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Abstract

The Pickup and Delivery Problem with Time Windows (PDPTW) is an important problem in fleet planning
where decisions can involve not only dispatching company fleets but also the selection of carriers on certain
routes. In this problem, vehicles travel to a variety of locations to deliver or pick up goods and to provide
services. The increasing costs for additional vehicles motivate managers to optimize fleet usage. Managers also
seek to achieve economical use of fuel, maintenance and overtime costs by minimizing travel distance and
duration. As such, PDPTW impacts the interface of supplier-customer relationship management in the supply
chain process and is essential for any linked decision support system. In this paper, we describe deployment
of a relatively new optimization technique, known as �Squeaky Wheel� Optimization (SWO), to the PDPTW.
Our objective is to minimize the fleet size, travel distances, schedule durations and waiting times. 

We implement an SWO framework for the PDPTW, integrating Solomon�s Insertion Heuristic and Local Search
into a construction phase. In addition, we design a blame assignment and prioritizing schemes to facilitate
problem solution. Our new method has been tested on the Solomon�s 56 benchmark cases for which we have
obtained encouraging results with this new technique.

Keywords:  Vehicle routing, squeaky wheel, heuristics

Introduction and Research Objectives

A complete logistics system involves the transportation of raw materials from suppliers to factory plants for manufacturing and/or
processing, as well as delivery of the manufactured products to depots and warehouses and customers. Supply and distribution
procedures need to be efficient to minimise systemwide costs.  In transport logistics, savings can be derived, for example, from
lowered trucking costs resulting from reduced numbers of vehicles, shorter distances and less penalties incurred from untimely
delivery. The optimization of vehicle routes is an important and integral component of supply chain management.

The Pickup and Delivery Problem with Time Windows (PDPTW) is a particularly important problem in transportation logistics
management, particularly in fleet routing (see Bruggen et al. 1993, Chiang et al. 1997, Desrosiers et al. 1995, Dumas et al. 1986,
Dumas et al. 1991, Psarafis 1980, Psarafis 1983, Savelsbergh et al. 1995 and Sexton et al. 1986). It is a problem that can arise
in static as well as dynamic systems, and whose solution would  be necessary for any decision support system underlying the
supply chain management of the larger system. In this problem, we require a fleet of vehicles with capacity limits to service a set
of transportation �requests�, in which pickup customers have loads to be delivered to delivery customers. A pickup and delivery
pair (PD-pair) consists of two customers. A vehicle can service a PD-pair and all vehicles begin and end their journeys at the same
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depot. This problem arises from real-life situations in which vehicles must travel to a number of destinations to pickup and deliver
goods and to provide services. Examples of this, and other closely related problems, include bank deliveries, postal deliveries,
industrial refuse collection, over-night delivery service, dial-a-ride problem (see Dumas et al.1986, Psarafis 1980, Psarafis 1983
and Sexton et al. 1985), airline scheduling (see Erdmann et al. 1999), bus routing (see Forbes et al. 1994), tractor-trailer problems,
helicopter support of offshore oil field platforms, logistics and maintenance support. Related applications include VLSI circuit
design, flexible manufacturing systems (see Qiu and Hsu 1999), and casualty evacuation.  

Our objective is to minimize the fleet size, travel distance, schedule duration and waiting time. Our purpose here is to describe
the use of a relatively new optimization technique, known as the �Squeaky Wheel Optimization� (SWO) (see Joslin et al. 1999),
on the PDPTW. 

Problem Statement

In this section we provide notations and a mathematical formulation of the PDPTW. The mathematical framework that we present
here are built upon that presented in Solomon 1987.

Let:

P: Set of all customer locations;  for some n .Ν∈
0: The central depot.  
K: Set of available vehicles, indexed by .  indicates the maximum number of vehicles that are available. 
V: Set of all nodes, i.e. customer locations and depots, . 
A: Set of arcs linking the nodes. 
G: Digraph of problem, G = (V, A). 
Gk = (Vk, Ak): The sub-digraph associated with a specific vehicle k, with Vk the node subset that vehicle k traverses, while

Ak  = Vk × Vk contains all feasible arcs between the nodes in Vk. 
PP: Set of pickup customers, PP d P. 
PD: Set of delivery customers, PD d P.  
Qk: Maximal load of vehicle k.
P+: Set of pickup locations of PD-pairs,  P+ d P. 
P�: Set of delivery locations of PD-pairs,  P� d P

From the above, we note that P = P+ c P�|P+| = |P�| = n/2.

