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CHP   combined heat and power 

CH4   methane 

CO2   carbon dioxide 

COD   chemical oxygen demand 

g   gram 

H2   hydrogen 

H2O   water 

H2S   hydrogen sulfide 

HAc   acetic acid-equivalent 

kg   kilogram 

km   kilometer 

kWh   kilowatt hour 

L   standard liter (1,013 hPa; 0 °C) 

MW   Megawatt 

m3   cubic meter 

N2   nitrogen 

NH3   ammonia 

O2   oxygen 

P   pressure increase potential 

PSA   pressure swing adsorption 

Rm   maximum daily pressure increase rate 

SCOD   soluble chemical oxygen demand 

SMY   specific methane yield 

TIC   total inorganic carbon/ total alkalinity 

tmax   time of the maximum pressure increase per day 

VFA   volatile fatty acids 

λ   duration of the lag phase 
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1 Introduction 

1.1 Natural Gas 

The demand of natural gas for power and heat generation in the EU grew rapidly since 1990. 

Due to increased energy efficiency and a significant increase in renewable energy generation, 

a reduction in natural gas consumption has been observed since 2010 [1]. In 2015, the gross 

inland consumption of natural gas in the EU-28 was about 16,733 thousand terajoules, which 

is equal to the consumption in 1995 [1]. 75% of the EU-28 gas demand is consumed by the six 

European countries Germany, UK, Italy, France, Netherlands and Spain. In 2015, 4,989 

thousand terajoules of natural gas were produced in the EU-28 [1]. This corresponds to a natural 

gas import dependency of about 69.3% [1]. In 2014, Russia supplied 37.5% of the natural gas 

consumed, followed by Norway (31.6%), Algeria (12.3%) and Qatar (6.9%) [2]. 

Due to the dependence on gas imports and seasonal fluctuations in gas demand, the storage 

of gas has become important. In May 2015, in the EU-28 a total underground gas storage 

capacity of 108.3 billion m³ was available; 7.4 billion m³ more were under construction and 

29.3 billion m³ planned [3]. The available capacity represents about 20% of the yearly demand 

of natural gas. The natural gas enters and leaves Europe at 26 cross-border interconnections [4]. 

Furthermore, 28 import terminals for feeding liquefied natural gas (LNG) into the transmission 

network are available since 2015 [5]. 

In 2012, the gas was transported via pipelines in a gas transmission network with a length of 

2.15 million km across the EU to the consumers [6]. The operating pressures of long-distance 

pipelines vary between 60-150 bar, of local and regional pipelines between 8-40 bar and of 

distribution pipelines to customers between 0.05-0.1 bar [7, 8]. The gas qualities ranges 

between methane (CH4) contents of 80% and 98%, depending on the origin of the natural gas, 

and can be characterized as L-gas (low heating value) and H-gas (high heating value) [7]. 

Natural gas can be extracted from fossil resources such as oil fields, coal beds, shale or natural 

gas fields. Alternatively, biomethane obtained from biogas by an upgrading process, offers an 

energy supply based on renewable resources. 

 

1.2 Biogas as natural gas 

Biogas is produced by microbial anaerobic conversion of biodegradable material and is 

regarded as a carbon dioxide (CO2) neutral energy source. Biogas primarily consists of CH4 

(55 to 60%) [9] and CO2 (40 to 45%), dependent on the fermentation process and on the 
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converted initial substrates. It is predominantly used for combined heat and power (CHP) 

generation [10] due to its low calorific value. 

In 2014, 17,240 biogas plants were operating in Europe with a total installed capacity of 

8,339 MW [11]. Germany had the largest share with 10,786 biogas plants [11] fostered by the 

introduction of the Renewable Energy Law in 2000 [12] and led to a steady increase in 

renewable energy generation. 

Instead of using the biogas in CHP units, the purification of biogas to biomethane and its 

subsequent injection into the natural gas grids presents an alternative method of ensuring high 

energy utilization, especially for biogas stations located in rural areas without heat sinks [13]. 

By applying upgrading techniques, the gas production and its utilization can be decoupled in 

terms of time and space [14]. In 2014, 367 biomethane plants with a total upgrading capacity 

of 310,000 m³ h-1 raw biogas were operated in Europe [11]. 178 of these are located in Germany, 

injecting approximately 638 million m³ biomethane into the gas grid yearly [15]. 

Prior to injection into the gas grid, raw biogas must be purified and its heating value adapted 

to the natural gas quality. In this step, the CO2 content and the typical trace amounts of the raw 

biogas such as water (H2O, 5-10%), oxygen (O2, 0-1%), nitrogen (N2, 0-2%), hydrogen sulfide 

(H2S, 0.005-2%), ammonia (NH3, <1%) and siloxane (0-0.02%) have to be reduced [16]. 

Furthermore, the purified gas is subsequently compressed to the current pressure level of the 

grid section. 

The produced biomethane has to meet specific standards in order to ensure a safe and reliable 

operation of gas grids, gas infrastructures and facilities. Several countries have implemented 

different standards for its utilization as a vehicle fuel or for grid injection [17]. The requirements 

differ in terms of gas quality (CH4-, CO2-, O2- and hydrogen (H2)-content) and Wobbe Index. 

In Germany, the gas has to fulfil the specific injection requirements determined by various 

technical guidelines such as the G 260 and G 261 published by the Deutscher Verein des Gas- 

und Wasserfaches e. V. (DVGW) [18, 19]. 

Commonly used upgrading technologies for reducing the CO2 content in the raw gas are 

water and amine scrubbing as well as gas separation membranes and pressure swing adsorption 

(PSA) [9]. In Germany and the Netherlands water and amine scrubbers, PSA units and 

membrane technology are commonly used whereas water scrubbing systems are often installed 

in Sweden [16, 20].  

However, all of these methods have significant disadvantages when operated in large scale. 

PSA often requires an upstream desulfurization unit whereas for amine scrubbing high amounts 

of auxiliary chemicals and additives are necessary. Gas separation membranes are usually 
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operate only as partial flow filters [9]. Additionally, some of these technologies generate waste 

and waste water which has to be cost-intensively treated and removed. Furthermore the 

upgraded biomethane is usually generated at quite low pressures and has to be subsequently 

compressed for grid injection, thus leading to high operating costs [21]. Available alternative 

technologies, such as low-temperature cryogenic separation or the biological removal of CO2 

through the addition of hydrogen into the digester, are either expensive or only used in 

experimental scale [16]. In contrast to the established techniques, the innovative two-stage high 

pressure anaerobic digestion integrates biogas production, upgrading and pressure boosting 

within one process with the help of microorganisms. 

