ОСОБЕННОСТИ РЕЛАКСАЦИИ ЗЕРЕННОЙ И ДЕФЕКТНОЙ СТРУКТУРЫ НАНОСТРУКТУРИРОВАННОГО СПЛАВА V-Cr-ZrO₂

<u>В.Л. Радишевский</u>¹, И.В. Смирнов^{1, 2}, К.В. Гриняев^{1, 2}

Научный руководитель: доцент, д.ф.-м.н. И.А. Дитенберг

1 Национальный исследовательский Томский государственный университет,

Россия, г. Томск, пр. Ленина, 36, 634050

² Институт физики прочности и материаловедения СО РАН

Россия, г. Томск, пр. Академический, 2/4, 634055

E-mail: rvl@myttk.ru

FEATURES RELAXATION GRAIN AND DEFECT STRUCTURE OF NANOSTRUCTURED ALLOY V-Cr-ZrO2 ALLOY

V.L. Radishevskiy¹, I.V. Smirnov^{1, 2}, K.V. Grinyaev^{1, 2}

Scientific Supervisor: docent, Dr. I.A. Ditenberg

¹ National Research Tomsk State University, Russia, Tomsk, Lenina pr., 36, 634050

² Institute of Strength Physics and Materials Science SB RAS, Russia, Tomsk, Akademicheskiy pr., 2/4, 634055

E-mail: rvl@myttk.ru

Abstract. The study of parameters of the defect structure near the recrystallization temperature of the dispersion-strengthened alloy V–Cr–ZrO₂ after deformation by torsion under pressure is presented.

Введение. Формируемые в металлических материалах методами больших пластических деформаций (БПД) субмикрокристаллические и наноструктурные состояния характеризуются высокой плотностью дефектов кристаллического строения, оказывающих влияние на комплекс физикомеханических свойств [1]. Изучение стабильности указанных структурных состояний в условиях деформационного и/или термического воздействия по-прежнему остается актуальной задачей.

Целью настоящей работы является исследование особенностей зеренной и дефектной структуры наноструктурированного дисперсно-упрочненного ванадиевого сплава после отжигов вблизи температуры рекристаллизации.

Материалы и методы исследования. Исследование проведено на дисперсно-упрочненном сплаве V-8,75%Cr-1,17%Zr-0,14%W-0,01%C-0,02%O-0,01%N (вес. %) после БПД кручением на наковальнях Бриджмена (N = 1, P = 7 ГПа). После деформации выполнены часовые отжиги в вакуумной печи типа СШВЛ при температурах 700 и 800 °C. Структурные исследования осуществлены с использованием просвечивающей электронной микроскопии на приборе Philips CM30 (300 кВ). Тонкие фольги подготовлены по методике [2] в сечениях, нормальных плоскости наковален (ПН). Аттестация дефектной структуры проведена с использованием методики темнопольного анализа дискретных и непрерывных разориентировок [3].

Результаты. Структурная аттестация изучаемого сплава после деформации кручением под давлением подробно проведена в работе [2]. На рисунке 1 а представлено светлопольное изображение микроструктуры. Показано, что субмикрокристаллическое состояние характеризуется сильной анизотропией зеренной структуры: размеры зерен в направлениях параллельных ПН находятся в

интервале 70-700 нм, в то время как в направлении оси кручения (ОК) их размеры достигают 50-200 нм.

Проведенный в настоящей работе отжиг при $T = 700\,^{\circ}\text{C}$ не оказал какого-либо влияния на зеренную и дефектную структуру изучаемого материала, при этом сохраняется аналогичное представленному на рисунке 1 а анизотропное субмикрокристаллическое состояние. В тоже время после повышения температуры отжига до $800\,^{\circ}\text{C}$ (рис. $1\,^{\circ}$ б) на фоне анизотропной микроструктуры появляются почти равноосные зерна размерами от $50\,^{\circ}$ б0 нм.

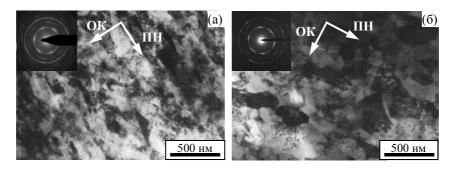


Рис. 1. Микроструктура сплава V-Cr-ZrO₂ после большой пластической деформации кручением на наковальнях Бриджмена (а) [2] и отжига при T = 800 °C (б).

