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Abstract

This paper analyzes the integrated operational and financial risk management portfolio of a

firm that determines whether to use flexible or dedicated technology and whether to undertake

financial risk management or not. The risk management value of flexible technology is due to

its risk pooling benefit under demand uncertainty. The financial risk management motivation

comes from the existence of deadweight costs of external financing due to capital market imper-

fections. Financial risk management has a fixed cost, while technology investment incurs both

fixed and variable costs. The firm’s limited budget, which depends partly on a tradable asset,

can be increased by borrowing from external markets, and its distribution can be altered with

financial risk management. In a parsimonious model, we solve for the optimal risk manage-

ment portfolio, and the related capacity, production, financial risk management and external

borrowing levels, the majority of them in closed form. We characterize the optimal risk man-

agement portfolio as a function of firm size, technology and financial risk management costs,

product market (demand variability and correlation) and capital market (external financing

costs) characteristics. Our analysis contributes to the integrated risk management literature

by characterizing the optimal risk management portfolio in terms of a more general set of op-

erational and financial factors; providing the value and limitation of operational and financial

risk management by explicitly modeling their costs and benefits; demonstrating the interactions

between the two risk management strategies; and relating our theoretical results to empirical

observations.

Key Words: Risk Management, Capacity Investment, Flexibility, Financing, Operational

Hedging.
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1 Introduction

This paper is about integrating operational and financial risk management and characterizing the

drivers of the optimal integrated risk management portfolio. The two means of risk management are

motivated by the existence of different market imperfection costs and utilize different tools. On the

operational side, firms are exposed to demand and supply uncertainties in product markets. These

uncertainties, which we call forms of product market imperfection, impose supply-demand mismatch

costs. To manage these costs, firms rely on different types of operational flexibility that provide a

better response to product market imperfections and counterbalance the effect of supply-demand

mismatch costs. On the financial side, firms do not always have sufficient internal cash flows to

finance their operations and depend on external capital markets to raise funds. The transaction

costs in capital markets (bankruptcy costs, taxes, underwriter fees, agency costs etc.), which are

forms of capital market imperfection, impose deadweight costs of external financing on firms. To

manage these costs, firms rely on different types of financial instruments written on tradable assets

with which their cash flows are correlated. These financial instruments engineer the internal cash

flows of firms to meet their optimal investment needs and counterbalance the effect of external

financing costs.

Despite responding to two different types of market imperfection, operational and financial

risk management interact with each other: The choice of operational risk management has im-

plications for financial risk management and vice versa. Therefore, operational and financial risk

management should be viewed as constituting an integrated risk management portfolio. In practice,

most corporate-level risk management programs of non-financial firms focus only on financial risk

management (Bodnar et al. 1998). At the same time, a number of large non-financial firms are

becoming more interested in operational solutions to manage their risk exposures (Business Week

1998). Due to the existence of both product and capital market imperfections in practice, using

both risk management tools – and doing so in an integrated fashion – is important.

The academic literature on risk management has largely documented the value and effectiveness

of each risk management tool in isolation. Relatively little progress has been made in understanding

their interactions and the main drivers of an optimal integrated risk management portfolio. The

objective of this paper is to enhance our understanding of integrated risk management. Our main

contributions are to model and analyze an integrated risk management problem that (i) yields

structural results about the characteristics and drivers of an optimal risk management portfolio; (ii)

provides managerial guidelines that can be used in designing risk management programs; and (iii)

can be used to generate hypotheses that account for operational and product market characteristics

to a greater extent than the existing empirical risk management literature.
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To this end, we model a budget-constrained manufacturer who produces and sells two prod-

ucts. Product demands are random, which is the product market imperfection, and correlated. The

firm chooses between flexible and dedicated technologies that incur fixed and variable costs, and

determines the capacity level of the chosen technology. Because of its risk pooling benefit, the

flexible technology is the firm’s operational risk management tool. The firm’s limited budget par-

tially depends on a perfectly tradable asset. The firm can relax its budget constraint by borrowing

from external markets, but borrowing incurs external financing costs that originate from capital

market imperfections. Forwards written on the asset price can be used as the firm’s financial risk

management tool to alter the budget distribution and help counterbalance the effect of external

financing costs. The fixed and variable investment costs of flexible technology are higher than

those of dedicated technology, and financial risk management has a fixed cost. Therefore, it may be

undesirable to use these tools despite their value. In this rich but parsimonious model, we answer

the following research questions:

1. What is the optimal risk management portfolio of the firm (defined as choosing flexible versus

dedicated technology, and engaging in financial risk management or not) as a function of firm

size, technology and financial risk management costs, product market conditions (demand

variability and correlation) and capital market conditions (external financing costs)?