 

1.3 Two-stage high pressure anaerobic digestion 

The microbial degradation of organic material under anaerobic digestion to biogas can be 

separated into four main steps [22, 23]. In the first step called hydrolysis, the complex organic 

molecules are degraded to monomers by enzymes. Subsequently, acidogenic microorgansims 

convert the monomers into volatile fatty acids, alcohols, CO2 and H2. These volatile fatty acids 

are split into acetate, H2, CO2 and water in the acetogenic step, also named dehydrogenation. 

Finally, methanogetic microorganisms convert acetic acid into biogas by disproportionation or 

produce CH4 and water by the anaerobic oxidation of hydrogen whereby simultaneously CO2 

is reduced [24].  

In the two-stage anaerobic digestion process, the degradation steps of 

hydrolysis/acidification are spatially separated from acetogenesis/methanogenesis to provide 

optimum environmental conditions for the different groups of microorganisms [25-27]. The 

advantages over single stage anaerobic digestion demonstrated by lab scale experiments are 

providing a constant high organic loading rate (OLR) in the methane reactor, no loss of 

methanogens by the removal of digestate and an improved degree of degradation of the 

substrate [28].  

In two-stage high pressure anaerobic digestion, the second process stage runs under 

increased pressure. The methanogenic bacteria in the methane reactor autogeneratively increase 

the pressure of the gas. This concept uses the higher solubility of CO2 in liquid compared to 

CH4 [29-31], providing an opportunity to discharge the CO2 via the liquid stream from the 

methane reactor. Through that, it integrates biogas production, purification and pressure 

boosting within one process and results in a high-calorific biogenic gas gained from the methane 

reactor. This innovative concept is based on the following theoretical basis: 
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1.3.1 Gas solubility under pressure 

The main components of biogas are CH4, CO2 and hydrogen sulfide (H2S). In several recent 

publications the solubility of these gases in water have been studied and described [32-36]. The 

results with pure gases showed a high solubility of CO2 and H2S in contrast to CH4, which 

hardly dissolved in water. With decreasing temperature or raising pressure, the solubility of 

CO2 and H2S in water was further increasing. The dissolved amount of the gases in water at 

different temperatures and pressures can be calculated using Henry’s Law [37, 38]. 

 

1.3.2 pH-value under pressure 

The pH-value in the anaerobic digestion process has a significant effect on the digestion 

process [39-41]. Capri et al. mentioned a maximum pH range between 6.0 and 7.5 for anaerobic 

digestion [42] and studies from Lie et al. found an optimal pH range in anaerobic digestion to 

be 6.5–7.5, depending on the substrate and digestion technique [43]. Within this pH range, the 

buffer capacity of the aqueous phase depends almost totally on the carbonic acid dissociation 

[42]. Between pH 6.0 and 7.5, the dissolved CO2 is reduced to hydrogen carbonate (HCO3
-) and 

the amount of carbonate ion (CO3
2-) is negligible [42].  

In pressurized anaerobic digestion, an increase in pressure increases the solubility of CO2 in 

the aqueous phase and enables more CO2 to be dissolved in the liquid. The dissolved CO2 forms 

carbonic acid (H2CO3), which immediately dissociates to HCO3
-, depressing the pH-value in 

the reactor due to the liberated protons in the solution. Previous studies by Chen et al. using 

continuously operated methane reactors showed a significant decrease in pH from 7.2 to 6.5 by 

raising the pressure from 1 to 9 bar, due to the  increased partial pressures of CO2 [44]. At even 

higher operating pressures, the partial pressures of CO2 further increase and lower pH-values 

can be expected. 

 

1.3.3 Microbiology under pressure 

The operating pressure in a two-stage high pressure anaerobic digestion system is 

“autogeneratively” produced by the gas production of the methanogenic microorganisms. 

Former studies have shown that different microorganisms tolerate various pressure thresholds 

[45]. They can be divided into 3 categories:  

Piezophilic microorganisms demonstrate optimal growth rates at pressures above 

atmospheric pressure; piezotolerant microorganisms are capable of growth at atmospheric 

pressure as well as at higher pressures, with their optimal growth rate being at atmospheric 
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pressure; piezosensitive microorganisms demonstrate optimal growth at atmospheric pressure 

and stop reproduction at around 500 bar [45-49].  

Research by deep-sea microbiologists found piezophilic microorganisms (bacteria and 

archaea) living in the deep ocean waters at pressures of 100 bar to 1,030 bar [50] and studies 

from Bernhardt et al. mentioned an enhancement of the growth rate of Methanococcus 

thermolithotrophicus at high pressures of up to 500 bar [51]. The effect of pressure over 100 bar 

on pressure sensitive processes such as motility, growth, etc. have recently been described in 

literature for Escherichia coli [50]. 

It can be assumed that the microorganisms in anaerobic digesters are usually piezosensitive 

or piezotolerant as they are inoculated from animal excrements, wastewater treatment sludge or 

sewage slurry under atmospheric conditions. 

 

1.4 Objectives of the study 

Two-stage high pressure anaerobic digestion systems have been recently described in 

literature for operating pressures up to 10 bar [44, 52]. To inject gas into regional and 

transnational pipelines, even higher pressure loads from 60 to 150 bar are necessary. 

Consequently, the novel approach of this study was to develop and test a two-stage high 

pressure anaerobic digestion system at operating pressures up to 100 bar; thereby reducing the 

pressure boosting costs for injecting the biomethane into transnational gas grids. To gain a 

better understanding of this innovative technology, lab-scale batch- and continuously operated 

test rigs were developed and installed at the State Institute of Agricultural Engineering and 

Bioenergy in Hohenheim, Germany. The focus was set in this study on the methane reactor fed 

with hydrolysate from batch production. The aims of the conducted experiments were divided 

into three subtasks: 

 

 

 

 

 

 

 



Introduction 

6 

Process stability: Influence of CO2 partial pressure on pH-value during anaerobic digestion 

For measuring the process stability in anaerobic digestion the pH-value is an important 

parameter. Due to the significant effect of pH-value on the digestion process and a limited 

optimal pH range between 6.0 and 7.5 for anaerobic digestion, an increased attention should be 

paid on the behavior of the pH-value under pressure. In contrast to common biogas stations 

operated under atmospheric pressure, the pH-value at high operating pressures is highly 

affected by the dissolved CO2. For this reason, the effect of CO2 partial pressure on the pH-value 

during anaerobic digestion at different initial pressure levels (10, 20, 30 bar) was examined. In 

addition, the effect of pressure during anaerobic digestion on organic degradation was analyzed, 

to investigate the effect of pressure during anaerobic digestion.  

