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Abstract: We examined the hypothesis that learning to write Chinese characters influences the brain’s
reading network for characters. Students from a college Chinese class learned 30 characters in a character-
writing condition and 30 characters in a pinyin-writing condition. After learning, functional magnetic reso-
nance imaging collected during passive viewing showed different networks for reading Chinese characters
and English words, suggesting accommodation to the demands of the new writing system through short-
term learning. Beyond these expected differences, we found specific effects of character writing in greater
activation (relative to pinyin writing) in bilateral superior parietal lobules and bilateral lingual gyri in both
a lexical decision and an implicit writing task. These findings suggest that character writing establishes a
higher quality representation of the visual–spatial structure of the character and its orthography. We
found a greater involvement of bilateral sensori-motor cortex (SMC) for character-writing trained charac-
ters than pinyin-writing trained characters in the lexical decision task, suggesting that learning by doing
invokes greater interaction with sensori-motor information during character recognition. Furthermore, we
found a correlation of recognition accuracy with activation in right superior parietal lobule, right lingual
gyrus, and left SMC, suggesting that these areas support the facilitative effect character writing has on
reading. Finally, consistent with previous behavioral studies, we found character-writing training facili-
tates connections with semantics by producing greater activation in bilateral middle temporal gyri,
whereas pinyin-writing training facilitates connections with phonology by producing greater activation in
right inferior frontal gyrus. Hum Brain Mapp 34:1670–1684, 2013. VC 2012 Wiley-Periodicals, Inc.
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INTRODUCTION

Skilled reading depends in part on high quality repre-

sentations of written word forms. Writing, because it can
help establish these forms, can be an important support

for learning to read. For alphabetic reading, the impor-
tance of writing for establishing written representations
for specific words may seem relatively unimportant,
because orthographic representations are intimately con-
nected and partly dependent on the phonological forms
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they represent. Success in reading, accordingly, is very de-
pendent on establishing the phonological connections to
orthography [Rayner et al., 2001; Vellutino et al., 2004; Zie-
gler and Goswami, 2005]. In reading Chinese, the case is
slightly different. Although Chinese characters are also
connected to phonological representations, these connec-
tions are less intimate, instantiated at the syllabic level
rather than the phoneme level. Most important for the
question of writing effects on reading, character connec-
tions to both phonology and meaning depend crucially on
establishing a high quality representation of the written
character form. Indeed, some studies suggest that ortho-
graphic awareness, rather than phonological awareness, is
the most predictive variable for Chinese reading achieve-
ment [Chung et al., 2010; Siok and Fletcher, 2001].

In addition to its coarser mapping of phonology, Chi-
nese orthography relies on characters with complex vis-
ual–spatial configurations. The Chinese character consists
of any or all of eight basic strokes interwoven in patterns
to form component radical(s) in a two-dimensional square.
Writing characters involves the coupling of writing-related
visual and motor systems. This coupling may help estab-
lish the spatial configuration of strokes and radicals, which
along with a temporal sequence of motor movements asso-
ciated with stroke composition, completely defines the
shape of the character. These features of Chinese orthogra-
phy are evident in the emphasis placed on writing in Chi-
nese literacy instruction [Wu et al., 1999].

Several studies have suggested that writing skills are
highly correlated with reading scores in native Chinese-
speaking children. One study found that performance on a
delayed copying task (i.e. writing previously presented
characters from memory) differs in young children with
high or low overall literacy skill in Hong Kong [Pak et al.,
2005]. Another study found that skill in copying Chinese
pseudocharacters was highly correlated with reading
scores in children, even with phonological processing
skills statistically controlled [Tan et al., 2005b]. A study of
Chinese dyslexic children also found that writing and
reading are highly correlated [Chan et al., 2006].

More direct evidence of a causal link between writing
and reading comes from learning studies. For example,
Longcamp et al. (2005) found handwriting practice pro-
duced higher performance on a letter recognition task
compared with typing practice, presumably because hand-
writing improves the quality of visual–spatial representa-
tion of letters to a greater degree than typing [Longcamp
et al., 2005b]. Naka (1998) found that a writing condition
produced better recall of pseudocharacters than a visual-
only condition in Japanese [Naka, 1998]. Most relevant to
our study, a recent study of adult learners of Chinese
found that a handwriting condition produced greater accu-
racy in a lexical decision task and a semantic task than
pinyin-typing and reading-only conditions [Guan et al.,
2011]. Pinyin, an alphabetic system that indicates pronun-
ciation of a character, provided an advantage on phono-
logical tasks.

The value of writing for Chinese reading may be to
more strongly establish a visual–spatial memory that also
has a motor memory trace. A motor memory that becomes
stabilized through practice can last for a very long period
of time [Shadmehr and Holcomb, 1997]. Motor memories
for writing can be accessed during character recognition
[Flores d’Arcais, 1994] and letter perception [Parkinson
et al., 2010]. Both Flores d’Arcais (1994) and Parkinson
et al. (2010) found a facilitative effect during reading when
the stroke presentation order was consistent with the order
in which people usually write the character/letter. This
facilitation may arise from perceptual predictions triggered
by the previous action-consistent stroke sequence. Neuroi-
maging studies have also provided evidence that motor
memory trace is wired with the visual perceptual repre-
sentation. For example, two studies have found that visual
perception of single letters activated premotor cortex and
precentral gyrus, suggesting that writing-related motor in-
formation is also involved in the process of visual recogni-
tion. [James and Gauthier, 2006; Longcamp et al., 2003].

To summarize, we assume that writing facilitates recog-
nition for both Chinese characters and English letters
because (1) writing adds additional motor-related informa-
tion to the representation system, which is wired together
with visual input and enhances the activation of visual in-
formation during the recognition stage and (2) writing
improves the quality of visual representation itself, which
results in greater visual–orthographic activation during
recognition. The question for our study is whether we can
identify a writing effect on the neural network for Chinese
reading.

