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Abstract
We begin by revisiting partiality in univalent type theory via the notion of dominance. We then
perform first steps in constructive computability theory, discussing the consequences of working
with computability as property or structure, without assuming countable choice or Markov’s
principle. A guiding question is what, if any, notion of partial function allows the proposition
“all partial functions on natural numbers are Turing computable” to be consistent.
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1 Introduction

We begin by revisiting partial functions in type theory [4, 3, 7, 5, 8, 21]. We work informally,
but rigorously, in a univalent type theory as in the HoTT Book [23], with constructive content
as developed in cubical type theory [9]. We then perform first steps in computability theory,
where, in particular, we discuss the consequences of working with computability as property
or as structure, in the absence of choice axioms, excluded middle and Markov’s principle.

A guiding question is what, if any, notion of partial function allows the proposition
“all partial functions from N to N are Turing computable” to be consistent in constructive
univalent type theory. We begin with a natural, but too liberal, notion, that allows partial
functions that are not computable in any reasonable sense to be easily constructed. We then
use dominances [20] to try to restrict the notion of partial function (Section 2) so that this
would be possible, discussing the difficulties that arise in this attempt (Section 3), and their
relation to previous work by other authors (Section 4).

Dominances also occur in synthetic domain theory [12, 16, 24], synthetic computability
theory [20, 1], and synthetic topology [20, 2]. In such synthetic approaches, one typically
considers countable dependent choice and Markov’s principle, in addition to axioms that
contradict the principle of excluded middle. For example, in his synthetic approach to
computability, Bauer [1] works with a non-classical axiom saying that there are enumerably
many enumerable subsets of N. We emphasize that, although we do use dominances, our
approach is not synthetic, and, moreover, is compatible with classical logic.

In Section 2 we define a type X ⇀ Y of partial functions for any two types X and Y , so
that partial functions correspond to ordinary (total) functions A→ Y defined on a type A
embedded into X, and show that it is equivalent to X → LY where LY is a type of partial
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21:2 Partial Elements and Recursion via Dominances in Univalent Type Theory

elements of Y . The lifted type LY is a directed-complete partially ordered set if Y is a
set in the sense of univalent type theory, and this can be used to solve recursive definitions
involving Scott continuous functions.

In Section 3, we define a Gödel encoding of Turing machines by natural numbers in the
usual way, together with a Kleene-bracket function

{−} : N→ (N→ LN),

and define a function N→ LN to be computable if it is in the image of Kleene bracket. This
can be formulated in two ways:

computationalStructure(f) def= Σ(e : N), {e} = f,

isComputable(f) def= (∃(e : N), {e} = f) = ‖computationalStructure(f)‖ .
The first definition says that a computational structure on f is a Gödel number of a Turing
machine that computes f . The second definition says that f is computable if there is such
a Gödel number, without exhibiting any. Here ‖−‖ denotes the (propositional) truncation
operator, which collapses a type to a subsingleton by identifying all its elements. Existence
as a proposition is taken to be the truncation of existence as structure:

∃(x : X), A(x) def= ‖Σ(x : X), A(x)‖ .

We emphasize, for comparison, that in topos theory this is a theorem (often taken as a
definition), expressing existence in terms of Σ, where ‖X‖ is known as the support of the
object X (the image of the unique map into the terminal object 1).

We can prove Rogers’ version of Kleene’s second recursion theorem, which says that for
every computable total function f : N→ N, there is e : N with {e} = {f(e)}, in the following
two versions:

Π(f : N→ N), computationalStructure(f)→ Σ(e : N), {e} = {f(e)},
Π(f : N→ N), isComputable(f)→ ∃(e : N), {e} = {f(e)},

where the second version is a direct consequence of the first, by the universal property of
propositional truncation.

For some statements it does matter whether computability is taken as property or
structure. Consider, for example, the type

Π(f : N→ N), computationalStructure f

of functions that assign computational structure to every total function N→ N (analogous
to Lisp’s quote operator). In the presence of function extensionality, the assumption that
the above type is inhabited leads to a contradiction [22]. But the proposition

Π(f : N→ N), isComputable f

is consistent in a type theory with function extensionality and propositional truncation, with
the effective topos as a model [11].

On the other hand, the statement that every partial function N ⇀ N is computable is
false, even when the computational structure is not given. In fact, there is an easily defined
partial function f : N⇀ N that semidecides the complement of the Halting Set, in the sense
that f(x) is defined iff {x}(x) is undefined, and hence is not computable (Section 3.4).

This motivates the consideration of dominances, to restrict the allowed domains of
definition of partial elements (Section 2). Of particular interest is the Rosolini dominance [20],
which consists of the propositions of the form ∃(n : N), α(n) = 1 with α : N→ 2 (Section 2.4).
This is related to various partiality monads considered in the literature, as discussed in the
concluding Section 4.
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2 Partial functions and recursion via dominances

2.1 Partial functions
Assuming univalence, the type of functions X → Y is equivalent to the type of functional
relations [17], where U is a type universe:

(X → Y ) ' Σ(R : X → Y → U),Π(x : X), isContr (Σ(y : Y ), R x y) . (1)

Recall that a type A is called contractible (or a singleton), written isContr(A), if we have
a0 : A, called a center of contraction of A, which is equal to every element of A:

isContr(A) def= Σ(a0 : A),Π(a : A), a0 = a.

