
Capturing Logarithmic Space and Polynomial
Time on Chordal Claw-Free Graphs
Berit Grußien

Humboldt-Universität zu Berlin, Berlin, Germany
grussien@informatik.hu-berlin.de

Abstract
We show that the class of chordal claw-free graphs admits LREC=-definable canonization. LREC=
is a logic that extends first-order logic with counting by an operator that allows it to formalize
a limited form of recursion. This operator can be evaluated in logarithmic space. It follows that
there exists a logarithmic-space canonization algorithm for the class of chordal claw-free graphs,
and that LREC= captures logarithmic space on this graph class. Since LREC= is contained in
fixed-point logic with counting, we also obtain that fixed-point logic with counting captures
polynomial time on the class of chordal claw-free graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathe-
matical Logics

Keywords and phrases Descriptive complexity, logarithmic space, polynomial time, chordal claw-
free graphs

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.26

1 Introduction

Descriptive complexity is a field of computational complexity theory that provides logical
characterizations for the standard complexity classes. The starting point of descriptive
complexity was a theorem of Fagin in 1974 [6], which states that existential second-order logic
characterizes, or captures, the complexity class NP. Later, similar logical characterizations
were found for further complexity classes. For example, Immerman proved that deterministic
transitive closure logic DTC captures LOGSPACE [19], and independently of one another,
Immerman [18] and Vardi [24] showed that fixed-point logic FP captures PTIME1. However,
these two results have a draw-back: They only hold on ordered structures, that is, on
structures with a distinguished binary relation which is a linear order on the universe of
the structure. On structures that are not necessarily ordered, there have only been partial
results towards capturing LOGSPACE or PTIME, so far.

A negative partial result towards capturing LOGSPACE follows from Etessami and Im-
merman’s result that (directed) tree isomorphism is not definable in transitive closure logic
with counting TC+C [5]. This implies that tree isomorphism is neither definable in de-
terministic nor in symmetric transitive closure logic with counting (DTC+C and STC+C),
although it is decidable in LOGSPACE [22]. Hence, DTC+C and STC+C are not strong
enough to capture LOGSPACE even on the class of trees. That is why, in 2011 a new logic
with logarithmic-space data complexity was introduced [13, 14]. This logic, LREC=, is an
extension of first-order logic with counting by an operator that allows a limited form of

1 More precisely, Immerman and Vardi’s theorem holds for least fixed-point logic (LFP) and the equally
expressive inflationary fixed-point logic (IFP). Our indeterminate FP refers to either of these two logics.

© Berit Grußien;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 26; pp. 26:1–26:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/132422402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Capturing Logarithmic Space on Chordal Claw-Free Graphs

recursion. LREC= strictly contains STC+C and DTC+C. In [13, 14], the authors proved
that LREC= captures LOGSPACE on the class of (directed) trees and on the class of interval
graphs. In this paper we now show that LREC= captures LOGSPACE also on the class of
chordal claw-free graphs. More precisely, this paper’s technical main contribution states
that the class of chordal claw-free graphs admits LREC=-definable canonization. This does
not only imply that LREC= captures LOGSPACE on chordal claw-free graphs, but also that
there exists a logarithmic-space canonization algorithm for the class of chordal claw-free
graphs. Hence, the isomorphism and automorphism problem for this graph class is solvable
in logarithmic space.

For polynomial time there also exist partial characterizations. Fixed-point logic with
counting FP+C captures PTIME, for example, on planar graphs [8], on all classes of graphs
of bounded treewidth [15] and on K5-minor free graphs [9]. Note that all these classes can
be defined by a list of forbidden minors. In fact, Grohe showed in 2010 that FP+C captures
PTIME on all graph classes with excluded minors [11]. Instead of graph classes with excluded
minors, one can also consider graph classes with excluded induced subgraphs, i.e. graph
classes C that are closed under taking induced subgraphs. For some of these graph classes C,
e.g. chordal graphs [10], comparability graphs [21] and co-comparability graphs [21], capturing
PTIME on C is as hard as capturing PTIME on the class of all graphs for any “reasonable”
logic.2 This gives us reason to consider subclasses of chordal graphs, comparability graphs
and co-comparability graphs more closely. There are results showing that FP+C captures
PTIME on interval graphs (chordal co-comparability graphs) [20], on permutation graphs
(comparability co-comparability graphs) [17] and on chordal comparability graphs [16].
Further, Grohe proved that FP+C captures PTIME on chordal line graphs [10]. At the
same time he conjectured that this is also the case for the class of chordal claw-free graphs,
which is an extension of the class of chordal line graphs. Our main result implies that
Grohe’s conjecture is true: Since LREC= is contained in FP+C, it yields that there exists an
FP+C-canonization of the class of chordal claw-free graphs. Hence, FP+C captures PTIME
also on the class of chordal claw-free graphs.

Our main result is based on a study of chordal claw-free graphs. Chordal graphs are
the intersection graphs of subtrees of a tree [2, 7, 25], and a clique tree of a chordal graph
corresponds to a minimal representation of the graph as such an intersection graph. We
prove that chordal claw-free graphs are (claw-free) intersection graphs of paths in a tree, and
that for each connected chordal claw-free graph the clique tree is unique.

1.1 Structure

The preliminaries in Section 2 will be followed by a Section 3 where we analyze the structure
of clique trees of chordal claw-free graphs, and, e.g., show that connected chordal claw-free
graphs have a unique clique tree. In Section 4, we transform the clique tree of a connected
chordal claw-free graph into a directed tree, and color each maximal clique with information
about its intersection with other maximal cliques by using a special coloring with a linearly
ordered set of colors. We obtain what we call the supplemented clique tree, and show that it
is definable in STC+C by means of a parameterized transduction. We know that there exists
an LREC=-canonization of colored trees if the set of colors is linearly ordered [13, 14]. We
apply this LREC=-canonization to the supplemented clique tree in Section 5 and obtain the

2 Note that FP+C does not capture PTIME on the class of all graphs [3]. Hence, it does not capture
PTIME on the class of chordal graphs, comparability graphs or co-comparability graphs either.

B. Grußien 26:3

canon of this colored directed tree. Due to the type of coloring, the information about the
maximal cliques is also contained in the colors of the canon of the supplemented clique tree.
This information and the linear order on the vertices of the canon of the supplemented clique
tree allow us to define the maximal cliques of a canon of the connected chordal claw-free
graph, from which we can easily construct the canon of the graph. By combining the canons
of the connected components, we obtain a canon for each chordal claw-free graph.

2 Basic Definitions and Notation

We write N for the set of all non-negative integers. For all n, n′ ∈ N, we define [n, n′] :=
{m ∈ N | n ≤ m ≤ n′} and [n] := [1, n]. We often denote tuples (a1, . . . , ak) by ā. Given
a tuple ā = (a1, . . . , ak), let ã := {a1, . . . , ak}. Let n ≥ 1. Let āi = (ai1, . . . , aiki

) be
a tuple of length ki for each i ∈ [n]. We denote the tuple (a1

1, . . . , a
1
k1
, . . . , an1 , . . . , a

n
kn

)
by (ā1, . . . , ān). Mappings f : A → B are extended to tuples ā = (a1, . . . , ak) over A via
f(ā) := (f(a1), . . . , f(ak)). Let ≈ be an equivalence relation on a set S. Then a/≈ denotes
the equivalence class of a ∈ S with respect to ≈. For ā = (a1, . . . , an) ∈ Sn and R ⊆ Sn, we
let ā/≈ := (a1/≈, . . . , an/≈) and R/≈ := {ā/≈ | ā ∈ R}. A partition of a set S is a set P of
disjoint non-empty subsets of S where S =

⋃
A∈P A. For a set S, we let

(
S
2
)
be the set of all

2-element subsets of S.

2.1 Graphs and LO-colored Graphs
A graph is a pair (V,E) consisting of a non-empty finite set V of vertices and a set E ⊆

(
V
2
)

of edges. Let G = (V,E) and G′ = (V ′, E′) be graphs. The union G ∪G′ of G and G′ is the
graph (V ∪ V ′, E ∪E′). For a subset W ⊆ V of vertices, G[W] denotes the induced subgraph
of G with vertex set W. Connectivity and connected components are defined in the usual way.
We denote the neighbors of a vertex v ∈ V by N(v). A set B ⊆ V is a clique if

(
B
2
)
⊆ E. A

maximal clique, or max clique, is a clique that is not properly contained in any other clique.
A graph is chordal if all its cycles of length at least 4 have a chord, which is an edge that

connects two non-consecutive vertices of the cycle. A claw-free graph is a graph that does
not have a claw, i.e. a graph isomorphic to the complete bipartite graph K1,3, as an induced
subgraph. We denote the class of (connected) chordal claw-free graphs by (con-)CCF.

