the interpretation for the terms of that
type (the strategies), while in ludics the interpretation of terms (the designs) is primitive
and the types (the behaviours) are recovered dynamically as well-behaved sets of terms. This
approach to types is similar to what exists in realisability [12] or geometry of interaction [9].

The motivation for such a framework was to reconstruct logic around the dynamics of
proofs. Girard provides a ludics model for (a polarised version of) multiplicative-additive
linear logic (MALL); a key role in his interpretation of logical connectives is played by the
internal completeness results, which allow for a direct description of the behaviours’ content.
As most behaviours are not the interpretation of MALL formulas, an interesting question,
raised from the beginning of ludics, is whether these remaining behaviours can give a logical
counterpart to computational phenomena. In particular, data and functions [16, 15], and
also fixed points [2] have been studied in the setting of ludics. The present work follows this
line of research.

Real life (functional) programs usually deal with data, functions over it, functions over
functions, etc. Data types allow one to present information in a structured way. Some data
types are defined inductively, for example:

Listing 1 Example of inductive types in OCaml
> type nat = Zero | Succ of nat ;;
> type ’a list = Nil | Cons of ’a * ’a list ;;
> type ’a tree = Empty | Node of ’a * (’a tree) list ;;
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34:2 Inductive and Functional Types in Ludics

Upon this basis we can consider functional types, which are either first-order – from data
to data – or higher-order – i.e., taking functions as arguments or returning functions as a
result. This article aims at interpreting constructively the (potentially inductive) data types
and the (potentially higher-order) functional types as behaviours of ludics, so as to study
their structural properties. Inductive types are defined as (least) fixed points. As pointed out
by Baelde, Doumane and Saurin [2], the fact that ludics puts the most constraints on the
formation of terms instead of types, conversely to game semantics, makes it a more natural
setting for the interpretation of fixed points than HO games [4].

Contributions. The main contributions of this article are the following:
We prove that internal completeness holds for infinite unions of behaviours satisfying
particular conditions (Theorem 30), leading to an explicit construction of the least fixed
points in ludics (Proposition 34).
Inductive and functional types are interpreted as behaviours, and we prove that such
behaviours are regular (Corollary 35 and Proposition 42). Regularity (that we discuss
more in § 1.2) is a property that could be used to characterise the behaviours corresponding
to µMALL formulas [1, 2] – i.e., MALL with fixed points.
We show that a functional behaviour fails to satisfy purity, a property ensuring the safety
of all possible executions (further explained in § 1.2), if and only if it is higher order and
takes functions as argument (Proposition 43); this is typically the case of (A( B)( C.
In § 5.2 we discuss the computational meaning of this result.

The present work is conducted in the term-calculus reformulation of ludics by Terui [16]
restricted to the linear part – the idea is that programs call each argument at most once.

Related Work. The starting point for our study of inductive types as fixed points in ludics
is the work by Baelde, Doumane and Saurin [2]. In their article, they provide a ludics model
for µMALL, a variant of multiplicative-additive linear logic with least and greatest fixed
points. The existence of fixed points in ludics is ensured by Knaster-Tarski theorem, but
this approach does not provide an explicit way to construct the fixed points; we will consider
Kleene fixed point theorem instead. Let us also mention the work of Melliès and Vouillon
[13] which introduces a realisability model for recursive (i.e., inductive and coinductive)
polymorphic types.

The representation of both data and functions in ludics has been studied previously.
Terui [16] proposes to encode them as designs in order to express computability properties
in ludics, but data and functions are not considered at the level of behaviours. Sironi [15]
describes the behaviours corresponding to some data types: integers, lists, records, etc. as
well as first-order function types; our approach generalises hers by considering generic data
types and also higher order functions types.

1.2 Background
Behaviours and Internal Completeness. A behaviour B is a set of designs which pass the
same set of tests B⊥, where tests are also designs. B⊥ is called the orthogonal of B, and
behaviours are closed under bi-orthogonal: B⊥⊥ = B. New behaviours can be formed upon
others using various constructors. In this process, internal completeness, which can be seen
as a built-in notion of observational equivalence, ensures that two agents reacting the same
way to any test are actually equal. From a technical point of view, this means that it is not
necessary to apply a ⊥⊥-closure for the sets constructed to be behaviours.
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Paths: Ludics as Game Semantics. This paper makes the most of the resemblance between
ludics and HO game semantics. The connections between them have been investigated in
many pieces of work [3, 6, 7] where designs are described as (innocent) strategies, i.e., in
terms of the traces of their possible interactions. Following this idea, Fouqueré and Quatrini
define paths [7], corresponding to legal plays in HO games, and they characterise a behaviour
by its set of visitable paths. This is the approach we follow. The definitions of regularity and
purity rely on paths, since they are properties of the possible interactions of a behaviour.

Regularity: Towards a Characterisation of µMALL? Our proof that internal completeness
holds for an infinite union of increasingly large behaviours (Theorem 30) relies in particular
on the additional hypothesis of regularity for these behaviours. Intuitively, a behaviour
B is regular if every path in a design of B is realised by interacting with a design of B⊥,
and vice versa. This property is not actually ad hoc: it was introduced by Fouqueré and
Quatrini [8] to characterise the denotations of MALL formulas as being precisely the regular
behaviours satisfying an additional finiteness condition. In this direction, our intuition is that
– forgetting about finiteness – regularity captures the behaviours corresponding to formulas
of µMALL. Although such a characterisation is not yet achieved, we provide a first step by
showing that the data patterns, a subset of positive µMALL formulas, yield only regular
behaviours (Proposition 33).

Purity: Type Safety. Ludics has a special feature for termination which is not present in
game semantics: the daimon z. On a computational point of view, the daimon is commonly
interpreted as an error, an exception raised at run-time causing the program to stop (see
for example the notes of Curien [5]). Thinking of Ludics as a programming language, we
would like to guarantee type safety, that is, ensure that “well typed programs cannot go
wrong” [14]. This is the purpose of purity, a property of behaviours: in a pure behaviour,
maximal interaction traces are z-free, in other words whenever the interaction stops with
z it is actually possible to “ask for more” and continue the computation. Introduced by
Sironi [15] (and called principality in her work), this property is related to the notions of
winning designs [10] and pure designs [16], but at the level of a behaviour. As expected, data
types are pure (Corollary 40), but not always functional types are; we identify the precise
cases where impurity arises (Proposition 43), and explain why some types are not safe.

1.3 Outline
In Section 2 we present ludics and we state internal completeness for the logical connectives
constructions. In Section 3 we recall the notion of path, so as to define formally regularity and
purity and prove their stability under the connectives. Section 4 studies inductive data types,
which we interpret as behaviours; Kleene theorem and internal completeness for infinite
union allows us to give an explicit and direct construction for the least fixed point, with no
need for bi-orthogonal closure; we deduce that data types are regular and pure. Finally, in
Section 5, we study functional types, showing in what case purity fails.

2 Computational Ludics

This section introduces the ludics background necessary for the rest of the paper, in the
formalism of Terui [16]. The designs are the primary objects of ludics, corresponding to
(polarised) proofs or programs in a Curry-Howard perspective. Cuts between designs can
occur, and their reduction is called interaction. The behaviours, corresponding to the types

CSL 2017



34:4 Inductive and Functional Types in Ludics

or formulas of ludics, are then defined thanks to interaction. Compound behaviours can be
formed with logical connectives constructions which satisfy internal completeness.