The above use of contractibility can be read as saying that there is a unique (y, r), with y : Y
and r : Rxy, rather than the weaker statement that there is a unique y : Y satisfying Rxy,
with possibly several r : Rxy for this y.

A type A is a called a proposition (or said to have at most one element, or to be a
subsingleton), written isProp(A), if any two of its elements are equal:

isProp(A) def= Π(a, b : A), a = b.

Then in the following definition of a type of partial functions, we replace unique existence by
the existence of at most one pair (y, r) with y : Y and r : Rxy:

(X ⇀ Y ) def= Σ(R : X → Y → U),Π(x : X), isProp (Σ(y : Y ), R x y) (2)
' Σ(A : U)(e : A→ X), isEmbedding(e)× (A→ Y ), (3)

where

isEmbedding(e : A→ X) def= Π(x : X), isProp(Σ(a : A), e(a) = x).

Then the type of ordinary functions (X → Y ) is embedded into the type (X ⇀ Y ) of partial
functions, and we say that a partial function is total if it is in the image of this embedding.

In topos theory one has an isomorphism as in (1) with U replaced by the subobject
classifier and the proposition isContr (Σ(y : Y ), R x y) replaced by the unique existence of
some y : Y with Rxy. This replacement is also possible in univalent type theory in the
special case where the type Y is a set (meaning that for any two y, y′ : Y , the identity type
y = y′ is a subsingleton). For the general case, however, we need to keep U and work with
the contractibility of the Σ type as above. Notice also that, in our type theory, the right-hand
side of (1) is in a higher universe than the left-hand side (cf. Section 2.9).

2.2 Partial functions via lifting
If we define the lifting of a type Y (also referred to as the type of partial elements of Y ) by

LY def= 1 ⇀ Y (4)
' Σ(A : Y → U), isProp (Σ(y : Y ), A y) (5)
' Σ(P : U), isPropP × (P → Y ), (6)

then partial functions reduce to ordinary functions with lifted codomain:

(X ⇀ Y ) ' (X → LY ).

CSL 2017
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Working with the representation (6) of LY , we denote the first and third projections by

extent : LY → U , value : Π(u : LY ), extentu→ Y. (7)

Then L has a strong-monad structure, which we present as a Kleisli triple. The unit
ηX : X → LX is given by ηX(x) def= (1,−, λp.x), where we denote a suppressed witness
by “−”. Given f : X → LY , we define its Kleisli extension f ] : LX → LY by

f ](P : U ,−, φ : P → X) def= (Q : U ,−, γ : Q→ Y ),

where Q
def= Σ(p : P ), extent(f(φ(p)) and γ(p, e) def= value(f(φ(p)))(e).

Then Kleisli composition corresponds to relational composition, so that post-composition
with ηY is an embedding of (X → Y ) into (X → LY ), often taken as an implicit coercion.

We say that an element of LY is defined (or total) if it is in the image of ηY : Y → LY ,
which is equivalent to saying that its extent of definition is inhabited (and hence contractible).
The type LY has an undefined element ⊥, with empty extent of definition. The assertion that
every partial element is defined or else undefined is equivalent to the principle of excluded
middle (every proposition is inhabited or empty).

2.3 Recursive definitions
If the type Y is a set, then LY is a directed-complete partially ordered set with least
element ⊥. Define − ≤ − : LY → LY → U by

(u ≤ v) def= Σ(t : extent(u)→ extent(v)),Π(p : extent(u)), value(u)(p) = value(v)(t(p)).

As Y is a set, this relation is proposition-valued, and reflexive, transitive and antisymmetric.

I Theorem 1. If Y is a set, then (LY,≤) is a directed-complete poset.

Proof. Given a directed family ui : LY , we construct its join u∞ : LY as follows. Firstly,
we let extent(u∞) def= ‖Σi, extent(ui)‖ , so that, by construction, we have isProp(extent(u∞)).
To define value(u∞) : extent(u∞) → Y , we first define a function φ : (Σi, extent(ui)) → Y

by φ(i, p) = value(ui)(p). By the directedness of the family, we see that φ is constant, in
the sense that any two of its values are equal, and hence, by the assumption that Y is a
set, φ factors through a unique ‖Σi, extent(ui)‖ → Y by [14, Theorem 5.4], which we take
as value(u∞). We omit the routine verification that u∞ is the least upper bound of the
family ui. J

This can be used to construct least fixed points of continuous functions in the usual way,
and hence solve recursive functional equations, using the fact that a function type X → LY
is also directed complete under the pointwise order.

2.4 Partial elements with semidecidable extent of definition
To try to make the statement that partial functions N→ LN are computable consistent, we
need to restrict the supply of propositions that are allowed to arise as extents of definition of
partial elements, motivating the subject of dominances, mentioned above and to be discussed
shortly. The propositions that can arise as the extents of definition of partial elements from
Turing machines are characterized as those of the form

〈α〉 def= Σ(n : N), α(n) = 1,
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with α : N→ 2 computable and isProp〈α〉 (Section 3.5). Rosolini considered partial elements
with extents of the above form [20], without assuming f computable, which we refer to as
Rosolini propositions:

isRosolini(A) def= ∃(α : N→ 2), isProp〈α〉 × (A = 〈α〉).
isSemiDecidable(A) def= ∃(α : N→ 2), isComputable(α)× isProp〈α〉 × (A = 〈α〉).