A subgraph P of G is a path of G if P = ({v0, . . . , vk}, {{v0, v1}, . . . , {vk−1, vk}}) for
distinct vertices v0, . . . , vk of G. We also denote path P by the sequence v0, . . . , vk of vertices.
We let v0 and vk be the ends of P. A connected acyclic graph is a tree. Let T = (V,E) be a
tree. A subtree of T is a connected subgraph of T . A vertex v ∈ V of degree 1 is called a leaf.

A pair (V,E) is a directed graph if V is a non-empty finite set and E ⊆ V 2. A connected
acyclic directed graph where the in-degree of each vertex is at most 1 is a directed tree. Let
T = (V,E) be a directed tree. The vertex of in-degree 0 is the root of T. If (v, w)∈E, then w
is a child of v, and v the parent of w. Let w,w′ be children of v ∈ V. Then w is a sibling of w′
if w 6=w′. If there is a (directed) path from v ∈ V to w ∈ V in T, then v is an ancestor of w.

Let G = (V,E) be a graph and f : V → C be a mapping from the vertices of G to a
finite set C. Then f is a coloring of G, and the elements of C are called colors. In this
paper we color the vertices of a graph with binary relations on a linearly ordered set. We
call graphs with such a coloring LO-colored graphs. More precisely, an LO-colored graph is a
tuple G = (V,E,M,E, L) with the following four properties:
1. The pair (V,E) is a graph. We call (V,E) the underlying graph of G.
2. The set of basic color elements M is a non-empty finite set with M ∩ V = ∅.
3. The binary relation E ⊆M2 is a linear order on M .
4. The relation L ⊆ V ×M2 assigns to every v ∈ V an LO-color Lv := {(d, d′) | (v, d, d′) ∈ L}.

CSL 2017

26:4 Capturing Logarithmic Space on Chordal Claw-Free Graphs

Let d0, . . . , d|M |−1 be the enumeration of the basic color elements in M according to their
linear order E. We call LN

v := {(i, j)∈N2 | (di, dj)∈Lv} the NO-color of v ∈ V.
We can use the linear order E onM to obtain a linear order on the colors {Lv |v∈V } of G.

Thus, an LO-colored graph is a special kind of colored graph with a linear order on its colors.

2.2 Structures
A vocabulary is a finite set τ of relation symbols. Each relation symbol R ∈ τ has a fixed
arity ar(R) ∈ N. A τ -structure consists of a non-empty finite set U(A), its universe, and for
each relation symbol R ∈ τ of a relation R(A) ⊆ U(A)ar(R).

An isomorphism between τ -structures A and B is a bijection f : U(A)→ U(B) such that
for all R ∈ τ and all ā ∈ U(A)ar(R) we have ā ∈ R(A) if and only if f(ā) ∈ R(B). We write
A ∼= B to indicate that A and B are isomorphic.

Let E be a binary relation symbol. Each graph corresponds to an {E}-structureG = (V,E)
where the universe V is the vertex set and E is an irreflexive and symmetric binary relation, the
edge relation. To represent an LO-colored graph G = (V,E,M,E, L) as a logical structure we
extend the 5-tuple by a set U to a 6-tuple (U, V,E,M,E, L), and we require that U = V ∪̇M
in addition to the properties 1-4. The set U serves as the universe of the structure, and
V,E,M,E, L are relations on U . We usually do not distinguish between (LO-colored) graphs
and their representation as logical structures. It will be clear from the context which form
we are referring to.

2.3 Logics
In this section we introduce symmetric transitive closure logic (with counting) and LREC=.

We assume basic knowledge in logic, in particular of first-order logic (FO). First-order
logic with counting (FO+C) extends FO by a counting operator that allows for counting the
cardinality of FO+C-definable relations. It lives in a two-sorted context, where structures
A are equipped with a number sort N(A) := [0, |U(A)|]. FO+C has two types of variables:
FO+C-variables are either structure variables that range over the universe U(A) of a struc-
ture A, or number variables that range over the number sort N(A). For each variable u,
let Au := U(A) if u is a structure variable, and Au := N(A) if u is a number variable. Let
A(u1,...,uk) := Au1×· · ·×Auk . Tuples (u1, . . . , uk) and (v1, . . . , v`) of variables are compatible
if k = `, and for every i ∈ [k] the variables ui and vi have the same type. An assignment
in A is a mapping α from the set of variables to U(A) ∪N(A), where for each variable u
we have α(u) ∈ Au. For tuples ū = (u1, . . . , uk) of variables and ā = (a1, . . . , ak) ∈ Aū,
the assignment α[ā/ū] maps ui to ai for each i ∈ [k], and each variable v 6∈ ũ to α(v). By
ϕ(u1, . . . , uk) we denote a formula ϕ with free(ϕ) ⊆ {u1, . . . , uk}, where free(ϕ) is the set of
free variables in ϕ. Given a formula ϕ(u1, . . . , uk), a structure A and (a1, . . . , ak) ∈ A(u1,...,uk),
we write A |= ϕ[a1, . . . , ak] if ϕ holds in A with ui assigned to ai for each i ∈ [k]. We write
ϕ[A,α; ū] for the set of all tuples ā ∈ Aū with (A,α[ā/ū]) |= ϕ. For a formula ϕ(ū) (with
free(ϕ) ⊆ ũ) we also denote ϕ[A,α; ū] by ϕ[A; ū], and for a formula ϕ(v̄, ū) and ā ∈ Av̄, we
denote ϕ[A,α[ā/v̄]; ū] also by ϕ[A, ā; ū].

FO+C is obtained by extending FO with the following formula formation rules:
φ := p ≤ q is a formula if p, q are number variables. We let free(φ) := {p, q}.
φ′ := #ū ψ = p̄ is a formula if ψ is a formula, ū is a tuple of variables and p̄ a tuple of
number variables. We let free(φ′) := (free(ψ) \ ũ) ∪ p̃.

To define the semantics, let A be a structure and α be an assignment. We let
(A,α) |= p ≤ q iff α(p) ≤ α(q),
(A,α) |= #ū ψ = p̄ iff |ψ[A,α; ū]| = 〈α(p̄)〉A,

B. Grußien 26:5

where for tuples n̄ = (n1, . . . , nk) ∈ N(A)k we let 〈n̄〉A be the number

〈n̄〉A :=
k∑
i=1

ni · (|U(A)|+ 1)i−1.

Symmetric transitive closure logic (with counting) STC(+C) is an extension of FO(+C)
with stc-operators. The set of all STC(+C)-formulas is obtained by extending the formula
formation rules of FO(+C) by the following rule:

φ := [stc ū,v̄ ψ](ū′, v̄′) is a formula if ψ is a formula and ū, v̄, ū′, v̄′ are compatible tuples of
structure (and number) variables. We let free(φ) := ũ′ ∪ ṽ′ ∪

(
free(ψ) \ (ũ ∪ ṽ)

)
.

Let A be a structure and α be an assignment. We let
(A,α) |= [stc ū,v̄ ψ](ū′, v̄′) iff (α(ū′), α(v̄′)) is contained in the symmetric transitive closure
of ψ[A,α; ū, v̄].

LREC= is an extension of FO+C with lrec-operators, which allow a limited form of
recursion. We extend the formula formation rules of FO+C by the following rule:

φ := [lrecū,v̄,p̄ ϕ=, ϕE, ϕC](w̄, r̄) is a formula if ϕ=, ϕE and ϕC are formulas, ū, v̄, w̄ are
compatible tuples of variables and p̄, r̄ are non-empty tuples of number variables.
We let free(φ) :=

(
free(ϕ=) \ (ũ ∪ ṽ)

)
∪
(
free(ϕE) \ (ũ ∪ ṽ)

)
∪
(
free(ϕC) \ (ũ ∪ p̃)

)
∪ w̃ ∪ r̃.