2.1 Designs and Interaction
Suppose given a set of variables V0 and a set S, called signature, equipped with an arity
function ar : S → N. Elements a, b, · · · ∈ S are called names. A positive action is either
z (daimon), Ω (divergence), or a with a ∈ S; a negative action is a(x1, . . . , xn) where
a ∈ S, ar(a) = n and x1, . . . , xn ∈ V0 distinct. An action is proper if it is neither z nor Ω.

I Definition 1. Positive and negative designs1 are coinductively defined by:

p ::= z | Ω | x|a〈n1, . . . , nar(a)〉 | n0|a〈n1, . . . , nar(a)〉
n ::=

∑
a∈S a(xa1 , . . . , xaar(a)).pa

Positive designs play the same role as applications in λ-calculus, and negative designs the
role of abstractions, where each name a ∈ S binds ar(a) variables.

Designs are considered up to α-equivalence. We will often write a(−→x ) (resp. a〈−→n 〉)
instead of a(x1, . . . , xn) (resp. a〈n1 . . . nn〉). Negative designs can be written as partial sums,
for example a(x, y).p + b().q instead of a(x, y).p + b().q +

∑
c 6=a,c6=b c(

−→
zc).Ω.

Given a design d, the definitions of the free variables of d, written fv(d), and the
(capture-free) substitution of x by a negative design n in d, written d[n/x], can easily be
inferred. The design d is closed if it is positive and it has no free variable. A subdesign
of d is a subterm of d. A cut in d is a subdesign of d of the form n0|a〈−→n 〉, and a design is
cut-free if it has no cut.

In the following, we distinguish a particular variable x0, that cannot be bound. A positive
design p is atomic if fv(p) ⊆ {x0}; a negative design n is atomic if fv(n) = ∅.

A design is linear if for every subdesign of the form x|a〈−→n 〉 (resp. n0|a〈−→n 〉), the sets
{x}, fv(n1), . . . , fv(nar(a)) (resp. the sets fv(n0), fv(n1), . . . , fv(nar(a))) are pairwise disjoint.
This article focuses on linearity, so in the following when writing “design” we mean “linear
design”.

I Definition 2. The interaction corresponds to reduction steps applied on cuts:∑
a∈S a(xa1 , . . . , xaar(a)).pa | b〈n1, . . . , nk〉  pb[n1/x

b
1, . . . , nk/x

b
k]

We will later describe an interaction as a sequence of actions, a path (Definition 13).
Let p be a design, and let  ∗ denote the reflexive transitive closure of  ; if there exists

a design q which is neither a cut nor Ω and such that p ∗ q, we write p ⇓ q; otherwise we
write p ⇑. The normal form of a design, defined below, exists and is unique [16].

I Definition 3. The normal form of a design d, noted ([d]), is defined by:

([p]) = z if p ⇓ z ([p]) = x|a〈([n1]), . . . , ([nn])〉 if p ⇓ x|a〈n1, . . . , nn〉

([p]) = Ω if p ⇑ ([
∑
a∈S a(−→xa).pa]) =

∑
a∈S a(−→xa).([pa])

Note that the normal form of a closed design is either z (convergence) or Ω (divergence).
Orthogonality expresses the convergence of the interaction between two atomic designs, and
behaviours are sets of designs closed by bi-orthogonal.

1 In the following, the symbols d, e, . . . refer to designs of any polarity, while p, q, . . . and m, n, . . . are
specifically for positive and negative designs respectively.
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I Definition 4. Two atomic designs p and n are orthogonal, noted p ⊥ n, if ([p[n/x0]]) = z.

Given an atomic design d, define d⊥ = {e | d ⊥ e}; if E is a set of atomic designs of same
polarity, define E⊥ = {d | ∀e ∈ E, d ⊥ e}.

I Definition 5. A set B of atomic designs of same polarity is a behaviour2 if B⊥⊥ = B.
A behaviour is either positive or negative depending on the polarity of its designs.

Behaviours could alternatively be defined as the orthogonal of a set E of atomic designs of
same polarity – E corresponds to a set of tests or trials. Indeed, E⊥ is always a behaviour,
and every behaviour B is of this form by taking E = B⊥.

The incarnation of a behaviour B contains the cut-free designs of B whose actions are all
visited during an interaction with a design in B⊥. Those correspond to the cut-free designs
that are minimal for the stable ordering v, where d′ v d if d can be obtained from d′ by
substituting positive subdesigns for some occurrences of Ω.

I Definition 6. Let B be a behaviour and d ∈ B cut-free.
The incarnation of d in B, written |d|B, is the smallest (for v) cut-free design d′ such
that d′ v d and d′ ∈ B. If |d|B = d we say that d is incarnated in B.
The incarnation |B| of B is the set of the (cut-free) incarnated designs of B.

2.2 Logical Connectives
Behaviour constructors – the logical connectives – can be applied so as to form compound
behaviours. These connectives, coming from (polarised) linear logic, are used for interpreting
formulas as behaviours, and will also indeed play the role of type constructors for the types
of data and functions. In this subsection, after defining the connectives we consider, we state
the internal completeness theorem for these connectives.

Let us introduce some notations. In the rest of this article, suppose the signature S contains
distinct unary names N, π1, π2 and a binary name ℘, and write H = N, ι1 = π1, ι2 = π2 and
• = ℘. Given a behaviour B and x fresh, define Bx = {d[x/x0] | d ∈ B}; such a substitution
operates a “delocation” with no repercussion on the behaviour’s inherent properties. Given a
k-ary name a ∈ S, we write a〈N1, . . . ,Nk〉 or even a〈

−→N〉 for {x0|a〈−→n 〉 | ni ∈ Ni}, and write
a(−→x ).P for {a(−→x ).p | p ∈ P}. For a negative design n =

∑
a∈S a(−→xa).pa and a name a ∈ S,

we denote by n�a the design a(−→xa).pa (that is a(−→xa).pa +
∑
b6=a b(

−→
xb).Ω).

I Definition 7 (Logical connectives).

´N = H〈N〉⊥⊥ (positive shift)
ˆP = (N(x).Px)⊥⊥, with x fresh (negative shift)
M⊕N = (ι1〈M〉 ∪ ι2〈N〉)⊥⊥ (plus)
M⊗N = •〈M,N〉⊥⊥ (tensor)
N( P = (N⊗P⊥)⊥ (linear map)

Our connectives ´, ˆ, ⊕ and ⊗ match exactly those defined by Terui [16], who also proves
the following internal completeness theorem stating that connectives apply on behaviours
in a constructive way – there is no need to close by bi-orthogonal. For each connective, we

2 Symbols A,B, . . . will designate behaviours of any polarity, while M,N . . . and P,Q, . . . will be for
negative and positive behaviours respectively.

CSL 2017



34:6 Inductive and Functional Types in Ludics

present two versions of internal completeness: one concerned with the full behaviour, the
other with the behaviour’s incarnation.

I Theorem 8 (Internal completeness for connectives).