Each node  i , V has an associated customer demand qi(q0 = 0), a service time si(s0 = 0), and a service-time window [ei, li].  qi >
0 for  i , P+ c PP and  qi < 0 for  i , P� c PD. For each i , P+, we denote  id , P� as the delivery location of i. For each pair of nodes
(i,j)|(i … j, i,j , V), a non-negative distance cij and a non-negative travel time tij are known.  

Due to time window constraints, arcs may not exist between some node pairs. Therefore, the arc set can be defined as A = {(i,j)|i,j
, V, i … j, t0i + si + tijlj}. If a vehicle reaches a customer  i before ei, it needs to wait until  ei  in order to service the customer.

The schedule duration of a route is the sum of waiting time, service time and travel time. Different contexts have different
priorities for minimizing a number of objectives, subject to a variety of constraints.  

For transportation of goods, the objective involves minimizing the number of vehicles, travel costs and schedule time. However,
for dial-a-ride situations, it is preferable to minimize the inconvenience caused by pickups or deliveries performed earlier or later
than desired time. 

To formuate the pickup and/or delivery problems, there types of variables are used: 

1. Binary variables Xk,ij, where k , K, i, j , V, i … j.  Xk,ij equal to 1 if vehicle  k travels the arc  (i, j) from node  i to node j, equal
to 0 otherwise. 

2. Time variable Ti, where i , P, represents the time to begin service at node i.  
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3. Load variable Yi, where i , P, represents the total load on the vehicle after it leaves node i, i , P. 

The mathematical formulation is as follows: 
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The formulation seeks to minimize travel cost. Constraints (2) and (4) ensure that each  is exactly visited once. Constraints (5)
are coupling contraints that ensure PD-pairs to be in the same route. Constraints (3), (9) and (10) impose contraints on the vehicle
fleet, in which each vehicle should originate from, and return, to the depot. In addition, when a vehicle leaves the depot, the first
customer location should not be a delivery location in a PD-pair. On the other hand, before a vehicle returns to the depot, the last
customer location should not be a pickup location in a PD-pair. Constraints (6) and (7) are precedence constraints for PD-pairs.
Constraints (8) and (11) are the time window constraints. Constraints (12) and (13) are capacity constraints. 

We aim to service all customers without violating any of the vehicle capacities, time windows, precedence and coupling
constraints. The order of our objectives is as follows 

I. Minimize number of vehicles 
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II. Minimize total traveling distance 
III. Minimize total schedule duration 
IV. Minimize total waiting time 

Research Methodology

We employ a �Squeaky Wheel Optimization� technique (SWO) (see Joslin et al. 1999) which has as its core a Construct �
Analyze � Prioritize cycle. In this cycle, a greedy algorithm constructs an initial solution, making decisions in an order determined
by priorities assigned to the elements of the problem. This solution is then analyzed to find the elements of the problem that are
causing �trouble�, and �blame� is assigned to them. According to the magnitude of the blame, the priorities of trouble causing
elements are then increased, causing the greedy constructor to deal with them sooner in the next iteration. This cycle repeats until
a termination condition occurs.  

The construction, analysis and prioritization are all in terms of the elements that define a problem domain. In our case, the
elements are the customers. In a scheduling domain, for example, those elements might be tasks, while in graph coloring they
might be nodes to be colored. 

The three main components of SWO are:  

� Constructor.  Given a sequence of problem elements, the constructor generates a solution using a greedy algorithm. The
sequence determines the order in which decisions are made. 

� Analyzer.  The analyzer assigns a numeric �blame� factor to elements that contribute to flaws in the current solution. 

� Prioritizer.  The prioritizer uses the blame factors assigned by the analyzer to modify the previous sequence of problem
elements. Elements that received blame are moved towards the front of the priority sequence. The higher the blame, the
further the element is moved.  

In this manner, difficult elements are assigned more blame and they move forward in the priority sequence so that they will be
handled earlier by the constructor. By taking care of the difficult elements before the easier elements, the chances of obtaining
a better solution are increased. The difficult elements, being dealt with earlier, will have more options to choose from, and are
more likely to be placed in better positions. The less difficult elements will then fit into the remaining positions. 