Let A be a structure and α be an assignment. We let
(A,α) |= [lrecū,v̄,p̄ ϕ=, ϕE, ϕC](w̄, r̄) iff

(
α(w̄)/∼, 〈α(r̄)〉A

)
∈ X,

where X and ∼ are defined as follows: Let V0 := Aū and E0 := ϕE[A,α; ū, v̄]. We define ∼ to
be the reflexive, symmetric, transitive closure of the binary relation ϕ=[A,α; ū, v̄] over V0. Now
consider the graph G = (V, E) with V := V0/∼ and E := {(ā/∼, b̄/∼) ∈ V2 | (ā, b̄) ∈ E0}. To every
ā/∼ ∈ V we assign the set C(ā/∼) := {〈n̄〉A | there is an ā′∈ ā/∼ with n̄ ∈ ϕC[A,α[ā′/ū]; p̄]}
of numbers. Let ā/∼E := {b̄/∼ ∈ V | (ā/∼, b̄/∼) ∈ E} and E b̄/∼ := {ā/∼ ∈ V | (ā/∼, b̄/∼) ∈ E}.
Then, for all ā/∼ ∈ V and ` ∈ N,

(ā/∼, `) ∈ X :⇐⇒ ` > 0 and
∣∣∣∣{b̄/∼ ∈ ā/∼E

∣∣∣∣ (b̄/∼,⌊ `− 1
|E b̄/∼|

⌋)
∈ X

}∣∣∣∣ ∈ C(ā/∼).

LREC= semantically contains STC+C [14]. Note that simple arithmetics like addition
and multiplication are definable in STC+C, and therefore, in LREC=.

2.4 Transductions
Transductions (also known as syntactical interpretations) define certain structures within
other structures. More on transductions can be found in [12, 16]. In the following we
introduce parameterized transductions for FO(+C), STC(+C) and LREC=.

I Definition 2.1 (Parameterized Transduction). Let τ1, τ2 be vocabularies, and let L be a
logic that extends FO.
1. A parameterized L[τ1, τ2]-transduction is a tuple

Θ(x̄) =
(
θdom(x̄), θU (x̄, ū), θ≈(x̄, ū, ū′),

(
θR(x̄, ūR,1, . . . , ūR,ar(R))

)
R∈τ2

)
of L[τ1]-formulas, where x̄ is a tuple of structure variables, and ū, ū′ and ūR,i for every
R ∈ τ2 and i ∈ [ar(R)] are compatible tuples of variables.

2. The domain of Θ(x̄) is the class Dom(Θ(x̄)) of all pairs (A, p̄) such that A |= θdom[p̄],
θU [A, p̄; ū] is not empty and θ≈[A, p̄; ū, ū′] is an equivalence relation, where A is a τ1-
structure and p̄ ∈ Ax̄. The elements in p̄ are called parameters.

CSL 2017

26:6 Capturing Logarithmic Space on Chordal Claw-Free Graphs

3. Let (A, p̄) be in the domain of Θ(x̄), and let us denote θ≈[A, p̄; ū, ū′] by ≈. We define a
τ2-structure Θ[A, p̄] as follows. We let

U(Θ[A, p̄]) := θU [A, p̄; ū]/≈

be the universe of Θ[A, p̄]. Further, for each R ∈ τ2, we let

R(Θ[A, p̄]) :=
(
θR[A, p̄; ūR,1, . . . , ūR,ar(R)] ∩ θU [A, p̄; ū]ar(R)

)/
≈
.

A parameterized L[τ1, τ2]-transduction defines a parameterized mapping from τ1-struc-
tures into τ2-structures via L[τ1]-formulas. A parameterized L[τ1, τ2]-transduction Θ(x̄) is an
L[τ1, τ2]-transduction if x̄ is the empty tuple. If θdom := > or θ≈ := ⊥, we omit the respective
formula in the presentation of the transduction.

An important property of L[τ1, τ2]-transductions is that, for suitable logics L, they allow to
pull back L[τ2]-formulas, which means that for each L[τ2]-formula there exists an L[τ1]-formula
that expresses essentially the same. Logic L is closed under (parameterized) L-transductions
if for all vocabularies τ1, τ2 each (parameterized) L[τ1, τ2]-transduction allows to pull back
L[τ2]-formulas. Each logic L ∈ {FO(+C), STC(+C), LREC=} is closed under (parameterized)
L[τ1, τ2]-transductions [4, 14, 16].

2.5 Canonization
In this section we introduce ordered structures, (definable) canonization and the capturing
of the complexity class LOGSPACE.

Let τ be a vocabulary with ≤ 6∈ τ . A τ ∪ {≤}-structure A′ is ordered if the relation
symbol ≤ is interpreted as a linear order on the universe of A′. Let A be a τ -structure. A
τ ∪ {≤}-structure A′ is an ordered copy of A if A′|τ ∼= A. Let C be a class of τ -structures. A
mapping f is a canonization mapping of C if it assigns every structure A ∈ C to an ordered
copy f(A) = (Af ,≤f) of A such that for all structures A,B ∈ C we have f(A) ∼= f(B) if
A ∼= B. We call the ordered structure f(A) the canon of A.

Let L be a logic that extends FO. Let Θ(x̄) be a parameterized L[τ, τ ∪ {≤}]-transduc-
tion, where x̄ is a tuple of structure variables. We say Θ(x̄) canonizes a τ -structure A if
there exists a tuple p̄ ∈ Ax̄ such that (A, p̄) ∈ Dom(Θ(x̄)), and for all tuples p̄ ∈ Ax̄ with
(A, p̄) ∈ Dom(Θ(x̄)), the τ∪{≤}-structure Θ[A, p̄] is an ordered copy of A.3 A (parameterized)
L-canonization of a class C of τ -structures is a (parameterized) L[τ, τ ∪ {≤}]-transduction
that canonizes all A ∈ C. A class C of τ -structures admits L-definable canonization if C has a
(parameterized) L-canonization.

The following proposition and theorem are essential for proving that the class of chordal
claw-free graphs admits LREC=-definable canonization in Section 5.

I Proposition 2.2 ([12]4). Let C be a class of graphs, and Cconn be the class of all con-
nected components of the graphs in C. If Cconn admits LREC=-definable canonization,
then C does as well.

3 Note that if the tuple x̄ of parameter variables is the empty tuple, L[τ, τ ∪ {≤}]-transduction Θ canonizes
a τ -structure A if A ∈ Dom(Θ) and the τ ∪ {≤}-structure Θ[A] is an ordered copy of A.

4 In [12, Corollary 3.3.21] Proposition 2.2 is only shown for IFP+C. The proof of Corollary 3.3.21 uses
Lemma 3.3.18, the Transduction Lemma, and that connectivity and simple arithmetics are definable.
As LREC= is closed under parameterized LREC=-transductions, the Transduction Lemma also holds
for LREC= [14]. Connectivity and all arithmetics (e.g. addition, multiplication and Fact 3.3.14) that
are necessary to show Lemma 3.3.18 and Corollary 3.3.21 can also be defined in LREC=. Further,
Lemma 3.3.12 and 3.3.17, which are used to prove Lemma 3.3.18 can be shown by pulling back simple
FO-formulas under LREC=-transductions. Hence, Corollary 3.3.21 also holds for LREC=.

B. Grußien 26:7

I Theorem 2.3 ([14, 16]5). The class of LO-colored directed trees admits LREC=-definable
canonization.

We can use definable canonization of a graph class to prove that LOGSPACE is captured on
this graph class. Let L be a logic and C be a graph class. L captures LOGSPACE on C if for each
class D ⊆ C, there exists an L-sentence defining D if and only if D is LOGSPACE-decidable.6
A fundamental result was shown by Immerman:7

I Theorem 2.4 ([19]). DTC captures LOGSPACE on the class of all ordered graphs.

Deterministic transitive closure logic DTC is a logic that is contained in LREC= [14]. Therefore,
we obtain the following corollary:

I Corollary 2.5. LREC= captures LOGSPACE on the class of all ordered graphs.

Let us suppose there exists a parameterized LREC=-canonization of a graph class C. Since
LREC= captures LOGSPACE on the class of all ordered graphs and we can pull back each
LREC=-sentence that defines a logarithmic-space property on ordered graphs under this
canonization, the capturing result transfers from ordered graphs to the class C.

I Proposition 2.6. Let C be a class of graphs. If C admits LREC=-definable canonization,
then LREC= captures LOGSPACE on C.

3 Structure of Clique Trees

Clique trees of connected chordal claw-free graphs play an important role in the subsequent
canonization of chordal claw-free graphs. Thus, we analyze the structure of clique trees of
connected chordal claw-free graphs in this section.