´N = H〈N〉 ∪ {z} |´N| = H〈|N|〉 ∪ {z}
ˆP = {n | n�N ∈ N(x).Px} |ˆP| = N(x).|Px|
M⊕N = ι1〈M〉 ∪ ι2〈N〉 ∪ {z} |M⊕N| = ι1〈|M|〉 ∪ ι2〈|N|〉 ∪ {z}
M⊗N = •〈M,N〉 ∪ {z} |M⊗N| = •〈|M|, |N|〉 ∪ {z}

3 Paths and Interactive Properties of Behaviours

Paths are sequences of actions recording the trace of a possible interaction. For a behaviour
B, we can consider the set of its visitable paths by gathering all the paths corresponding to
an interaction between a design of B and a design of B⊥. This notion is needed for defining
regularity and purity and proving that those two properties of behaviours are stable under
(some) connectives constructions.

3.1 Paths
This subsection adapts the definitions of path and visitable path from [7] to the setting of
computational ludics. In order to do so, we need first to recover location in actions so as to
consider sequences of actions.

Location is a primitive idea in Girard’s ludics [10] in which the places of a design are
identified with loci or addresses, but this concept is not visible in Terui’s presentation of
designs-as-terms. We overcome this by introducing actions with more information on location,
which we call located actions, and which are necessary to:

represent cut-free designs as trees – actually, forests – in a satisfactory way,
define views and paths.

IDefinition 9. A located action3 κ is one of: z | x|a〈x1, . . . , xar(a)〉 | ax(x1, . . . , xar(a))
where in the last two cases (positive proper and negative proper respectively), a ∈ S
is the name of κ, the variables x, x1, . . . , xar(a) are distinct, x is the address of κ and
x1, . . . , xar(a) are the variables bound by κ.

In the following, “action” will always refer to a located action. Similarly to notations for
designs, x|a〈−→x 〉 stands for x|a〈x1, . . . , xn〉 and ax(−→x ) for ax(x1, . . . , xn).

I Example 10. We show how cut-free designs can be represented as trees of located actions
in this example. Let a2, b2, c1, d0 ∈ S, where exponents stand for arities. The following
design is represented by the tree of Fig. 1.

d = a(x1, x2).(x2|b〈a(x3, x4).z+ c(y1).(y1|d〈〉),c(y2).(x1|d〈〉)〉)

Such a representation is in general a forest: a negative design
∑
a∈S a(−→xa).pa gives as

many trees as there is a ∈ S such that pa 6= Ω. The distinguished variable x0 is given
as address to every negative root of a tree, and fresh variables are picked as addresses for
negative actions bound by positive ones. This way, negative actions from the same subdesign,

3 Located actions will often be denoted by symbol κ, sometimes with its polarity: κ+ or κ−.
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ax0(x1, x2)

x2|b〈z1, z2〉

cz2(y2)

x1|d〈〉

cz1(y1)

y1|d〈〉

az1(x3, x4)

z

a view a path

Figure 1 Representation of design d from Example 10, with a path and a view of d.

i.e., part of the same sum, are given the same address. A tree is indeed to be read bottom-up:
a proper action κ is justified if its address is bound by an action of opposite polarities
appearing below κ in the tree; otherwise κ is called initial. Except the root of a tree, which
is always initial, every negative action is justified by the only positive action immediately
below it. If κ and κ′ are proper, κ is hereditarily justified by κ′ if there exist actions
κ1, . . . , κn such that κ = κ1, κ′ = κn and for all i such that 1 ≤ i < n, κi is justified by κi+1.

Before giving the definitions of view and path, let us give an intuition. On Fig. 1 are
represented a view and a path of design d. Views are branches in the tree representing
a cut-free design (reading bottom-up), while paths are particular “promenades” starting
from the root of the tree; not all such promenades are paths, though. Views correspond to
chronicles in original ludics [10].

For every positive proper action κ+ = x|a〈−→y 〉 define κ+ = ax(−→y ), and similarly if
κ− = ax(−→y ) define κ− = x|a〈−→y 〉. Given a finite sequence of proper actions s = κ1 . . . κn,
define s = κ1 . . . κn. Suppose now that if s contains an occurrence of z, it is necessarily in
last position; the dual of s , written ∼s , is the sequence defined by:

∼s = sz if s does not end with z,
∼s = s ′ if s = s ′z.

Note that
∼∼s = s . The notions of justified, hereditarily justified and initial actions also

apply in sequences of actions.

I Definition 11. An alternated justified sequence (or aj-sequence) s is a finite sequence
of actions such that:

(Alternation) Polarities of actions alternate.
(Daimon) If z appears, it is the last action of s .
(Linearity) Each variable is the address of at most one action in s .

The (unique) justification of a justified action κ in an aj-sequence is noted just(κ), when
there is no ambiguity on the sequence we consider.

I Definition 12. A view v is an aj-sequence such that each negative action which is not
the first action of v is justified by the immediate previous action. Given a cut-free design d,
v is a view of d if it is a branch in the representation of d as a tree (modulo α-equivalence).

The way to extract the view of an aj-sequence is given inductively by:
pεq = ε, where ε is the empty sequence,
psκ+q = psqκ+,
psκ−q = ps0qκ− where s0 is the prefix of s ending on just(κ−), or s0 = ε if κ− initial.

The anti-view of an aj-sequence, noted xsy, is defined symmetrically by reversing the role
played by polarities; equivalently xsy =

∼
p∼sq.

CSL 2017



34:8 Inductive and Functional Types in Ludics

I Definition 13. A path s is a positive-ended aj-sequence satisfying:
(P-visibility) For all prefix s ′κ+ of s , just(κ+) ∈ ps ′q
(O-visibility) For all prefix s ′κ− of s , just(κ−) ∈ xs ′y

Given a cut-free design d, a path s is a path of d if for all prefix s ′ of s , ps ′q is a view of d.

Remark that the dual of a path is a path.
Paths are aimed at describing an interaction between designs. If d and e are cut-free

atomic designs such that d ⊥ e, there exists a unique path s of d such that ∼s is a path of e.
We write this path 〈d ← e〉, and the good intuition is that it corresponds to the sequence
of actions followed by the interaction between d and e on the side of d. An alternative way
defining orthogonality is then given by the following proposition.

I Proposition 14. d ⊥ e if and only if there exists a path s of d such that ∼s is a path of e.

At the level a behaviour B, the set of visitable paths describes all the possible interactions
between a design of B and a design of B⊥.

I Definition 15. A path s is visitable in a behaviour B if there exist cut-free designs d ∈ B
and e ∈ B⊥ such that s = 〈d← e〉. The set of visitable paths of B is written VB.

Note that for every behaviour B,∼VB = VB⊥ .

3.2 Regularity, Purity and Connectives
The meaning of regularity and purity has been discussed in the introduction. After giving the
formal definitions, we prove that regularity is stable under all the connectives constructions.
We also show that purity may fail with (, and only a weaker form called quasi-purity is
always preserved.

I Definition 16. B is regular if the following conditions are satisfied:
for all d ∈ |B| and all path s of d, s ∈ VB,
for all d ∈ |B⊥| and all path s of d, s ∈ VB⊥ ,
The sets VB and VB⊥ are stable under shuffle.

where the operation of shuffle (�) on paths corresponds to an interleaving of actions
respecting alternation of polarities, and is defined below.