Assuming the (consistent, internal) statement that all (total) functions N→ N are computable,
the Rosolini and semidecidable propositions coincide, of course.

2.5 Dominances
A dominance is a set of propositions closed under Σ, and having the proposition 1 as a
member. It is convenient to present a dominance by the following data and properties:
D1. A function d : U → U .

Then a type X is called dominant if d(X) holds.
D2. A function Π(X : U), isProp(d(X)).

(Being dominant is a proposition.)
D3. A function Π(X : U), d(X)→ isProp(X).

(Dominant types are propositions.)
D4. An element of d(1) where 1 is the terminal type.

(The proposition 1 is dominant.)
D5. A function Π(P : U)(Q : P → U), d(P )→ (Π(p : P ), d(Q(p)))→ d (Σ(p : P ), Q(p)).

(Dominant types are closed under Σ.)
The required unnamed element and functions (D2)–(D5) are unique as their types are
propositions, and hence constitute a property of d. Notice that d def= isProp satisfies the
dominance axioms, that is, the set of all propositions forms a dominance. In the general case,
(D5) is equivalent to the seemingly weaker condition

Π(P,Q′ : U), d(P )→ (P → d(Q′))→ d(P ×Q′),

which corresponds to the original definition of dominance given by Rosolini. (In one direction,
consider the constant family Q(p) def= Q′. In the other, consider the type Q′ def= Σ(p : P ), Q(p).)

2.6 Partial functions induced by a dominance
Given a dominance d, we define the type of d-partial functions by

(X ⇀d Y ) def= Σ(R : X → Y → U),Π(x : X), d (Σ(y : Y ), R x y) . (8)

The axiom that the proposition 1 is dominant ensures that the identity relation is a d-partial
function, and the axiom that dominant propositions are closed under Σ ensures that d-partial
functions are closed under composition. In fact, if we have relations R : X → Y → U and
S : Y → Z → U , their composition is

(R;S)x z def= Σ(y : Y ), R x y × S y z,

and the closure of d under Σ ensures that the assumptions Π(x : X), d (Σ(y : Y ), R x y)
and Π(y : Y ), d (Σ(z : Z), S y z) on R and S together imply that their composite R;S
satisfies the required condition Π(x : X), d (Σ(z : Z), (R;S)x z). Indeed, we have that the
type Σ(z : Z), (R;S)x z is equivalent to Σ((y, r) : Σ(y : Y ), R x y),Σ(z : Z), S y z by the
reshuffling map (z, (y, (r, s))) 7→ ((y, r), (z, s)). Being the sum of the dominant propositions

CSL 2017
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Σ(z : Z), S y z indexed by a dominant proposition Σ(y : Y ), R x y, this type is itself a
dominant proposition, as required. Conversely, by constructing suitable relations R and S
depending on a given family Q : P → U of dominant propositions indexed by a dominant
proposition P , we can see that closure under Σ is necessary.

2.7 Partial elements induced by a dominance
The d-lifting, or type of d-partial elements of Y , is defined by

Ld Y
def= (1 ⇀d Y ) (9)
' (Σ(A : Y → U), d (Σ(y : Y ), A y)) (10)
' (Σ(P : U), d(P )× (P → X)) (11)

so that

(X ⇀d Y ) ' (X → Ld Y ).

The dominance axioms ensure that the monad structure on L discussed above restricts to Ld,
again with Kleisli composition corresponding to relational composition. Trivial examples of
dominances are

d1
def= isContr, d2(X) def= (X = 0) + (X = 1), dΩ

def= isProp,

with total spaces 1, 2, and Ω, where 2 ' 1 + 1 and Ω def= Σ(P : U), isPropP , which satisfy

Ld1(X) ' X, Ld2(X) ' X + 1 , LdΩ(X) = LX.

(And hence LX ' X + 1 iff the canonical map 2→ Ω is an equivalence iff excluded middle
holds.)

2.8 The Rosolini dominance and choice
A dominance often considered in topos theory, typically in realizability toposes, is the
Rosolini dominance consisting of the Rosolini propositions defined above [20, 12]. Then the
statement in the internal language that “all partial functions N ⇀ N whose values have
Rosolini extents of definition are computable” is valid in the effective topos [11, 20] and hence
consistent in a dependent type theory with function extensionality, propositional truncations
and some amount of choice. Countable choice, which holds in the effective topos assuming a
classical meta-theory for its study, is used to prove that the Rosolini propositions form a
dominance [20, Chapter 5.2].