First we introduce clique trees of chordal graphs. Then we show that chordal claw-free
graphs are intersection graphs of paths of a tree. We use this property to prove that each
connected chordal claw-free graph has a unique clique tree. Finally, we introduce two different
types of max cliques in a clique tree, star cliques and fork cliques, and show that each max
clique of a connected chordal claw-free graph is of one of these types if its degree in the
clique tree is at least 3.

Chordal graphs are precisely the intersection graphs of subtrees of a tree. A clique tree
of a chordal graph G specifies a minimal representation of G as an intersection graph of
subtrees of a tree. Clique trees were introduced independently by Buneman [2], Gavril [7]
and Walter [25]. A detailed introduction of chordal graphs and their clique trees can be
found in [1].

Let G be a chordal graph, and letM be the set of max cliques of G. Further, letMv

be the set of all max cliques in M that contain a vertex v of G. A clique tree of G is a
tree T = (M, E) whose vertex set is the setM of all max cliques, where for all v ∈ V the

5 It is shown in [14, Remark 4.8], and in more detail in [16, Section 8.4] that the class of all colored
directed trees that have a linear order on the colors admits LREC-definable canonization. This can
easily be extended to LO-colored directed trees since an LO-colored graph is a special kind of colored
graph that has a linear order on its colors. LREC is contained in LREC= [14].

6 A precise definition of what it means that a logic (effectively strongly) captures a complexity class can
be found in [4, Chapter 11].

7 Immerman proved this capturing result not only for the class of ordered graphs but for the class of
ordered structures.

CSL 2017

26:8 Capturing Logarithmic Space on Chordal Claw-Free Graphs

1

2 3 4 5

6

1,3,4

3,4,6

1,51,2

Figure 1 A chordal graph and a clique tree of the graph.

induced subgraph T [Mv] is connected. Hence, for each v ∈ V the induced subgraph T [Mv]
is a subtree of T . Then G is the intersection graph of the subtrees T [Mv] of T where v ∈ V .
An example of a clique tree of a chordal graph is shown in Figure 1.

Let T = (M, E) be a clique tree of a chordal graph G. It is easy to see that clique tree T
satisfies the clique-intersection property: Let M1,M2,M3 ∈M be vertices of the tree T. If
M2 is on the path from M1 to M3, then M1 ∩M3 ⊆M2.

In the following we consider the class CCF of chordal claw-free graphs. For each vertex v
of a chordal claw-free graph, we prove that the set of max cliquesMv induces a path in each
clique tree. Consequently, chordal claw-free graphs are intersection graphs of paths of a tree.
Note that not all intersection graphs of paths of a tree are claw-free (see Figure 1).

I Lemma 3.1. Let T = (M, E) be a clique tree of a chordal claw-free graph G = (V,E).
Then for all v ∈ V the induced subtree T [Mv] is a path in T .

Proof. Let G = (V,E) ∈ CCF and let T = (M, E) be a clique tree of G. Let us assume there
exists a vertex v ∈ V such that the graph T [Mv] is not a path in T . As T [Mv] is a subtree of
T , there exists a max clique B ∈Mv such that B has degree at least 3. Let A1, A2, A3 ∈Mv

be three distinct neighbors of B in T [Mv]. Since Ai and B are distinct max cliques, there
exists a vertex ai ∈ Ai \B, and for each i ∈ [3], we have Ai ∈ Mai

, B 6∈ Mai
and T [Mai

]
is connected. As T is a tree, A1, A2, and A3 are all in different connected components of
T [M\ {B}]. Therefore, Mai

∩Mai′ = ∅ for all i, i′ ∈ [3] with i 6= i′. Now, {v, a1, a2, a3}
induces a claw in G, which contradicts G being claw-free: For all i ∈ [3], there is an edge
between v and ai, because v, ai ∈ Ai. To show that vertices ai and ai′ are not adjacent for
i 6= i′, let us assume the opposite. If ai and ai′ are adjacent, then there exists a max clique
M containing ai and ai′ . Thus,Mai ∩Mai′ 6= ∅, a contradiction. J

The following lemmas help us to show in Corollary 3.5 that the clique tree of a connected
chordal claw-free graph is unique. This is a property that does not hold for unconnected
chordal (claw-free) graphs in general.

I Lemma 3.2. Let T = (M, E) be a clique tree of a chordal claw-free graph G = (V,E).
Further, let v ∈ V , and let A1, A2, A3 be distinct max cliques inMv. Then A2 lies between
A1 and A3 on the path T [Mv] if and only if A2 ⊆ A1 ∪A3.

Proof. Let G = (V,E) ∈ CCF and T = (M, E) be a clique tree of G. Further, let v ∈ V , and
let A1, A2, A3 ∈Mv be distinct max cliques. First, let A2 ⊆ A1∪A3, and let us assume that,
w.l.o.g., A1 lies between A2 and A3. Then A2 ∩A3 ⊆ A1 according to the clique intersection
property. Further, A2 ⊆ A1 ∪A3 implies that A2 \A3 ⊆ A1. It follows that A2 ⊆ A1, which
is a contradiction to A1 and A2 being distinct max cliques.

Now let max clique A2 lie between A1 and A3 on the path T [Mv], and let us assume that
there exists a vertex a2 ∈ A2\(A1∪A3). Let P = B1, . . . , Bl be the path T [Mv] (Lemma 3.1).

B. Grußien 26:9

W.l.o.g., let Ai = Bji for all i ∈ [3] where j1, j2, j3 ∈ [l] with j1 < j2 < j3. Further, let
A′1 := Bj1+1 and A′3 := Bj3−1, and let a1 ∈ A1 \A′1 and a3 ∈ A3 \A′3. Similar to the proof
of Lemma 3.1, we obtain that {v, a1, a2, a3} induces a claw in G, a contradiction. J

I Lemma 3.3. Let T1 = (M, E1) and T2 = (M, E2) be clique trees of a chordal claw-free
graph G = (V,E). Then for every v ∈ V we have T1[Mv] = T2[Mv].

Proof. Let G = (V,E) ∈ CCF and let T1 = (M, E1) and T2 = (M, E2) be clique trees
of G. Let v ∈ V. According to Lemma 3.1, T1[Mv] and T2[Mv] are paths in T1 and T2,
respectively. Let us assume there exist distinct max cliques A,B ∈Mv such that, without
loss of generality, A,B are adjacent in T1[Mv] but not adjacent in T2[Mv]. As A and B are
not adjacent in T2[Mv], there exists a max clique C ∈ Mv that lies between A and B on
the path T2[Mv]. Thus, A ∩B ⊆ C according to the clique-intersection property. Since max
cliques A and B are adjacent in T1[Mv], either A lies between B and C, or B lies between A
and C on the path T1[Mv]. W.l.o.g., let A lie between B and C on the path T1[Mv]. Then
A ⊆ B ∪ C by Lemma 3.2. Thus, we have A \ B ⊆ C. Since A ∩ B ⊆ C, this yields that
A ⊆ C, which is a contradiction to A and C being distinct max cliques. J

I Lemma 3.4. Let T = (M, E) be a clique tree of a connected chordal claw-free graph
G= (V,E). Then

T =
⋃
v∈V

T [Mv].

Proof. Let G = (V,E) be a connected chordal claw-free graph and T = (M, E) be a clique
tree of G. Clearly, the graphs T and T ′ :=

⋃
v∈V T [Mv] have the same vertex set, and T ′ is

a subgraph of the tree T . In order to prove that T = T ′, we show that T ′ is connected.
For all vertices v ∈ V, the graph T ′[Mv] is connected because T [Mv] is connected. For

each edge {u, v} ∈ E of the graph G, there exists a max clique that contains u and v, and
therefore, we haveMu∩Mv 6= ∅. Hence, T ′[Mu∪Mv] is connected for every edge {u, v} ∈ E.
Since G is connected, it follows that T ′[

⋃
v∈V Mv] is connected. Clearly,

⋃
v∈V Mv =M.

Consequently, the graph T ′ is connected. J

As a direct consequence of Lemma 3.3 and Lemma 3.4 we obtain the following corollary.
It follows that each connected chordal claw-free graph has a unique clique tree.

I Corollary 3.5. Let T1 and T2 be clique trees of a connected chordal claw-free graph G.
Then T1 = T2.

In the following let G = (V,E) be a connected chordal claw-free graph and let TG = (M, E)
be its clique tree.