Biogas production: Effect of pressure on production kinetics and specific methane yield 

After proving the process stability of anaerobic digestion, the research focused on the 

pressure effects on the production kinetics and specific methane yields (SMY). By comparing 

the production kinetics or SMYs, a potential negative impact of the high operating pressures on 

the microbial activity could be detected. In order to explore the effect of pressures required for 

gas injection into transnational pipelines, the performance of the pressurized methane reactors 

was studied at pressures up to 100 bar. 

Transferability: Performance of a continuously operated methane reactor 

Previous research studies showed that high pressure anaerobic digestion up to 100 bar is 

technical feasible under batch conditions. However, for future applications, research on the 

performance of a continuously operated high pressure methane reactor is essential. For this 

purpose, experiments with a continuously operated methane reactor with pressures up to 50 bar 

were conducted for the first time. The performance of this reactor and important process 

parameters for further improvement of the system were investigated. 
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1.5 Structure of the thesis 

Within the framework of this thesis, first, the effect of CO2 partial pressure on the pH-value 

during anaerobic digestion was investigated in batch experiments (10, 20 and 30 bar) to evaluate 

the process stability at high pressures [Publication 1: Title: “Effects of high-pressure anaerobic 

digestion up to 30 bar on pH-value, production kinetics and specific methane yield”]. In a 

second step, the study focused on the gaseous phase, estimating the influence of even higher 

pressures on the production kinetics and specific methane yields in batch rigs (1, 50, 100 bar) 

[Publication 2: Title: “High-pressure anaerobic digestion up to 100 bar: influence of initial 

pressure on production kinetics and specific methane yields”]. Finally, the performance of a 

continuously operated pressurized methane reactor was proven in 10, 25 and 50 bar test runs 

[Publication 3: Title: “Influence of pressures up to 50 bar on two-stage anaerobic digestion”]. 
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2 Publication 1: Effects of high-pressure anaerobic digestion up to 30 bar 

on pH-value, production kinetics and specific methane yield 

  

Andreas Lemmer1, Wolfgang Merkle1, Katharina Bär2 and Frank Graf2 

 

 
1 University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, 

Garbenstrasse 9, Stuttgart 70599, Germany. 

 
2 DVGW - Research Center at the Engler-Bunte-Institute, Karlsruhe Institute of Technology 

(KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany 

 

 

Energy 2017, 138, 659-667 

DOI: 10.1016/j.energy.2017.07.095 

 

The original publication is available at: 

https://doi.org/10.1016/j.energy.2017.07.095 
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Abstract 

The production of biogas for combined heat and power generation represents a common 

method in Germany. An alternative is the purification of biogas to biomethane and injection 

into the natural gas grid to decouple gas production from usage in terms of space and time. The 

concept of pressurized two-stage anaerobic digestion integrates biogas production, upgrading 

and pressure boosting within one process. The increasing solubility of CO2 in process liquid at 

high pressures results in high methane contents in gaseous phase and in drop of pH. To 

investigate the effects of high initial pressures (10, 20, 30 bar) and dissolved CO2 on pH-value, 

production kinetics and specific methane yields, pressurized batch methane reactors were built 

up. Additionally, a method for indirect measuring of pH-value was determined. The results of 

the experiment showed a decrease in pH from 7 to 6.31 (10 bar) and 6.25 (30 bar). Furthermore, 

neither a significant influence of initial pressures on the pressure increase nor on the degradation 

of organics and the specific methane yields was observed. However, the results show that 

anaerobic digestion at high pressures up to 30 bar might be a promising alternative to post 

purification and pressure boosting applications. 
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3 Publication 2: High-pressure anaerobic digestion up to 100 bar: influence 

of initial pressure on production kinetics and specific methane yields 

Wolfgang Merkle1, Katharina Bär2, Nicola Leonard Haag1, Simon Zielonka1, Felix Ortloff2, 

Frank Graf2 and Andreas Lemmer1 

 

 
1 University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, 

Garbenstrasse 9, Stuttgart 70599, Germany. 

 
2 DVGW - Research Center at the Engler-Bunte-Institute, Karlsruhe Institute of Technology 
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Environmental Technology 2017, 38, 337-344 

DOI: 10.1080/09593330.2016.1192691 

 

 

The original publication is available at: 

http://www.tandfonline.com/doi/full/10.1080/09593330.2016.1192691 
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Abstract 

To ensure an efficient use of biogas produced by anaerobic digestion, in some cases it would 

be advisable to upgrade the biogenic gases and inject them into the transnational gas grids. To 

investigate biogas production under high-pressure conditions up to 100 bar, new pressure batch 

methane reactors were developed for preliminary lab-scale experiments with a mixture of grass 

and maize silage hydrolysate. During this investigation, the effects of different initial pressures 

(1, 50 and 100 bar) on pressure increase, gas production and the specific methane yield using 

nitrogen as inert gas were determined. Based on the experimental findings increasing initial 

pressures alter neither significantly, further pressure increases nor pressure increase rates. All 

supplied organic acids were degraded and no measurable inhibition of the microorganisms was 

observed. The results show that methane reactors can be operated at operating pressures up to 

100 bar without any negative effects on methane production. 
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4 Publication 3: Influence of pressures up to 50 bar on two-stage anaerobic 

digestion 

Wolfgang Merkle1, Katharina Bär2, Jonas Lindner1, Simon Zielonka1, Felix Ortloff2, Frank 

Graf2, Thomas Kolb2, Thomas Jungbluth1 and Andreas Lemmer1 

 

 
1 University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, 

Garbenstrasse 9, Stuttgart 70599, Germany 

 
2 DVGW - Research Center at the Engler-Bunte-Institute, Karlsruhe Institute of Technology 

(KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany 

 

 

Bioresource Technology 2017, 232, 72-78 

DOI: 10.1016/j.biortech.2017.02.013 

 

 

The original publication is available at: 

http://dx.doi.org/10.1016/j.biortech.2017.02.013 
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Abstract 

The concept of pressurized two-stage anaerobic digestion integrates biogas production, 

purification and pressure boosting within one process. The produced methane-rich biogas can 

be fed into gas grids with considerably less purification effort. To investigate biogas production 

under high pressures up to 50 bar, a lab scale two-stage anaerobic digestion system was 

constructed including one continuously operated pressurized methane reactor. This 

investigation examined the effects of different operating pressures in methane reactor 

(10, 25, 50 bar) on biogas quantity and quality, pH value and process stability. By increasing 

operating pressures in methane reactor, the pH value decreased from 6.65 at 10 bar to 6.55 at 

50 bar. Simultaneously, methane content increased from 79.08% at 10 bar to 90.45% at 50 bar. 