Let s�s ′ refer to the subsequence of s containing only the actions that occur in s ′. Let s and
t be paths of same polarity, let S and T be sets of paths of same polarity. We define:

s� t = {u path formed with actions from s and t | u�s = s and u�t = t} if s , t negative,
s � t = {κ+u path | u ∈ s ′� t ′} if s = κ+s ′ and t = κ+t ′ positive with same first action,
S � T = {u path | ∃s ∈ S, ∃t ∈ T such that s � t is defined and u ∈ s � t},

In fact, a behaviour B is regular if every path formed with actions of the incarnation of
B, even mixed up, is a visitable path of B, and similarly for B⊥. Remark that regularity is
a property of both a behaviour and its orthogonal since the definition is symmetrical: B is
regular if and only if B⊥ is regular.

I Definition 17. A behaviour B is pure if every z-ended path sz ∈ VB is extensible, i.e.,
there exists a proper positive action κ+ such that sκ+ ∈ VB.

Purity ensures that when an interaction encounters z, this does not correspond to a real
error but rather to a partial computation, as it is possible to continue this interaction. Note
that daimons are necessarily present in all behaviours since the converse property is always
true: if sκ+ ∈ VB then sz ∈ VB.
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I Proposition 18. Regularity is stable under ´, ˆ, ⊕, ⊗ and (.

I Proposition 19. Purity is stable under ´, ˆ, ⊕ and ⊗.

Unfortunately, when N and P are pure, N ( P is not necessarily pure, even under
regularity assumption. However, a weaker form of purity holds for N( P.

I Definition 20. A behaviour B is quasi-pure if all the z-ended well-bracketed paths in
VB are extensible.

We recall that a path s is well-bracketed if, for every justified action κ in s , when we write
s = s0κ

′s1κs2 where κ′ justifies κ, all the actions in s1 are hereditarily justified by κ′.

I Proposition 21. If N and P are quasi-pure and regular then N( P is quasi-pure.

4 Inductive Data Types

Some important contributions are presented in this section. We interpret inductive data
types as positive behaviours, and we prove an internal completeness result allowing us to
make explicit the structure of fixed points. Regularity and purity of data follows.

Abusively, we denote the positive behaviour {z} by z all along this section.

4.1 Inductive Data Types as Kleene Fixed Points
We define the data patterns via a type language and interpret them as behaviours, in particular
µ is interpreted as a least fixed point. Data behaviours are the interpretation of steady data
patterns.

Suppose given a countably infinite set V of second-order variables: X,Y, · · · ∈ V. Let
S ′ = S \{N, π1, π2, ℘} and define the set of constants Const = {Ca | a ∈ S ′} which contains
a behaviour Ca = {x0|a〈

−→
Ω−〉}⊥⊥ (where Ω− :=

∑
a∈S a(−→xa).Ω) for each a ∈ S ′, i.e., such

that a is not the name of a connective. Remark that VCa
= {z , x0|a〈−→x 〉}, thus Ca is

regular and pure.

I Definition 22. The set P of data patterns is generated by the inductive grammar:

A,B ::= X ∈ V | a ∈ S ′ | A⊕+ B | A⊗+ B | µX.A

The set of free variables of a data pattern A ∈ P is denoted by FV(A).

I Example 23. Let b, n, l, t ∈ S ′ and X ∈ V. The data types given as example in the
introduction can be written in the language of data patterns as follows:

Bool = b⊕+ b Nat = µX.(n⊕+ X) ListA = µX.(l ⊕+ (A⊗+ X))
TreeA = µX.(t⊕+ (A⊗+ ListX)) = µX.(t⊕+ (A⊗+ µY.(l ⊕+ (X ⊗+ Y ))))

Let B+ be the set of positive behaviours. Given a data pattern A ∈ P and an environment
σ, i.e., a function that maps free variables to positive behaviours, the interpretation of A in
the environment σ, written JAKσ, is the positive behaviour defined by:

JXKσ = σ(X) JA⊕+ BKσ = (ˆJAKσ)⊕ (ˆJBKσ)
JaKσ = Ca JA⊗+ BKσ = (ˆJAKσ)⊗ (ˆJBKσ)
JµX.AKσ = lfp(φAσ )
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where lfp stands for the least fixed point, and the function φAσ : B+ → B+,P 7→ JAKσ,X 7→P is
well defined and has a least fixed point by Knaster-Tarski fixed point theorem, as shown by
Baelde, Doumane and Saurin [2]. Abusively we may write ⊕+ and ⊗+, instead of (ˆ·)⊕ (ˆ·)
and (ˆ·)⊗ (ˆ·) respectively, for behaviours. We call an environment σ regular (resp. pure) if
its image contains only regular (resp. pure) behaviours. The notation σ,X 7→ P stands for
the environment σ where the image of X has been changed to P.

In order to understand the structure of fixed point behaviours that interpret the data
patterns of the form µX.A, we need a constructive approach, thus Kleene fixed point theorem
is best suited than Knaster-Tarski. We now prove that we can apply this theorem.

Recall the following definitions and theorem. A partial order is a complete partial
order (CPO) if each directed subset has a supremum, and there exists a smallest element,
written ⊥. A function f : E → F between two CPOs is Scott-continuous (or simply
continuous) if for every directed subset D ⊆ E we have

∨
x∈D f(x) = f(

∨
x∈D x).

I Theorem 24 (Kleene fixed point theorem). Let L be a CPO and let f : L → L be Scott-
continuous. The function f has a least fixed point, defined by

lfp(f) =
∨
n∈N

fn(⊥)

The set B+ ordered by ⊆ is a CPO, with least element z; indeed, given a subset P ⊆ B+, it
is directed and we have

∨
P = (

⋃
P)⊥⊥. Hence next proposition proves that we can apply

the theorem.

I Proposition 25. Given a data pattern A ∈ P, a variable X ∈ V and an environment
σ : FV(A) \ {X} → B+, the function φAσ is Scott-continuous.

I Corollary 26. For every A ∈ P, X ∈ V and σ : FV(A) \ {X} → B+,

JµX.AKσ =
∨
n∈N

(φAσ )n(z) = (
⋃
n∈N

(φAσ )n(z))⊥⊥ .

This result gives an explicit formulation for least fixed points. However, the ⊥⊥-closure might
add new designs which were not in the union, making it difficult to know the exact content
of such a behaviour. The point of next subsection will be to give an internal completeness
result proving that the closure is actually not necessary.

Let us finish this subsection by defining a restricted set of data patterns so as to exclude
the degenerate ones. Consider for example ListA′ = µX.(A⊗+ X), a variant of ListA (see
Example 23) which misses the base case. It is degenerate in the sense that the base element,
here the empty list, is interpreted as the design z. This is problematic: an interaction going
through a whole list will end with an error, making it impossible to explore a pair of lists for
example. The pattern Nat′ = µX.X is even worse since JNat′K = z. The point of steady
data patterns is to ensure the existence of a basis; this will be formalised in Lemma 37.