Let B be a max clique of G. If for all v ∈ B max clique B is an end of path TG[Mv], we
call B a star clique. Thus, B is a star clique if, and only if, every vertex in B is contained
in at most one neighbor of B in TG. A picture of a star clique can be found in Figure 2a.
Clearly, every max clique of degree 1, i.e. every leaf, of clique tree TG is a star clique.

A max clique B of degree 3 is called a fork clique if for every v ∈ B there exist two
neighbors A,A′ of B with A 6= A′ such thatMv = {B,A,A′}, and for all neighbors A,A′
of B with A 6= A′ there exists a vertex v ∈ B with Mv = {B,A,A′}. Figure 2b shows a
sketch of a fork clique. Note that two fork cliques cannot be adjacent.

The following lemma provides more information about the structure of the clique tree of
a connected chordal claw-free graph. A proof can be found in Appendix A.

CSL 2017

26:10 Capturing Logarithmic Space on Chordal Claw-Free Graphs

(a) A star clique (b) A fork clique

Figure 2 A star clique and a fork clique.

I Lemma 3.6. Let B ∈ M. If the degree of B in clique tree TG is at least 3, then B is a
star clique or a fork clique.

I Corollary 3.7. Let B ∈M be a fork clique. Then every neighbor of B in clique tree TG is
a star clique.

Proof. Let us assume max clique A is a neighbor of fork clique B, and A is not a star clique.
Then the degree of A is at least 2. As A cannot be a fork clique, Lemma 3.6 implies that A
has degree 2. Since B is a fork clique, there does not exist a vertex v ∈ A that is contained
in B and the other neighbor of A. Thus, A is a star clique, a contradiction. J

4 Defining the Supplemented Clique Tree in STC+C

In this section we define the supplemented clique tree of a connected chordal claw-free
graph G. We obtain the supplemented clique tree by transferring the clique tree TG into a
directed tree and including some of the structural information about each max clique into the
directed clique tree by means of an LO-coloring. We show that there exists a parameterized
STC+C-transduction that defines for each connected chordal claw-free graph and every tuple
of suitable parameters an isomorphic copy of such a supplemented clique tree. In order to
do this, we first present (parameterized) transductions for the clique tree and the directed
clique tree. Throughout this section we let x̄, ȳ and ȳ′ be triples of structure variables.

In a first step we present a transduction Θ = (θU (ȳ), θ≈(ȳ, ȳ′), θE(ȳ, ȳ′)) that defines for
each connected chordal claw-free graph G a tree isomorphic to the clique tree of G.

In the following, let G = (V,E) be a chordal claw-free graph, and letM be the set of
max cliques of G. A triple b̄ = (b1, b2, b3) ∈ V 3 spans a max clique A ∈M if A is the only
max clique that contains the vertices b1, b2 and b3. Thus, b̄ spans max clique A ∈M if and
only ifMb1 ∩Mb2 ∩Mb3 = {A}. We call b̄ ∈ V 3 a spanning triple of G if b̄ spans a max
clique. We use spanning triples to represent max cliques. Note that this concept was already
used in [20] and [14] to represent max cliques of interval graphs.

I Lemma 4.1. Every max clique of a chordal claw-free graph is spanned by a triple of
vertices.

Proof. Let T = (M, E) be a clique tree of a chordal claw-free graph G. Let B ∈ M and
let v ∈ B. By Lemma 3.1, the induced subgraph T [Mv] is a path P = B1, . . . , Bl. Let
B = Bi. If i > 1, let u be a vertex in B \ Bi−1, and let w be a vertex in B \ Bi+1 if i < l.
We let u = v if i = 1, and we let w = v if i = l. Then (u, v, w) spans max clique B: Clearly,
u, v, w ∈ B. It remains to show, that there does not exist a max clique A ∈M with A 6= B

and u, v, w ∈ A. Let us suppose such a max clique A exists. Since v ∈ A, max clique A is

B. Grußien 26:11

a vertex on path P . W.l.o.g., let A = Bj for j < i. According to the clique intersection
property, we have u ∈ A ∩B ⊆ Bi−1, a contradiction. J

As a direct consequence of Lemma 4.1, there exists an at most cubic number of max
cliques in a chordal claw-free graph.

The following observations contain properties that help us to define the transduction Θ.
Proofs can be found in [16].

I Observation 4.2. Let G = (V,E) be a chordal claw-free graph. Let v̄ = (v1, v2, v3) ∈ V 3.
Then v̄ is a spanning triple of G if, and only if, ṽ is a clique and {w1, w2} ∈ E for all vertices
w1, w2 ∈ N(v1) ∩N(v2) ∩N(v3) with w1 6= w2.

From the characterization of spanning triples in Observation 4.2, it follows that there exists
an FO-formula θU (ȳ) that is satisfied by a chordal claw-free graph G = (V,E) and a triple
v̄ ∈ V 3 if and only if v̄ is a spanning triple of G.

I Observation 4.3. Let G = (V,E) be a chordal claw-free graph. Let A be a max clique of
G, and let the triple v̄ = (v1, v2, v3) ∈ V 3 span A. Then w ∈ A if, and only if, w ∈ ṽ or
{w, vj} ∈ E for all j ∈ [3].

Observation 4.3 yields that there further exists an FO-formula ϕM(ȳ, z) that is satisfied for
v̄ ∈ V 3 and w ∈ V in a chordal claw-free graph G = (V,E) if, and only if, v̄ spans a max
clique A and w ∈ A. We can use this formula to obtain an FO-formula θ≈(ȳ, ȳ′) such that
for all chordal claw-free graphs G = (V,E) and all triples v̄, v̄′ ∈ V 3 we have G |= θ≈(v̄, v̄′)
if, and only if, v̄ and v̄′ span the same max clique.

In the following we consider connected chordal claw-free graphs G. The next observation
is a direct consequence of Lemma 3.4 and Lemma 3.2.

I Observation 4.4. Let G = (V,E) be a connected chordal claw-free graph, and TG = (M, E)
be the clique tree of G. Let A,B ∈M. Max cliques A and B are adjacent in TG if, and only
if, there exists a vertex v ∈ V such that v ∈ A ∩B and for all C ∈ M with v ∈ C we have
C 6⊆ A ∪B.

It follows from Observation 4.4 that there exists an FO-formula θE(ȳ, ȳ′) that is satisfied for
triples v̄, v̄′ ∈ V 3 in a connected chordal claw-free graph G = (V,E) if, and only if, v̄ and v̄′
span adjacent max cliques.

It is not hard to see that Θ = (θU , θ≈, θE) is an FO-transduction that defines for each
connected chordal claw-free graph G a tree isomorphic to the clique tree of G.

I Lemma 4.5. There exists an FO-transduction Θ such that Θ[G] ∼= TG for all G ∈ con-CCF.

Now we transfer the clique tree into a directed tree. Let R be a leaf of the clique tree TG.
We transform TG into a directed tree by rooting TG at max clique R. We denote the resulting
directed clique tree by TRG = (M, ER). Since R is a leaf of TG, the following corollary is an
immediate consequence of Lemma 3.6.

I Corollary 4.6. Let A be a max clique of a connected chordal claw-free graph G. Then A is
a vertex with at least two children in TRG only if A is a star clique or a fork clique.

In the following we show that there exists a parameterized STC-transduction Θ′(x̄) which
defines an isomorphic copy of TRG for each connected chordal claw-free graph G and triple
r̄ ∈ V 3 that spans a leaf R of TG.

Clearly, we can define an FO-formula θ′dom(x̄) such that for all connected chordal claw-
free graphs G and r̄ ∈ V 3 we have G |= θ′dom(r̄) if, and only if, r̄ ∈ V 3 spans a leaf of

CSL 2017

26:12 Capturing Logarithmic Space on Chordal Claw-Free Graphs

TG. Then θ′dom defines the triples of parameters of transduction Θ′(x̄). Further, we let
θ′U (x̄, ȳ) := θU (ȳ) and θ′≈(x̄, ȳ, ȳ′) := θ≈(ȳ, ȳ′). Finally, we let θ′E(x̄, ȳ, ȳ′) be satisfied for
triples r̄, v̄, v̄′ ∈ V 3 in a connected chordal claw-free graph G = (V,E) if, and only if, r̄, v̄
and v̄′ span max cliques R, A and A′, respectively, and (A,A′) is an edge in TRG . Note that
(A,A′) is an edge in TRG precisely if {A,A′} is an edge in TG and there exists a path between
R and A in TG after removing A′. Thus, formula θ′E can be constructed in STC. We let
Θ′(x̄) := (θ′dom(x̄), θ′U (x̄, ȳ), θ′≈(x̄, ȳ, ȳ′), θ′E(x̄, ȳ, ȳ′)), and conclude:

I Lemma 4.7. There exists a parameterized STC-transduction Θ′(x̄) such that Dom(Θ′(x̄))
is the set of all pairs (G, r̄) where G = (V,E) ∈ con-CCF and r̄ ∈ V 3 spans a leaf R of TG,
and Θ′[G, r̄] ∼= TRG for all (G, r̄) ∈ Dom(Θ′(x̄)) where r̄ spans the max clique R of G.