2. What are the fundamental drivers of the optimal risk management portfolio?

3. Are financial and operational risk management complements or substitutes?

4. What are the consequences of the interaction between financial and operational risk manage-

ment? What is the effect of financial risk management on operational decisions?

5. Can our results be used to support or refine existing empirical research?

We derive the optimal integrated risk management portfolio and the related capacity, produc-

tion, financial risk management and external borrowing levels, the majority of them in closed form.

Our analysis reveals that there are three fundamental drivers that explain the optimal portfolio

choice: the robustness of the optimal capacity investment level to product market conditions, the

level of reliance on external financing and the opportunity cost of financial risk management. These

drivers work in opposite directions for large and small firms due to differences in their borrowing

needs under financial risk management. As a result, the size of the firm is highly relevant – the

same underlying conditions lead to different optimal portfolio choices as a function of firm size.

Conversely, it may be optimal for small and large firms to choose the same optimal portfolio for
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entirely different reasons. These results generate managerial insights and guidelines for designing

an integrated risk management program.

Our analysis clearly illustrates the intertwined nature of operational and financial risk manage-

ment strategies. We show that firms can use financial risk management for speculative purposes

with flexible technology, whereas they may prefer to hedge with dedicated technology. The reason is

that firms with a limited internal budget can optimally increase their asset risk exposure to cover the

higher fixed cost of flexible technology and invest in capacity to generate revenue. We demonstrate

that engaging in financial risk management may induce the firm to change its technology decision;

flexible technology and financial risk management can be complements or substitutes. This is a

direct consequence of the difference between each technology regarding the counterbalancing value

of financial risk management with respect to external financing costs.

We relate our theoretical findings to empirical observations concerning risk management prac-

tices of firms. Our results provide theoretical support for some observations and highlight additional

trade-offs in others. For example, we establish that the value of financial risk management increases

in external financing costs only for large firms and not for small firms. This is in contrast to existing

understanding that this is true for any firm. We show that if firms use financial instruments only

for hedging purposes, it is optimal for small firms to not undertake financial risk management;

existing arguments attribute this observation only to the fixed cost of establishing a financial risk

management program. The distinction we make between large and small firms, and our results

related to the effect of technology and product market characteristics on the risk management

portfolio provide new hypotheses that can be tested empirically.

We note that all of the results1 obtained are analytical and are valid for any demand and asset

price distribution with positive and bounded support. With these results, we contribute to the

growing operations management literature that incorporates financial considerations in operational

decision making. In the next section, we provide more detail about how our work contributes to

the existing literature. In §3, we describe the model and discuss the basis for our assumptions.

§4 analyzes the optimal strategy of the firm, culminating in a characterization of the optimal risk

management portfolio. §5 and §6 flesh out the results of the previous section to describe the impact

of various factors on the optimal portfolio choice. We analyze the value and effect of integrated

decision making by comparing with the non-integrated benchmark in §7. In §8, we discuss the

robustness of our results to our assumptions. §9 concludes.
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2 Literature Review

In this section, we review the streams of literature related to our paper and delineate our contribu-

tions to each stream. The operations management literature has documented the risk management

value of operational flexibility. Starting with the influential studies of Huchzermeier and Cohen

(1996), Cohen and Huchzermeier (1999) and Kouvelis (1999), this stream delineates the value of

various operational flexibilities (e.g. technology flexibility, geographical diversification, postpone-

ment) in the firm’s network structure, referred as operational hedges, in managing demand-side

product market imperfections (Van Mieghem 2003, 2006, Aytekin and Birge 2004, Kazaz et al.

2005). We refer the reader to Boyabatlı and Toktay (2004) for a recent review of papers in this

stream. A number of papers take this analysis further and study the interaction between different

operational flexibilities of firms (Bish and Wang 2004, Goyal and Netessine 2005, Chod et al. 2006a,

Dong et al. 2006). This stream of papers (often implicitly) assumes perfect capital markets and

hence there are neither deadweight costs of external financing nor any value for financial risk man-

agement. We demonstrate the effect of external financing costs and financial risk management on

the value of operational risk management, and document several interactions between operational

and financial risk management.

