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Synonymous codon usage of protein coding genes of thirty two completely sequenced mycobacteriophage genomes was studied
using multivariate statistical analysis. One of the major factors influencing codon usage is identified to be compositional bias.
Codons ending with either C or G are preferred in highly expressed genes among which C ending codons are highly preferred over
G ending codons. A strong negative correlation between effective number of codons (Nc) and GC3s content was also observed,
showing that the codon usage was effected by gene nucleotide composition. Translational selection is also identified to play a role
in shaping the codon usage operative at the level of translational accuracy. High level of heterogeneity is seen among and between
the genomes. Length of genes is also identified to influence the codon usage in 11 out of 32 phage genomes. Mycobacteriophage
Cooper is identified to be the highly biased genome with better translation efficiency comparing well with the host specific tRNA
genes.
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1. Introduction

The genetic code uses 64 codons to represent the 20 standard
amino acids and the translation termination signal. Each
codon is recognized by a subset of a cell’s transfer ribonu-
cleotide acid molecules (tRNAs), and with the exception of a
few codons that have been reassigned in some lineages [1, 2]
the genetic code is remarkably conserved, although it is still
in a state of evolution [3].

Codons can be grouped into 20 disjoint families and each
family in the universal genetic code contains between 1 and
6 codons. The usage of alternate synonymous codons in an
organism is understood to be nonrandom. Grantham et al.
[4, 5] proposed that each genome has a particular codon
usage signature that reflects particular evolutionary forces
acting within that genome. The synonymous codons and
amino acids are not used at equal frequencies both within
and between organisms [5–7]; the patterns of codon usage
vary considerably among organisms, and also among genes
from the same genome [8].

Several factors such as directional mutational bias [9–
11], translational selection [11–15], secondary structure of
proteins [16–21], replicational and transcriptional selection

[22, 23], and environmental factors [24, 25] have been
reported to influence the codon usage in various organisms.
In contrast, amino acid usage has been shown to be influ-
enced by factors such as hydrophobicity, aromaticity, cysteine
residue (Cys) content, and mean molecular weight (MMW)
[24, 26–30]. Compositional constraints and translational
selection are thought to be the two main factors for the codon
usage variation among the genes in and across genomes.
Compositional bias shapes the codon usage variation among
the genes in the extremely AT or GC rich unicellular
organisms [31–33]. Analysis of codon usage pattern can
provide a basis for understanding the relevant mechanism
for biased usage of synonymous codons [34] and has both
practical and theoretical importance in understanding the
basics of molecular biology [7, 35–39].

Bacteriophages generally use the translational machinery
of their hosts to synthesize both their structural and regula-
tory proteins. This indicates that the amount of codon usage
in the protein coding genes in the phages and their bacterial
hosts should be similar.

Mycobacteriophages have the potential to be used in
diagnosis of tuberculosis and as molecular tools to study
mycobacteria. Understanding the codon usage pattern of
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these phages should guide in the selection of appropriate
ones for such purposes. The present venture is to study and
understand codon usage patterns of all the mycobacterio-
phages so far sequenced.

Codon usage analysis was previously done for fourteen
phages by Sau et al. [40]. Eighteen more mycobacteriophage
genomes were subsequently sequenced and became available
in Genbank. In the present work we have analysed all these
32 phage genomes to study and compare their codon usage
pattern. Other codon usage indices that affect the genomes
of these phages are also studied.

2. Materials and Methods

2.1. Sequences. The complete genome sequences of 32
mycobacteriophages were downloaded from GenBank.
Genes having more than 100 codons with proper start and
stop codons and without any intermediate stop codon were
selected for the current study.

2.2. Analysis. Numbers of codons (Ncs), Relative Synony-
mous Codon Usage (RSCU), and GC composition at every
position of codons were calculated for each gene. The
analysis was carried out by GCUA [41], CODONW 1.4.2
(http://codonw.sourceforge.net/).

(a) Nc, the “effective number of codons” used in a
gene measures the bias away from equal usage of
codons within synonymous groups [19]. Nc can take
values from 20 to 61, when only one codon or all
synonyms in equal frequencies were used per amino
acid, respectively. Nc appears to be a good measure of
general codon usage bias [19, 42]. The sequences in
which Nc values are <30 are highly expressed while
those with >55 are poorly expressed genes [12, 43].

(b) Relative Synonymous Codon Usage. Relative synony-
mous codon usage (RSCU) is defined as the ratio
of the observed frequency of codons to the expected
frequency if all the synonymous codons for those
amino acids are used equally [21]. RSCU is used
to observe the synonymous codon usage variation
among the genes.

(c) Base composition. The frequency of A, T, G, C, and
GC at first, second, and third positions of synony-
mously variable sense codons which can potentially
vary from 0 to 1 was calculated. The variation of
GC3s among genes was characterized by its standard
deviation.