We work with the axiom of choice in the form “a product of inhabited sets is inhabited” [23]:

(Π(x : X), ‖Y (x)‖)→ ‖Π(x : X), Y (x)‖ ,

for a set X : U and a family of sets Y : X → U . When the set X is the type of natural
numbers, this is countable choice. When X ranges over propositions, this is propositional
choice, which is shown in [14] to be equivalent to

(P → ‖A‖)→ ‖P → A‖ ,

where P ranges over propositions and A over sets. Notice that propositional choice holds for
decidable P , and hence excluded middle implies propositional choice. But the decidability
of Rosolini propositions is known as LPO (the limited principle of omniscience), and is not
constructively provable in any variety of constructive mathematics [6]. However, it is known
that excluded middle doesn’t imply countable choice, at least not in topos logic.
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I Theorem 2. For any set A, the following are equivalent:
1. Countable choice for families Y (n) def= (α(n) = 1)→ A with α : N→ 2.
2. Propositional choice from Rosolini propositions to A.

Proof. Consider the following propositions:
1. 〈α〉 → ‖A‖,
2. (Σ(n : N), α(n) = 1)→ ‖A‖,
3. Π(n : N), ((α(n) = 1)→ ‖A‖),
4. Π(n : N), ‖(α(n) = 1)→ A‖,
5. ‖Π(n : N), (α(n) = 1)→ A‖,
6. ‖(Σ(n : N), α(n) = 1)→ A‖,
7. ‖〈α〉 → A‖.
The implication (4) → (5) is the above instance of countable choice, and the implication
(1) → (7) is the above instance of propositional choice. Hence the chain of implications
(1)→ (2)→ (3)→ (4)→ (5)→ (6)→ (7) gives propositional choice from countable choice,
and the chain of implications (4) → (3) → (2) → (1) → (7) → (6) → (5) gives countable
choice from propositional choice. J

Hence this particular case of countable choice is implied by excluded middle, and in fact
already by LPO, because propositional choice for Rosolini propositions is. To show that the
Rosolini propositions form a dominance, it is necessary and sufficient to have choice from
Rosolini propositions P to Rosolini structures A, namely types of the form

RosoliniStructure(Q) def= Σ(α : N→ 2), isProp〈α〉 × (Q = 〈α〉)

with Q : U . Notice that the type of Rosolini structures is a subtype of the one-point
compactification of N, namely the type N∞

def= Σ(α : N→ 2), isProp〈α〉.

I Theorem 3. The following are equivalent:
1. Choice from Rosolini propositions to Rosolini structures.
2. The Rosolini propositions form a dominance.

Proof. (⇓): It suffices to show that, for any α : N→ 2 with isProp〈α〉 and Q : U , we have
(〈α〉 → isRosoliniQ)→ isRosolini(〈α〉 ×Q), which amounts, by propositional univalence, to

(〈α〉 → ‖Σ(β : N→ 2), isProp〈β〉 × (Q = 〈β〉)‖)→ ‖Σ(γ : N→ 2), (〈α〉 ×Q) ⇐⇒ 〈γ〉‖ ,

and hence, by Rosolini propositional choice, to

‖〈α〉 → Σ(β : N→ 2), isProp〈β〉 × (Q = 〈β〉)‖ → ‖Σ(γ : N→ 2), (〈α〉 ×Q) ⇐⇒ 〈γ〉‖ ,

and so, because truncation is functorial, it suffices to show that

(〈α〉 → Σ(β : N→ 2), isProp〈β〉 × (Q = 〈β〉))→ Σ(γ : N→ 2), (〈α〉 ×Q) ⇐⇒ 〈γ〉.

Assume an element φ of the premise, and define β : 〈α〉 → (N→ 2) by β(i, p) = pr1(φ(i, p)).
Then define γ(n) = 1 ⇐⇒ Σ(i, j ≤ n), ((i = n) + (j = n))× Σ(p : α(i) = 1), β(i, p)(j) = 1.
We omit the verification that isProp〈γ〉 and that (〈α〉 ×Q) ⇐⇒ 〈γ〉.

(⇑): Assume P → ‖RosoliniStructureQ‖ for some Rosolini proposition P and some
proposition Q, that is, P → isRosoliniQ. By the dominance axiom, isRosolini(P × Q).
Because P → ((P ×Q) = Q), by propositional univalence, we have

RosoliniStructure(P ×Q)→ (P → RosoliniStructure(Q)).

By functoriality of truncation, this gives isRosolini(P ×Q)→ ‖P → RosoliniStructure(Q)‖.
Because the premise holds, ‖P → RosoliniStructure(Q)‖, as required. J

CSL 2017
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But it doesn’t seem to be possible to replace countable choice by its weakening discussed
above in Theorem 4 and Corollary 5 below. If we order propositions by (P ≤ Q) def= (P → Q),
then any family of propositions has a least upper bound, given by the truncation of its sum.

I Theorem 4. Assuming countable choice, the Rosolini propositions are closed under count-
able joins in the complete lattice of all propositions.

Proof. We have to show that ‖Σi, Pi‖ is a Rosolini proposition for any countable family Pi

of Rosolini propositions. Countable choice gives

‖Σ(α : N× N→ 2),Π(i : N), isProp〈α(i,−)〉 × (Pi = 〈α(i,−)〉)‖ .