The finance literature on risk management, in turn, focuses on financial risk management (e.g.

forwards, options, etc.) and typically does not consider product market imperfections and opera-

tional risk management. The majority of this literature i) provides different explanations for the

existence of financial risk management that are based on different types of capital market imper-

fections; or ii) focuses on the optimal use of financial instruments in a variety of settings. Since the

focus of these papers is financial risk management, the interactions between the two risk manage-

ment strategies are not studied. We refer the reader to Fite and Pfleiderer (1995) for a review of

the first stream and Brown and Toft (2001) for a review of the second.

There are a few theoretical papers that study the firm’s integrated risk management portfolio

choice. In operations, Chod et al. (2006b) and Ding et al. (2005) analyze the interaction between

financial risk management and different types of operational flexibility, where financial risk manage-

ment is motivated by the risk aversion of the decision maker. Chod et al. (2006b) analyze whether

financial risk management complements or substitutes operational flexibility. They demonstrate

that this depends on whether the optimal flexibility level increases or decreases with financial hedg-

ing. We show that financial and operational risk management can again be either complements or

substitutes under external financing, but the driver is firm size. Ding et al. (2005) is closest to our

paper in terms of its research objective. They study the integrated operational (postponement)

and financial risk management (currency options) decisions of a multinational firm and delineate
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the value of each risk management strategy under demand and exchange rate uncertainty. In a

numerical study, they show that engaging in financial risk management alters the robustness of op-

erational decision variables (capacity) with respect to demand variability and changes the strategic

decision variables (global supply chain structure). We demonstrate similar results analytically. In

addition, we analyze the effect of external financing costs, demand correlation and firm size on

the optimal risk management portfolio. Incorporating the costs of each risk management strategy

enables us to also explore the limits of their use.

In finance, Mello et al. (1995) and Chowdry and Howe (1999) model a multinational firm that

has sourcing flexibility (sourcing from both domestic and foreign production facilities is possible)

and that uses financial instruments to manage the exchange rate risk. These papers demonstrate

the value of sourcing flexibility in conjunction with financial risk management. The focus of these

papers is mainly financial risk management, and they do not consider a detailed representation of the

firm’s operations. Our analysis generates a number of insights about integrated risk management

in a more detailed model of firm operations.

All of these papers assume that financial risk management is costless, in which case financial

risk management is trivially included in the optimal risk management portfolio since it has positive

value. In contrast, the fixed cost of financial risk management (e.g. software and personnel costs)

can be a deterrent in practice. Motivated by this observation, we incorporate a positive fixed

cost for engaging in financial risk management. This makes whether to engage in financial risk

management or not a nontrivial question. The answer to this question goes beyond a boundary

invest/do not invest decision divorced of the other decision variables: Under a budget limit and

external financing costs, the effective cost of financial risk management is larger than its fixed cost

because the firm may need to borrow an additional amount as a result of incurring this fixed cost.

Therefore, engaging in financial risk management has an impact on the level of other decisions

variables. Similarly, the fixed cost of the technology investment has a subtle effect on the optimal

portfolio. These interactions add interesting dimensions to the optimal risk management portfolio.

In contrast to the theoretical finance research, the empirical finance literature has paid more

attention to operational risk management, as reviewed in Smithson and Simkins (2005). This

literature either statistically or qualitatively attributes a number of empirical observations to the

firm’s operational risk management capabilities, which we discuss these observations in detail in §5
and §6. We contribute to this stream in a number of ways: We provide theoretical support for some

empirical observations and delineate additional trade-offs in some others; we provide alternative

explanations to some observations that are based on the interplay between the two risk management

strategies; and we identify potential future empirical research avenues.
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In summary, our major contribution is to the integrated risk management literature. We con-

tribute to this literature by i) characterizing the optimal risk management portfolio in terms of

a more general set of operational and financial factors; ii) providing the value and limitation of

each risk management strategy by explicitly modelling the costs and benefits of each strategy; iii)

demonstrating the interactions between the two risk management strategies; and iv) relating our

theoretical predictions to empirical observations.

Note that we have made a distinction between papers that augment the financial risk manage-

ment analysis with operational risk management versus operational decisions only. Up to this point,

we focused on the former, which involves a type of flexibility that can be used for risk management

(and subsumes a number of operational decisions). The latter focuses only on operational decisions

in analyzing financial risk management.

In the latter stream, we highlight Froot et al. (1993) from the finance literature since their

modelling of the financial risk management motive is the same as in our paper. The authors

use a concave increasing investment cost function to capture the operational dimension. They

demonstrate that financial risk management adds value by generating sufficient internal funds to

finance operational investments when there exist deadweight costs of external financing. We ex-

tend their framework by formalizing the operational investments (by incorporating product market

characteristics, and technology and production decisions), and by imposing a cost for financial risk

management. We illustrate that some of their predictions continue to hold, whereas some change

due to the interplay between financial and operational decisions.