2.3. Statistical Methods. Correspondence analysis (CA) is
used to study the codon usage variation between genes
in different organisms in which the data are plotted in
a multidimensional space of 59 axes excluding those of
Met, Trp, and stop codons [19]. For understanding the
codon usage variation of mycobacteriophages chosen for the
current study, RSCU values are used for CA in order to
minimize the amino acid composition. To investigate the
difference between high and low expressed genes, we have

compared the codon usage variation between 10% of the
genes located at the extreme right of axis 1 and 10% of the
genes located at the extreme left of the axis 1 produced by CA
using RSCU. To estimate the codon usage variation between
these two sets of genes we have performed Chi square tests
taking P < .01 as significant criterion.

The Pearson correlation coefficient and linear regression
were calculated to identify the indices that influence the
codon usage variation in mycobacteriophages using SPSS
version 10.0. The levels of statistical significance were defined
as P < .01 or P < .05.

3. Results and Discussion

3.1. Overall Codon Usage Analysis in Mycobacteriophages.
The RSCU values of 32 mycobacteriophage genomes show
that G- and/or C-ending codons are predominantly used
(Table 1), in which 13 are C-ending and 6 are G-ending
codons. This was expected, as these phages have a high
genomic content. However, from the overall RSCU values,
it can be assumed that compositional constraint is the only
factor responsible for shaping the codon usage variation
among the genes in these genomes. Although the overall
RSCU values could unveil the codon usage pattern for the
genomes, it may hide the codon usage variation among
different genes in a genome.

3.2. Codon Usage Variation in 32 Mycobacteriophages. The
codon usage bias in the coding regions of 32 completely
sequenced mycobacteriophages of varying G + C content
has been investigated. The average values of the effective
numbers of codon (Nc) in different mycobacteriophages
varied from 31.44 to 47.96 in mycobacteriophage Cooper
and mycobacteriophage Barnyard, respectively. Nucleotide
usage pattern in third codon position of all the mycobac-
teriophages showed high codon usage variation (Table 2).
The average GC3s values for individual genomes varied
from 65.84 to 89.35 in mycobacteriophage Barnyard and
mycobacteriophage Cooper, respectively. In addition, there
are marked intragenomic variations in Nc and GC3s values
with standard deviation of >3.5 in both the indices. There
seems to be a considerable heterogeneity in compositional
bias and codon usage pattern within and among the genome
of these phages. Of the 32 mycobacteriophages, the genome
of Cooper is identified to have the lowest Nc and the highest
GC3s values while Barnyard has the highest Nc and the
lowest GC3s values indicating that highly GC rich genomes
are more biased than poor GC rich genomes.

In unicellular organisms, a strong correlation between
gene expressivity and the extent of codon usage bias is
reported for Escherichia coli and Saccharomyces cerevisiae and
phages of Staphycoccus aureus and mycobacteria [13, 40, 44–
48]. Our analysis reveals that the genome of mycobacterio-
phage Cooper is highly biased than other 31 mycobacte-
riophage genomes. Based on the comparison of the highly
represented codons of cooper and the copy number of
host specific tRNA, the data indicate that the putatively
highly expressed genes of this phage have better translational
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Table 1: Relative synonymous codon usage for all the genes of 32 mycobacteriophages was calculated. AA and N are the amino acid and
number of codons, respectively.

AA Condon N RSCU AA Condon N RSCU

Phe UUU 1795 (0.20) Ser UCU 2127 (0.40)

UUC 15765 (1.80) UCC 7032 (1.32)

Leu UUA 195 0.03 UCA 1889 (0.35)

UUG 5037 (0.66) UCG 10888 (2.04)

Tyr UAU 2447 (0.31) Cys UGU 874 (0.33)

UAC 13288 (1.69) UGC 4496 (1.67)

ter UAA 393 (0.00) Ter UGA 1365 (0.00)

ter UAG 388 (0.00) Trp UGG 11727 (1.00)

Leu CUU 2805 (0.37) Pro CCU 3503 (0.42)

CUC 13867 (1.82) CCC 10146 (1.21)

CUA 1400 (0.18) CCA 2630 (0.31)

CUG 22302 (2.93) CCG 17369 (2.06)

His CAU 2427 (0.40) Arg CGU 5190 (0.83)

CAC 9611 (1.60) CGC 16237 (2.60)

Gln CAA 3076 (0.30) CGA 3195 (0.51)

CAG 17766 (1.70) CGG 9987 (1.60)

Ile AUU 3524 (0.40) Thr ACU 2990 (0.32)

AUC 21992 (2.52) ACC 20215 (2.20)

AUA 636 (0.07) ACA 2910 (0.32)

Met AUG 11923 (1.00) ACG 10698 (1.16)

Asn AAU 2886 (0.29) Ser AGU 1693 (0.32)

AAC 16738 (1.71) AGC 8424 (1.58)

Lys AAA 3185 (0.29) Arg AGA 692 (0.11)

AAG 18997 (1.71) AGG 2110 (0.34)

Val GUU 4218 (0.40) Ala GCU 7738 (0.50)

GUC 18361 (1.73) GCC 26730 (1.72)

GUA 1855 (0.17) GCA 6591 (0.42)

GUG 17981 (1.70) GCG 21142 (1.36)

Asp GAU 8082 (0.42) Gly GGU 10057 (0.78)

GAC 30303 (1.58) GGC 27920 (2.17)

Glu GAA 8983 (0.50) GGA 5241 (0.41)

GAG 26657 (1.50) GGG 8345 (0.65)

efficiency comparatively and may be expressed rapidly by the
host translation machinery.