We now equip each max clique of the directed clique tree TRG with structural information.
We do this by coloring the directed clique tree TRG with an LO-coloring. An LO-color is a
binary relation on a linearly ordered set of basic color elements. Into each LO-color, we
encode three numbers. Isomorphisms of LO-colored trees preserve the information that is
encoded in the LO-colors. Thus, an LO-colored tree and its canon contain the same numbers
encoded in their LO-colors. We call this LO-colored directed clique tree a supplemented
clique tree. More precisely, let G ∈ con-CCF and let R be a leaf of the clique tree TG of G,
then the supplemented clique tree SRG is the 5-tuple (M, ER, [0, |V |],≤[0,|V |], L) where

(M, ER) is the directed clique tree TRG of G,
≤[0,|V |] is the natural linear order on the set of basic color elements [0, |V |],
L ⊆M× [0, |V |]2 is the ternary color relation where

(A, 0, n) ∈ L iff n is the number of vertices in A that are not in any child of A in TRG ,
(A, 1, n) ∈ L iff n is the number of vertices that are contained in A and in the parent
of A in TRG if A 6= R, and n = 0 if A = R,
(A, 2, n) ∈ L iff n is the number of vertices in A that are in two children of A in TRG .8

In its structural representation the supplemented clique tree SRG corresponds to the 6-tuple
(M∪̇ [0, |V |],M, ER, [0, |V |],≤[0,|V |], L).

The properties encoded in the colors of the max cliques are easily expressible in STC+C.
Therefore, we can extend the parameterized STC-transduction Θ′(x̄) to a parameterized
STC+C-transduction Θ′′(x̄) that defines an LO-colored graph isomorphic to SRG for every
connected chordal claw-free graph G and triple r̄ ∈ V 3 that spans a leaf R of TG. More
details on how to construct Θ′′(x̄) can be found in [16].

I Lemma 4.8. There is a parameterized STC+C-transduction Θ′′(x̄) such that Dom(Θ′′(x̄))
is the set of all pairs (G, r̄) where G = (V,E) ∈ con-CCF and r̄ ∈ V 3 spans a leaf R of TG,
and Θ′′[G, r̄] ∼= SRG for all (G, r̄) ∈ Dom(Θ′′(x̄)) where r̄ spans the max clique R of G.

5 Canonization

In this section we prove that there exists a parameterized LREC=-canonization of the
class con-CCF of connected chordal claw-free graphs. Then Proposition 2.2 implies that there
also exists one for the class CCF of chordal claw-free graphs, and we obtain our main result:

I Theorem 5.1. The class of chordal claw-free graphs admits LREC=-definable canonization.

8 Let A be a max clique and n be the number of vertices in A that are in two children of A in TR
G .

Corollary 4.6 implies that A is a fork clique if and only if n > 0.

B. Grußien 26:13

As a consequence of Proposition 2.6 and the logarithmic-space data complexity of LREC=
we obtain the following corollaries.

I Corollary 5.2. LREC= captures LOGSPACE on the class of chordal claw-free graphs.

I Corollary 5.3. There exists a logarithmic-space canonization algorithm for the class of
chordal claw-free graphs.

Since LREC= is contained in FP+C [14], Theorem 5.1 also implies that there exists an
FP+C-canonization of the class of chordal claw-free graphs. We directly obtain (see e.g. [4]):

I Corollary 5.4. FP+C captures PTIME on the class of chordal claw-free graphs.

Now let us prove that there exists a parameterized LREC=-canonization of con-CCF. By
Lemma 4.8 there exists a parameterized STC+C-, and therefore, LREC=-transduction Θ′′(x̄)
such that Θ′′[G, r̄] is isomorphic to the LO-colored tree SRG for all connected chordal claw-free
graphs G = (V,E) and all triples r̄ ∈ V 3 that span a leaf R of TG. Further, there exists an
LREC=-canonization ΘLO of the class of LO-colored directed trees according to Theorem 2.3.
In the following, we show that there also exists an LREC=-transduction ΘK which defines
for each canon K(SRG) of a supplemented clique tree SRG of G ∈ con-CCF the canon K(G) of
G. Then we can compose the (parameterized) LREC=-transductions Θ′′(x̄), ΘLO and ΘK

to obtain a parameterized LREC=-canonization of the class of connected chordal claw-free
graphs (see [16]).

We let LREC=[{V,E,M,E, L,≤}, {E,≤}]-transduction ΘK = (θV (p), θE(p, p′), θ≤(p, p′))
define for each canon K(SRG) = (UK , VK , EK ,MK ,EK , LK ,≤K) of a supplemented clique
tree of G ∈ con-CCF an ordered isomorphic copy K(G) = (V ′K , E′K ,≤′K) of G = (V,E). We
let V ′K be the set [|V |], and ≤′K be the natural linear order on [|V |]. As [0, |V |] is the set of
basic color elements of SRG , the set MK of basic color elements of the canon K(SRG) contains
exactly |V |+ 1 elements. Hence, we can easily define the vertex set of K(G) by counting the
number of basic color elements of K(SRG). We let ϕV (p) := ∃q

(
p≤ q ∧ p 6= 0 ∧#xM(x) = q

)
.

Further, we let θ≤(p, p′) := p ≤ p′. In order to show that there exists an LREC=-formula
θE(p, p′), which defines the edge relation of K(G), we exploit the property that LREC=
captures LOGSPACE on ordered structures (Corollary 2.5), and show that there exists a
logarithmic-space algorithm that computes the edge relation of K(G), instead. In order to
do this, we present a logarithmic-space algorithm that outputs the max cliques of K(G). As
every edge is a subset of some max clique and every two distinct vertices in a max clique are
adjacent, such a logarithmic-space algorithm can easily be extended to a logarithmic-space
algorithm that decides whether a pair of numbers is an edge of K(G).

I Lemma 5.5. There exists a logarithmic-space algorithm that, given the canon K(SRG) of a
supplemented clique tree of G∈ con-CCF, computes the set of max cliques of the canon K(G)
of G.

In the following, we sketch the idea of the algorithm. A detailed proof of Lemma 5.5 can
be found in [16].

The algorithm performs a post-order tree traversal9 on the underlying tree of the canon
K(SRG) of the supplemented clique tree SRG . Let m1, . . . ,m|M| be the respective post-order

9 In a tree traversal, we visit every vertex of the tree exactly once. We obtain the post-order traversal (see
e.g. [23]) of an ordered directed tree T with root r recursively as follows: Let d be the out-degree of r.
For all i ∈ {1, . . . , d}, in increasing order, perform a post-order traversal on the subtree rooted at child
i of the root. Afterward, visit r. For example in [22], it is shown that there exists a logarithmic-space
algorithm for depth-first tree traversal. By selecting all vertices that are not followed by the move down
in the depth-first traversal in [22], we obtain the post-order traversal sequence in logarithmic space.

CSL 2017

26:14 Capturing Logarithmic Space on Chordal Claw-Free Graphs

traversal sequence of the vertices. Each vertex mk ∈ VK of the canon K(SRG) corresponds
to a vertex, i.e. a max clique Ak ∈ M, in the supplemented clique tree SRG . We call
A1, . . . , Am|M| the transferred traversal sequence. For all k ∈ {1, . . . , |M|}, starting with
k = 1, the algorithm constructs for mk ∈ VK a copy Bmk

⊆ [|V |] of Ak.
From the information encoded in the colors, we know the number of vertices in Ak that

are not in any max clique that occurs before Ak in the transferred traversal sequence. For
these vertices, we add the smallest numbers of [|V |] to Bmk

that were not already used.
Further, we need to know how many vertices of Ak are in a max clique Ai that occurs before
Ak in the transferred traversal sequence, and what numbers these vertices were assigned to.
These numbers have to be added to Bmk

as well.
Now, if Ak is a fork clique (the information of whether vertex mk corresponds to a fork

clique Ak is encoded in the color of mk), then we know the vertices of Ak are all contained in
at least one of its two children, which occur before Ak in the transferred traversal sequence;
and we can use the information in the colors of mk and its children to find out the number
of vertices in Ak that are contained in the first child, the second child and both children of
Ak, respectively.