The reading network for Chinese includes both regions
shared with alphabetic reading and regions distinct neural
mechanisms for reading across different writing systems
[Bolger et al., 2005; Chen et al., 2002; Kuo et al., 2004; Pau-
lesu et al., 2000; Tan et al., 2005a]. Among the common
neural mechanisms, the left temporo-occipital cortex and
left inferior parietal lobule (IPL) are involved in both lan-
guages for orthographic analysis and conversion between
orthography and phonology/semantics, respectively
[Bolger et al., 2005; Booth et al., 2006; Tan et al., 2003].
Among the distinctive mechanisms, right temporo-occipi-
tal cortex and bilateral superior parietal lobules are more
involved in Chinese than English, presumably due to the
complex holistic visual–spatial analysis required by Chi-
nese characters [Cao et al., 2010; Tan et al., 2005a]. Left
dorsal inferior/middle frontal gyrus (BA 9) is also more
involved in Chinese than in English, which is probably
associated with the retrieval of phonology at the whole
syllable level and with lexical selection required by the
extensive homophony in Chinese [Bolger et al., 2005; Tan
et al., 2005a]. Left inferior frontal gyrus and left temporo-
parietal cortex are more involved in English than Chinese,
because these two regions are involved in phonological
segmentation and grapheme–phoneme conversion, respec-
tively, both of which are important for alphabetic reading
[Bolger et al., 2005; Tan et al., 2005a].
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Neuroimaging studies on English-speaking adults learn-
ing Chinese have examined the accommodation made by
the alphabetic neural network to the demands of Chinese
writing [Liu et al., 2007; Nelson et al., 2009]. Liu et al.
(2007) and Nelson et al. (2009) found that learners showed
greater activation in right fusiform gyrus and left dorsal
inferior frontal gyrus for Chinese characters than English
words, suggesting they accommodate the special features
of Chinese during learning. These results allow a general
conclusion about accommodation when writing was not a
part of instruction. The additional accommodating effect of
writing practice is the focus of this study.

In this study, we compare, using functional magnetic
resonance imaging (fMRI), the neural correlates of the
learning that occurs with two methods of character
instruction for English-speaking adults learning Chinese.
One of the learning methods is character writing and
the other is pinyin writing. Character writing may estab-
lish a high-quality representation of orthography and
strong connections to semantics, whereas pinyin writing
may establish a high-quality representation of phonol-
ogy, while controlling for the activity of handwriting.
We adopted a passive viewing task, which allowed us
to examine brain activation for lexical processing with-
out any additional task factors, a lexical decision task, in
which we examined the process of visual–orthographic
recognition, and an implicit writing task, which allowed
us to directly examine the brain activation patterns asso-
ciated with a mental simulation of writing. The key pur-
poses of this study are (1) to examine whether character
writing produces greater accommodation as evidenced
by greater activation in the ‘‘Chinese network,’’ includ-
ing bilateral temporo-occipital cortex, bilateral superior
parietal lobules, left dorsal inferior frontal gyrus (BA 9),
and left IPL; (2) to examine whether character writing
invokes greater involvement of sensori-motor cortex
(SMC) during character recognition; (3) to examine
whether character writing creates stronger connections
between orthography and semantics by showing greater
activation in bilateral middle temporal gyri; and (4) to
examine whether pinyin writing creates stronger connec-
tions between orthography and phonology by producing
greater activation in bilateral inferior frontal gyri and
left superior temporal gyrus.

METHODS

Participants

Seventeen undergraduate students enrolled in introduc-
tory Chinese at Carnegie Mellon University or the Univer-
sity of Pittsburgh (M age ¼ 21.58, range: 19–24; 10 males)
participated in the study. According to an informal inter-
view, all participants met the following criteria: (1) mono-
lingual English speaker, (2) not from a Chinese heritage
family, (3) right-handed, (4) free of neurological disease or
psychiatric disorders, (5) no Attention Deficit Hyperactiv-

ity Disorder, and (6) no learning disability. The Institu-
tional Review Board at the University of Pittsburgh
reviewed and approved this study.

Procedures

Behavioral training and testing

Ninety characters that had not been taught before the
experiment were chosen from the participants’ Chinese
textbook. These characters were evenly assigned to one
of three conditions: character-writing training, pinyin-
writing training, or novel. The characters were matched
on variables of spatial structure (left-right, up-down, and
simple), number of strokes, and frequency of the English
translation [Kucera and Francis, 1967] across conditions.
A pretest was given before learning started on the first
day of training to make sure that none of the 90 charac-
ters were known. Participants learned 60 characters in
all, with 30 appearing in each training condition for 5
days. The learning sequence of the two conditions was
counterbalanced between participants and days via a
Latin square arrangement. Training of each character was
divided into three 800-ms segments. For the first 800 ms,
participants saw a character in the center of a computer
screen; for the second 800 ms, they saw that character’s
pinyin and listened to a recording of its pronunciation by
a native Chinese speaker; for the final 800 ms, they saw
the English translation of the character. This sequence
was followed by a 15-s pause, during which the partici-
pant was asked to write down either the character or its
pinyin, depending on the condition, three times. The
entire sequence was repeated three times in a row for
each character.

On each day of training, learning was followed by a
testing session that included a lexical decision task. In
this task, participants were asked to judge whether the
stimulus presented on the screen was a real character or
not. There were 30 stimuli of each type: characters
learned in the character-writing training condition, char-
acters learned in the pinyin-writing training condition,
and novel characters. Participants were told to press a
button with their index finger for a ‘‘yes’’ response and
another button with their middle finger for a ‘‘no’’
response. Each stimulus was presented for 800 ms fol-
lowed by a blank of 1,200 ms. False characters were cre-
ated by deleting a stroke, adding a stroke, or switching
the position of two radicals in a character. The presenta-
tion order of the different types of stimuli was random-
ized. The testing session included three other tasks: a
character-sound matching task, a character-meaning
matching task, and a partial character recognition task
for the Carnegie Mellon students on the first 3 days. (For
details about the procedures of these tasks, see Guan
et al., 2011.)

After learning and testing on the last day of training,
participants completed a post-test to assess their
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proficiency on trained characters. The post-test required
participants to provide the pinyin and meaning of each of
the 60 characters they had learned. The pretest and post-
test were paper–pen tests, and the learning and testing
were computerized using E-Prime.

The six Carnegie Mellon University students had 2
months previously taken part in a behavioral study of Chi-
nese learning that involved 3 days of training and four
tests (lexical decision, character-sound matching, charac-
ter-meaning matching, and partial character recognition)
after training on each day. To assure that all 17 partici-
pants had learned the characters sufficiently, these six stu-
dents received two additional days of training before the
scans. They completed two tasks during the fMRI session:
passive viewing and lexical decision. The eleven Univer-
sity of Pittsburgh students received 5 days of training
within a 2-week interval. The materials and learning and
testing procedures were the same for the Carnegie Mellon
University students and University of Pittsburgh students,
except that during training, the lexical decision task
occurred on 5 days for the 11 University of Pittsburgh stu-
dents and on only the first 3 days for the Carnegie Mellon
University students. The two samples were comparable on
the post-test.

fMRI session

Within 1 week of the last training day, the fMRI session
was administered, consisting of a passive viewing task fol-
lowed by a lexical decision task. An implicit writing task
then followed for the 11 University of Pittsburgh students.
To reduce the repetition effect across tasks, we believe that
the passive viewing task should go first due to the least
requirement of encoding and that the implicit writing task
should go last, because it requires deep coding. We used a
block design for the passive viewing task and an event-
related design for the lexical decision and implicit writing
tasks. There was a 12-s equilibration period at the begin-
ning of each fMRI run and a 22-s period at the end to be
able to deconvolve the hemodynamic response function
(HRF) for the last trial.