I Definition 27. The set of steady data patterns is the smallest subset Ps ⊆ P such that:
S ′ ⊆ Ps
If A ∈ Ps and B is such that JBKσ is pure if σ is pure, then A⊕+B ∈ Ps and B⊕+A ∈ Ps
If A ∈ Ps and B ∈ Ps then A⊗+ B ∈ Ps
If A ∈ Ps then µX.A ∈ Ps

The condition on B in the case of ⊕+ admits data patterns which are not steady, possibly
with free variables, but ensuring the preservation of purity, i.e., type safety; the basis will
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come from side A. We will prove (§ 4.3) that behaviours interpreting steady data patterns
are pure, thus in particular a data pattern of the form µX.A is steady if the free variables
of A all appear on the same side of a ⊕+ and under the scope of no other µ (since purity
is stable under ´, ˆ,⊕,⊗). We claim that steady data patterns can represent every type of
finite data.

I Definition 28. A data behaviour is the interpretation of a closed steady data pattern.

4.2 Internal Completeness for Infinite Union
Our main result is an internal completeness theorem, stating that an infinite union of simple
regular behaviours with increasingly large incarnations is a behaviour: ⊥⊥-closure is useless.

I Definition 29.
A slice is a design in which all negative subdesigns are either Ω− or of the form a(−→x ).pa,
i.e., at most unary branching. c is a slice of d if c is a slice and c v d. A slice c of d is
maximal if for any slice c′ of d such that c v c′, we have c = c′.
A behaviour B is simple if for every design d ∈ |B|:
1. d has a finite number of maximal slices, and
2. every positive action of d is justified by the immediate previous negative action.

Condition (2) of simplicity ensures that, given d ∈ |B| and a slice c v d, one can find a
path of c containing all the positive proper actions of c until a given depth; thus by condition
(1), there exists k ∈ N depending only on d such that k paths can do the same in d.

Now suppose (An)n∈N is an infinite sequence of simple regular behaviours such that for
all n ∈ N, |An| ⊆ |An+1| (in particular we have An ⊆ An+1).

I Theorem 30. The set
⋃
n∈N An is a behaviour.

A union of behaviours is not a behaviour in general. In particular, counterexamples are easily
found if releasing either the inclusion of incarnations or the simplicity condition. Moreover,
our proof for this theorem relies strongly on regularity. Under the same hypotheses we can
prove V⋃

n∈N
An

=
⋃
n∈N VAn

and |
⋃
n∈N An| =

⋃
n∈N |An|, hence the following corollary.

I Corollary 31.⋃
n∈N An is simple and regular;

if moreover all the An are pure then
⋃
n∈N An is pure.

4.3 Regularity and Purity of Data
The goal of this subsection is to show that the interpretation of data patterns of the form
µX.A can be expressed as an infinite union of behaviours (An)n∈N satisfying the hypotheses
of Theorem 30, in order to deduce regularity and purity. We will call an environment σ
simple if its image contains only simple behaviours.

I Lemma 32. For all A ∈ P, X ∈ V, σ : FV(A) \ {X} → B+ and n ∈ N we have

|(φAσ )n(z)| ⊆ |(φAσ )n+1(z)| .

I Proposition 33. For all A ∈ P and simple regular environment σ, JAKσ is simple regular.
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Proof. By induction on data patterns. If A = X or A = a the conclusion is immediate. If
A = A1 ⊕+ A2 or A = A1 ⊗+ A2 then regularity comes from Proposition 18, and simplicity
is easy since the structure of the designs in JAKσ is given by internal completeness for the
logical connectives (Theorem 8). So suppose A = µX.A0. By induction hypothesis, for
every simple regular behaviour P ∈ B+ we have φA0

σ (P) = JA0Kσ,X 7→P simple regular. From
this, it is straightforward to show by induction that for every n ∈ N, (φA0

σ )n(z) is simple
regular. Moreover, for every n ∈ N we have |(φA0

σ )n(z)| ⊆ |(φA0
σ )n+1(z)| by Lemma 32, thus

by Corollary 26 and Theorem 30, JµX.A0Kσ =
∨
n∈N(φAσ )n(z) = (

⋃
n∈N(φA0

σ )n(z))⊥⊥ =⋃
n∈N(φA0

σ )n(z). Consequently, by Corollary 31, JµX.A0Kσ is simple regular. J

Remark that we have proved at the same time, using Theorem 30, that behaviours interpreting
data patterns µX.A admit an explicit construction:

I Proposition 34. If A ∈ P, X ∈ V, and σ : FV(A) \X → B+ is simple regular,

JµX.AKσ =
⋃
n∈N

(φAσ )n(z)

I Corollary 35. Data behaviours are regular.

We now move on to proving purity. The proof that the interpretation of a steady data
pattern A is pure relies on the existence of a basis for A (Lemma 37). Let us first widen (to
z-free paths) and express in a different way (for z-ended paths) the notion of extensible
visitable path.

I Definition 36. Let B be a behaviour.
A z-free path s ∈ VB is extensible if there exists t ∈ VB of which s is a strict prefix.
A z-ended path sz ∈ VB is extensible if there exists a positive action κ+ and t ∈ VB
of which sκ+ is a prefix.

Write V maxB for the set of maximal, i.e., non extensible, visitable paths of B.

I Lemma 37. Every steady data pattern A ∈ Ps has a basis, i.e., a simple regular behaviour
B such that for all simple regular environment σ we have

B ⊆ JAKσ,
for every path s ∈ VB, there exists t ∈ V maxB z-free extending s (in particular B pure),
V maxB ⊆ V maxJAKσ .

Proof (Idea). If A = a, a basis is Ca. If A = A1 ⊕+ A2, and Ai is steady with basis Bi,
then ⊗iˆBi := ιi〈ˆBi〉 is a basis for A. If A = A1 ⊗+ A2, a basis is B1 ⊗+ B2 where B1 and
B2 are basis of A1 and A2 respectively. If A = µX.A0, its basis is the same as A0. J

I Proposition 38. If A ∈ Ps of basis B, X ∈ V, and σ : FV(A) \X → B+ simple regular,

JµX.AKσ =
⋃
n∈N

(φAσ )n(B)

Proof. Since B is a basis for A we have z ⊆ B ⊆ JAKσ,X→z = φAσ (z). The Scott-continuity
of the function φAσ implies that it is increasing, thus (φAσ )n(z) ⊆ (φAσ )n(B) ⊆ (φAσ )n+1(z)
for all n ∈ N. Hence JAKσ =

⋃
n∈N(φAσ )n(z) =

⋃
n∈N(φAσ )n(B). J

I Proposition 39. For all A ∈ Ps and simple regular pure environment σ, JAKσ is pure.
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Proof. By induction on A. The base cases are immediate and the connective cases are solved
using Proposition 19. Suppose now A = µX.A0, where A0 is steady with basis B0. We have
JAKσ =

⋃
n∈N(φA0

σ )n(B0) by Proposition 38, let us prove it satisfies the hypotheses needed to
apply Corollary 31(2). By induction hypothesis and Proposition 33, for every simple, regular
and pure behaviour P ∈ B+ we have φA0

σ (P) = JA0Kσ,X 7→P simple, regular and pure, hence
it is easy to show by induction that for every n ∈ N, (φA0

σ )n(B0) is as well. Moreover, for
every n ∈ N we prove that |(φA0

σ )n(B0)| ⊆ |(φA0
σ )n+1(B0)| similarly to Lemma 32, replacing

z by the basis B0. Finally, by Corollary 31, JAKσ is pure. J

I Corollary 40. Data behaviours are pure.