Implementation

Our framework consists of the three main components of SWO: the Constructor, the Analyzer and the Prioritizer. The priority
sequence used for the first iteration is randomly generated. In addition, we use restarts after every given number of iterations to
generate a new random priority sequence. To prevent cycles, we store eigenvalues of solutions found, and initiate a restart if a
new eigenvalue is already present in the stored set of eigenvalues. 

Eigenvalue Structure

Our eigenvalue structure consists of the following four values of the solution: Number of Vehicles, Total Travel Cost, Total
Schedule Duration and Total Waiting Time. 

Since the probability that two different solutions have the same eigenvalue is very small, it is reasonable to regard two solutions
as the same if they share the same eigenvalue. We record the set of eigenvalues and check new eigenvalues against this set to
prevent cycling. 

Constructor

The constructor builds a solution by adding customers into the routes pair by pair, in the order they occur in the priority sequence.
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For the first iteration, and after each restart, the priority sequence is randomly generated. When either of a pickup and delivery
pair is selected, the other is selected together. Here, we use a modified version of Solomon�s Insertion Heuristic (see Solomon
1987). We retain the evaluation criteria for selecting the best insertion positions, and omit the selection of the best customers for
insertion. Each time the constructor selects a PD-Pair, it finds the best feasible insert positions among the current routes and inserts
them. If no feasible positions are found, a new route is created for the pair. 

In addition to this heuristic, we integrate a local search in attempt to improve the solution found by the constructor. As suggested
by Joslin et al 1999, SWO may be poor at making small �tuning� moves, and could be coupled with local search to look for good
solutions in the vicinity. Our local search uses two operators to generate new solutions: PD-Shift Operator and PD-Exchange
Operator. 

PD-Shift Operator

The PD-Shift operator moves PD-pairs from one route to another, subject to all the constraints imposed on PDPTW. For each pair
of selected routes, say, Route1 to Route2, the PD-Shift operator is used twice to generate two different solutions. The operator
first shifts PD-pairs from Route1 to Route2 and then from Route2 to Route1. (See Figure 1) 

Figure 1.  PD Shift Operator

PD-Exchange Operator

The PD-Exchange operator swaps PD-pairs from two routes, subject to all the constraints imposed on PDPTW. For each pair of
selected routes, the PD-Exchange operator simultaneously moves a PD-Pair from Route1 to Route2 and another PD-Pair from
Route2 to Route1. (See Figure 2) 

Figure 2.  PD Exchange Operator
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Analyzer

For each customer, the analyzer assigns four components of blame, each representing the criteria we have listed previously: 

I. Vehicle number blame 
II. Traveling distance blame 

III. Schedule duration blame 
IV. Waiting time blame 

For traveling distance blame, schedule duration blame, and waiting time blame, we simply assign the contribution the customer
makes to the total traveling distance, total schedule duration, and total waiting time respectively. 

For vehicle number blame, we first sort all the routes according to non-decreasing length. We then assign the largest blame to
the shortest route, decreasing the magnitude of the blame for each subsequent route in the ordered sequence. This blame-assigning
approach is aimed at finding fault with vehicles which may be under-ultilized. If very few customers are serviced in a route by
a vehicle, it may be possible to schedule them in other routes, hence reducing the number of vehicles used. 

Prioritizer

The prioritizer will reorder the customers in the priority sequence by applying a multi-level stable sort, ordering them first by
vehicle number blame, then traveling distance blame, schedule duration blame, and waiting time blame. 

Experimental Results

Benchmark Problem Instances

We use the same problem instances used in Li et al 2001 (see [8]). These are generated from Solomon�s benchmark problem
instances (see Solomon 1987), by pairing up customer locations within routes in solutions obtained by their heuristic approach
for the vehicle routing problem with time windows in Li et al 2001 (see [7]). 

Computational Results

Our experimental environment in which we ran our algorithms was the Linux Kernel 2.2.14-5.0 smp on i686.  The algorithms
were coded in C++ language, with the use of the C++ Standard Template Library, so as to achieve code efficiency and
reusuability. For each problem instance, SWO runs a maximum of 500 iterations. It will terminate after 100 consecutive iterations
if there is no improvement in the global best solution, and will restart after every 50 normal iterations. 