The last equation amounts to Pi = (Σj , α(i, j) = 1), which gives (Σi, Pi) = (Σi,j , α(i, j) = 1)
and hence ‖Σi, Pi‖ = ‖Σi,j , α(i, j) = 1‖. Now if we define β(n) = 1 iff there is a minimal pair
i, j ≤ n in the lexicographic order with α(i, j) = 1, then β satisfies isProp〈β〉 and 〈β〉 ⇐⇒
‖Σi,j , α(i, j) = 1‖, which shows that ‖Σi, Pi‖ is a Rosolini proposition, as required. J

I Corollary 5. If Y is a set, then countable choice implies that the Rosolini lifting of Y has
joins of ascending sequences.

Proof. The construction is as that of Theorem 1, with the additional step of showing that
‖Σi, extent(ui)‖ is a Rosolini proposition, which is given by Theorem 4. J

However, Coquand, Mannaa, and Ruch [10] have shown that countable choice cannot be
proved in dependent type theory with one univalent universe and propositional truncation, and
discussions in research mailing lists for homotopy type theory and constructive mathematics
with them and with Andrew Swan indicate that their negative result also applies to our
weakening of countable choice.

2.9 Size matters
We now discuss the universe levels of the above constructions (which we have checked using
Agda). We assume we have a function d : U0 → U0, for example d = isProp or d = isRosolini.
We decorate the above constructions with universe levels j, k, l as superscripts. For a
type Y : Uj , we have Ld(Y ) : Umax(j,1), so that lifting has the following type:

Lj
d : Uj → Umax(j,1).

In particular, we have L0 : U0 → U1, and L1 : U1 → U1, and Lj+1 : Uj+1 → Uj+1, where we
have elided the subscript d to avoid notational clutter. That is, lifting raises the universe
level only at the lowest universe. With propositional resizing [25], assuming isProp(d(P )), we
would get that L0 : U0 → U0 and hence Lj : Uj → Uj for every j so that universe levels are
not raised. But resizing is not needed for our purposes, if we are willing to work with higher
universes, and U1 suffices for our discussion of computation of partial functions in Section 3.

For the unit we have the type ηj : Π(X : Uj), X → Lj(X). Assuming that d : U0 → U0 is
closed under Σ in the sense discussed above, we get an extension operator (−)] of type

Π(X : Uj , Y : Uk), (X → Lk(Y ))→ (Lj(X)→ Lk(Y )),

which for j = k = 0 specializes to Π(X,Y : U0), (X → L0(Y ))→ (L0(X)→ L0(Y )). From
this we get a Kleisli composition operator of type

Π(X : Uj)(Y : Uk)(Z : Ul), (Y → Ll(Z))→ (X → Lk(Y ))→ (X → Ll(Z)),
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which specializes to Π(X,Y, Z : U0), (Y → L0(Z))→ (X → L0(Y ))→ (X → L0(Z)). With
the general universe levels, the equations for Kleisli triples can be written down (they type
check) and proved. For the multiplication induced by the extension operator, we have the
type

µj : Π(X : Uj),Lmax(j,1)(Lj(X))→ Lj(X)

which specializes to Π(X : U0),L1(L0(X)) → L0(X) and Π(X : U1),L1(L1(X)) → L1(X).
Again the monad laws, decorated with general universe levels, can be written down and
proved. Of course, we don’t have a monad because the universe levels give the above
non-standard types for the unit and multiplication. Notice also that, because types don’t
form a category, but something like an ∞-category, a more refined notion of monad would
be needed, even ignoring the issue with universe levels. In any case, our unrefined version is
enough to get partial functions (−) → L(−) with a natural Kleisli composition operation
induced by the monad-like structure.

We observe that by the results of [18], if our type theory includes graph quotients, then
the total space of d def= isRosolini is small, as it is the image of a function N∞ → U0 into the
locally small type U0, so that lifting, extension, unit and multiplication preserve universe
levels even at the lowest universe.

3 Computable functions

We now demonstrate a way to develop computability theory constructively, and then in
Section 3.5 relate this to our previous discussion of partial functions and dominances. A
main point of this redevelopment is to make sure we don’t use countable choice or Markov’s
principle, in addition to non-constructive principles. While Turing machines provide an
intuitively convincing notion of computation and are easy to define in a constructive setting,
they are cumbersome to work with directly. We will instead work with a model which is a
modest abstraction of the notion of Turing machine.

3.1 Primitive recursive functions
Our model will make use of (unary) primitive recursive functions, so we quickly recall a
few basic facts about primitive recursive functions. The classical presentation of the results
mentioned here (such as that in [13], [19], or [15]) can be immediately adapted to fit in
univalent type theory. The key point is that the functions used are all computable and total,
so there’s no place where non-constructive notions are likely to appear.

I Definition 6. The type family PR : N→ U of primitive recursive combinators (of arity n)
is defined inductively by
1. s : PR1;
2. for any n : N and k < n we have pn

k : PRn;
3. for any n, k : N we have cn

k : PRn;
4. if f : PRn and gi : PRm for each 0 < i ≤ n, then f〈g1, . . . , gn〉 : PRm.
5. if f : PRn+2 and g : PRn, then rf,g : PRn+1.