Passive viewing

In this task, participants were asked to view a stimulus
presented in the center of the screen. There were four
types of stimuli, including 30 Chinese characters learned
in the character-writing condition, 30 characters learned in
the pinyin-writing condition, 30 novel characters, and 30
English words. Six five-item blocks were presented for
each stimulus type; each item was presented for 800 ms
followed by a 200 ms blank. The four experimental blocks
were interleaved with baseline blocks, during which a fixa-
tion (þ) was presented using the same procedure as the
experimental stimuli. The passive viewing task lasted 4
min and 34 s.

Lexical decision

This task was the same as the one in the testing session
during training, except that we added 45 null trials with a
fixation (þ) serving as a baseline. The null trials were pre-
sented using the same procedure as the experimental tri-
als, and participants were asked to press the ‘‘yes’’ button
for null trials. The lexical decision task in the scanner
lasted 5 min and 4 s.

Implicit writing

Participants were asked to imagine writing with their index
finger the stimulus they had seen presented briefly on the
screen. There were 30 stimuli of each type: characters learned
in the character-writing training condition, characters learned
in the pinyin-writing training condition, and novel characters.
There were also 45 null trials with a fixation (þ) serving as a
baseline, during which participants were asked to imagine
writing the fixation (þ) with their index finger. Each stimulus
was presented for 200 ms followed by a blank of 1,800 ms.
The presentation order of different types of stimuli was
randomized. This task also lasted 5 min and 4 s.

MRI data acquisition

After informed consent was obtained, an informal inter-
view was administered to confirm each participant’s lan-
guage background, hand dominance, and neuropathological
and psychiatric history. The participant then practiced abbre-
viated versions of the experimental tasks to become familiar-
ized with the tasks. Different stimuli (matched on key
characteristics) were used in the practice and fMRI sessions.

All images were acquired using a 3 T Siemens scanner.
Gradient-echo localizer images were acquired to determine
the placement of the functional slices. For the functional
imaging studies, a susceptibility weighted single-shot echo
planar imaging (EPI) blood oxygenation level-dependent
method was used. Functional images were interleaved from
bottom to top in a whole brain EPI acquisition. The following
scan parameters were used: TR ¼ 2,000 ms, TE ¼ 25 ms, flip
angle ¼ 79�, matrix size ¼ 64 � 64, field of view ¼ 205 mm,
slice thickness ¼ 3.2 mm, and number of slices ¼ 38. These
scanning parameters resulted in a 3.2 mm � 3.2 mm � 3.2
mm voxel size. At the end of the functional imaging session,
a high resolution, T1 weighted 3D image was acquired (mag-
netization prepared rapid gradient echo, TR ¼ 1,640 ms, TE
¼ 2.48 ms, TI ¼ 800 ms, flip angle ¼ 8�, matrix size ¼ 256 �
256, field of view ¼ 249 mm, slice thickness ¼ 0.8 mm, and
number of slices ¼ 256). The orientation of the 3D volume
was identical to the functional slices.

Image data analysis

Data analysis was performed using SPM5 (Statistical
Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm).
The functional images were corrected for differences in slice-
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acquisition time to the middle volume and were realigned to
the last volume in the scanning session using affine transfor-
mations. No individual runs had more than 4 mm maximum
movement for any subject in the x-plane (M ¼ 0.44, range ¼
0.08–1.57), y-plane (M ¼ 0.91, range ¼ 0.25–2.77), or z-plane
(M ¼ 1.89, range ¼ 0.27-3.66). Furthermore, no individual
runs had more than 3� of maximum displacement in rotation
for pitch, yaw, or roll. An analysis of variance (ANOVA) with
task as an independent variable showed no significant main
effects on any of the above six dependent variables. All statis-
tical analyses were conducted on movement-corrected images.
Co-registered images were normalized to the Montreal Neu-
rological Institute average template (12 linear affine parame-
ters for brain size and position, eight nonlinear iterations, and
2 � 2 � 2 nonlinear basis functions). Statistical analyses were
calculated on the smoothed data (9 mm Gaussian kernel).

Data from each subject were entered into a general lin-
ear model using a block analysis procedure for the passive
viewing task and an event-related analysis procedure for
the lexical decision and implicit writing tasks with a ca-
nonical HRF. Statistics were calculated with a high pass
filter (128 s cutoff period). We used global normalization
to scale the mean of each scan to a common value. Param-
eter estimates from contrasts of the canonical HRF in sin-
gle subject models were entered into random-effects
analyses. All whole brain results are reported at P < 0.001
uncorrected and contain 10 or more voxels.

To determine differences between viewing English words
and Chinese characters, we employed paired t-tests to exam-
ine the contrasts of Chinese characters versus English words
in the passive viewing task. To determine differences
between character writing-training and pinyin-writing train-
ing, we analyzed the contrasts of character-writing training
versus pinyin-writing training in all three tasks. To deter-
mine differences between learned characters and novel char-
acters, we analyzed the contrasts of learned characters
(combined character-writing training and pinyin-writing
training conditions) versus novel characters in all three tasks.

In a volume of interest (VOI) analysis for the lexical
decision task, we further examined whether the character-
writing effect can be transferred to new characters by com-
paring novel characters to character-writing training and
pinyin-writing training in one ANOVA model. If novel

equals character writing, then the writing effect can be gen-
eralized. If novel equals pinyin writing and smaller than
character writing, then the writing effect is specifically
about writing. Two VOIs were created at the peaks in the
contrasts of character-writing training minus pinyin-writing
training with a radius of 6 mm. The two VOIs were left
superior parietal lobule (�32, �54, 54) and right postcentral
gyrus (38, �38, 48). We then used the implicit writing task
to create a conjunction map (with an exclusive mask) of all
three conditions (character writing, pinyin writing, and
novel). The conjunction map was created using SPM at a
threshold of P < 0.001, uncorrected. The conjunction of all
three conditions in the implicit writing task provides a map
dedicated to the nature of the task of ‘‘implicit writing,’’
which may include retrieving visual configuration of the
character, recalling the stroke sequence, and writing-related
motor planning. If the character-writing effect found in the
lexical decision task is caused by the actual ‘‘writing,’’ and
if actual writing is partly simulated by imagined writing,
then there should be nothing left when the exclusive mask
from the conjunction analysis is applied.