Results for the 56 Problem Instances

Table 1 to Table 3 shows the best results obtained by our algorithms for the LC, LR and LRC cases. 

Comparison of Results

We have used the results obtained by Li et al 2001 (see [8]) as a basis for comparison. The analysis is shown in Table 4 to Table 8.
Table 4 shows how our SWO technique fares against Li et al�s Tabu-Embedded Simulated Annealing (SA-Tabu), with regard
to the mean number of vehicles obtained for the problem instances. Our technique achieves on the average 0.536 vehicle more
than SA-Tabu. 

Table 5 compares the mean traveling cost. SWO�s mean traveling cost is on the average 3.262 percent higher than SA-Tabu�s.
Table 6 shows the comparison of mean schedule duration. On the average, the mean schedule cost obtained by SWO is 3.809
percent higher than that of SA-Tabu. 

Table 7 displays the comparison of mean waiting time. Our mean waiting time is on the average 56.288 percent higher than SA-
Tabu�s. 
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Finally, Table 8 compares the mean CPU time taken by the algorithms to calculate their solutions. Our mean CPU time is, on the
average, 48.687 percent lower than SA-Tabu (running on i686 as well). 

Except for waiting time, the other criteria are within a reasonable percentage of the values obtained by SA-Tabu. Our solution
also runs faster, taking almost half the time required by SA-Tabu. 

Table 1.  Solutions for LC Instances

Problem Vehicle Travel Schedule Waiting CPU
Instance Number Costs Duration Time Time(S)
LC101 10 828.937 9828.937 0.000 15.597
LC102 10 828.937 9828.937 0.000 29.523
LC103 10 827.865 10058.030 230.166 60.247
LC104 9 914.443 10122.459 208.016 160.982
LC105 10 828.937 9828.937 0.000 21.260
LC106 10 828.937 9828.937 0.000 22.614
LC107 10 828.937 9828.937 0.000 30.317
LC108 11 866.637 10563.869 697.232 43.340
LC109 10 827.817 9831.779 3.962 71.177
LC201 3 591.557 9591.557 0.000 135.410
LC202 3 591.557 9591.557 0.000 462.967
LC203 3 591.173 9601.715 10.542 996.456
LC204 3 638.181 9752.817 114.636 1072.537
LC205 3 588.876 9588.876 0.000 338.005
LC206 3 588.493 9588.493 0.000 312.259
LC207 3 588.286 9660.404 72.117 434.269
LC208 3 588.324 9744.235 155.911 786.990

Table 2.  Solutions for LR Instances

Problem Vehicle Travel Schedule Waiting CPU
Instances Numbers Costs Duration Time Time(S)
LR101 19 1650.799 3599.449 948.650 10.209
LR102 17 1491.970 3202.463 710.493 23.287
LR103 13 1293.144 2729.623 436.479 21.842
LR104 11 1074.517 2297.476 222.959 37.689
LR105 14 1390.555 2642.386 251.831 16.904
LR106 12 1272.785 2421.639 148.854 19.931
LR107 11 1150.881 2348.351 197.470 31.718
LR108 10 1028.628 2202.079 173.451 37.888
LR109 13 1257.682 2502.294 244.611 21.963
LR110 12 1244.164 2416.101 171.936 37.146
LR111 11 1136.871 2264.105 127.234 55.459
LR112 11 1060.514 2184.905 124.391 47.386
LR201 4 1267.968 3495.807 1227.839 265.461
LR202 4 1262.166 3557.722 1295.556 1021.936
LR203 3 1093.082 2770.699 677.617 1219.920
LR204 3 934.155 2768.201 834.047 2837.348
LR205 4 1138.710 3262.329 1123.620 306.579
LR206 3 942.298 2502.462 560.164 637.255
LR207 3 967.169 2726.991 759.822 1290.766
LR208 2 833.480 1920.336 86.856 2060.523
LR209 4 1021.119 2933.868 912.749 578.900
LR210 3 980.119 2782.057 801.939 880.742
LR211 3 920.509 2319.829 399.320 801.760
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Table 3.  Solutions for LRC Instances