If Ak is not a fork clique, then the vertices in Ak that are in max cliques that occur before
Ak within the transferred traversal sequence are precisely the vertices in the pairwise inter-
section of Ak with its children, and the intersection of Ak with its sibling if Ak is the second
child of a fork clique. Note that these intersections are disjoint sets of vertices because Ak is a
star clique, or otherwise only has one child (Corollary 4.6) and cannot be the second child of
a fork clique by Corollary 3.7. Again we can use the information within the colors to find out
the number of vertices in Ak that are contained in the respective child of Ak, and the number
of vertices in the intersection of Ak and its sibling if Ak is the second child of a fork clique.

Therefore, in both cases, all vertices of Ak that are in a max clique Ai that occurs before
Ak in the transferred traversal sequence, are contained in the children of Ak, or the first
child of a fork clique if Ak is the second one.

For the numbers in each max clique Bmj (where mj does not corresponds to the second
child of a fork clique), we maintain the property that if a number l ∈ Bmj

is contained in
more ancestors of Bmj

than a number l′ ∈ Bmj
, then l > l′. Thus, if Bmj

is a child of a max
clique Bmj′ , then the intersection Bmj

∩ Bmj′ contains precisely the |Bmj
∩ Bmj′ | largest

numbers of Bmj
. We can use this property to determine the numbers in Bmi

that have to be
included into Bmk

if mi is a child of mk and also if mi corresponds to the first child of a fork
clique and mk to the second one. Note that we do not have to remember the max cliques
Bm1 , . . . , Bmk−1 as we can recompute all values that are necessary to obtain the numbers
that have to be included into Bmk

. The recomputation can be done in logarithmic space. As
a consequence, we obtain an algorithm that computes the max cliques of the canon K(G) in
logarithmic space.

6 Conclusion

Currently, there exist hardly any logical characterizations of LOGSPACE on non-trivial
natural classes of unordered structures. The only ones previously presented are that LREC=
captures LOGSPACE on (directed) trees and interval graphs [13, 14]. By showing that LREC=
captures LOGSPACE also on the class of chordal claw-free graphs, we contribute a further
characterization of LOGSPACE on an unordered graph class. It would be interesting to
investigate further classes of unordered structures such as the class of planar graphs or classes
of graphs of bounded treewidth. The author conjectures that LREC= captures LOGSPACE
on the class of all planar graphs that are equipped with an embedding.

B. Grußien 26:15

Our main result, which states that the class of chordal claw-free graphs admits LREC=-
definable canonization, does not only imply that LREC= captures LOGSPACE on this graph
class, but also that there exists a logarithmic-space canonization algorithm for the class of
chordal claw-free graphs. Hence, the isomorphism and automorphism problem for this graph
class is solvable in logarithmic space.

Further, we make a contribution to the investigation of PTIME’s characteristics on
restricted classes of graphs. It follows from our main result that there is an FP+C-canonization
of the class of chordal claw-free graphs. As a consequence, FP+C captures PTIME on this
graph class. Thus, we add the class of chordal claw-free graphs to the (so far) short list of
graph classes that are not closed under taking minors and on which PTIME is captured.

Acknowledgements. The author wants to thank Nicole Schweikardt and the reviewers for
helpful comments that contributed to improving the paper.

References
1 J.R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In

A. George, J. R. Gilbert, and J.W.H. Liu, editors, Graph Theory and Sparse Matrix Com-
putation, pages 1–29. Springer New York, 1993.

2 P. Buneman. A characterisation of rigid circuit graphs. Discrete Math., 9:205–212, 1974.
3 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables

for graph identification. Combinatorica, 12:389–410, 1992.
4 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1999.
5 K. Etessami and N. Immerman. Tree canonization and transitive closure. Information and

Computation, 157(1–2):2–24, 2000.
6 R. Fagin. Generalized first–order spectra and polynomial–time recognizable sets. In R.M.

Karp, editor, Complexity of Computation, SIAM-AMS Proceedings 7, pages 43–73, 1974.
7 F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.
8 M. Grohe. Fixed-point logics on planar graphs. In LICS, pages 6–15, 1998.
9 M. Grohe. Definable tree decompositions. In LICS, pages 406–417, 2008.

10 M. Grohe. Fixed-point definability and polynomial time on chordal graphs and line graphs.
In A. Blass, N. Dershowitz, and W. Reisig, editors, Fields of Logic and Computation, Essays
Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, pages 328–353, 2010.

11 M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
In LICS, 2010.

12 M. Grohe. Descriptive complexity, canonisation, and definable graph structure theory, 2013.
[Online; accessed 2017-03-31]. URL: http://lii.rwth-aachen.de/images/Mitarbeiter/
pub/grohe/cap/all.pdf.

13 M. Grohe, B. Grußien, A. Hernich, and B. Laubner. L-recursion and a new logic for
logarithmic space. In CSL, pages 277–291, 2011.

14 M. Grohe, B. Grußien, A. Hernich, and B. Laubner. L-recursion and a new logic for
logarithmic space. Logical Methods in Computer Science, 9(1), 2012.

15 M. Grohe and J. Mariño. Definability and descriptive complexity on databases of bounded
tree-width. In ICDT, pages 70–82, 1999.

16 B. Grußien. Capturing Polynomial Time and Logarithmic Space using Modular Decompo-
sitions and Limited Recursion. PhD thesis, Humboldt-Universität zu Berlin, 2016.

17 B. Grußien. Capturing polynomial time using modular decomposition. In LICS, 2017.
18 N. Immerman. Relational queries computable in polynomial time. Information and Control,

68:86–104, 1986.

CSL 2017

http://lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cap/all.pdf
http://lii.rwth-aachen.de/images/Mitarbeiter/pub/grohe/cap/all.pdf

26:16 Capturing Logarithmic Space on Chordal Claw-Free Graphs

A′ A

AP

AQ

P

Q

Figure 3 A fork of P and Q.

19 N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing,
16:760–778, 1987.

20 B. Laubner. Capturing polynomial time on interval graphs. In LICS, pages 199–208, 2010.
21 B. Laubner. The Structure of Graphs and New Logics for the Characterization of Polyno-

mial Time. PhD thesis, Humboldt-Universität zu Berlin, 2011.
22 S. Lindell. A logspace algorithm for tree canonization. In STOC, pages 400–404, 1992.
23 R. Sedgewick. Algorithms in Java: Parts 1-4. Addison-Wesley, 3rd edition, 2002.
24 M.Y. Vardi. The complexity of relational query languages. In STOC, pages 137–146, 1982.
25 J.R. Walter. Representations of Rigid Cycle Graphs. PhD thesis, Wayne State University,

1972.

A Proof of Lemma 3.6

In order to prove Lemma 3.6, we further analyze the structure of the clique tree. Throughout
this section, we let G = (V,E) be a connected chordal claw-free graph and TG = (M, E) be
its clique tree.

The following corollary follows directly from Lemma 3.2.

I Corollary A.1. Let v ∈ V. Then for all w ∈ V \{v} the graph TG[Mv \Mw] is connected.10

Proof. Let v ∈ V and let w ∈ V \ {v}. Let P = A1, . . . , Al be the path TG[Mv], and let us
assume TG[Mv \Mw] is not connected. Then there exist i, j, k ∈ [l] with i < j < k such
that Ai, Ak ∈Mv \Mw and Aj ∈Mw. By Lemma 3.2 we have Aj ⊆ Ai ∪Ak. Thus, vertex
w ∈ Aj is also contained in Ai or Ak, a contradiction. J

Let P and Q be two paths in TG. We call (A′, A, {AP , AQ}) ∈ V 2 ×
(
V
2
)
a fork of P

and Q, if P [{A′, A,AP }] and Q[{A′, A,AQ}] are induced subpaths of length 3 of P and Q,
respectively, and neither AP occurs in Q nor AQ occurs in P. Figure 3 shows a fork of paths
P and Q. We say P and Q fork (in B) if there exists a fork (A′, A, {AP , AQ}) of P and Q
(with A = B).