Table 3 represents the base composition for the 32
completely sequenced mycobacteriophages. GC composition
at the third codon position is always higher than the second
and first + second codon positions observed in other GC-
rich genomes [9–11]. It is also identified that there is major
variation in GC3s content among the genomes studied with
no major variation in GC1s and GC2s. This suggests that
GC3s has a major role to play than GC1s and GC2s and
is tightly associated with the codon usage bias of these
genomes.

3.3. Synonymous Codon Usage in Different Mycobacterio-
phages. A plot of Nc versus GC3s (Nc plot) has been
widely used to study the codon usage variation among
genes in different organisms [19]. It was demonstrated
that the comparison of the actual distribution of the
genes, with the expected distribution under no selection,
indicates that the codon usage bias of the genes has
influences other than the compositional bias. In con-
trast, if GC3s were the only determinants of the codon
usage variation among the genes, then the values of Nc
would fall on the continuous curve between Nc and
GC3s.



4 Advances in Bioinformatics

Table 2: Nc and GC3s values for 32 mycobacteriophages with
standard deviation within brackets.

Phages Nc GC3s

244 38.98 (6.96) 80.65 (7.87)

Bxb1 40.17 (7.28) 80.05 (7.334)

Bxz2 37.93 (5.70) 82.72 (6.46)

Che9c 39.48 (6.96) 81.01 (7.842)

Rosebush 32.53 (4.04) 88.44 (4.27)

Omega 43.91 (6.54) 75.49 (7.01)

Halo 37.87 (5.24) 82.46 (5.59)

Barnyard 47.96 (7.24) 65.84 (8.87)

Bxz1 35.80 (5.64) 85.09 (6.48)

Cjw1 38.80 (6.40) 80.64 (7.83)

Corndog 37.87 (6.69) 82.65 (7.23)

Orion 37.79 (5.55) 82.85 (5.17)

Plot 44.28 (5.69) 73.35 (6.59)

Llij 43.52 (6.18) 72.23 (5.51)

Pipefish 35.12 (3.55) 87.35 (3.53)

PMC 42.62 (6.28) 71.95 (5.30)

Qyrzula 32.45 (3.93) 88.56 (4.37)

Wildcat 47.62 (6.63) 66.37 (6.29)

D29 37.83 (5.28) 82.58 (5.59)

L5 40.67 (5.70) 80.79 (5.86)

PBI1 44.07 (5.67) 73.71 (6.63)

PG1 37.59 (5.20) 82.7 (4.90)

Cooper 31.44 (4.65) 89.35 (5.90)

Che12 39.06 (4.83) 81.94 (5.75)

Catera 35.44 (5.66) 85.53 (6.24)

TM4 34.07 (3.60) 88.19 (4.64)

Che8 43.62 (6.33) 70.57 (5.37)

Tweety 42.76 (5.81) 72.07 (5.51)

U2 39.58 (7.03) 81.10 (7.26)

Bethlehem 40.22 (6.98) 80.35 (6.57)

Giles 36.48 (5.04) 83.38 (5.24)

Che9d 44.10 (7.13) 71.6 (5.8)

It is evident from Nc plot for the mycobacteriophages
studied that most of the genes fall within a restricted
cloud, at GC3s between 0.65 and 0.93, and Nc values
28 and 47 (Figure 1). Nc values for these genes lie just
below the expected curve, indicating that these genes have
additional codon usage bias apart from compositional bias.
The rest of the genes have higher Nc values and lower GC3s
values, mostly lying on and close to the expected curve.
Consequently, the Nc values of these genes are substantially
higher relative to expected values. However, strong influence
of compositional constraints on codon usages bias in all the
phages analyzed could be understood from the presence of
significant negative correlation between GC3s and Nc (r =
−0.969; P < .01).

3.4. Differential Base Usage in Third Codon Position. The
correlation of the frequencies of four bases in the third
position against Nc values of different genes of these 32
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Figure 1: Nc plot of thirty two mycobacteriophages. The genes for
individual phages are represented by different colors.

mycobacteriophages has been estimated (Table 4). As there
is no information of gene expression level of mycobacterio-
phages so far, we have considered the highly biased genes
having low Nc values as those highly expressed and vice versa.

In all mycobacteriophages analyzed, except Che9d, the
frequency of C at the third codon position increases with
decreasing Nc values, whereas frequencies of T and A
increase with Nc. However, the frequency of G is not
influenced in the third codon position excluding for few
phages such as Bxb1, Barnyard, Corndog, Plot, PBI1, and
Bethelhem. Thus the influence of mutational bias of these
phages is reflected in the choice of bases in the third position.
However, this is expected since the optimal codons are, in
general, chosen in accordance with the mutational bias of
these phages. In other words, it is due to the translational
selection that the mutational bias appears to be more
prominent in the third codon position of highly expressed
genes [18].