At the whole brain level, we carried out brain behavior
correlation analyses for each condition in the lexical deci-
sion task. We correlated accuracy on character-writing
trained, pinyin-writing trained, and novel characters with
their corresponding brain activation in the contrast of lexi-
cal minus null.

RESULTS

Behavioral performance during the training

As shown in Table I, lexical decision accuracy and deci-
sion times improved over the course of the 5-day training
for both character-writing and pinyin-writing conditions.
An ANOVA of condition (character-writing training, pin-
yin-writing training, and novel) by day (1–5) on accuracy
found significant main effects of condition (F(2, 8) ¼
34.823, P ¼ 0.000 for accuracy) and day (F(4, 16) ¼ 15.213,
P ¼ 0.000 for accuracy), with no significant interaction. Ac-
curacy for the character-writing trained characters was sig-
nificantly higher than for the pinyin-writing trained
characters (t(16) ¼ 4.210, P ¼ 0.001) and the novel

TABLE I. Means and standard deviations of accuracy and reaction time for each condition on each day on the

lexical decision task

Day 1 Day 2 Day 3 Day 4 Day 5

Accuracy
Character-writing trained 0.60 (0.21) 0.67 (0.21) 0.78 (0.11) 0.82 (0.07) 0.82 (0.11)
Pinyin-writing trained 0.57 (0.21) 0.62 (0.19) 0.70 (0.11) 0.73 (0.11) 0.73 (0.10)
Novel 0.51 (0.23) 0.52 (0.18) 0.56 (0.10) 0.62 (0.15) 0.59 (0.09)

Reaction time
Character-writing trained 716 (119) 659 (109) 659 (91) 591 (37) 583 (35)
Pinyin-writing trained 701 (97) 660 (117) 672 (102) 591 (38) 583 (47)
Novel 725 (120) 675 (125) 668 (98) 609 (37) 577 (60)
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characters (t(16) ¼ 7.469, P ¼ 0.000). The accuracy on the
pinyin-writing trained characters was higher than that on
the novel characters (t(16) ¼ 4.916, P ¼ 0.000). Multiple
comparisons on day found that accuracy on Day 4 was
significantly higher than that on Day 3 (t(16) ¼ 3.785, P ¼
0.004), corrected for multiple comparisons (P < 0.005).

Table II presents accuracy on meaning and pinyin pro-
duction in the post-test after training on the last day. An
ANOVA of condition (character-writing training and pin-
yin-writing training) by measurement (meaning production
and pinyin production) found a significant main effect of
measurement (F(1, 15) ¼ 5.724, P ¼ 0.03), with higher accu-
racy on meaning production than on pinyin production.
The main effect of condition and the interaction of condi-
tion by measurement were not significant. Thus, before the
scans, character-writing trained and pinyin-writing trained
characters had been learned equally well.

Behavioral performance in the scanner

Table III presents accuracy and reaction time data for
each condition on the lexical decision task in the scanner.
Separate ANOVAs of condition effects (character writing,
pinyin writing, novel, and baseline) for accuracy and reac-
tion time on correct trials showed main effects of condition
for accuracy (F(3,48) ¼ 67.237, P < 0.001) and reaction
time (F(3,48) ¼ 93.916, P < 0.001). Multiple comparisons
found that accuracy on the character-writing condition
was higher than that on the pinyin-writing condition (t(16)
¼ 7.853, P < 0.001) and on the novel condition (t(16) ¼
8.025, P < 0.001). Accuracy on pinyin writing was higher
than that on novel (t(16) ¼ 5.533, P < 0.001). Accuracy on
the baseline was higher than that on the character-writing
condition (t(16) ¼ 3.166, P < 0.008 corrected for multiple
comparisons P ¼ 0.05/6), the pinyin-writing condition
(t(16) ¼ 9.218, P < 0.001), and the novel condition (t(16) ¼
11.203, P < 0.001). Multiple comparisons found that reac-
tion time on the baseline was faster than that on the char-
acter-writing condition (t(16) ¼ 12.234, P < 0.001), the

pinyin-writing condition (t(16) ¼ 12.448, P < 0.001), and
the novel condition (t(16) ¼ 10.205, P < 0.001). The differ-
ences between the character writing, pinyin writing, and
novel were not significant.

Brain activation patterns

Passive viewing

In the passive viewing task, we found greater activation
for viewing Chinese characters than for viewing English
words in left dorsal inferior frontal gyrus/middle frontal
gyrus (BA 9), bilateral precuneus, bilateral superior parie-
tal lobules, bilateral middle occipital gyri, and bilateral
fusiform gyri. We found greater activation for viewing
English words than for viewing Chinese characters in
bilateral inferior frontal gyrus (BA 45, 47) and bilateral
superior temporal gyri (BA 22, 21) (see Table IV and Fig.
1). We found no differences between viewing characters
learned in the character-writing training condition and the
pinyin-writing training condition. We found greater activa-
tion for learned characters than novel characters in left
precentral gyrus, left precuneus, and left superior frontal
gyrus (see Appendix). Thus, passive viewing reflected lan-
guage differences and general learning effects, but not spe-
cific training condition effects.

Lexical decision

In the lexical decision task, we found greater activation
for the character-writing condition than the pinyin-writ-
ing condition in bilateral superior parietal lobules, right
IPL and postcentral gyrus (see Table V and Fig. 2). When
an exclusive mask was applied, no regions showed
greater activation for the character-writing training than
the pinyin-writing training. The mask was a conjunction
analysis of character-writing training, pinyin-writing
training, and novel in the implicit writing task which pro-
vided a network involved in the activity of character
writing (see Table AII). This analysis suggests that the
recognition of a character learned in the character-writing
training condition invokes activation of a network
involved in the previous writing training. We found
greater activation for the pinyin-writing condition than
the character-writing condition in right inferior frontal
gyrus (see Table IV). We found greater activation in bilat-
eral middle occipital gyri, precuneus, and left middle
temporal gyrus for learned characters than novel charac-
ters (see Table AI).