We can define a function evaln : PRn → Nn → N in the obvious way, such that eval(t) is
primitive recursive (in the usual sense) for each PR term t. We write isPRn(f) if f : Nn → N
is in the image of eval, and say that f is primitive recursive if isPR(f).
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I Theorem 7 (Enumeration Theorem for Primitive Recursive functions). For each n : N, there
is an injective function e : PRn → N, and a function {−} : N→ (Nn → N) such that for all
f : PRn and x : Nn,

{ef}(x) = eval(f, x).

A primitive recursive characteristic function for a predicate R : Nn → Ω is a primitive
recursive function χR : N→ N such that for all x : Nn

χR(x) = 1⇔ R(x) ∧ χR(x) = 0⇔ ¬R(x).

We will write PR(R) for the type of p.r. characteristic functions of R, and say that R is
primitive recursive if PR(R). As isPR(f) is a proposition for any f : Nn → N, so is PR(R).
Observe that if R has a primitive recursive characteristic function, then R is complemented.

Many of our arguments will make use of functions with arity greater than 1, but we only
use unary primitive recursive functions in what follows, so we will make use of primitive
recursive pairing functions 〈−〉 : Nn → N, with primitive recursive projections. We will tacitly
use the fact that if f : Nn → N is primitive recursive, then there is a primitive recursive
function f̂ : N→ N such that

f̂〈x1, . . . , xn〉 = f(x1, . . . , xn).

Similarly, we will treat functions N + N → N as functions N → N, using a fixed bijection
N + N ' N which makes the encodings of the inclusions inl and inr primitive recursive.

3.2 Abstract Turing machines
Our model abstracts away the details of the initialization and transition functions of a Turing
machine, giving us the following definition.

I Definition 8. An abstract Turing machine is a pair (i, s) of functions i : N → N and
s : N → N + N. The function i is called the initialization function and s is called the
transition function. A primitive recursive machine, or recursive machine for short, is a pair
(i, s) : PR1×PR1.

ATM is the type of abstract Turing machines, and RM is the type of recursive machines. We
will treat recursive machines as ATMs by implicitly using the map defined by evaluating the
combinators and composing along our fixed bijection N→ N + N .

We can evaluate abstract Turing machines via a function eval : ATM→ (N→ LN) as
follows: Given (i, s) : ATM, let s′ : N + N→ N + N be the function

s′(inl x) = s(x),
s′(inr y) = inr y.

Now define for each k : N the function runk : ATM→ N→ (N + N) by

runk(m,x) def= s′k(inl(i(x)))

And so we have for fixed m,

Rm(x, y) def= ∃(k : N), runk(m,x) = inr y.

Then eval(m) is the partial function with Rm as its graph.
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The partial function eval(m) is the function computed by m. We will sometimes abuse nota-
tion and writem(x) for eval(m,x). For a partial function f , we let computationalStructure(f)
be the type of recursive machines computing f , and isComputable(f) be the propositional
truncation of computationalStructure(f). We let Comp be the type of computable functions:

Comp def= Σ(f : N⇀ N), isComputable(f).

The distinction between computationalStructure(f) and isComputable(f) is necessary. By
the enumeration theorem for primitive recursive functions, we have a map

(Σ(f : N⇀ N), computationalStructure(f))→ N,

given by (i, s) 7→ 〈ei, es〉, which is easily seen to be an embedding.
On the other hand, if there is an embedding F : Comp → N, then equality in Comp

is complemented, since we have for f, g : Comp that f = g ' F (f) = F (g), and equality
between naturals is complemented. In particular, we would have a way to determine whether
a (computable) function is equal to λx.0, so we would have WLPO for computable functions.
This means that we also cannot even expect to have an embedding

Comp→ Σ(f : N⇀ N), computationalStructure(f).

That is, we have no way of finding a program for a function just by knowing one exists.
As Turing machines can be encoded so that the initialization and transition functions

are primitive recursive, every Turing machine is a recursive machine; conversely, given
primitive recursive functions i and s, we can construct a Turing machine that runs i, and
then iteratively runs s.

A simple programming exercise shows that if m and n are abstract Turing machines
computing f and g respectively, then there is a machine m;n computing g ◦ f . Moreover, it
is easy to see that when m and n are recursive machines, then so is m;n. Using the universal
property of truncations this gives us,

Π(f, g : N⇀ N), isComputable(f)→ isComputable(g)→ isComputable(g ◦ f).

We have a minimization operator for partial functions, µ : (N→ LN)→ LN, with

extent(µf) def= Σ(k : N), f(k) = η0×Π(j < k),Σ(n : N), f(j) = η(n+ 1),

and value(µf) def= pr1. More generally, we may define the minimization µy.R(y) : LN of a
(decidable) predicate R : N→ Ω

extent(µy.R(y)) def= Σ(y : N), R(y)×Π(x < y),¬R(x).

and value(µy.R(y)) def= pr1. When R : N2 → Ω is primitive recursive, it is easy to see that
isComputable(λx.µy.R(x, y)), by checking R(x, n) for each n. Via dovetailing (by using
runk instead of eval), we can make this work with any recursive predicate, as expected from
classical recursion theory.