The results show that methane reactors can be operated up to 50 bar pressure continuously 

representing a viable alternative to commonly used gas upgrading methods because of reduced 

purification effort. 
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5 General discussion 

The concept of two-stage high pressure anaerobic digestion integrates biogas production, 

purification and pressure boosting within one system, aiming to reduce the efforts and costs of 

subsequent gas purification. Within this innovative research project, lab-scale batch- and 

continuously operated test rigs were developed. Three different experimental set-ups, 

demonstrated in the publications 1-3, were chosen to examine the fundamentals of biomethane 

production in pressurized two-stage anaerobic digestion systems and to explore the potential of 

the concept. In the following chapter, the overall performance of the pressurized methane 

reactor in terms of process stability and biogas production will be discussed. The application 

prospect of this new concept for a full scale application will also be presented. 

 

5.1 Process stability 

5.1.1 pH-value 

The fermentation process in anaerobic digestion is significantly influenced by the pH-value 

[39-41] and a neutral pH-value about 7 is recommended for a stable process [43]. At pH levels 

lower than 6 the methane producing of bacteria will be inhibited [42]. The results of the study 

(Pulication 1) showed that different operating pressures (10, 20 and 30 bar) in the batch reactor 

have a significant influence on the pH-value of the liquid phase. During the starting phase of 

the experiments, it could be observed that the pH-value drops beyond the optimal range for 

anaerobic digestion from 7 to 6.31 ± 0.04 at 10 bar and to 6.25 ± 0.03 at 30 bar. From the 

beginning to the end of the experiment, the pH-value steadily increased to a constant value of 

6.57 ± 0.07 at 10 bar and 6.48 ± 0.05 at 30 bar. This can be explained as follows: At the 

beginning of the experiment, the partial pressure of CO2 is almost zero, due to the use of N2 to 

provide the initial pressure. After closing the batch reactors, the microorganisms immediately 

started to degrade sugars, alcohols and organic acids. Due to the related production of CO2, the 

CO2 partial pressure slightly increased. According to Henry’s Law, the solubility of CO2 is 

proportional to partial pressure, indicating that CO2 dissolution rises in the aqueous phase. 

Furthermore, within the pH range of 6.0 to 7.5, the buffer capacity of the aqueous phase is 

almost totally dependent on the carbonic acid dissociation [42]. The dissolved CO2 forms 

carbonic acid (H2CO3) which dissociates immediately to hydrogen carbonate (HCO3
-), 

depressing the pH-value in the batch reactor due to the liberated protons in the solution. For 

this reason, the pH-value in the batch reactors at the end of the experiment cannot reach the 

same level as at the beginning, despite the further degradation of the organics. 
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In contrast to the batch experiments (Publication 1), the pH-value could be kept very stable 

in a continuously operated methane reactor up to pressures of 50 bar (Publication 3). Due to the 

continuous feeding and CO2 release by the effluent from the methane reactor to the flash tank, 

there were only minimal changes in CO2 partial pressure within one run. The pH-value varied 

between 6.65 ± 0.05 at 10 bar and 6.55 ± 0.02 at 50 bar, which was still within the range of the 

optimal pH-value for anaerobic digestion under atmospheric conditions [43]. However, in 

studies on continuously operated pressurized methane reactors from Chen et al. and Lemmer et 

al., pH-values lower than 6.4 at pressures up to 10 bar are reported [44, 53]. The difference in 

pH-drop is due to the higher concentration of ammonium (NH4
+) of 1.04 to 1.24 g kg-1 in the 

leachate (Publication 1) in these studies, leading to a high buffering capacity of the digestate. 

At pH-values below 7, the ammonium concentration represents the total ammonia nitrogen 

because all ammonia nitrogen turns into ammonium nitrogen [14]. 

Furthermore, in this study an innovative method was applied for indirect pH measuring in 

the methane reactor by combined liquid and gas quality analysis. The pH-values in Publication 

1 were also calculated based on sum parameters such as VFA (Volatile Fatty Acids, FOS in the 

German technical literature), acetic acid-equivalent (HAc), total alkalinity (TIC) and taking also 

the dissolved amount of CO2 in the liquid into account. The results were quite similar to the 

measured values, representing an alternative to the cost intensive direct measuring of pH under 

pressure. The pH-values calculated by VFA and TIC ranged between 6.49 ± 0.1 at 10 bar and 

6.34 ± 0.09 at 30 bar in contrast to the measured pH-value, ranging between 6.57 ± 0.07 at 

10 bar and 6.48 ± 0.05 at 30 bar. Without considering the dissolved amount of CO2 in the liquid, 

the estimated pH-values by liquid analysis (LIQ) were between 9.48 ± 0.06 at 10 bar and 

9.2 ± 0.12 at 30 bar.  

An increasing CO2 partial pressure is lowering the pH-value at all tested pressure stages. 

Especially in batch experiments, pH-value drops beyond the optimal range for anaerobic 

digestion to 6.25 ± 0.03 at 30 bar. The studies showed that a proper mathematical estimation of 

the pH-value in the process liquid is possible, if additional to the composition of the liquid the 

dissolved amount of CO2 is taken into account.  

5.1.2 Organic degradation 

In the batch experiments in Publication 2 at pressures up to 100 bar, all organic acids were 

degraded after 21 days in all runs, independent of the initial pressures, thus indicating no 

inhibition of microorganisms.  
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In contrast, in the batch experiments up to 30 bar in Publication 1, no complete degradation 

of the acids by the end of 35 days run was achieved. However, the incomplete degradation of 

organic acids was not depending on the initial pressure and could be observed at every pressure 

level. One reason for the accumulation of high amounts of propionic acid in the batch rigs in 

Publication 1 might be the high amount of lactic acid in the leachate. Zellner et al. described a 

shift from the degradation pathway of lactic acid from acetic acid to propionic acid at higher 

concentrations of lactic acid [54]. The present valeric acids in the effluent after 35 days might 

be a result of degradation of amino acids such as Arginine, Leucine, Iso-leucine and Proline 

[55]. Those acids could not be measured by the analyzing equipment available and should be 

subject to further studies. Another reason for the lower degradation could be the higher OLR of 

8.8 ± 0.8 kg soluble chemical oxygen demand (SCOD) per m³ applied in the first experiments 

in contrast to the batch experiments up to 100 bar running only at an OLR of 3.9 ± 0.6 kg total 

COD per m³ (without taking the insoluble part of total chemical oxygen demand (COD) into 

account). 