3.5. Effect of Translational Selection on the Synonymous Codon
Usage in Mycobacteriophage Genomes. Some of the earlier
reports showed that synonymous codon usage in the highly
expressed genes of diverse array of organisms is influenced by
cellular tRNA abundance [44, 49–52]. Kanaya et al. [52, 53]
have reported that the cellular tRNA abundance in several
organisms are directly proportional to their tRNA copy
number.

Of the 32 mycobacteriophages analyzed, 10 phages (244
(2 tRNA genes), Bxz1 (26 tRNA genes), Omega (2 tRNA
genes), Cjw1 (1 tRNA gene), Wildcat (21 tRNA genes), D29
(5 tRNA genes), L5 (3 tRNA genes), Che12 (3 tRNA genes),
Catera (26 tRNA genes)) encode tRNA genes for few of the
amino acids. Both Bxz1 and Catera are identified to encode
large number of tRNA genes (26 tRNA genes) and Wildcat
encoding for 21 tRNA genes. Of the 10 phage genomes



Advances in Bioinformatics 5

Table 3: GC % and base composition in the third codon position for 32 mycobacteriophage genomes.

Virus G + C GC1s GC2s GC (1st + 2nd) GC3s C3s T3s A3s G3s

244 63.26 63.3 44.7 54 81 51.14 10.58 8.88 30.01

Bxb1 63.43 63.4 45.7 54.55 80.4 44.89 11.53 8.53 35.63

Bxz2 64.41 64 45.6 54.8 83 48.62 9.12 8.25 34.56

Che9C 65.66 66 48.9 57.45 81.4 47.27 10.17 8.9 34.16

Rosebush 69.16 68.3 49.8 59.05 88.5 51.21 6.26 5.36 37.73

Omega 61.48 62.4 45.1 53.75 76.1 45.43 13.88 10.78 30.52

Halo 63.79 63.4 44.5 53.95 82.7 47.4 9.57 8.06 35.5

Barnyard 58.05 60.9 45.5 53.2 67 38.55 18.39 15.97 27.68

Bxz1 65.04 64.1 44.9 54.5 85.3 51.84 9.61 5.39 33.72

Cjw1 63.52 63.7 45.1 54.4 81 51.39 10.2 9.27 29.76

Corndog 65.64 64.8 48.4 56.6 83 46.49 9.76 7.7 36.64

Orion 66.9 66.6 50.2 58.4 83.17 50.46 10.19 7.04 32.85

Plot 60.22 61.6 44.3 52.95 74.1 42.4 15.73 11.05 31.34

Llij 61.66 62.4 48.9 55.65 73.1 39.73 16.12 11.79 32.87

Pipefish 67.64 65.4 49.3 57.35 87.5 49.1 7.19 5.51 38.72

PMC 61.46 62.8 48.2 55.5 72.8 39.67 15.81 12.38 32.66

Qyrzula 69.14 68.1 49.8 58.95 88.6 51.07 6.08 5.41 38

Wildcat 57.03 59.8 42.8 51.3 67.7 35.37 22.27 11.57 31.45

D29 63.78 63.4 44.4 53.9 82.9 47.52 9.51 8 35.49

L5 62.49 62.1 43.5 52.8 81.2 47.45 10.01 9.3 33.79

PBI1 60.28 61.4 44.3 52.85 74.5 42.71 15.41 10.99 31.37

PG1 66.83 66.5 50.2 58.35 83.12 50.46 10.24 7.07 32.79

Cooper 69.26 67.6 50 58.8 89.47 52.65 6.32 4.38 37.19

Che12 63.26 62.5 44.4 53.45 82.25 48.61 9.86 8.3 33.79

Catera 65.17 64.1 44.9 54.5 85.8 52.29 9.44 5.1 33.71

Che8 61.41 63.71 48.6 56.16 70.57 37.08 16.05 12.52 34.32

TM4 68.7 68.3 48.9 58.6 88.19 47.26 6.66 5.08 40.99

Che9d 61.4 63.02 48.15 55.59 71.6 37.07 15.54 11.94 35.41

Bethlehem 63.29 63.37 45.22 54.30 80.35 42.56 11.32 7.93 38.15

Giles 67.89 66.55 52.72 59.64 83.38 48.11 6.26 10.06 35.55

Tweety 61.83 63.12 48.89 56.01 72.07 38.77 14.85 12.15 34.2

U2 63.87 63.61 45.92 54.77 81.1 43.53 10.68 7.83 37.94

encoding tRNA genes, excluding 244 and Omega, eight carry
tRNA genes for the overrepresented codons in highly and
lowly expressed genes.