3.3 Basic Recursion Theory
We are now able to show how to develop basic recursion theory via recursive machines. We
roughly follow the presentation in Odifreddi [15]; in fact, the proofs given by Odifreddi for
the results stated here translate to our framework with only minor adjustment. We begin
with Kleene’s Normal Form theorem.
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I Theorem 9 (Kleene’s Normal Form Theorem). There is an injection e : RM → N, a
primitive recursive predicate T, and a primitive recursive function U such that for any
recursive machine m and x : N we have

eval(m,x) = (Σ(y : N),T(em, x, y) , − , U ◦ pr1) .

This says that eval(m,x) is defined iff there is a y such that T(em, x, y), and that when
there is such a y, the value of eval(m,x) is U(y). As for any e, x : N there is a unique y
such that T(e, x, y), we actually have that Σ(y : N),T(em, x, y) is the extent of definition of
µy.T(em, x, y), and we get the usual statement of the Normal Form Theorem.

I Corollary 10. For any recursive machine m and x : N, we have

eval(m,x) = LU(µy.T(em, x, y)).

This result gives us the Kleene-bracket function {−} : N→ (N→ LN), defined by

{e}(x) def= LU(µy.T(e, x, y)).

In order to be able to apply {−} to a partial natural number, let {−}∗ : LN→ (N→ LN)
be the function obtained by Kleisli extension in the first component.

Rogers’ Fixed Point Theorem and Kleene’s Second Recursion Theorem can now be proved
in the standard way; observe, however, that the precise statement of Rogers’ result must be
modified to make sense in our setting, since the partial functions obtained from recursive
machines (even total ones) have type N→ LN. The proofs will require the Sm

n Theorem:

I Theorem 11 (Sm
n Theorem). There is a primitive recursive s : N2 → N such that for all

e, x, y : N we have {s(e, x)}y = {e}〈x, y〉.

I Theorem 12 (Rogers’ fixed point theorem). For any recursive machine m such that eval(m)
is total, Σ(n : N), {n} = {m(n)}∗.

Proof. Let g : N→ N be defined by

g〈x, y〉 def= {{x}(x)}∗(y).

As this has a recursive machine, we have a code eg. Defined h(x) = s(eg, x). Now let
e = eeval(m)◦h and n = h(e). Then we have

{n}y = {h(e)}y = {s(eg, e)} = {eg}〈e, y〉 = {{e}(e)}∗(y) = {m(he)}∗(y) = {m(n)}∗(y).J

I Theorem 13 (Kleene’s Second Recursion Theorem). For any recursive machine m,

Σ(p : N),Π(y : N), ({p}(y) = eval(m, 〈p, y〉)) .

Proof. Let f : N→ N be defined by

f(x) def= s〈em, x〉.

This function f is primitive recursive, so there is a total recursive machine m computing f .
By Rogers’ fixed point theorem, there is then a p such that {p} = {m(p)}∗. Then,

{p}(y) = {m(p)}∗(y) = {f(p)}(y) = {s〈em, p〉}(y) = m〈p, y〉. J
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These two theorems have versions from the perspective of computability as property which
follow as corollaries.

I Corollary 14. For any total computable function f : N→ LN, ∃(n : N), {n} = {f(n)}∗.

I Corollary 15. For any computable function f : N→ LN,

∃(p : N),Π(y : N), ({p}(y) = f(〈p, y〉)) .

A subset A of N is recursive if its characteristic function N→ Ω factors through the embedding
2→ Ω via a computable function N→ 2. It is recursively enumerable if it is the image of
some computable function f : N→ N. As with primitive recursive predicates, any recursive
set is complemented. We get the following form of a classical result.

I Theorem 16. A subset A of N is recursive if and only if it is complemented and both A
and its complement are recursively enumerable.

Likewise we have the classical characterization of recursively enumerable sets.

I Theorem 17. A subset of N is r.e. iff it is the domain of a computable function.

A slightly better classical characterization requires some modification to be true constructively.

I Theorem 18. If A is an inhabited subset of N, then the following are equivalent.
1. A is the domain of a computable partial function.
2. A is the image of a computable partial function.
3. A is the image of a computable total function.
4. A is the image of a primitive recursive function.

3.4 Not all partial functions are computable
As discussed in Section 2.8, it is consistent in topos logic that every Rosolini partial function
is computable. However, the statement that every partial function N→ LN is computable is
provably false in univalent type theory. In fact, if the partial function f : N→ LN defined by

extent f(x) def= ({x}(x) = ⊥),
value(f(x))(p) def= 0

were computable, this would mean that the complement of the Halting Set is recursively
enumerable.

3.5 Dominances and semidecidable propositions
We now compare Rosolini and semidecidable propositions, using the following technical
lemma.

I Lemma 19. If X is a type and P : X → U is a family of types over X such that
isProp (Σ(x : X), ‖P (x)‖), then (Σ(x : X), ‖P (x)‖) = ‖Σ(x : X), P (x)‖ .

Proof. By propositional extensionality, it is enough to construct functions in both directions.
Right to left follows from the universal property of truncations. For the other, we have

((Σ(x : X), ‖P (x)‖)→ ‖Σ(x : X), P (x)‖) ' Π(x : X), (‖P (x)‖ → ‖Σ(x : X), P (x)‖) .

and functoriality of truncation gives us an inhabitant of the right-hand type. J
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Recall the relation Rm from Section 3.2 used in the definition of eval(m).

