ТИПОХИМИЗМ ТУРМАЛИНОВ МИАРОЛОВЫХ ПЕГМАТИТОВ ЛЕСХОЗОВСКОЙ ЖИЛЫ (ЮГО-ЗАПАДНЫЙ ПАМИР)

Э.Н. Кунгулова*, Е.Н. Соколова**

*Научный руководитель доцент О.В. Бухарова

*Национальный исследовательский Томский государственный университет,
г. Томск, Россия

**Институт геологии и минералогии им. В.С. Соболева СО РАН,
г. Новосибирск, Россия

Гранитные пегматиты являются уникальными природными лабораториями, позволяющими исследовать процессы магматического фракционирования и последующей гидротермальной кристаллизации. Среди минералов, слагающих пегматитовые жилы, выделяются сквозные, к которым относятся полевые шпаты и кварц, а также второстепенные, определяющие специализацию пегматитовых тел. Исследование типохимизма второстепенных минералов имеет большое значение для понимания поведения редких металлов при кристаллизации наиболее низкотемпературных пегматитовых и редкометалльно-гранитных расплавов.

В высокогорьях Юго-Западного Памира располагается целый ряд уникальных пегматитовых жил. В частности, жила Лесхозовская, которая относится к пегматитам малоглубинной миароловой формации. Жила выходит на правом борту реки Шахдара, в её среднем течении, напротив кишлака Бедиз. Она обнажается в скальной стенке и занимает секущее положение по отношению к гнейсам шахдаринской метаморфической серии. Контакт пегматитов с гнейсами резкий. Внутри жилы наблюдаются отдельные угловатые и повернутые ксенолиты вмещающих пород, свидетельствующие об активном внедрении пегматитового расплава [2]. Особенностью этой жилы, является ярко выраженная борная минерализация, на основании чего, она, наряду с подобными жилами Юго-Западного Памира (Шахдаринской и Вездаринской) классифицируется как турмалиновая [1]. Типичная для гранитных пегматитов внутренняя зональность выражена в Лесхозовской жиле очень слабо. С определенной долей условности в ней можно выделить три структурно-минералогических комплекса: полевошпатовый, околомиароловый и собственно миароловый.

Поскольку жила относится к турмалиновым, объектом исследования не случайно стал турмалин. Был выполнен рентгеноспектральный микроанализ индивидов (ЦКП МИИ ИГМ СО РАН, г. Новосибирск, ЦКП «Аналитический центр геохимии природных систем» ТГУ, г. Томск), которые в жиле Лесхозовской встречаются в двуполевошпатовой зоне кварц-полевошпатового комплекса и околомиароловом слюдисто-альбитовом комплексе.

Таблица Состав турмалина из различных структурно-морфологических комплексов жилы и в пределах индивида, мас. %

Компоненты	Кварц- полевошпатовый комплекс	Околомиароловый комплекс	Индивид			
			Центр	периферия	кайма	
SiO_2	34,22	37,35	37,485	37,165	36,51	
TiO ₂	0,77	0,03	0,385	1,19	0,35	
Al_2O_3	32,17	39,44	37,07	32,22	37,155	
CaO	0,26	0,37	0,31	0,515	1,045	
MnO	0,64	0,88	3,105	0,43	2,47	
MgO	0,07	н.п.о.	н.п.о.	0,49	н.п.о.	
FeO	16,41	0,19	11,125	17,22	4,615	
ZnO	0,10	0,00	н.п.о.	н.п.о.	н.п.о.	
Na ₂ O	2,02	2,15	2,17	2,305	1,915	
K ₂ O	0,05	0,01	н.п.о.	н.п.о.	н.п.о.	
Rb ₂ O	0,06	0,06	н.п.о.	н.п.о.	н.п.о.	
Cs ₂ O	0,01	0,01	н.п.о.	н.п.о.	н.п.о.	
F	0,52	1,30	н.п.о.	н.п.о.	1,36	
В	10,00	10,00	10	10	10	
Сумма	87,30	91,78	91,65	91,535	83,885	
	(Формульные коэффицие:	НТЫ			
Si	5,89	6,00	6	6	6	
Ti	0,10	-	0,045	0,145	-	
Al	6,52	7,47	7	6,13	7,35	