To see whether the synonymous codon usage of puta-
tively highly expressed genes of these mycobacteriophage
genomes is positively correlated with the host tRNA abun-
dance, the number of over represented synonymous codons
in such genes was determined by comparing with that of the
putatively lowly expressed genes. It was found that among the
22 overrepresented synonymous codons in highly expressed
genes, 21 codons are recognized by the M.tuberculosis specific
tRNAs (data not shown). Based on the above analysis, the
data indicate that the putatively highly expressed genes of
these phages have translational efficiency.

3.6. Relationship between Codon Bias and Gene Length.
Selection for translational accuracy is predicted to have a

positive correlation between codon bias and gene length [20].
Previously, the relationship between gene length and syn-
onymous codon usage bias has been reported for Drosophila
melanogaster, Escherichia coli, Saccharomyces cerevisiae, Pseu-
domonas aeruginosa, and Yersinia pestis [11, 15]. From the
plot drawn with gene length against Nc (Figure 2), it is
understood that shorter genes have a much wider variance
in Nc values, and vice versa for longer genes. Lower Nc
values in longer genes may be due to the direct effect
of translation time on fitness or to the extra energy cost
of proofreading associated with longer translating time. A
significant correlation was identified in 11 phages revealing
that gene length influences codon usage of these genomes
(Table 5). Similar results were also reported for S. pneumo-
niae, P. aeruginosa and SARS coronavirus [11, 16]. Eyre-
Walker [20] has reported that the selection for fidelity in
protein translation is likely to be greater in longer genes
because the cost of producing a protein is proportional to its
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Table 4: Correlation coefficient of Nc with C3s, T3s, A3s, and G3s base composition.

NC

Phage name C3s T3s A3s G3s

244 −.814∗∗ .816∗∗ .655∗∗ −0.126NS

Bxb1 −.509∗∗ .727∗∗ .867∗∗ −.532∗∗

Bxz2 −.631∗∗ .636∗∗ .829∗∗ −.315∗

Che9C −.705∗∗ .829∗∗ .831∗∗ −0.19NS

Rosebush −.599∗∗ .688∗∗ .609∗∗ −0.063NS

Omega −.714∗∗ .635∗∗ .618∗∗ −0.141NS

Halo −.564∗∗ .394∗∗ .690∗∗ −0.129NS

Barnyard −.641∗∗ .694∗∗ .796∗∗ −.621∗∗

Bxz1 −.742∗∗ .725∗∗ .777∗∗ −0.123NS

Cjw1 −.808∗∗ .774∗∗ .629∗∗ −0.104NS

Corndog −.484∗∗ .788∗∗ .621∗∗ −.320∗∗

Orion −.817∗∗ .726∗∗ .673∗∗ 0.147NS

Plot −.666∗∗ .709∗∗ .717∗∗ −.401∗∗

Llij −.278∗ .348∗∗ 0.212NS −0.041NS

Pipefish −.372∗∗ .527∗∗ .567∗∗ −0.085NS

PMC −.442∗∗ .409∗∗ −0.047 0.247NS

Qyrzula −.657∗∗ .743∗∗ .665∗∗ −0.048NS

Wildcat −0.216NS 0.069NS .487∗∗ −.274∗

D29 −.564∗∗ .391∗∗ .690∗∗ −0.13NS

L5 −.642∗∗ .668∗∗ .735∗∗ −0.182NS

PBI1 −.662∗∗ .718∗∗ .702∗∗ −.387∗∗

PG1 −.815∗∗ .735∗∗ .616∗∗ 0.214NS

Cooper −.672∗∗ .806∗∗ .844∗∗ −0.165NS

Che12 −.711∗∗ .708∗∗ .628∗∗ −0.115NS

Catera −.716∗∗ .768∗∗ .702∗∗ −0.125NS

TM4 −.575∗∗ .635∗∗ .601∗∗ −0.021NS

Bethlehem −.583∗∗ .700∗∗ .758∗∗ −.468∗∗

Che8 −.404∗∗ .410∗∗ 0.036NS 0.109NS

Tweety −.359∗∗ .353∗∗ 0.106NS 0.088NS

Giles −.535∗∗ .502∗∗ .406∗∗ 0.158NS

U2 −.514∗∗ .783∗∗ .880∗∗ −.544∗∗

Che9d −0.102NS 0.085 .401∗∗ −0.194NS

Notable significant relationships are marked by ∗∗P < .01 or ∗P < .05, NSNonsignificant.

length. Therefore selection of translational accuracy predicts
a positive correlation between codon usage bias and gene
length. And this selection may be stronger at constrained
codons coding for evolutionarily conserved amino acids than
the nonconserved amino acid. As the codon bias is lower in
longer genes than shorter ones, further analysis in finding
these constrained codons will help us in understanding
whether it is the same in all genes irrespective of their length.

3.7. Correspondence Analysis Using RSCU Values. In order
to determine the factors that influence variations in codon
usage among the genes of mycobacteriophage genomes,
correspondence analysis was conducted on the RSCU values
of its genes. Only the distributions of the genes along the first
two major axes were shown, as these accounted for 13.63%
and 6.89% of the total variation (Figure 3).