I Theorem 20. For any machine m : ATM and any x, y : N, the types Rm(x, y) and
Σ(y : N), Rm(x, y) are Rosolini propositions.

Proof. For the first type, let g : N + N→ 2 be the function which takes value 1 on inr y and
0 otherwise. Define αk

def= g(runk(m,x)). We have

(αk = 1) ' (g(runk(m,x)) = y),

so Rm(x, y) ' ∃(k : N), αk = 1.
For the second type, let h : N + N→ 2 be the function which is 0 on inl j and 1 on inr j

for all j, and again take αk = h(runk(m,x)). We have that

(αk = 1) ' (Σ(y : N), runk(m,x) = inr y).

Summing over all k : N, rearranging and truncating takes us to

(∃(k : N), αk = 1) ' (∃(y : N),Σ(k : N), runk(m,x) = inr y).

By our technical lemma, we then have

(∃(k : N), αk = 1) ' Σ(y : N),∃(k : N), runk(m,x) = inr y. J

Moreover, the semidecidable propositions are exactly those which arise as the value of a
program. That is,

I Theorem 21. For all A : U

isSemiDecidable(A) ⇐⇒ ∃(f : N⇀ N), isComputable(f)× (A = extent(f(0))).

Proof. Suppose we are given a function f : N ⇀ N with a recursive machine t such that
A = extent(f(0)). We may define

α(n) =
{

0 if runn(t, 0) = inr k for some k, and α(m) = 1 for m < n,
1 otherwise.

It is easy to see that α is recursive, that 〈α〉 is a proposition and that A = 〈α〉.
Conversely, suppose we are given a total recursive α. Consider the constant function

f(x) = µk.(α(k) = 0). Since α(k) = 0 is recursive, this is recursive and it is clear that
extent(f(0)) = A. The result follows from the universal property of truncations. J

4 Related work, discussion, conjectures, questions and further work

Capretta [7] introduced a certain delay monad, and Chapman, Uustalu and Veltri [8]
considered its quotient by weak bisimilarity. In order to show that the result is again a
monad, they used countable choice. This appearance of choice should be no accident: we
conjecture that the quotient constructed in [8] is equivalent to the Rosolini lifting, which,
as we saw, also requires some amount of countable choice to be a monad. As we have seen,
countable choice is also needed to show that the Rosolini lifting is closed under countable
ascending joins.

As discussed in the introduction, we would like to find a notion of partial function which
can be seen to be closed under composition (the dominance axiom (D5)), without choice,
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before we attempt to consistently postulate that all such partial functions from N to N are
computable.

Altenkirch, Danielsson and Kraus [21] consider a higher inductive-inductive definition of
a partiality monad with a constructor that closes under countable ascending joins, without
choice, and show that, in the presence of countable choice, their construction is equivalent
to the above construction [8], and hence would also be equivalent to the Rosolini lifting if
the above conjecture is true. It is not hard to see that this construction can be equivalently
described as the lifting induced by the dominance obtained by closing the Rosolini propositions
under Σ and countable ascending joins.

However, this doesn’t work for our purposes. In fact, consider again the Kleene-bracket
function {−} : N → (N → LN) that associates a partial function to a Gödel number of a
Turing machine. As discussed above, the extents of definition of the partial functions in the
image of the Kleene-bracket are precisely the semidecidable propositions, which form a subset
of the Rosolini propositions. Thus, enlarging the set of Rosolini propositions doesn’t help.

Also, it doesn’t seem to be possible to show that the subset consisting of the semidecidable
propositions form a dominance without choice as above. Nevertheless, without any form of
choice, we have that the partial functions in the image of Kleene-bracket, namely the com-
putable functions, are closed under composition. It seems that even for d = isSemiDecidable,
in the absence of enough choice, the function space N→ Ld N may in principle contain more
than the computable partial functions N→ LN, as in Section 3.4 above. This motivates the
following considerations.

The function D def= RosoliniStructure satisfies the dominance axioms with the exception
of (D2), where (D4) and (D5) then become structure rather than merely property. Crucially,
a function (D5) that provides closure under Σ can be constructed without any form of
choice. This induces a lift monad LD with the same constructions discussed in Section 2,
which turns out to be equivalent to Capretta’s delay monad. With d

def= isRosolini, we
have a map LD(Y ) → Ld(Y ) that truncates structure, which in turn induces a function
(X → LD(Y )) → (X → Ld(Y )) by post-composition. We refer to the maps in the image
D(X,Y ) of this function as disciplined. Although the maps X → Ld(Y ) are not closed under
Kleisli composition unless the Rosolini propositions form a dominance, we have that the
disciplined ones are. Moreover, it is easy to see that the maps N→ Ld(N) in the image of
Kleene–Bracket are all disciplined. Perhaps it is consistent that the converse also holds, which
amounts to saying that all disciplined maps D(N,N) are computable. In other words, we
speculate that the statement “all disciplined partial functions N⇀ N are Turing computable”
is consistent with univalent type theory.
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