I Remark. Although here the focus is on the interpretation of data patterns, we should say a
word about the interpretation of (polarised) µMALL formulas, which are a bit more general.
These formulas are generated by:

P,Q ::= XP | X⊥N | 1 | 0 | M ⊕N | M ⊗N | ´N | µX.P

M,N ::= P⊥

where the usual involutive negation hides the negative connectives and constants, through
the dualities 1/⊥, 0/>, ⊕/&, ⊗/`, ´/ˆ, µ/ν . The interpretation as ludics behaviours,
given in [2], is as follows: 1 is interpreted as a constant behaviour Ca, 0 is the daimon
z, the positive connectives match their ludics counterparts, µ is interpreted as the least
fixed point of a function φAσ similarly to data patterns, and the negation corresponds to the
orthogonal. Since in ludics constants and z are regular, and since regularity is preserved by
the connectives (Proposition 18) and by orthogonality, the only thing we need in order to
prove that all the behaviours interpreting µMALL formulas are regular is a generalisation
of regularity stability under fixed points (for now we only have it in our particular case:
Corollary 31 together with Proposition 34).

Note however that interpretations of µMALL formulas are not all pure. Indeed, as we will
see in next section, orthogonality (introduced through the connective () does not preserve
purity in general.

5 Functional Types

In this section we define functional behaviours which combine data behaviours with the
connective (. A behaviour of the form N ( P is the set of designs such that, when
interacting with a design of type N, outputs a design of type P; this is exactly the meaning of
its definition N( P := (N⊗P⊥)⊥. We prove that some particular higher-order functional
types – where functions are taken as arguments, typically (A( B)( C – are exactly those
who fail at being pure, and we interpret this result from a computational point of view.

5.1 Where Impurity Arises

We have proved that data behaviours are regular and pure. However, if we introduce
functional behaviours with the connective(, purity does not hold in general. Proposition 42
indicates that a weaker property, quasi-purity, holds for functional types, and Proposition 43
identifies exactly the cases where purity fails.

Let us write D for the set of data behaviours.
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I Definition 41. A functional behaviour is a behaviour inductively generated by the
grammar below, where P(+ Q stands for ´((ˆP)( Q).

P,Q ::= P0 ∈ D | P⊕+ Q | P⊗+ Q | P(+ Q .

From Propositions 18, 19 and 21 we easily deduce the following result.

I Proposition 42. Functional behaviours are regular and quasi-pure.

For next proposition, consider contexts defined inductively as follows (where P is a
functional behaviour):

C ::= [ ] | C ⊕+ P | P⊕+ C | C ⊗+ P | P⊗+ C | P(+ C .

I Proposition 43. A functional behaviour P is impure if and only if there exist contexts
C1, C2 and functional behaviours Q1,Q2,R with R /∈ Const such that

P = C1[ C2[Q1 (
+ Q2](+ R ] .

5.2 Example and Discussion
Proposition 43 states that a functional behaviour which takes functions as argument is not
pure: some of its visitable paths end with a daimon z, and there is no possibility to extend
them. In terms of proof-search, playing the daimon is like giving up; on a computational
point of view, the daimon appearing at the end of an interaction expresses the sudden
interruption of the computation. In order to understand why such an interruption can occur
in the specific case of higher-order functions, consider the following example which illustrates
the proposition.

I Example 44. Let Q1,Q2,1 be functional behaviours, with 1 ∈ Const. Define Bool =
1⊕+ 1 and consider the behaviour P = (Q1 (+ Q2)(+ Bool: this is a type of functions
which take a function as argument and output a boolean. Let α1, α2, β be respectively the
first positive action of the designs of Q1,Q2,1. It is possible to exhibit a design p ∈ P and a
design n ∈ P⊥ such that the visitable path s = 〈p← n〉 is z-ended and maximal in VP, in
other words s is a witness of the impurity of P. The path s contains the actions α1 and α2
in such a way that it cannot be extended with β without breaking the P-visibility condition,
and there is no other available action in designs of P to extend it. Reproducing the designs
p and n and the path s here would be of little interest since those objects are too large to be
easily readable (s visits the entire design p, which contains 11 actions). We however give an
intuition in the style of game semantics: Fig. 2 represents s as a legal play in a strategy of
type P = (Q1 (+ Q2)(+ Bool (note that only one “side” ⊕1ˆ1 of Bool is represented,
corresponding for example to True, because we cannot play in both sides). This analogy is
informal, it should stand as an intuition rather than as a precise correspondence with ludics;
for instance, and contrary to the way it is presented in game semantics, the questions are
asked on the connectives, while the answers are given in the sub-types of P. On the right are
given the actions in s corresponding to the moves played. The important thing to remark is
the following: if a move b corresponding to action β were played instead of z at the end of
this play, it would break the P-visibility of the strategy, since this move would be justified by
move qˆ.

The computational interpretation of the z-ended interaction between p and n is the
following: a program p of type P launches a child process p′ to compute the argument of
type Q1 → Q2, but p starts to give a result in Bool before the execution of p′ terminates,
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Figure 2 Representation of path s from Example 44 in the style of a legal play.

leading to a situation where p cannot compute the whole data in Bool. The interaction
outputs z, i.e., the answer given in Bool by p is incomplete.

Moreover by Proposition 42 functional behaviours are quasi-pure, therefore the maximal
z-ended visitable paths are necessarily not well-bracketed. This is indeed the case of s :
remark for example that the move q⊕1 appears between a1 and its justification qˆ in the
sequence, but q⊕1 is not hereditarily justified by qˆ. In HO games, well-bracketedness is a
well studied notion, and relaxing it introduces control operators in program. If we extend
such an argument to ludics, this would mean that the appearance of z in the execution of
higher-order functions can only happen in the case of programs with control operators such
as jumps, i.e. programs which are not purely functional.

6 Conclusion

This article is a contribution to the exploration of the behaviours of linear ludics in a compu-
tational perspective. Our focus is on the behaviours representing data types and functional
types. Inductive data types are interpreted using the logical connectives constructions and
a least fixed point operation. Adopting a constructive approach, we provide an internal
completeness result for fixed points, which unveils the structure of data behaviours. This leads
us to proving that such behaviours are regular – the key notion for the characterisation of
MALL in ludics – and pure – that is, type safe. But behaviours interpreting types of functions
taking functions as argument are impure; for well-bracketed interactions, corresponding to
the evaluation of purely functional programs, safety is however guaranteed.

Further Work. Two directions for future research arise naturally:
Extending our study to greatest fixed points νX.A, i.e., coinduction, is the next objective.
Knaster–Tarski ensures that such greatest fixed point behaviours exist [2], but Kleene fixed
point theorem does not apply here, hence we cannot find an explicit form for coinductive
behaviours the same way we did for the inductive ones. However it is intuitively clear
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that, compared to least fixed points, greatest ones add the infinite “limit” designs in (the
incarnation of) behaviours. For example, if Natω = νX.(1 ⊕ X) then we should have
|JNatωK| = |JNatK| ∪ {dω} where dω = succ(dω) = x0|ι2〈ˆ(x).dωx〉.
Another direction would be to get a complete characterisation of µMALL in ludics, by
proving that a behaviour is regular – and possibly satisfying a supplementary condition –
if and only if it is the denotation of a µMALL formula.