TABLE III. Means and standard deviations of accuracy and reaction time for each condition on the lexical decision

task and the baseline task in the scanner

Character-writing trained Pinyin-writing trained Novel Baseline

Accuracy 0.91 (0.09) 0.80 (0.08) 0.66 (0.14) 0.97 (0.04)
Reaction time 755 (72) 759 (82) 781 (96) 563 (69)

TABLE II. Means and standard deviations of accuracy on

the meaning production and pinyin production in the

post-test for each learning condition

Meaning Pinyin

Character-writing training 0.95 (0.10) 0.89 (0.17)
Pinyin-writing training 0.96 (0.13) 0.92 (0.17)
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An ANOVA of condition (character-writing training, pin-
yin-writing training, and novel) at the VOI analysis found a
significant main effect of condition for left superior parietal
lobule (F(2,32) ¼ 13.555, P ¼ 0.000) and for right postcentral
gyrus (F(2,32) ¼ 18.103, P ¼ 0.000). Multiple comparisons
found that writing-trained characters showed greater acti-
vation than novel characters, (t(16) ¼ 4.380, P ¼ 0.000) at
the left superior parietal lobule, and (t(16) ¼ 5.834, P ¼
0.000) at the right postcentral gyrus. There were no differ-
ences between the pinyin-writing training condition and
the novel condition (t(16) ¼ 0.431, P ¼ 0.672) for the left
superior parietal lobule, or (t(16) ¼ 1.163, P ¼ 0.262) for the
right postcentral gyrus (see Fig. 2).

Implicit writing

In the implicit writing task, we found greater activation
in bilateral middle temporal gyri, left IPL, bilateral lingual
gyri, left superior/middle frontal gyrus (BA 9, 8, 6),
and left precentral gyrus for the character-writing condi-

tion than for the pinyin-writing condition (Table VI and
Fig. 4). We found no greater activation for pinyin writing
than for character writing. We also found greater activa-
tion for learned characters than novel character in left pre-
cuneus, precentral gyrus and right precuneus and superior
parietal lobule (see Table AI). The ‘‘Discussion section’’
will focus on the differences between character-writing
training and pinyin-writing training.

Brain-behavior correlations

For the lexical decision task, we carried out brain-behav-
ior correlation analyses on the whole brain level and we
found that greater activations in right superior parietal
lobule (rSPL), right lingual gyrus (rLG), and left precentral
gyrus were correlated with higher accuracy in the charac-
ter-writing trained condition (see Table V, and Fig. 3). We
found no significant correlation for the pinyin-writing
trained or novel character conditions.

TABLE IV. Brain activation for the comparisons between Chinese characters and English words in the passive

viewing task

Anatomical region H BA Voxels Z-Score x y z

Chinese > English
Precuneus, superior parietal lobule L 7 2464 5.42** �14 �74 42
Precuneus R 7 1417 4.74** 20 �64 36
Middle occipital gyrus, inferior

temporal gyrus, fusiform gyrus
L 19, 37 1090 5.38** �52 �64 �8

Middle occipital gyrus, inferior
temporal gyrus, fusiform gyrus

R 19, 18, 37 3350 5.23** 44 �74 �16

Superior frontal gyrus L 6 527 4.98** �4 4 58
Middle frontal gyrus L 6 23 3.37* �24 �4 54
Dorsal Inferior frontal gyrus L 9 24 3.43** �50 2 34
Supramarginal gyrus L 40 19 3.22* �36 �48 38
Insula L -- 230 4.19** �30 14 8
Putamen R -- 91 4.10** 30 16 2
Cerebellar tonsil R -- 21 3.87** 24 �36 �44
Posterior cingulated L -- 306 3.74** �4 �36 24

English > Chinese
Inferior frontal gyrus L 47, 45 299 4.12* �46 36 �14
Inferior frontal gyrus R 47 137 3.69* 46 36 �8
Superior temporal gyrus, middle

temporal gyrus,
L 22 2329 4.24* �38 �54 20

Inferior temporal gyrus L 20 2329 4.58* �54 �28 �22
Superior temporal gyrus R 21 651 4.83* 60 �62 20
Middle temporal gyrus R 21 24 3.34* 64 �6 �12
Inferior temporal gyrus R 20 10 3.18* 50 �16 �24
Medial frontal gyrus L 25 45 3.61* �2 28 �18
Superior frontal gyrus L 8 137 4.43* �12 42 46
Precentral gyrus R 6 17 3.50* 60 12 10
Parahippocampal gyrus L 34 17 3.38* �16 �10 �22
Cerebellum R -- 95 4.21* 22 �80 �36

Brain regions listed in bold are the peak coordinate for areas spanning different regions. H, hemisphere; L, left; R, right; BA, Broad-
mann’s area.
**P < 0.01, FDR corrected.
*P < 0.05, FDR corrected.
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DISCUSSION

Differences between Chinese and English

We found greater activation in bilateral superior parietal
lobules, bilateral middle occipital gyri, bilateral fusiform
gyri, and left dorsal inferior frontal gyrus for viewing Chi-

nese characters than for viewing English words. On the

other hand, we found greater activation in ventral left infe-

rior frontal gyrus and left superior posterior temporal

gyrus for viewing English words than Chinese characters.
For English, our results converge with findings concern-

ing the left superior temporal gyrus and left inferior

Figure 1.

Comparisons between languages in the passive viewing task. There was greater activation in left

dorsal inferior/middle frontal gyrus (MFG), and bilateral fusiform gyrus (FG) for viewing Chinese

characters than viewing English words. There was greater activation in left inferior frontal gyrus

(IFG) and left superior temporal gyrus (STG) for viewing English words than viewing Chinese

characters.