На рисунке 2 представлены гистограммы распределения зерен по размерам изучаемого сплава после деформации (рис. 2 а, б) и последующего отжига при $T = 800 \, ^{\circ}\mathrm{C}$ (рис. 2 в, г). Как видно (рис. 2), после отжига при $800 \, ^{\circ}\mathrm{C}$ размеры зерен и характер их распределения в направлениях параллельных и перпендикулярных ΠH сопоставимы.

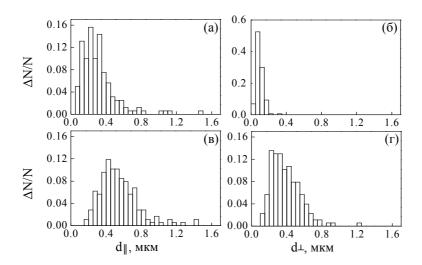


Рис. 2. Гистограммы распределения зерен по размерам сплава V–Cr– ZrO_2 после деформации (a, δ) и отжига при температуре 800 °C (b, ϵ) . Размеры d_{\parallel} вдоль ΠH (a, b), размеры d_{\perp} вдоль OK (b, ϵ) .

Дефектная структура субмикрокристаллического состояния после деформации характеризуется кривизной кристаллической решетки (χ_{ij}) от 10 до 40 град/мкм [2], соответствующие оценки величин локальных внутренних напряжений составляют $\sigma_{\text{лок}} \approx E/75 - E/45$.

На рисунке 3 а представлен пример темнопольного анализа особенностей тонкой дефектной структуры после отжига при 800 °C. Установлено, что при наклоне гониометра на угол $\Delta \phi \approx 1,5^\circ$, контур экстинкции перемещается на расстояние $\Delta r \approx 180$ нм. В соответствие с [3], компонента кривизны

кристаллической решетки χ_{21} может быть определена по формуле $\chi_{21} \approx \Delta \phi \cdot \sin(\beta)/(\Delta r)$ (рис. 3 б). С учетом угла между вектором действующего отражения g типа <110> и направлением проекции оси наклона гониометра (ПОН) β = 87,5°, компонента кривизны кристаллической решетки χ_{21} достигает \approx 8 град/мкм. В случае если кривизна обусловлена только изгибом фольги, ширина контура $L_{\text{теор}} \approx \gamma_0/\chi_{21} \approx 60$ нм, где $\gamma_0 \approx 0.5^\circ$ — угловой размер дифракционного максимума в бездефектном кристалле. Однако экспериментальное значение $L_{\text{экс}} \approx 100$ нм. Таким образом, почти 1.5-кратное уширение контура экстинкции свидетельствует о наличии структурной кривизны кристаллической решетки, а не связано с изгибом или короблением тонкой фольги.

Согласно [3], по формуле $\sigma_{\text{лок}} \approx \chi_{jj} \cdot E \cdot \Delta h/2$ (E- модуль Юнга, $\Delta h-$ характерные размеры зоны высокой кривизны кристалла) из экспериментальных данных о χ_{ij} и Δh можно оценить величину локальных внутренних напряжений. Учитывая, что $\chi_{ij} \approx 8$ град/мкм, а $\Delta h \approx 0,18$ мкм, максимальные значения $\sigma_{\text{лок}}$ не превышают E/80. Таким образом, представленный результат свидетельствует о начале интенсивных процессов релаксации дефектной структуры при T=800 °C.

Рис. 3. Пример анализа непрерывных разориентировок изучаемого сплава после отжига при $T=800^{\circ}$ С (а); схема структурного состояния с кривизной кристаллической решетки (б) [3].

Выводы. Установлено, что в наноструктурированном дисперсно-упрочненном сплаве $V-Cr-ZrO_2$ при температуре 800 °C активизируются процессы релаксации, которые сопровождаются ростом зерен, существенным снижении значений кривизны кристаллической решетки и величин локальных внутренних напряжений.

Исследования проведены с использованием оборудования Томского регионального центра коллективного пользования НИ ТГУ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Валиев Р.3, Александров И.В. Объемные наноструктурные металлические системы М.: ИКЦ «Академкнига», 2007. 398с.
- Smirnov I.V., Ditenberg I.A., Grinyaev K.V., Radishevsky V.L. Features of formation of nanocrystalline state in internal-oxidized V-Cr-Zr-W and V-Mo-Zr system alloys during deformation by torsion under pressure // IOP Conference Series: Materials Science and Engineering. 2016. V. 116. № 1. I. 012037. P. 1–5.
- 3. Тюменцев А.Н., Дитенберг И.А., Коротаев А.Д., Денисов К.И. Эволюция кривизны кристаллической решетки в металлических материалах на мезо и наноструктурном уровнях пластической деформации // Физическая мезомеханика. − 2013. − Т. 16. − №. 3.