The first major axis is negatively correlated with G3s
(r = −.235,P < .01) and C3s (r = −.778,P < .01) but
correlated positively with A3s (r = .687,P < .01) and T3s
(r = .827,P < .01). Interestingly, high degree of positive
correlation exists between position of genes along the first
axis with Nc (r = .863,P < .01) (Figure 4) and high
degree of negative correlation with GC3s (r = −.934,P <
.01) (Figure 5). These findings suggest that highly biased
genes, those with G- and C-ending codons, are clustered on
the negative side, whereas the codons ending in A and T
predominate on the positive side of the first major axis.

Additionally, significant negative correlation is observed
with Nc against GC3s and GC. Highly expressed genes
tend to use “C” or “G” at the synonymous positions
compared with lowly expressed genes. It is also studied that
C-ending codons are preferred over G-ending codons in
highly expressed genes. Preference of C-ending codons in the
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Table 5: Correlation coefficient of gene length with Nc and GC3s
values.

Length

Phage name Nc GC3s

Bxb1 −.440∗∗ .445∗∗

Bxz2 −.328∗ .414∗∗

Omega −.223∗ .243∗∗

Bxz1 −.241∗∗ .205∗

Cjw1 −.227∗ 0.213NS

Corndog −.331∗∗ .336∗∗

Llij −.342∗∗ .332∗∗

Wildcat −.280∗ 0.026NS

Catera −.200∗ .168∗

U2 −.475∗∗ .427∗∗

Bethlehem −.472∗∗ .445∗∗

Notable significant relationships are marked by ∗∗P < .01 or ∗P < .05,
NSNonsignificant.
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Figure 2: Plot of Nc versus Gene length for all mycobacteriophage
genomes.

highly expressed genes might be related to the translational
efficiency of the genes as it has been reported that RNY (R-
purine, N- any nucleotide base, and Y-pyrimidine) codons
are more advantageous for translation [54]. Thus, compo-
sitional mutation bias possibly plays an important role in
shaping the genome of these phages.

The genomes of Llij, PMC, Wildcat, TM4, Che8, Tweety,
and Che9d phages showed no significant correlation between
first major axis and GC3s. Whereas, phages such as 244,
Bxb1, Bxz2, Che9c, Rosebush, Omega, Halo, Barnyard, Bxz1,
Cjw1, Corndog, Orion, Plot, Qyrzula, and Giles show strong
negative correlation with GC3s. The primary trend in codon
usage variation in these phages can be attributed to the
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Figure 3: Correspondence analysis of Relative Synonymous Codon
Usage values of mycobacteriophages (32 genomes).
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presence of putatively foreign genes acquired through hori-
zontal gene transfer with unusually A + T rich codon usage.
However, in phages such as D29, L5, PBI1, PG1, Cooper,
Che12, Catera, Bethelhem, and U2, axis 1 coordinates are
significantly positively correlated with GC3s values (Table 6).
Moreover, when G3s and C3s are considered separately, the
correlation coefficient exhibited by the positions of genes
along the first axis with C3s is significantly larger than that
with G3s (Table 6), indicating that the contribution of C3s to
the interspecies variation in overall GC3s content is greater
than that of G3s.
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Table 6: Correlation of Axis1 with other codon usage indices.