I Lemma A.2. Let v, w ∈ V. If the paths TG[Mv] and TG[Mw] fork, then TG[Mv] and
TG[Mw] are paths of length 3.

Proof. Let v, w ∈ V. Clearly, if TG[Mv] and TG[Mw] fork, then they must be paths of
length at least 3. It remains to prove that their length is at most 3. For a contradiction,
let us assume the length of TG[Mv] is at least 4. Let (A1, B, {A2, A

′
2}) be a fork of TG[Mv]

and TG[Mw] where A2 ∈Mv \Mw and A′2 ∈Mw \Mv.
First let us assume there exists a max clique A0 ∈ Mv such that P = A0, A1, B,A2 is

a subpath of TG[Mv] of length 4. According to Corollary A.1, the graph TG[Mv \ Mw]

10We define the empty graph as connected.

B. Grußien 26:17

A1 B A2

A′2

v

w

A0

(a)

A1 B A2

A′2

v

w

A0

u

(b)

B A2 A3

A′2

v

w

A1

u

(c)

Figure 4 Illustrations for the proof of Lemma A.2.

A1

B

A2

u

A3
u

w

w
vv

Figure 5 A fork triangle.

is connected. Thus, we have A0 ∈ Mw (see Figure 4a). Now A0 and A1 are distinct max
cliques. Therefore, there exists a vertex u ∈ A1 \ A0. As P is a subpath of TG[Mv] and
P ′ = A0, A1, B,A

′
2 is a subpath of TG[Mw], vertex u is not only contained in A1 but also in

B, A2 and A′2 by Lemma 3.2 (see Figure 4b). As a consequence, TG[Mu] is not a path, a
contradiction to Lemma 3.1.

Next, let us assume there exists a max clique A3 ∈Mv such that P = A1, B,A2, A3 is a
subpath of TG[Mv] of length 4. Further, P ′ = A1, B,A

′
2 is a subpath of TG[Mw]. As A1 and

B are max cliques, there exists a vertex u ∈ B \A1. By Lemma 3.2, vertex u is also contained
in A2, A3 and A′2 as shown in Figure 4c. Now let us consider the paths TG[Mv] and TG[Mu].
Q = A3, A2, B,A1 is a subpath of TG[Mv], and Q′ = A3, A2, B,A

′
2 is a subpath of TG[Mu].

Clearly, (A2, B, {A1, A
′
2}) is a fork of TG[Mv] and TG[Mu]. According to the previous part

of this proof, we obtain a contradiction. J

The max cliques A1, A2, A3 ∈ M form a fork triangle around a max clique B ∈ M if
A1, A2 and A3 are distinct max cliques in the neighborhood of B and there exist vertices
u, v, w ∈ V such that Mu = {A1, B,A2}, Mv = {A2, B,A3} and Mw = {A3, B,A1}. We
say that max clique B ∈ M has a fork triangle if there exist max cliques A1, A2, A3 ∈ M
that form a fork triangle around B. Figure 5 depicts a fork triangle around a max clique B.
Clearly, if a max clique B has a fork triangle, then B is a vertex of degree at least 3 in TG.

I Lemma A.3. Let v, w ∈ V, and let B ∈M be a max clique. If TG[Mu] and TG[Mv] fork
in B, then B has a fork triangle.

Proof. Let v, w ∈ V, let B ∈ M be a max clique, and let TG[Mu] and TG[Mv] fork in B.
Then TG[Mu] and TG[Mv] are paths of length 3 by Lemma A.2. Let Mu = {A2, B,A1}
andMv = {A2, B,A3} with A1 6= A3. Since B and A2 are max cliques, there exists a vertex
w ∈ B \A2. Now, we can apply Lemma 3.2 to the paths TG[Mu] and TG[Mv], and obtain
that w ∈ A1 and w ∈ A3. As TG[Mw] and TG[Mu] fork, the path TG[Mw] must be of
length 3 by Lemma A.2. Thus,Mw = {A3, B,A1}. Hence, A1, A2, A3 form a fork triangle
around B. J

CSL 2017

26:18 Capturing Logarithmic Space on Chordal Claw-Free Graphs

A1

B

A2 A3
u wvv

z

uw

(a) |Mz ∩W| = 0

A1

B

A2 A3
u wvv

z

uw

(b) |Mz ∩W| = 1

A1

B

A2 A3
u wvv

z

uw

(c) |Mz ∩W| = 2

Figure 6 Illustrations for the proof of Lemma A.4.

A1

B
A2

C

u

w

v z

A3

Figure 7 Illustration for the proof of Lemma A.5.

I Lemma A.4. Let z ∈ V. If max clique B ∈Mz has a fork triangle, then |Mz| = 3 and B
is in the middle of path TG[Mz].

Proof. Let z ∈ V, and let B ∈Mz have a fork triangle. Then, there exist u, v, w ∈ V and dis-
tinct neighbor max cliques A1, A2, A3 of B such thatMu = {A1, B,A2},Mv = {A2, B,A3}
and Mw = {A3, B,A1}. Let W be the set {A1, A2, A3} of max cliques that form a fork
triangle around B. Let us consider |Mz ∩W|. If |Mz ∩W| ≤ 1, thenMz is a separating
set of at least one of the paths TG[Mu], TG[Mv] or TG[Mw] as shown in Figure 6a and 6b,
and we have a contradiction to Corollary A.1. Clearly, we cannot have |Mz ∩ W| = 3,
since TG[Mz] must be a path. It remains to consider |Mz ∩W| = 2, which is illustrated in
Figure 6c. In this case, TG[Mz] forks with one of the paths TG[Mu], TG[Mv] or TG[Mw] in
B, and must be of length 3 according to Lemma A.2. Obviously, B is in the middle of the
path TG[Mz]. J

I Lemma A.5. If max clique B ∈M has a fork triangle, then the degree of B in TG is 3.

Proof. Let B ∈M have a fork triangle. Thus, there exists vertices u, v, w ∈ V and distinct
neighbor max cliques A1, A2, A3 of B such thatMu = {A1, B,A2},Mv = {A2, B,A3} and
Mw = {A3, B,A1}. Let us assume B is of degree at least 4. Let C be a neighbor of B in TG
that is distinct from A1, A2 and A3. According to Lemma 3.4 there must be a vertex z ∈ V
such that B,C ∈Mz (for an illustration see Figure 7). By Lemma A.4, we have |Mz| = 3.
W.l.o.g., let A2 and A3 be not contained inMz. Then TG[Mv \Mz] is not connected, and
we obtain a contradiction to Corollary A.1. J

I Corollary A.6. If a max clique B ∈M has a fork triangle, then B is a fork clique.

Proof. Let B be a max clique that has a fork triangle. Then the degree of B is 3 by
Lemma A.5. As B has a fork triangle, there exists a vertex v ∈ B withMv = {B,A,A′}
for all neighbor max cliques A,A′ of B with A 6= A′. Further, it follows from Lemma A.4

B. Grußien 26:19

A1

B

A2

C

u

w

Figure 8 Illustration for the proof of Lemma 3.6.

that for every v ∈ B there exist two neighbor max cliques A,A′ of B with A 6= A′ such that
Mv = {B,A,A′}. J

I Lemma 3.6 (restated). Let B ∈M. If the degree of B in clique tree TG is at least 3, then
B is a star clique or a fork clique.

Proof. Let B be a max clique of degree at least 3. Suppose B is not a star clique. Then
there exists a vertex u ∈ B and two neighbor max cliques A1, A2 of B in TG that also contain
vertex u. Let C be a neighbor of B with C 6= A1 and C 6= A2. Since {B,C} is an edge of TG,
there must be a vertex w ∈ V such that B,C ∈Mw according to Lemma 3.4 (see Figure 8
for an illustration). By Corollary A.1, the graph TG[Mu \Mw] must be connected. Thus,
we have A1 ∈ Mw or A2 ∈ Mw. Hence, TG[Mu] and TG[Mw] fork in B, and Lemma A.3
implies that B has a fork triangle. It follows from Corollary A.6 that B is a fork clique. J

CSL 2017

	Introduction
	Structure

	Basic Definitions and Notation
	Graphs and LO-colored Graphs
	Structures
	Logics
	Transductions
	Canonization

	Structure of Clique Trees
	Defining the Supplemented Clique Tree in STC+C
	Canonization
	Conclusion
	Proof of Lemma 3.6