Acknowledgements. I thank Claudia Faggian, Christophe Fouqueré, Thomas Seiller and
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A Technical Appendix

This appendix presents the proof of Theorem 30, which requires first some preliminaries.

A.1 Observational Ordering and Monotonicity
We consider the observational ordering � over designs: d′ � d if d can be obtained from
d′ by substituting:

positive subdesigns for some occurrences of Ω.
z for some positive subdesigns.

Remark in particular that for all positive designs p and p′, we have Ω � p � z, and if p v p′

then p � p′. We can now state the monotonicity theorem, an important result of ludics. A
proof of the theorem formulated in this form is found in [16].

I Theorem 45 (Monotonicity).
If d � e and m � n, then d[m/x] � e[n/x].
If d � e then ([d]) � ([e]).

This means that the relation � compares the likelihood of convergence: if d ⊥ e and
d � d′ then d′ ⊥ e. In particular, if B is a behaviour, if d ∈ B and d � d′ then d′ ∈ B.

Remark the following important fact: given a path s of some design d, there is a unique
design maximal for � such that s is a path of it. Indeed, this design ppsqqc is obtained from d

by replacing all positive subdesigns (possibly Ω) whose first positive action is not in s by z.
Note that, actually, the design ppsqqc does not depend on d but only on the path s .

I Proposition 46. For every behaviour B, if s ∈ VB then ppsqqc ∈ B.

A.2 More on Paths
Let B be a behaviour.

I Lemma 47. If d ∈ B and s ∈ VB is a path of d, then s is a path of |d|.

I Lemma 48. Let s ∈ VB. For every positive-ended (resp. negative-ended) prefix s ′ of s , we
have s ′ ∈ VB (resp. s ′z ∈ VB).

I Lemma 49. Let s ∈ VB. For every prefix s ′κ− of s and every d ∈ B such that s ′ is a path
of d, s ′κ− is a prefix of a path of d.

A.3 An Alternative Definition of Regularity
Define the anti-shuffle ( �) as the dual operation of shuffle, that is:

s �t =
∼∼s � ∼t if s and t are paths of same polarity;

S �T =
∼∼
S �

∼
T if S and T are sets of paths of same polarity.

I Definition 50.
A trivial view is an aj-sequence such that each proper action except the first one is
justified by the immediate previous action. In other words, it is a view such that its dual
is a view as well.
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The trivial view of an aj-sequence is defined inductively by:

〈ε〉 = ε empty sequence
〈sz〉 = 〈s〉z
〈sκ〉 = κ if κ 6= z initial
〈sκ〉 = 〈s0〉κ if κ 6= z justified, where s0 prefix of s ending on just(κ)

We also write 〈κ〉s (or even 〈κ〉) instead of 〈s ′κ〉 when s ′κ is a prefix of s .
Trivial views of a design d are the trivial views of its paths (or of its views). In
particular, ε is a trivial view of negative designs only.
Trivial views of designs in |B| are called trivial views of B.

I Lemma 51.
1. Every view is in the anti-shuffle of trivial views.
2. Every path is in the shuffle of views.

I Remark. Following previous result, note that every view (resp. path) of a design d is in
the anti-shuffle of trivial views (resp. in the shuffle of views) of d.

I Proposition 52. B is regular if and only if the following conditions hold:
the positive-ended trivial views of B are visitable in B,
VB and VB⊥ are stable under � (i.e., VB is stable under � and �).

A.4 Proof of Theorem 30
Before proving Theorem 30 we need some lemmas. Suppose (An)n∈N is an infinite sequence
of regular behaviours such that for all n ∈ N, |An| ⊆ |An+1|; the simplicity hypothesis is not
needed for now. Let us note A =

⋃
n∈N An. Notice that the definition of visitable paths can

harmlessly be extended to any set E of designs of same polarity, even if it is not a behaviour;
the same applies to the definition of incarnation, provided that E satisfies the following: if
d, e1, e2 ∈ E are cut-free designs such that e1 v d and e2 v d then there exists e ∈ E cut-free
such that e v e1 and e v e2. In particular, as a union of behaviours, A satisfies this condition.

I Lemma 53.
1. ∀n ∈ N, VAn

⊆ VAn+1 .
2. V⋃

n∈N
An

=
⋃
n∈N VAn .

3. |
⋃
n∈N An| =

⋃
n∈N |An|.

Proof.
1. Fix n and let s ∈ VAn . There exist d ∈ |An| such that s is a path of d. Since |An| ⊆ |An+1|

we have d ∈ |An+1|, thus by regularity of An+1, s ∈ VAn+1 .
2. (⊆) Let s ∈ VA. There exist n ∈ N and d ∈ |An| such that s is a path of d. By regularity

of An we have s ∈ VAn .
(⊇) Let m ∈ N and s ∈ VAm

. For all n ≥ m, VAm
⊆ VAn

by previous item, thus s ∈ VAn
.

Hence if we take e = pp∼sqq
c
, we have e ∈ An

⊥ for all n ≥ m by monotonicity. We deduce
e ∈

⋂
n≥m An

⊥ = (
⋃
n≥m An)⊥ = (

⋃
n∈N An)⊥ = A⊥. Let d ∈ Am such that s is a path

of d; we have d ∈ A and e ∈ A⊥, thus 〈d← e〉 = s ∈ VA.
3. (⊆) Let d be cut-free and minimal for v in A. There exists m ∈ N such that d ∈ Am.

Thus d is minimal for v in Am otherwise it would not be minimal in A, hence the result.
(⊇) Let m ∈ N, and let d ∈ |Am|. By hypothesis, d ∈ |An| for all n ≥ m. Suppose d is
not in |A|, so there exists d′ ∈ A such that d′ v d and d′ 6= d. In this case, there exists
n ≥ m such that d′ ∈ An, but this contradicts the fact that d ∈ |An|. J
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I Lemma 54. V⋃
n∈N

An
=∼V⋃

n∈N
An

⊥ = V(
⋃
n∈N

An)⊥⊥ .

Proof. In this proof we use the alternative definition of regularity (Proposition 52). We prove
VA =∼VA⊥ , and the result will follow from the fact that for any behaviour B (in particular if
B = A⊥⊥) we have∼VB⊥ = VB. First note that the inclusion VA ⊆

∼
VA⊥ is immediate.

Let s ∈ VA⊥ and let us show that ∼s ∈ VA. Let e ∈ |A⊥| such that s is a path of e. By
Lemma 51 and the remark following it, s is in the shuffle of anti-shuffles of trivial views
≈1, . . . ,≈k of A⊥. For every i ≤ k, suppose ≈i = 〈κi〉; necessarily, there exists a design
di ∈ A such that κi occurs in 〈e ← di〉, i.e., such that ≈i is a subsequence of 〈e ← di〉,
otherwise e would not be in the incarnation of A⊥ (it would not be minimal). Let n be big
enough such that d1, . . . , dk ∈ An, and note that in particular e ∈ An

⊥. For all i, ∼≈i is a
trivial view of |di|An , thus it is a trivial view of An. By regularity of An we have ∼≈i ∈ VAn .
Since ∼s is in the anti-shuffle of shuffles of∼≈1, . . . ,

∼≈k, we have ∼s ∈ VAn
using regularity again.