Продолжение таблицы

Компоненты	Кварц-	Околомиароловый	Индивид							
	полевошпатовый комплекс	комплекс	Центр	периферия	кайма					
Формульные коэффициенты										
Ca	0,05	0,06	0,055	0,09	0,235					
Mn	0,09	0,12	0,42	0,06	0,14					
Mg	0,02	-	-	0,115	-					
Fe	2,36	0,03	1,475	2,325	0,18					
Na	0,68	0,67	0,67	0,725	0,615					
K	0,01	-	_	-	_					
Rb	0,01	0,01	_	-	_					
Cs	_	-	_	-	_					
F	0,28	0,66	_	-	1,36					
В	2,97	2,77	3	3	3					
Al (Y)	0,41	1,47	1	0,13	1,35					
Al (Z)	6,00	6,00	6	6	6					
AL(Si)	0,11	_			_					
Li*	0,01	1,38	0,12	0,23	1,33					
	0,26	0,26	0,28	0,19	0,15					

Примечание: Количество бора условно принято за 10 мас. процентов; Li* — расчётный коэффициент 3-(Fe+Mg+Mn+Ti+Al (VI)); формульные коэффициенты для литийсодержащих турмалинов рассчитывались на 6 атомов кремния, железистых турмалинов — на 15 атомных катионов; □ — вакансия в позиции X; н.п.о. — ниже предела обнаружения.

По данным рентгеноспектрального микроанализа (табл.) турмалин представлен изоморфными смесями, включающими такие конечные члены, как шерл, дравит, эльбаит, оленит и тсилаизит. Турмалин кварцполевошпатового комплекса является шерлом с довольно высокими содержаниями примесей Мп, Fe и Ti. Турмалин околомиаролового комплекса жилы преимущественно чистый эльбаит. Он образует полихромные кристаллы широкой цветовой гаммы, от розового до желтого и бесцветного. Для него характерны повышенные содержания Мп, Al, F и Li.

Результаты проведенного анализа турмалинов выявили тенденцию распределения химических элементов в зависимости от изменения режима кристаллизации, которая заключается в более широком проявлении шерла и шерл-дравита (Fe+Mg) во внешних комплексах пегматитовых жил и распространенияи эльбаита (Li+Al) и тсилаизита-оленита (Mn+Al) в окружающих миаролы комплексах.

Кроме того, выявленные закономерности распределения элементов просматриваются также в пределах отдельных зерен. Часто в жиле Лесхозовской можно обнаружить индивиды турмалинов с характерной поперечной зональностью. Это кристаллы с черным ядром и желтой каймой обрастания. Проведено исследование центральной части зерна, области ближе к периферии зерна и непосредственно каймы (табл.).

Отмечается заметное повышение редкометальности от центра зерна к его периферии, что позволяет выделить две генерации турмалина. После произведенного расчета миналов выяснено, что турмалин первой генерации представляет собой шерл, а турмалин второй поздней генерации – фтор-эльбаит и тсилаизит-оленит. Ранний турмалин заметно обогащен Fe²⁺, Ti и Mg, что соответствует шерлу кварц-полевошпатового комплекса. В позднем турмалине их концентрация уменьшается и наблюдается значительное содержание Al, Li и F. Подобный химический состав соответствует эльбаитам околомиаролового комплекса.

Проведенные исследования показали, что турмалин миароловых пегматитов Лесхозовской жилы обладает яркими типохимическими особенностями, которые выражаются в тенденции накопления Li, Al, Rb и Cs к концу процесса кристаллизации, что способствует повышению редкометального фона в поздних комплексах. Минералы более ранних комплексов существенно обогащены Fe^{2+} , Ti и Mg, концентрация которых к концу процесса заметно снижается. К концу процесса кристаллизации пегматитов происходит накопление летучих компонентов, что выражается в увеличении содержания F в более поздних фазах, а также щелочных металлов, которое проявляется в уменьшении дефицита щелочей по мере роста редкометальности.

Литература

- 1. Загорский В.Е., Перетяжко И.С., Шмакин Б.М. Гранитные пегматиты. Миароловые пегматиты. Новосибирск: Изд-во Наука, 1999. Т. 3. 487 с.
- 2. Коноваленко С.И., Сазонтова Н.А., Смирнов С.З. Состав, строение и режим формирования миароловых пегматитов Лесхозовской жилы (Юго-Западный Памир) / // Петрология магматических и метаморфических комплексов. 2001. Выпуск 2. С. 226 228.