In the experiments in Publication 3, all detected acids of the initial leachate were degraded 

under operating pressures up to 25 bar. Only at an operating pressure of 50 bar a slight acid 

accumulation in the methane reactor was observed and the acetic and propionic acid 

concentration rose to 0.08 ± 0.1 g kg-1 and 0.43 ± 0.14 g kg-1. These values had remained below 

the critical value of 1 g kg-1 and 0.7 g kg-1 [56] at all times, indicating a still very stable 

biological process. The degradation degree in the methane reactor was higher than 87% at 

pressures up to 25 bar. It decreased to 80.4 ± 1.7% at 50 bar at an OLR of 4.2 kg COD·m-3·d-1 

and an hydraulic retention time (HRT) of 4.19 ± 0.06 d. Chen et al. mentioned similar overall 

COD degradation grades of more than 90% at 9 bar at even higher OLR up to 12.5 kg 

COD m-3 d-1 and a HRT of 1.8 d [52]. In comparison to the batch experiments in Publication 1 

and 2, the degradation degree in the continuous experiments (Publication 3) was always higher 

at a lower HRT. Based on the results it can be assumed, that at operating pressures of 25 bar, 

even higher OLRs with shorter HRTs are possible, making this process more suitable for full-

scale applications. 

 

5.2 Biogas production 

The promising results of the process stability research in two-stage high pressure anaerobic 

digestion showed that a further look on the gaseous phase is absolutely necessary to explore the 

effect of pressure on biogas production and quality.  
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5.2.1 Production kinetics 

Although the initial operating pressures in the batch experiments were applied within 

5 minutes without any adaption phase for the microorganisms, there was no observable effect 

on the gas production kinetics detected. The batch experiments in Publication 1 showed no 

significant influence of the initial pressure on the measured pressure increase or on almost any 

of the calculated production parameter by the modified Gompertz equation [57]. The measured 

pressure increase per g added SCOD (SCODadded) ranged between 2.19 ± 0.12 bar g-1 at 10 bar 

and 1.84 ± 0.33 bar g-1 at 30 bar. The calculated pressure increase potential (P) per SCODadded 

ranged between 2.22 ± 0.13 bar g-1 at 10 bar and 1.84 ± 0.25 bar g-1 at 30 bar. The maximum 

daily pressure increase rate (Rm) per SCODadded slightly diminished from 0.13 ± 0.03 bar d-1 g-1 

at 10 bar to 0.12 ± 0.04 bar d-1 g-1 at 30 bar and the time of the maximum pressure increase per 

day (tmax) was postponed from day 10.63 ± 1.52 at 10 bar to day 13.54 ± 2.85 at 30 bar. Only 

the duration of the lag phase (λ) showed significant differences, varying between 3.98 ± 1.15 d 

at 10 bar and 7.59 ± 1.86 d at 30 bar. In contrast to the batch experiments in Publication 1, 

significant differences in tmax at even higher operating pressures could be observed in the batch 

experiments at 1, 50 and 100 bar in Publication 2. One reason for this could be the difference 

in the composition of the leachate and in OLR. 

Although the calculated parameters of the production kinetics showed no much difference 

in these experiments, this method offers an interesting opportunity to compare batch 

experiments under pressure. A new approach could be the use of single organic acids, sugars 

or alcohols as leachate for the pressurized batch reactors to evaluate the specific degradation  

times at different pressures. These findings could be used to simulate the production kinetics 

knowing the composition of the leachate at the beginning of the experiment. For atmospheric 

pressure, Krümpel et al. already evaluated the degradation times for different organic 

substances [58], also using the modified Gompertz equation to calculate degradation kinetic 

parameters. 

 

5.2.2 Gas composition 

Due to the use of N2 for applying the initial pressure in the batch experiments in Publication 

1 and 2, only low contents of CH4 and CO2 could be measured in the produced gas. The gas 

analysis at the end of each run in the batch experiments in Publication 1 showed a decrease in 

CH4 content by 39.3 ± 1.1% at 10 bar to 21.7 ± 1.3% at 30 bar and in the CO2 content from 

14.5 ± 0.4% at 10 bar to 8.7 ± 0.7% at 30 bar. The calculated ratio only considering the contents 
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of CH4 and CO2 remained almost unchanged. At 10 bar, CH4 had a calculated share of 

73.4 ± 1.1% and at 30 bar 71.3 ± 2.5%, respectively.  

In the batch experiments up to 100 bar in Publication 2, even lower CH4 contents of 

0.5 ± 0.2% at 100 bar and CO2 contents of 0.5 ± 0.2% at 100 bar were observed. The calculated 

share of CH4 remained nearly unchanged between 88 ± 1.5% at 1 bar and 86.3 ± 0.7% at 

100 bar.  

In continuous experiments of Publication 3, the increased operating pressures of the reactor 

was achieved only by the gas production of the microorganisms without applying initial any 

pressures, thus leading to high contents of CH4 in the product gas. The methane content 

increased from 79.08 ± 1.01% at 10 bar to 90.45 ± 0.73% at 50 bar. These results are similar to 

previous research in two-stage high pressure fermentation reaching CH4 contents of up to 87% 

at 5.9 bar in continuous operation and recirculation of the effluent from the flash tank [26].  

In batch experiments from Lindeboom et al. CH4 contents up to 95% at pressures up to 90 bar 

have been even achieved [59]. As the pH-value influences the amount of dissolved CO2 in an 

equal way to pressure, even higher methane contents can be reached by increasing the pH-value 

in the methane reactor. Chen et al. mentioned that the solubility of CO2 at pH 7.5 is about seven 

times higher than at pH-value 6.5, at constant pressure level [44]. 