In the operations literature, Birge (2000), Chen et al. (2004), Gaur and Seshadri (2005), and

Caldentey and Haugh (2005, 2006) document the value of financial risk management when the

operating cash flows are correlated with a financial index. The financial risk management rationale

is the risk-aversion of the decision maker in the latter three papers. Among these papers, we

can link our paper to Caldentey and Haugh (2005) who motivate financial risk management by

imposing a budget constraint on the firm, but without the possibility of external financing. This

can be viewed as a special case of our model: When the external financing cost is sufficiently high,

the firm never borrows. The external borrowing feature of our model is an important determinant

of the risk management portfolio: the reliance on external borrowing determines the technology

choice and the value of financial risk management with each technology.

Finally, our work is related to two other streams in operations management. The stochastic

capacity investment literature analyzes the question of flexible versus dedicated technology choice

with demand-side (uncertain demand) and supply-side (unreliable supply) product market imper-

fections. We refer readers to Van Mieghem (2003) for an excellent review and to Tomlin and Wang
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(2005) for a specific focus on the supply-side imperfection. As highlighted in Van Mieghem (2003),

stochastic capacity models (often implicitly) assume perfect capital markets. We demonstrate that

under financing frictions, there exist additional trade-offs in technology choice: the level of reliance

on external financing and the value of financial risk management with each technology.

A second stream relaxes the perfect capital market assumption and models the firm’s joint

financial and operational decisions (Lederer and Singhal 1994, Buzacott and Zhang 2004, Babich

and Sobel 2004, Xu and Birge 2004 and Babich et al. 2006). The primary focus of these papers is

to analyze the effect of external financing costs and the financing decision on operational decisions.

They demonstrate the value of integrated financing and operational decision making. We extend

the interaction argument in these papers by considering another facet of financial decisions, finan-

cial risk management. Our analysis reveals that the effect of external financing costs are largely

dependent on the value of financial risk management and that technology choice is a key determi-

nant of the firm’s reliance on external markets: the higher investment cost of flexible technology

requires higher external financing levels than dedicated technology.

3 Model Description and Assumptions

We consider a monopolist firm selling two products in a single selling season under demand un-

certainty. The firm chooses the technology (dedicated versus flexible), the capacity investment

level and the production level so as to maximize expected shareholder wealth. Differing from the

majority of traditional stochastic technology and capacity investment problems, we model the firm

as being budget constrained, where the budget partially depends on a hedgeable market risk. We

allow the firm to undertake financial risk management to hedge this market risk, and to borrow

from external markets to augment its budget. After operating profits are realized, the firm pays

back its debt; default occurs if it is unable to do so.

We model the firm’s decisions as a three-stage stochastic recourse problem under financial

market and demand risk. In stage 0, the firm chooses its integrated risk management portfolio.

The firm decides its technology choice (flexible or dedicated), whether to engage in financial risk

management, and if so, its financial risk management level under demand and financial market

risk. In stage 1, the financial market risk is resolved and the financial risk management contract

(if any) is exercised; these two factors determine the internal cash level of the firm. The firm

then determines the level of external borrowing and makes its capacity investment using its total

budget (internal cash and borrowed funds). In stage 2, demand uncertainty is resolved and the

firm chooses the production quantities for each product. Subsequently, the firm either pays back

its debt or defaults. In the remainder of this section, we define the firm’s objective and discuss
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the assumptions concerning each decision epoch in detail. We discuss the robustness of our results

with respect to the majority of these assumptions in §8.

Assumption 1 The firm maximizes the expected (stage 2) shareholder wealth by maximizing the

expected value of equity. The shareholders are assumed to be risk-neutral and the risk-free rate rf

is normalized to 0. Shareholders have limited liability.

The main goal of corporations is to maximize shareholder wealth. The expected shareholder wealth

is a function of the expected cash flows to equity of the firm and the required rate of return of the

shareholders. By assuming the risk neutrality of shareholders, we focus on maximizing the expected

equity value of the firm. The required rate of return is the risk-free rate, which is normalized to

0 by assumption. Although the shareholders are risk-neutral, the existence of external financing

costs creates an aversion to the downside volatility of the internal cash level in stage 1: The firm

may be forced to underinvest in capacity at low internal cash level realizations because of external

financing costs. This creates a motivation for undertaking firm-level financial risk management

activities (Froot et al. 1993).