Axis 1

Virus GC3s A3s T3s G3s C3s Gravy Aromaticity

244 −.930∗∗ .729∗∗ .829∗∗ −.230∗ −.798∗∗ −0.206NS 0.178NS

Bxb1 −.891∗∗ .871∗∗ .689∗∗ −.417∗∗ −.603∗∗ −0.222NS 0.078NS

Bxz2 −.904∗∗ .865∗∗ .676∗∗ −.503∗∗ −.502∗∗ −.323∗ −0.16NS

Che9C −.921∗∗ .854∗∗ .848∗∗ −0.201NS −.717∗∗ −0.002NS −0.053NS

Rosebush −.689∗∗ .323∗∗ .743∗∗ 0.108NS −.638∗∗ 0.151NS 0.028NS

Omega −.897∗∗ .650∗∗ .771∗∗ −.262∗∗ −.736∗∗ 0.004NS −0.055NS

Halo −.746∗∗ .720∗∗ .498∗∗ −0.125NS −.641∗∗ −0.091NS 0.013NS

Barnyard −.933∗∗ .843∗∗ .792∗∗ −.647∗∗ −.730∗∗ 0.02NS 0.023NS

Bxz1 −.901∗∗ .859∗∗ .729∗∗ −.221∗∗ −.718∗∗ 0.005NS −0.048NS

Cjw1 −.929∗∗ .796∗∗ .742∗∗ −.362∗∗ −.712∗∗ −.259∗ 0.153NS

Corndog −.904∗∗ .647∗∗ .838∗∗ −0.175NS −.652∗∗ −0.184NS −0.002NS

Orion −.763∗∗ .641∗∗ .644∗∗ 0.099NS −.729∗∗ −.362∗∗ −0.169NS

Plot −.826∗∗ .820∗∗ .594∗∗ −.427∗∗ −.631∗∗ 0.172NS 0.229NS

Llij 0.15NS .763∗∗ −.846∗∗ −.912∗∗ .896∗∗ −0.186NS −0.166NS

Pipefish .370∗∗ −0.205NS −.348∗∗ −0.036NS .263∗ −0.105NS 0.185NS

PMC 0.097NS .853∗∗ −.919∗∗ −.944∗∗ .908∗∗ −0.229NS −0.078NS

Qyrzula −.641∗∗ .323∗∗ .731∗∗ 0.09NS −.588∗∗ 0.061NS −0.076NS

Wildcat 0.14NS −.788∗∗ .556∗∗ .411∗∗ −0.208NS 0.017NS −0.036NS

D29 .740∗∗ −.721∗∗ −.479∗∗ 0.126NS .634∗∗ 0.241NS −0.041NS

L5 .862∗∗ −.775∗∗ −.670∗∗ .384∗∗ .485∗∗ .296∗ −0.071NS

PBI1 .845∗∗ −.806∗∗ −.664∗∗ .365∗∗ .705∗∗ −0.131NS −.269∗

PG1 .740∗∗ −0.524NS −.678∗∗ −0.219NS .753∗∗ .277∗∗ 0.118NS

Cooper .782∗∗ −.782∗∗ −.609∗∗ 0.153NS .563∗∗ 0.2NS −0.001NS

Che12 .803∗∗ −.752∗∗ −.596∗∗ 0.201NS .650∗∗ 0.214NS −0.249NS

Catera .914∗∗ −.840∗∗ −.766∗∗ .233∗∗ .702∗∗ 0.041NS 0.002NS

TM4 0.085NS .313∗ 0.258NS 0.182NS −0.094NS 0.003NS 0.008NS

Bethelhem .882∗∗ −.881∗∗ −.625∗∗ .505∗∗ .602∗∗ 0.229NS .294∗

Che8 0.124NS .816∗∗ −.883∗∗ −.917∗∗ .899∗∗ −0.242NS −0.189NS

Tweety −0.113NS −.797∗∗ .891∗∗ .934∗∗ −.902∗∗ 0.231NS 0.098NS

Giles −.352∗∗ .730∗∗ −0.447NS −.887∗∗ .691∗∗ −.444∗∗ −0.102NS

U2 .922∗∗ −.918∗∗ −.737∗∗ .522∗∗ .537∗∗ 0.066NS 0.01NS

Che9d 0.16NS .778∗∗ −.831∗∗ −.857∗∗ .862∗∗ −0.027NS −0.231NS

Notable significant relationships are marked by ∗∗P < .01 or ∗P < .05, NSNonsignificant.

Table 7 shows RSCU values for each codon for the two
groups of genes. The asterisk represents the codons whose
occurrences are significantly higher in the genes situated
on the extreme left side of axis 1, compared to the genes
present on the extreme right of the first major axis. It is
important to note that out of 22 codons that are statistically
overrepresented in genes located on the extreme left side
of axis 1 there is 16 C-ending codons and 5-G ending
codons. UGA is the most frequent stop codon among highly
and lowly expressed genes. Similar pattern is also seen
in Mycobacterium tuberculosis genome, where the highly
expressed genes prefer codons ending with “C” and “G” [18].

4. Conclusion

Compositional bias and translational forces had been
reported to play a major role in shaping the codon usage of 14
mycobacteriophages. Our observations corroborate with the
earlier report with respect to all the 32 mycobacteriophages.
Gene length has a minor role in the selection of codon
usage of 11 out of 32 mycobacteriophage genes analyzed.
High level of heterogeneity is seen within and among the
mycobacteriophage genomes. Cooper is identified to be
the highly biased genome with better translation efficiency
comparing well with the host specific tRNA genes.
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Table 7: Relative Synonymous Codon Usage for the highly and lowly expressed genes.

AA Codon RSCUa Na RSCUb Nb AA Codon RSCUa Na RSCUb Nb

Phe UUU 0.08 (34) 0.57 (185) Ser UCU 0.11 (27) 0.94 (178)

UUC∗ 1.92 (839) 1.43 (466) UCC∗ 1.20 (284) 0.88 (166)

Leu UUA 0.00 (0) 0.16 (41) UCA 0.10 (23) 0.84 (160)

UUG 0.09 (33) 1.55 (390) UCG 1.76 (417) 1.67 (317)

CUU 0.07 (26) 0.93 (235) Pro CCU 0.16 (60) 0.85 (249)

CUC∗ 1.38 (518) 1.16 (292) CCC∗ 1.49 (545) 0.88 (257)

CUA 0.01 (5) 0.49 (123) CCA 0.12 (43) 0.71 (209)

CUG∗ 4.45 (1676) 1.70 (429) CCG∗ 2.23 (813) 1.56 (459)