 

5.2.3 Methane production 

In order to gain a clearer picture of the results, the methane production is related to the added 

COD or SCOD as SMY. As shown in Publication 1, the calculated SMY by gas analysis at the 

end of each run related to SCOD varied between 180 ± 16 L kg−1 at 10 bar and 185 ± 14 L kg−1 

at 30 bar, without being affected by initial pressures.  

The results of the batch experiments up to 100 bar in Publication 2 showed similar results. 

The SMY related to COD was slightly higher ranging between 208 ± 14 L kg−1 at 1 bar and 

220 ± 33 L kg−1 at 100 bar, due to a complete degradation of the organic acids. Furthermore, a 

calculation of the SMY using only liquid analysis to estimate the production of the gases by the 

degradation pathways of the organic acids was possible because of a total degradation of the 

acids. This SMY by liquid potential related to COD summed up to 210 ± 25 L kg−1 at each 

pressure level (1, 50, 100 bar). At a total degradation of the organic acids, this method represents 

a promising way to calculate the SMY. 

In the continuous experiments in Publication 3, the SMY was calculated by the gas produced 

in the methane reactor and measured in the gas phase, and was related to the added COD into 

the methane reactor. The results showed a significant decrease of the SMY by increasing the 
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operating pressure. The SMY decreased from 330 ± 20 L kg-1 at 10 bar and to 260 ± 40 L kg-1 

at 50 bar. Due to Henry’s Law, the physically dissolved amount of the gases is proportional to 

the partial pressure [37, 38]. However, not only the solubility of CO2 increased, but also the 

solubility of CH4. At 10 bar, 2.1% of the CH4 was dissolved in the liquid and transferred to the 

flash tank, where it was released due to the reduced partial pressure. By increasing the operating 

pressure to 50 bar, the share rose to 24%. Summarizing the CH4 production of the total 

anaerobic filter system including methane reactor and flash tank, the SMY was slightly higher 

at 10 bar and 25 bar (340 L kg-1) compared to 50 bar (300 L kg-1). The results of the total 

anaerobic filter system up to 25 bar correspond with those other studies [44, 53, 60]. The lower 

SMY at 50 bar can be explained by the acid accumulation in the methane reactor. 

In summary, high operating pressures have not led to an inhibition of microorganisms in the 

batch-rigs. Although the microorganisms were not adapted to these environmental conditions, 

no significant differences in the pressure increase curves could be detected. Furthermore, the 

SMYs in the batch experiments were only affected by the degradation degree of the organic 

substrates, independent of the operating pressure. In contrast, the operating pressure influenced 

the results of the experiments under continuous conditions. An inhibition of microorganisms 

could be observed which led to a decrease in SMY by increasing the pressure, despite an 

increase in CH4 content in gaseous phase. Thus leading to the conclusion, that the CO2 partial 

pressure has a major influence on the biological process stability compared to the absolute 

operating pressure. 

 

5.3 Transferability 

The results in Publication 1-3 showed that two-stage high pressure anaerobic digestion offers 

a promising technical solutions for biogas production and upgrading compared to commonly 

used post purification methods. It could be shown, that continuously operated pressurized 

methane reactor is technically entirely feasible and high contents of CH4 above 90% in the 

product gas at pressures up to 50 bar are achievable. In order to provide high conversion 

efficiencies and a low methane slip, operating pressures below 50 bar should be aimed 

according to the current state of the present study. To address the overall applicability of this 

method, an economic evaluation is required, to prove the costs for biogas upgrading and 

pressure boosting in contrast to the commonly used methods. The specific costs for biogas 

upgrading systems nowadays range between 0.66 Cent per kWh and 2.32 Cent per kWh, 

depending on the used technique and size of the unit [61]. 
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In a previous project called “B2G - Innovative production of gaseous fuels from biomass” 

the performed simulations on different operating pressures in the methane reactor came to the 

conclusion that the costs for biogas upgrading are predominantly depending on the operating 

pressure of the methane reactor. The study further exhibited that at operating pressure of 40 bar 

the energy demand for pumping the liquid predominates the energetic savings by the 

autogenerative pressure increase [62]. In these calculations, it was economically preferable for 

a full scale application to operate the methane reactor beyond 40 bar. 

To set up a full scale pressurized methane reactor, to refuel 25 cars a day by compressed 

natural gas (CNG), a reactor with a dimension of approximately 5 m in diameter and a height 

of 10 m is needed, which corresponds to a gross volume of 200 m³. Dependent on the available 

feed streams, the methane reactor could be operated as stand-alone system or be coupled with 

a preceding acidification reactor. Due to the use of a fixed bed in the methane reactor, the feed 

streams should contain a high amount of dissolved organic acids, sugars and alcohols such as 

wastewater from sugar production. In the case of using organic waste or energy crops as 

substrate an acidification reactor is required. Studies on the acidification reactor from Linder et 

al., testing different substrates in a two-stage systems, concluded, that the acidification reactor 

seems to be only recommendable for digesting sugar rich substrates [63]. 

Before up scaling the two-stage high pressure anaerobic digestion system, further research 

on the performance of the continuously operating two-stage system could be beneficial. 

Although being a promising process, an effective and economical method for maintaining 

pH level and reducing the methane slip of the pressurized methane reactor should be further 

investigated. For maintaining pH level, a recirculation of the effluent from flash tank into the 

methane reactor could be possible. By this, the amount of CO2 dissolved in the liquid and 

released to the flash tank could be increased and also affect the pH-value. Additionally, an 

appropriate use of the gas from the flash tank with a CH4 content of about 60%, can improve 

the overall efficiency. Furthermore, the OLR of the methane reactor has to be increased to make 

this process economically feasible. By increasing the OLR, the investment cost can be reduced 

due a smaller size of the methane reactor. For this reason further research is needed to prove 

the maximum possible OLR for the methane reactor at operating pressures below 50 bar. 

 

5.4 Conclusions and outlook 

In this study, the effect of pressure on several processing parameters during two-stage high 

pressure anaerobic digestion could be examined using lab-scale batch- and continuous systems. 

First the effect of CO2 partial pressure on process stability during anaerobic digestion was 
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proven, then the influence of high pressures on biogas production was investigated and finally 

the performance of a continuously operated methane reactor was validated. The results can be 

summarized in the following conclusions: 

 There is an influence of increased CO2 partial pressure on the digestate’s pH-value 

inside the methane reactor. It could be shown by batch experiments that the pH-value 

dropped beyond the optimal pH range of 6.5-7.5 for anaerobic digestion. At higher 

pressures even lower pH-values can be expected, without using pH buffering 

substances. Furthermore, high amounts of lactic acid in the leachate inhibit the whole 

degradation of the acids and might reduce the process stability. 