TABLE V. Brain activations for the comparisons between the two learning conditions in the lexical decision task

and Correlations between accuracy and brain activation

Anatomical region H BA Voxels Z-Score x y z

Character-writing trained > Pinyin-writing trained
Superior parietal lobule, precentral gyrus R 40, 3 151 3.87 38 �38 48

Inferior parietal lobule, postcentral gyrus R 40, 5 49 3.86 42 �48 56
Superior parietal lobule, postcentral gyrus L 7 78 3.62 �32 �54 54

Pinyin-writing trained > Character-writing trained
Inferior frontal gyrus R 47 15 3.44 34 20 �6

Higher accuracy correlated with greater activation for the character-writing trained characters in the lexical decision task
Lingual gyrus R 19, 18, 37 225 4.02* 26 �76 �12

Postcentral gyrus, precentral gyrus L 3 41 3.92* �36 �24 44

Superior parietal lobule R 7 13 3.29 32 �72 44

Cerebellum L — 206 4.70* �14 �58 �16

Brain regions listed in bold are the peak coordinate for areas spanning different regions; Coordinates listed in bold are peaks from
which we did VOI analyses in Figure 2 and correlation analyses in Figure 3. H, hemisphere; L, left; R, right; BA, Broadmann’s area.
*P < 0.05, FDR corrected.
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frontal gyrus, which are associated with the route of
assembled phonology in English. The left posterior supe-
rior temporal gyrus and adjacent angular and supramargi-
nal gyrus are involved in grapheme–phoneme conversion
and fine-grained phonemic analysis for alphabetic reading
[Booth et al., 2003a; Eden et al., 2004; Poldrack et al., 2001;
Temple et al., 2003] and the left inferior frontal gyrus (BA
45/46/47) is involved in phonological manipulation [Fiez
et al., 1999] and subvocal rehearsal in phonological proc-
essing [Chein and Fiez, 2001]. Both of these processes are
more involved in English reading than Chinese reading.

For Chinese, our results converge with results showing
greater involvement of bilateral visual–spatial areas and
visual–orthographic areas [Bolger et al., 2005; Tan et al.,
2005a]. Previous research has also found greater involve-
ment for Chinese reading in a dorsal posterior region of
the left inferior frontal gyrus bordering on the precentral
gyrus (BA 6/9) [Bolger et al., 2005; Tan et al., 2003, 2005a].
In our study, we observed activation during character
reading near this same ‘‘Chinese region,’’ at the left dorsal
inferior frontal gyrus (BA9). The peak was at (�50, 2, 34),
very close to the peaks of (�48, 4, 35) and (�44, 4, 33) for
learners in Nelson et al. (2009) and Liu et al. (2007),
respectively, and to the peaks of (�48, 9, 30) and (�46, 8,
34) for native Chinese speakers in Bolger (2005) and Cao
(2010), respectively. This convergence of findings suggests
that English speakers can adopt the procedures of
addressed retrieval of phonology and semantics after only
a short period learning Chinese.

There are diverse hypotheses about the function of this
region in Chinese reading: the first three are variations on
the observation that this region holds character informa-
tion to coordinate orthography, phonology, and semantics
[Perfetti et al., 2005]: (1) visuo-spatial analysis of Chinese
characters that allows syllable level mapping [Tan et al.,

2001]; (2) a long-term storage center for addressed phonol-
ogy [Tan et al., 2005a]; (3) a character memory to allow re-
trieval of associated character constituents [Perfetti et al.,

Figure 2.

Comparisons between conditions in the lexical decision task. The activation at bilateral superior

parietal lobule (SPL) and right postcentral gyrus was greater for character writing than pinyin

writing and novel (character writing > pinyin writing ¼ novel). Volumes of interest used in the

VOI analysis in the bar graphs on the right were indicated in the pink circles on the left.

Figure 3.

Correlation of accuracy in the character-writing condition in the

lexical decision task with brain activations in left sensori-motor

cortex (SMC) (r ¼ 0.729, P ¼ 0.001), right superior parietal

lobule (rSPL) (r ¼ 0.687, P ¼ 0.002), and right lingual gyrus

(rLG) (r ¼ 0.832, P ¼ 0.000).
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2007], allowing lexical selection and integration [Li, 2010];
and (4) writing involvement, reflecting its location just an-
terior to the premotor cortex that governs motor functions
and the writing practice that is part of Chinese reading ac-
quisition [Tan et al., 2005a]. This region is involved in
English reading as well under some circumstances [Binder
et al., 2003; Bolger et al., 2008], e.g. when there is graph-
eme–phoneme inconsistency. A control function for select-
ing and integrating across competing activations could be
a function that supports both Chinese and alphabetic
reading.

That learners with just over one term of study show
activation patterns typical of skilled native language Chi-
nese readers demonstrates the accommodation of the
brain’s reading network to the demands of the writing sys-
tem [Liu et al., 2007; Nelson et al., 2009]. For example, the
bilateral activation of fusiform gyri and middle occipital
gyri for Chinese suggests a role for holistic visual configu-
ration in the right hemisphere, in addition to the left hemi-
sphere role in more fine-grain (e.g. stroke patterns)
orthographic processing. As suggested by Liu and Perfetti
(2003), the right hemisphere, responding to low spatial

TABLE VI. Brain activations for the comparisons between the two learning conditions in the implicit writing task

Anatomical region H BA Voxels Z-Score x y z

Character-writing trained > Pinyin-writing trained
Inferior parietal lobule,

supramarginal gyrus
L 40 79 4.20* �64 �44 36

Middle temporal gyrus L 22 129 5.16** �48 �46 6
Superior temporal gyrus L 22 229 4.68* �40 �36 4
Middle temporal gyrus L 21 80 3.91* �68 �26 2
Superior temporal gyrus R 41 66 4.27* 46 �36 12
Superior temporal gyrus R 22 78 4.07* 58 �40 18
Middle temporal gyrus R 22 242 4.18* 66 �34 4
Middle temporal gyrus R 39 110 4.02* 46 �60 24
Middle temporal gyrus R 22 38 3.57* 40 �60 10
Lingual gyrus L 37 99 3.67* �22 �46 �16
Lingual gyrus R 19, 37 20 3.65* 32 �74 �14
Middle frontal gyrus, L 8 37 3.98* �32 22 44
Superior frontal gyrus,
Middle frontal gyrus

L 9,10 297 4.39* �16 52 38

Postcentral gyrus L 3, 4 11 3.44* �18 �38 66
Posterior cingulated R 29 1294 5.19* 4 �58 10

Pinyin-writing trained > Character-writing trained
Pons L — 82 3.99 �8 �38 �36

Brain regions listed in bold are the peak coordinate for areas spanning different regions. H, hemisphere; L, left; R, right; BA, Broad-
mann’s area.
**P < 0.01, FDR corrected.
*P < 0.05, FDR corrected.

Figure 4.