Ile AUU 0.19 (78) 1.01 (288) Thr ACU 0.09 (47) 0.78 (217)

AUC∗ 2.81 (1181) 1.74 (495) ACC∗ 3.11 (1573) 1.20 (333)

AUA 0.00 (1) 0.25 (72) ACA 0.07 (33) 0.70 (193)

Met AUG 1.00 (648) 1.00 (427) ACG 0.73 (367) 1.32 (364)

Val GUU 0.15 (88) 0.92 (332) Ala GCU 0.22 (183) 0.91 (428)

GUC∗ 1.97 (1131) 1.04 (373) GCC∗ 2.50 (2078) 1.03 (483)

GUA 0.08 (48) 0.34 (123) GCA 0.22 (181) 0.76 (355)

GUG 1.79 (1025) 1.69 (608) GCG 1.06 (882) 1.30 (611)

Tyr UAU 0.10 (41) 0.69 (185) Cys UGU 0.06 (7) 0.83 (123)

UAC∗ 1.90 (767) 1.31 (350) UGC∗ 1.94 (212) 1.17 (175)

TER UAA 0.56 (20) 0.79 (28) TER UGA 1.77 (63) 1.63 (58)

UAG 0.67 (24) 0.59 (21) Trp UGG 1.00 (531) 1.00 (468)

His CAU 0.12 (36) 0.89 (236) Arg CGU 0.52 (164) 1.37 (364)

CAC∗ 1.88 (570) 1.11 (296) CGC∗ 3.79 (1189) 1.50 (399)

Gln CAA 0.06 (29) 0.63 (221) CGA 0.18 (55) 0.85 (227)

CAG∗ 1.94 (1021) 1.37 (480) CGG 1.41 (442) 1.23 (328)

Asn AAU 1.10 (50) 0.75 (265) Ser AGU 0.11 (27) 0.73 (139)

AAC∗ 1.90 (926) 1.25 (446) AGC∗ 2.71 (642) 0.94 (178)

Lys AAA 0.06 (33) 0.60 (229) Arg AGA 0.00 (1) 0.41 (109)

AAG∗ 1.94 (1046) 1.40 (539) AGG 0.11 (33) 0.64 (170)

Asp GAU 0.15 (151) 0.89 (564) Gly GGU 0.54 (305) 1.04 (414)

GAC∗ 1.85 (1868) 1.11 (706) GGC∗ 2.90 (1646) 1.19 (471)

Glu GAA 0.29 (270) 0.84 (513) GGA 0.14 (81) 0.91 (363)

GAG∗ 1.71 (1609) 1.16 (704) GGG 0.41 (235) 0.86 (341)
∗Codons whose occurrences are significantly higher (P < .01) in the extreme left side of axis 1 than the genes present on the extreme right of the first major
axis. Each group contains 10% of sequences at either extreme of the major axis generated by correspondence analysis. AA: amino acid; N: number of codon;
agenes on extreme left of axis 1; bgenes on extreme right of axis 1.
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[34] H. Lü, W.-M. Zhao, Y. Zheng, H. Wang, M. Qi, and X.-P. Yu,
“Analysis of synonymous codon usage bias in Chlamydia,” Acta
Biochimica et Biophysica Sinica, vol. 37, no. 1, pp. 1–10, 2005.

[35] J. W. Fickett, “Recognition of protein coding regions in DNA
sequences,” Nucleic Acids Research, vol. 10, no. 17, pp. 5303–
5318, 1982.

[36] H. Chiapello, E. Ollivier, C. Landes-Devauchelle, P. Nitschke,
and J.-L. Risler, “Codon usage as a tool to predict the cellular
location of eukaryotic ribosomal proteins and aminoacyl-
tRNA synthetases,” Nucleic Acids Research, vol. 27, no. 14, pp.
2848–2851, 1999.

[37] A. Martı́n, J. Bertranpetit, J. L. Oliver, and J. R. Medina, “Vari-
ation in G+C-content and codon choice: differences among
synonymous codon groups in vertebrate genes,” Nucleic Acids
Research, vol. 17, no. 15, pp. 6181–6189, 1989.

[38] E. N. Moriyama and D. L. Hartl, “Codon usage bias and base
composition of nuclear genes in Drosophila,” Genetics, vol.
134, no. 3, pp. 847–858, 1993.

[39] J. O. McInerney, “Replicational and transcriptional selection
on codon usage in Borrelia burgdorferi,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 95, no. 18, pp. 10698–10703, 1998.

[40] K. Sahu, S. K. Gupta, S. Sau, and T. C. Ghosh, “Comparative
analysis of the base composition and codon usages in fourteen
mycobacteriophage genomes,” Journal of Biomolecular Struc-
ture & Dynamics, vol. 23, no. 1, pp. 63–71, 2005.

[41] J. O. McInerney, “GCUA: general codon usage analysis,”
Bioinformatics, vol. 14, no. 4, pp. 372–373, 1998.

[42] J. M. Comeron and M. Aguadé, “An evaluation of measures of
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