 Even a rapid increase of the pressure up to 100 bar using nitrogen, has no significant 

influence on the production kinetics and the specific methane yield. No significant 

differences in the course of the increase in pressure could be observed, which indicates 

that no inhibition of microorganisms was caused by the pressure increase. 

 Running a continuously operated pressurized methane reactor is technically entirely 

feasible, producing high contents of methane above 90% in the product gas at pressures 

up to 50 bar. It can be expected that, by increasing the operating pressure, the acid 

concentration in the effluent will increase slightly, resulting in a decrease in conversion 

efficiency as well as an increase in the methane slip to the flash tank caused by physical 

effects. 

The results show that two-stage high pressure anaerobic digestion, integrating biogas 

production, purification and pressure boosting within one process, offers a promising 

alternative to commonly used post purification methods. Using this method, the costs usually 

associated with a subsequent gas purification unit can be significantly reduced, due to the high 

methane content in the product gas. The produced biogas is suitable for injection into the 

transnational gas grids without post pressurization or for use in the transportation sector as a 

fuel for cars or trucks. 

Prior to an installation of a full scale application, further research on effective and 

economical methods of maintaining the pH level and reducing the methane slip of the 

pressurized methane reactor is needed. Furthermore, studies using leachate not containing lactic 

acid should be carried out under continuous conditions to prove the effect of lactic acid on 

conversion efficiencies. 
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6 Summary 

The use of natural gas for power and heat generation in the EU has become particularly 

prominent since the 1990s. As a result, the whole natural gas infrastructure has been 

continuously expanded and today has a total length of 2.15 million km and a storage capacity 

of about 108.3 billion m³. Due to the fact, that the production of natural gas in the EU 

corresponds only one third (30.7%) of the annual natural gas demand, there is a strong 

dependency on imported fossil fuels. The production of biomethane in the EU and its 

distribution by natural gas network offers an interesting alternative for the reconfiguration of 

EU’s energy supply system.  

Up to now, biomethane is obtained by purifying and upgrading raw biogas in a complex 

process. In this process, primarily the carbon dioxide (CO2) content of the educt gas is reduced 

from 40-45% to approximately 4% in the product gas. A number of different technologies are 

available for this upgrading, e.g. pressure water-scrubbing, pressure swing adsorption (PSA) or 

the non-pressurized amine purification. These systems are suitable only for large-scale 

applications.  

In this study, a novel two-stage high pressure anaerobic digestion system was developed. 

This innovative concept aims to integrate biogas production, purification and pressure boosting 

within one system. The process is based on the enhanced water solubility of CO2 compared to 

methane. By operating the methane reactor for biogas production at increased pressures, high 

amounts of dissolved CO2 can be removed with the liquid effluent from the reactor, resulting 

in a high-calorific biogas. These two-stage high pressure anaerobic digestion systems have been 

described in literature for operating pressures up to 10 bar. The novel approach of this study 

was to develop and test a two-stage high pressure anaerobic digestion system aiming operating 

pressures up to 100 bar thus, reducing the pressure boosting costs for injecting the biomethane 

into transnational gas grids. To gain a better understanding of this innovative technology, 

lab-scale batch- and continuously operated test rigs were developed. The aims of the conducted 

experiments were divided into three subtasks: 

(1) to prove the effect of increased CO2 partial pressures on the pH-value during anaerobic 

digestion; (2) to estimate the influence of high operating pressures on production kinetics and 

specific methane yields; (3) to investigate the performance of a continuously operated methane 

reactor in a two-stage high pressure anaerobic digestion system. 

During the anaerobic microbial conversion of organic substrates to methane, CO2 is released, 

thus lowering the pH at higher operating pressures, due to the augmented formation of carbon 

hydroxide. At the beginning of the experiments, the initial pressures in the batch reactors were 
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raised by pressurized nitrogen to the aimed values within a few minutes. The study showed that 

different operating pressures in the batch reactor have a significant influence on the pH-value 

of the digestate during the experiments run at 10, 20 and 30 bar. During the starting phase of 

experiments pH-values dropped beyond the optimal range for anaerobic digestion to 

6.25 ± 0.03 at 30 bar. However, the initial pressures had no significant influence, neither on the 

pH-value curve during the process nor on the process stability. The study on the effect of a rapid 

pressure increase up to 100 bar showed no inhibition of the microorganisms in the batch-rigs 

too, although the microorganisms were not adapted to these environmental conditions. There 

were also no significant differences in the pressure increase curves between the variants 1 bar, 

50 bar and 100 bar. At the end of the experiment all acids were degraded and the specific 

methane yields related to the added chemical oxygen demand (CODadded) varied between 

208 ± 14 L kg−1 (1 bar) and 220 ± 33 L kg−1 (100 bar). In the third part of the study, a 

continuously operated methane reactor was run at pressures up to 50 bar for the first time. The 

experiments showed that a stable anaerobic digestion process could be run at these pressures 

nearly without any problems. Methane contents above 90% could be achieved in the product 

gas at 50 bar operating pressure. Furthermore, the conversion efficiency related to COD 

removal decreased from 87% at 10 bar to 80% at 50 bar, due to a slight accumulation of acids 

in the effluent. 

The present studies revealed the effects of high operating pressures in the methane reactor 

in a two-stage anaerobic digestion system. The promising results showed that this technology 

has great potential in producing on-site high calorific gas also in smaller units. In addition, the 

costs of post-production gas purification can be significantly reduced, due to the fact that the 

size of a subsequent gas purification unit can be decreased. Furthermore, the produced gas can 

be injected into the transnational gas grids without post pressurization or can be used in the 

transportation sector as fuel for cars or trucks. To summarize, the two-stage high pressure 

anaerobic digestion offers an interesting process for a sustainable and independent energy 

supply system in both economic and ecological perspectives. 
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7 Zusammenfassung 

In der EU hat die Nutzung von Erdgas zur Erzeugung von Strom und Wärme seit den 1990er 

Jahren zunehmend an Bedeutung gewonnen. Infolge dessen wurde die Erdgasinfrastruktur 

kontinuierlich ausgebaut und umfasst heute eine Leitungslänge von 2,15 Mio. km und ein 

Speichervolumen von 108,3 Mrd. m³. Da die jährliche Erdgasförderung in der EU nur rund 

einem Drittel (30,7%) des Verbrauchs entspricht, besteht eine sehr große Abhängigkeit 

gegenüber importierten fossilen Brennstoffen. Eine interessante Alternative zur Neugestaltung 

des Energieversorgungssystems in der EU ist die Erzeugung von Biomethan und die 

anschließende Einspeisung in das bestehende Erdgasnetz. 