Comparisons between conditions in the implicit writing task. There was greater activation in

bilateral lingual gyrus (LG), bilateral middle/superior temporal gyrus (M/STG), and left inferior

parietal lobule (IPL) for the character-writing condition than for the pinyin-writing condition.
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frequencies, may be important in identifying the spatial
configuration of radicals [Liu and Perfetti, 2003]. The fact
that learners as well as L1 Chinese readers show this pat-
tern, suggest that this right hemisphere involvement
reflects a relatively rapid accommodation to the specific
graphic demands of the writing system [Liu et al., 2007].
Another accommodation may be seen in the role of the
bilateral superior parietal lobules, which may support
memories for the visuo-spatial configuration of compo-
nents within a character. The superior parietal lobules, as
well as the bilateral middle occipital gyri, show age-related
increases in Chinese reading over development, suggesting
a role in the acquisition of Chinese reading skill [Cao
et al., 2010; Cao et al., 2009]. Finally, as we observed
above, learners also showed activation in the left dorsal
frontal region (BA9) that suggest an accommodation to the
properties of Chinese characters that call on that region.

Differences between the two learning conditions

The most interesting contrast in this study is between the
two learning conditions. Consistent with our expectations,
we found that character writing facilitates accommodation
in learning Chinese at both the script level and the map-
ping level. For facilitation at the script level we have both
behavioral and neurological evidence. Behaviorally, we
found greater accuracy for character-writing trained charac-
ters than pinyin-writing trained characters in the lexical de-
cision task, which directly reflects orthographic recognition.
Neurologically, we found greater activation in bilateral
superior parietal lobules during the lexical decision task,
and greater activation in bilateral lingual gyri during the
implicit writing task for character-writing trained characters
than pinyin-writing trained characters. We also found that
higher lexical decision accuracy was correlated with greater
activation in rLG and rSPL for character-writing trained
characters. Moreover, the area around the rLG (26, �76,
�12) that produced the correlation with accuracy overlaps
with the character-writing effect observed in the implicit
writing task (32, �74, �14). Further, the area around the
rSPL (32, �72, 44) that correlated with accuracy is near the
area that showed the character-writing effect in the lexical
decision task (38, �38, 48). Overall, character-writing train-
ing produced greater activation in bilateral superior parietal
lobules and bilateral lingual gyri and the right homologues
of these two regions are especially sensitive to the effective-
ness of the training.

A previous study suggests that superior parietal cortex
may play a crucial role in learning the visual–spatial
aspects of characters, because its activation is correlated
with behavioral improvement in learning and with better
long-term retention [Deng et al., 2008]. Our study adds the
idea that character-writing training helps this learning pro-
cess, because during character writing, which is a process
of producing the visual forms from memory, attention is
explicitly drawn to the visuo-spatial structure of the charac-

ter. Beyond the global spatial layout, the learner needs to
acquire a precise representation of character, including its
strokes and the spatial relations among them. Our finding
of greater activation in bilateral lingual gyri for the charac-
ter-writing trained characters suggests that character writ-
ing may help establish these more precise orthographic
representations, perhaps through specifying the character-
writing stroke sequence. James (2010) found that writing
training but not visual-only training produced increased
activation in bilateral fusiform/lingual gyri from pretrain-
ing to post-training scans in a letter recognition task in chil-
dren of 4–5 years of age, suggesting greater neural
specialization of letters in fusiform gyri [James, 2010].
Another study also suggests that left fusiform gyrus is
involved in not only orthographic configuration but also in
the dynamic aspect of the writing sequence of Chinese
characters by showing greater activation in this region for
viewing incorrect sequences than for viewing correct
sequences of character writing [Yu et al., 2011]. This finding
suggests that writing training facilitates neural specializa-
tion of orthographic recognition for both Chinese characters
and English letters by establishing a more elaborated visuo-
spatial and orthographic representation of the graphs.

When participants read a character in a lexical decision
task, there was increased involvement of bilateral SMC for
characters learned through character writing than for char-
acters learned with pinyin writing. We also found that
higher accuracy was correlated with greater activation in
the left SMC for character-writing trained characters in the
lexical decision task. According to the common-coding
principle proposed by Prinz (1997), ‘‘event codes’’ and
‘‘action codes,’’ the functional bases of percepts and action
plans, respectively, share the same representational domain
and are therefore commensurate. Consistent with this prin-
ciple, two previous studies found that visual presentation
of letters produced activation in ventral left premotor area
(BA 6) involved in writing for right-handed writers and in
right premotor area for left-handed writers [Longcamp
et al., 2003, 2005a]. James and Atwood (2009) found that
writing training, but not visual-only training, produced
increased activation in left precentral gyrus in adults during
a pseudoletter recognition task, suggesting that regions
involved in writing were activated during recognition
[James and Atwood, 2009]. Our study provides another pi-
ece of evidence for the common-coding principle, and fur-
ther suggests that the more strongly the SMC is wired with
the recognition network, the greater performance will be.
Sensori-motor learning enriches the representation system
by introducing into the network a motor component that is
highly interactive with the other components and may
become especially helpful for perception when other com-
ponents are impaired or weak. This finding therefore has
implications for intervention studies on dyslexia. Further
research is needed to determine how writing aids in word
recognition in children with reading disability.

Beyond these visual–spatial accommodations, we found
that character writing also supports accommodation to the
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mapping level of the Chinese writing system. The clearest
indicator for this is the greater activation in left IPL in the
implicit writing task. The left IPL is associated with the
mapping between orthography and phonology in Chinese
[Cao et al., 2010; Tan et al., 2005a] and English [Booth
et al., 2002, 2003b]. The left IPL involved in Chinese is
more dorsal and lateral than the one involved in English,
which may indicates the whole-syllable level mapping in
Chinese versus the phoneme level mapping in English.
Other studies have also suggested that this region is
involved in the mapping between orthography and seman-
tics [Chou et al., 2006b]. Another piece of evidence for the
benefit of character writing on mapping is that our study
identified a semantic advantage for character writing for
adult learners of Chinese. We found greater activation in
bilateral middle/superior temporal gyri for the character-
writing condition than the pinyin-writing condition in the
implicit writing task, a region associated with verbal
semantic representation and storage [Chou et al., 2006a;
Howard et al., 1992; Shaywitz et al., 2001]. Our result is
consistent with previous behavioral findings that writing
practice is more helpful for semantic tasks than for read-
ing only and typing tasks [Guan et al., 2011]. In general,
English speakers learning Chinese without an emphasis on
spoken language show greater accuracy in memorizing
character meanings than pronunciations.