Therefore ∼s ∈ VA by Lemma 53. J

I Lemma 55. (
⋃
n∈N An)⊥ and (

⋃
n∈N An)⊥⊥ are regular.

Proof. Let us show A⊥ is regular using the equivalent definition (Proposition 52).
Let ≈ be a trivial view of A⊥. By a similar argument as in the proof above, there exists
n ∈ N such that ∼≈ is a trivial view of An, thus ∼≈ ∈ VAn ⊆ VA. By Lemma 54 ≈ ∈ VA⊥ .
Let s , t ∈ VA⊥ . By Lemma 54, ∼s , ∼t ∈ VA. By Lemma 53(2), there exists n ∈ N such that
∼s , ∼t ∈ VAn , thus by regularity of An we have ∼s �∼t , ∼s � ∼t ⊆ VAn ⊆ VA, in other words
∼s � t ,∼s �t ⊆ VA. By Lemma 54 we deduce s� t , s �t ⊆ VA⊥ , hence VA⊥ is stable under
shuffle and anti-shuffle.

Finally A⊥ is regular. We deduce that A⊥⊥ is regular since regularity is stable under
orthogonality. J

Let us introduce some more notions for next proof. An ∞-path (resp. ∞-view) is a
finite or infinite sequence of actions satisfying all the conditions of the definition of path
(resp. view) but the requirement of finiteness. In particular, a finite ∞-path (resp. ∞-view)
is a path (resp. a view). An ∞-path (resp. ∞-view) of a design d is such that any of its
positive-ended prefix is a path (resp. a view) of d. We call infinite chattering a closed
interaction which diverges because the computation never ends; note that infinite chattering
occurs in the interaction between two atomic designs p and n if and only if there exists an
infinite ∞-path s of p such that ∼s is an ∞-path of n (where, when s is infinite, ∼s is obtained
from s by simply reversing the polarities of all the actions). Given an infinite ∞-path s , the
design ppsqqc is constructed similarly to the case when s is finite (see §A.1).

For the proof of the theorem, suppose now that the behaviours (An, )n∈N are simple.
Remark that the second condition of simplicity implies in particular that the dual of a path
in a design of a simple behaviour is a view.

Proof of Theorem 30. We must show that A⊥⊥ ⊆ A since the other inclusion is trivial.
Remark the following: given designs d and d′, if d ∈ A and d v d′ then d′ ∈ A. Indeed, if
d ∈ A then there exists n ∈ N such that d ∈ An; if moreover d v d′ then in particular d � d′,
and by monotonicity d′ ∈ An, hence d′ ∈ A. Thus it is sufficient to show |A⊥⊥| ⊆ A since
for every d′ ∈ A⊥⊥ we have |d′| ∈ |A⊥⊥| and |d′| v d′.

So let d ∈ |A⊥⊥| and suppose d /∈ A. First note the following: by Lemmas 54 and 55,
every path s of d is in VA⊥⊥ = VA, thus there exists d′ ∈ |A| containing s . We explore
separately the possible cases, and show how they all lead to a contradiction.
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If d has an infinite number of maximal slices then:
Either there exists a negative subdesign n =

∑
a∈S a(−→xa).pa of d for which there is an

infinity of names a ∈ A such that pa 6= Ω. In this case, let v be the view of d such that
for every action κ− among the first ones of n, vκ− is the prefix of a view of d. All such
sequences vκ− being prefixes of paths of d, we deduce by regularity of A⊥⊥ and using
Lemma 48 that vκ−z ∈ VA⊥⊥ . Let d′ ∈ |A| be such that v is a view of d′. Since d′ is
also in A⊥⊥, we deduce by Lemma 49 that for every action κ− among the first ones of n,
vκ− is the prefix of a view of d′. Thus d′ has an infinite number of slices: contradiction.
Or we can find an infinite ∞-view v = (κ−0 )κ+

1 κ
−
1 κ

+
2 κ
−
1 κ

+
3 κ
−
3 . . . of d (the first action κ−0

being optional depending on the polarity of d) satisfying the following: there is an infinity
of i ∈ N such than κ−i is one of the first actions of a negative subdesign

∑
a∈S a(−→xa).pa

of d with at least two names a ∈ A such that pa 6= Ω. Let vi be the prefix of v ending
on κ+

i . There is no design d′ ∈ |A| containing v, indeed: in this case, for all i and all
negative action κ− such that viκ− is a prefix of a view of d, viκ− would be a prefix
of a view of d′ by Lemma 49, thus d′ would have an infinite number of slices, which
is impossible since the An are simple. Thus consider e = pp

∼
vqq

c

: since all the vi are
views of designs in |A| =

⋃
n∈N |An| and since the An are simple, the sequences

∼
vi are

views, thus
∼
v is an ∞-view. Therefore an interaction between a design d′ ∈ A and e

necessarily eventually converges by reaching a daimon of e, indeed: infinite chattering is
impossible since we cannot follow v forever, and interaction cannot fail after following a
finite portion of v since those finite portions vi are in VA. Hence e ∈ A⊥. But d 6⊥ e,
because of infinite chattering following v. Contradiction.

If d has a finite number of maximal slices c1, . . . , ck then for every i ≤ k there exist
an ∞-path si that visit all the positive proper actions of ci. Indeed, any (either infinite or
positive-ended) sequence s of proper actions in a slice c v d, without repetition, such that
polarities alternate and the views of prefixes of s are views of c, is an ∞-path:

(Linearity) is ensured by the fact that we are in only one slice,
(O-visibility) is satisfied since positive actions of d, thus also of c, are justified by the
immediate previous negative action (a condition true in |A|, thus also satisfied in d

because all its views are views of designs in |A|)
(P-visibility) is natively satisfied by the fact that s is a promenade in the tree representing
a design.

For example, s can travel in the slice c as a breadth-first search on couples of nodes (κ−, κ+)
such that κ+ is just above κ− in the tree, and κ+ is proper. Then 2 cases:

Either for all i, there exists ni ∈ N and di ∈ Ani such that si is an∞-path of di. Without
loss of generality we can even suppose that ci v di: if it is not the case, replace some
positive subdesigns (possibly Ω) of di by z until you obtain d′i such that ci v d′i, and
note that indeed d′i ∈ Ani since di � d′i. Let N = max1≤i≤k(ni). Since d 6∈ A, thus in
particular d 6∈ AN , there exists e ∈ A⊥N such that d 6⊥ e. The reason of divergence cannot
be infinite chattering, otherwise there would exist an infinite ∞-path t in d such that
∼t is in e, and t is necessarily in a single slice of d (say ci) to ensure its linearity; but in
this case we would also have di 6⊥ e where di ∈ AN , impossible. Similarly, for all (finite)
path s of d, there exists i such that s is a path of ci thus of di ∈ AN ; this ensures that
interaction between d and e cannot diverge after a finite number of steps either, leading
to a contradiction.
Or there is an i such that the (necessarily infinite) ∞-path si is in no design of A. In
this case, let e = pp∼siqq

c
(where ∼si is a view since the An are simple), and with a similar

argument as previously we have e ∈ A⊥ but d 6⊥ e by infinite chattering, contradiction. J
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