Biomethan wird bisher in einem aufwendigen Reinigungs- und Aufbereitungsverfahren aus 

Rohbiogas gewonnen. Dieser Prozess basiert auf einer Reduktion des Kohlendioxidgehaltes 

von 40-45% im Eduktgas auf etwa 5% im Produktgas. Für die Gasaufbereitung werden eine 

Vielzahl von Technologien wie die Druckwasserwäsche, die Druckwechseladsorption oder die 

druckfreie Aminwäsche verwendet. Diese Verfahren werden bisher nur bei Großanlagen 

eingesetzt. 

In der vorliegenden Studie wurde ein neuartiges zweistufiges Hochdruckfermentations-

verfahren entwickelt. Ziel dieses innovativen Konzepts ist die Integration von 

Biogaserzeugung, -aufbereitung und -verdichtung in ein einziges Verfahren. Dieses Verfahren 

basiert auf der erhöhten Wasserlöslichkeit von Kohlenstoffdioxid im Vergleich zum Methan. 

Durch den Betrieb des Methanreaktors unter erhöhtem Druck können große Mengen an 

gelöstem Kohlenstoffdioxid mit dem Effluent aus dem Reaktor ausgetragen werden, was die 

Erzeugung eines hochkalorischen Biogases ermöglicht. Dieses zweistufige 

Hochdruckfermentationsverfahren wurde in der Literatur bereits bis zu Betriebsdrücken von 

10 bar beschrieben. Der neuartige Ansatz dieser Studie bestand darin, ein zweistufiges 

Hochdruckfermentationsverfahren zu entwickeln und bei einem Druck von bis zu 100 bar zu 

betreiben, um die Kosten für die Gasverdichtung bei der Einspeisung des Biomethans in 

transnationale Gasnetze zu reduzieren.  

Um ein besseres Verständnis dieser innovativen Technologie zu erhalten, wurden 

Untersuchungen im Labormaßstab mit Batch- sowie kontinuierlichen Systemen durchgeführt. 

In der vorliegenden Arbeit wurden folgende drei Teilziele bearbeitet:  

(1) hat ein ansteigender CO2 Partialdruck einen Einfluss auf den pH-Wert im Reaktor; (2) 

beeinflussen hohe Betriebsdrücke die Produktionskinetik und den spezifischen Methanertrag; 

(3) ist ein kontinuierlicher Betrieb des Methanreaktors in einer zweistufigen 

Hochdruckfermentationsanlage möglich. 
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Während der anaeroben mikrobiellen Umwandlung von organischen Substraten zu Methan 

wird CO2 freigesetzt. Dies führt aufgrund der vermehrten Bildung von Hydrogencarbonat bei 

höheren Betriebsdrücken zu einem Absinken des pH-Wertes in der Reaktorflüssigkeit. Der 

Anfangsdruck in den Batch-Reaktoren wurde zu Beginn der Experimente schlagartig mit 

Stickstoff eingestellt. Bei Betriebsdrücken von 10, 20 und 30 bar, konnte ein signifikanter 

Einfluss des Drucks auf den pH-Wert im Reaktor ermittelt werden. Zu Beginn der Versuche 

fiel der pH-Wert bei allen Drücken (z.B. Betriebsdruck 30 bar; Absinken des pH-Wertes von 

7,0 auf 6.25 ± 0.03) unter die Grenze des optimalen Bereichs für die methanogenen 

Mikroorganismen ab. Es konnte jedoch weder ein signifikanter Einfluss des Anfangsdrucks auf 

den Verlauf des pH-Wertes, noch auf die Prozessstabilität festgestellt werden. Die schnelle 

Druckerhöhung in den Batch-Reaktoren auf bis zu 100 bar zeigte keinerlei Hemmung der 

Mikroorganismen, obwohl diese nicht an die neuen Umgebungsbedingungen angepasst waren. 

Zwischen den Varianten 1, 50 und 100 bar konnten keine signifikanten Unterschiede im 

Druckanstieg durch die Gasproduktion der Mikroorganismen ermittelt werden. Darüber hinaus 

wurden in diesem Versuch alle Säuren vollständig abgebaut. Der spezifische Methanertrag 

betrug 208 ± 14 L kg−1 bei 1 bar und 220 ± 33 L kg−1 bei 100 bar bezogen auf den zugeführten 

Chemischen Sauerstoffbedarf (CSBinput). Im dritten Teil der Studie wurde erstmalig ein 

kontinuierlicher Methanreaktor bei Drücken bis 50 bar betrieben. Die Untersuchungen zeigten, 

dass ein kontinuierlicher Betrieb des Methanreaktors bei Drücken bis 50 bar nahezu problemlos 

möglich ist. Es konnten Methangehalte von über 90% realisiert werden. Jedoch konnte aufgrund 

einer leichten Anreicherung von Säuren im Methanreaktor ein Rückgang des 

CSB-Abbaugrades von 87% bei 10 bar auf 80,4 ± 1,7% bei 50 bar festgestellt werden. 

In der vorliegenden Untersuchung wurden die Effekte hoher Betriebsdrücke im 

Methanreaktor in einer zweistufigen Fermentationsanlage auf die Prozessstabilität ermittelt. 

Diese vielversprechenden Ergebnisse zeigen, dass diese Technologie ein großes Potential für 

die Herstellung von hochkalorischem Gas auch in kleineren Maßstäben vor Ort bietet. 

Außerdem können die Kosten für eine nachgeschaltete Aufbereitungseinheit signifikant 

reduziert werden, da diese deutlich kleiner ausfallen könnte. Darüber hinaus kann das erzeugte 

Gas ohne weitere Verdichtung in das Erdgasnetz eingespeist oder im Transportsektor als 

Treibstoff für Autos oder LKWs eingesetzt werden. Die Studie zeigt, dass die zweistufige 

Hochdruckfermentation sowohl unter ökonomischen, wie auch unter ökologischen 

Gesichtspunkten ein zukunftsträchtiges Verfahren für eine nachhaltige und unabhängige 

Energieversorgung darstellt. 
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