We also report significantly higher accuracy for meaning
production than pinyin production on the post-test in this
study. It appears that when English speakers learn Chi-
nese characters, they tend to attach meaning to the visual
form before pronunciation. In behavioral data collected
during character learning, it has been found that the bene-
fits of character writing for orthographic recognition
appears on the first day, whereas the benefit for semantics
becomes significant on the third day. This finding suggests
that character writing helps establish a high-quality ortho-
graphic representation and that when visual recognition is
automatic, memory and attention resources can be focused
on building up the connections first between orthography
and semantics and then between orthography and phonol-
ogy. On the other hand, we also identified a phonological
advantage for pinyin writing. There was greater activation
in right inferior frontal gyrus for the pinyin-writing condi-
tion than the character-writing condition in the lexical de-
cision task. A previous transcranial magnetic stimulation
study found that right posterior inferior frontal gyrus is
necessary for accurate and efficient phonological decisions
[Hartwigsen et al., 2010]. Our study suggests that pinyin
training helps to establish a more elaborated phonological
representation. This is consistent with behavioral results
[Guan et al., 2011] in which pinyin-typing training led to
an advantage in identifying the pinyin and tone of the
characters. The behavioral data from this study, which
will be reported in a separate paper, also suggests that
pinyin writing is especially beneficial for tone production.
Other researchers have found that right inferior frontal
gyrus is involved in tone production in Mandarin Chinese

in both native speakers [Liu et al., 2006] and English learn-
ers [Wang et al., 2003].

The writing-specific nature of the

character-writing effect

In the VOI analyses at left superior parietal lobule and
right SMC for the lexical decision task we found that the
pinyin-writing trained characters induced the same
amount of activation as novel characters, even though ac-
curacy was significantly higher in the pinyin-writing train-
ing condition than in the novel condition. The character-
writing trained characters induced significantly greater
activation at those two regions than the pinyin-writing
trained and novel conditions. This result suggests that
these regions are sensitive not to accuracy, but to the spe-
cific experience of character writing. The application of an
exclusive mask from a conjunction analysis of the implicit
writing task also bolsters the idea that the character-writ-
ing effect is due to the specific experience of ‘‘writing.’’
The present results might be due to the fact that only 10%
of the characters in the pinyin-writing and novel condi-
tions share a radical with those in the character-writing
condition. A parametric manipulation of the overlap of
radicals in different conditions would be helpful in under-
standing whether the writing effect can be generalized to
other characters comprised of the same radicals. One
might also expect the proficiency level of Chinese and the
amount of writing training to influence generalization.

CONCLUSIONS

English speakers are able to accommodate to the special
features of the visual form of Chinese characters and the
relatively arbitrary mapping from the visual form to pro-
nunciation and meaning by showing greater activation for
Chinese characters than English words in bilateral superior
parietal lobules, bilateral lingual gyri, and left dorsal infe-
rior frontal gyrus (BA 9). Character writing facilitates the
accommodation at both the visual form level and the map-
ping level. Writing improves the quality of visual–ortho-
graphic representation, showing increased activation in
bilateral lingual gyri and bilateral superior parietal lobules.
The increased precision of orthography boosts the proc-
esses of connecting orthography to semantics and phonol-
ogy, indicated by increased activation in left IPL and
bilateral middle/superior temporal gyri. Character writing
also increases the interactivity with the SMC during char-
acter recognition, suggesting that learning by doing
involves more neural resources.
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APPENDIX

TABLE AI. Regions that showed greater activation for learned (combined character writing and Pinyin writing)

than novel in the passive viewing and implicit writing tasks

Anatomical region H BA Voxels Z-Score x y z

Passive viewing Learned > novel
Inferior parietal lobule L 40, 39 35 3.90 �46 �28 24
Superior frontal gyrus L 6, 4 54 3.86 �10 �2 70
Medial frontal gyrus R 6, 4 30 3.85 12 �18 60
Medial frontal gyrus L 6 16 3.84 �10 �12 52
Precuneus L 7 112 3.81 �12 �60 40
Inferior parietal lobule L 40, 6 17 3.68 �38 �24 28
Superior frontal gyrus L 11 16 3.48 �20 48 �10
Claustrum L 13 12 3.30 �34 6 0

Lexical decision Learned > novel
Middle occipital gyrus R 18, 19 143 4.94 30 �90 10
Superior occipital gyrus, precuneus R 19 43 3.57 38 �78 24
Posterior cingulate R 30 499 4.67 4 �58 14
Inferior parietal lobule R 40 160 4.55 42 �38 50
Middle frontal gyrus L 6 22 4.17 �20 6 54
Superior parietal lobule, precuneus R 7 237 4.08 14 �68 54
Precuneus L 7 42 3.82 �6 �60 60
Middle occipital gyrus, precuneus L 18, 19 78 4.02 �32 �76 28
Inferior parietal lobule L 40 63 3.62 �42 �38 48
Precuneus L 18, 19 35 3.59 �18 �50 54

Implicit writing Learned > novel
Cuneus L 18, 19 15 3.54 �20 �88 2
Middle temporal gyrus, parahippocampal gyrus L 30, 42 13 3.44 �58 �54 �2
Precuneus L 7 177 4.43 �18 �76 44
Superior frontal gyrus, precentral gyrus L 6 330 4.21 �16 �12 70
Lentiform nucleus R Putamen 57 4.08 18 14 2
Superior parietal lobule, precuneus R 7 239 4.00 24 �60 62
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TABLE AI. (Continued)

Anatomical region H BA Voxels Z-Score x y z

Middle frontal gyrus R 6 30 3.69 28 �14 50
Declive R — 12 3.61 18 �62 �24
Superior occipital gyrus L 19 20 3.60 �34 �82 24
Medial frontal gyrus L 6 18 3.58 �2 �4 54
Cingulate gyrus L 32 14 3.56 �12 10 32
Postcentral gyrus R 2 12 3.44 46 �30 48

TABLE AII. Conjunction mask of all three conditions in the implicit writing task

Anatomical region H BA Voxels Z-Score x y z

Precuneus, superior parietal lobule R 7, 40 3545 inf 16 �74 52
Superior parietal lobule, precuneus, inferior parietal lobule L 7, 40 3580 inf �30 �56 54
Middle frontal gyrus, cingulate gyrus L, R 6, 4, 9, 8 3104 7.34 �28 �10 60
Middle occipital gyrus, inferior temporal gyrus, culmen L 19, 18, 17 1682 6.40 �46 �68 �8
Inferior temporal gyrus, culmen, declive R 20 2287 6.27 56 �56 �18
Precentral gyrus, inferior frontal gyrus L 6, 9, 4, 44 759 5.52 �48 2 30
Inferior frontal gyrus R 44, 45 363 4.71 54 6 28
Corpus callosum — — 78 3.90 0 4 26
Insula L 13 44 3.72 �32 16 6
Insula R 13 21 3.42 36 18 6
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