Problem Vehicle Travel Schedule Waiting CPU
Instance Number Costs Duration Time Time(S)
LRC101 15 1713.984 3096.228 382.245 23.382
LRC102 13 1599.435 2872.113 272.678 25.645
LRC103 11 1275.817 2434.323 158.506 43.516
LRC104 10 1134.489 2241.798 107.309 37.259
LRC105 14 1679.656 2936.557 256.901 17.846
LRC106 14 1604.901 2885.686 280.784 22.130
LRC107 11 1235.553 2350.348 114.795 17.928
LRC108 12 1206.029 2404.474 198.445 29.455
LRC201 4 1858.738 3426.018 567.279 291.004
LRC202 4 1395.244 3348.195 952.951 320.678
LRC203 4 1181.532 3376.840 1195.307 413.442
LRC204 3 821.561 2511.277 689.716 1801.043
LRC205 4 1311.359 3464.606 1153.247 139.101
LRC206 4 1221.384 2987.730 766.346 406.651
LRC207 4 1142.869 2881.529 738.660 387.984
LRC208 4 939.373 2733.041 793.668 868.296

Table 4.  Comparison of Mean Number of Vehicles
Obtained by SWO and SA-Tabu

Problem SWO SA-Tabu Absolute
Instance Difference
LC1 10.000 9.889 0.111
LC2 3.000 3.000 0.000
LR1 12.833 11.917 0.917
LR2 3.273 2.727 0.545
LRC1 12.500 11.625 0.875
LRC2 3.875 3.250 0.625
Average 7.768 7.232 0.536

Table 5.  Comparison of Mean Total Travel Costs
Obtained by SWO and SA-Tabu

Problem SWO SA-Tabu Percentage 
Instance   Difference 
LC1 842.383 832.084 1.238
LC2 595.806 589.229 1.116
LR1 1254.376 1222.201 2.633
LR2 1032.798 973.870 6.051
LRC1 1431.233 1387.594 3.145
LRC2 1234.008 1187.817 3.889
Average 1072.913 1039.015 3.262
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Table 6.  Comparison of Mean Schedule Duration
Obtained by SWO and SA-Tabu

Problem SWO SA-Tabu Percentage 
Instance   Difference 
LC1 9968.980 9874.204 0.960
LC2 9639.957 9609.744 0.314
LR1 2567.573 2467.738 4.046
LR2 2821.846 2455.745 14.908
LRC1 2652.691 2537.215 4.551
LRC2 3091.154 2736.971 12.941
Average 4904.329 4724.381 3.809

Table 7.  Comparison of Mean Total Waiting Time
Obtained by SWO and SA-Tabu

Problem SWO SA-Tabu Percentage 
Instance   Difference 
LC1 126.597 42.119 200.568
LC2 44.151 31.765 38.990
LR1 313.197 245.537 27.556
LR2 789.048 478.602 64.865
LRC1 221.458 149.621 48.013
LRC2 857.147 549.154 56.085
Average 402.845 257.758 56.288

Table 8.  Comparison of Mean CPU Time Taken by SWO and SA-Tabu

Problem SWO SA-Tabu Percentage 
Instance   Difference 
LC1 50.562 225.610 -77.589
LC2 567.362 196.317 189.003
LR1 30.119 371.025 -91.882
LR2 1081.926 1876.384 -42.340
LRC1 27.145 261.218 -89.608
LRC2 578.525 1536.175 -62.340
Average 394.677 769.155 -48.687

Conclusion and Future Research

In this paper, we have successfully implemented SWO in a new domain to the PDPTW, obtaining good results. Our
implementation includes the integration of Solomon�s Insertion Heuristic and local search in the constructor. It uses a simple
blaming system based on the objectives we seek, and works well. For the prioritizer, we have used a multi-level stable sort. 

With this relatively primitive approach, we have managed to obtain encouraging results on the 56 Solomon�s benchmark instances.
In future work, it is possible to attempt using SWO on PDPTW to explore more complex blame and prioritizing systems.
Characteristics specific to the PDPTW problem could be analyzed and incorporated into the SWO framework to further improve
its performance. A study on how various heuristics and searches would perform within the SWO framework will shed more light
on the effectiveness of various combinations and hybridizations of heuristics and SWO.
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It is very likely that with these additional enhancements and modifications, our straightforward implementation of SWO can be
greatly improved. We hope to achieve results and performance on par with those obtained by SA-Tabu, and be able to even
surpass these. 
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