3.1 Stage 0

In this stage, the firm determines its technology choice T ∈ {D,F}, whether to use financial

risk management, and if so, the financial risk management level HT under financial market and

demand uncertainty. The flexible technology (F ) has a single resource that is capable of producing

two products. The dedicated technology (D) consists of two resources that can each produce a

single product.

Assumption 2 Technology T has fixed (FT ) and variable (cT ) capacity investment costs. The

fixed cost of the flexible technology is higher than that of the dedicated technology; FF ≥ FD. The

variable capacity investment cost of the two dedicated resources are identical. Both technologies are

sold immediately at the end of the selling season at a reduced price of γT FT where γT is the salvage

rate and 0 ≤ γT < 1. The firm commits to technology in this stage whose fixed cost is incurred in

stage 1.

Since flexible technology is generally more sophisticated than dedicated technology, the fixed cost

of flexible technology is assumed to be higher. The stage 0 commitment of the firm to technology

choice can be justified by the lead time of the acquisition (if outsourced) or the development time

(if built in-house) of the technology. When the technology is resold, because of depreciation and

liquidation costs, the fixed cost of the technology cannot be fully retrieved (γT < 1).
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Assumption 3 The firm uses a loan commitment contract to finance its capacity investment and

to cover the fixed cost of the committed technology. The terms of the contract are known at stage

0, while borrowing takes place at stage 1.

Loan commitment is a promise to lend up to a pre-specified amount at pre-specified terms. In

practice, most short-term industrial and commercial loans in the US are made under loan commit-

ment contracts (Melnik and Plaut 1986). At stage 0, the firm owns the right to a loan contract

that can be exercised in stage 1. We discuss the characteristics of the loan commitment contract

in Assumption 6 of stage 1.

Assumption 4 At stage 0, the firm has rights to a known internal stage 1 endowment (ω0, ω1).

Here, ω0 represents the cash holdings and ω1 represents the asset holdings of the firm. The asset is

a perfectly tradeable asset that has a known stage 0 price of α0 and random stage 1 price of α1. The

random variable α1 has a continuous distribution with positive support and bounded expectation α1.

With this assumption, in stage 0, the firm knows that the value of its endowment will be ω0 +α1ω1

in stage 1, where α1 is random; this is the financial market risk in our model. This representation is

consistent with practice: In general, firms hold both cash and tradable assets on their balance sheet,

such as a multinational firm that has pre-determined contractual fixed payments denominated in

both domestic and foreign currency, or a gold producer that produces a certain level of gold that

is exposed to gold price risk. In these examples, the asset price α1 represents the exchange rate

and the gold price in stage 1, respectively. Although the cash and the asset holdings are certain,

the price of the asset makes the stage 1 value of the internal endowment random. The firm can use

financial risk management tools to alter the distribution of this quantity.

Assumption 5 The firm uses forward contracts written on asset price α1 to financially manage

the market risk. There is a fixed cost FFRM of engaging in financial risk management that is

incurred in stage 0 by transferring the rights of the firm’s claims ω0 and ω1, in proportions β and

1 − β. Forward contracts are fairly priced. We restrict the number of forward contracts HT such

that the firm does not default on its financial transaction in stage 1.

Forward contracts are the most prevalent type of financial derivatives used by non-financial firms

(Bodnar et al. 1995). The fixed cost of financial risk management (FFRM ) includes the costs of

hiring risk management professionals, and purchasing hardware and software for risk management;

it is independent of the number of forward contracts used. In a recent survey, non-financial firms

report this fixed cost as the second most important reason for not implementing a financial risk

management program (Bodnar et al. 1998). Since we focus on loan commitment contracts and
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the firm can borrow from external markets only at stage 1, FFRM is deducted in stage 0 from

the firm’s stage 1 endowment by transferring the rights of the claims ω0 and ω1 with β and 1− β

proportions respectively. In other words, rights for βFFRM of the cash holdings and (1−β)FFRM

α0

of the asset holdings are transferred in stage 0. This leaves the firm with a stage 1 endowment

of (ωFRM
0 , ωFRM

1 ) .= (ω0 − βFFRM , ω1 − 1−β
α0

FFRM ). The firm can only engage in financial risk

management if these quantities are non-negative, or equivalently, if FFRM ≤ min
(

ω0
β , α0ω1

1−β

)
. Since

the firm is exposed to external financing costs in stage 1, there is an opportunity cost associated

with FFRM : The firm has lower internal cash in stage 1 and may need to borrow more from

external markets after paying for FFRM . The fair-pricing assumption ensures that the firm can

only affect the distribution of its budget in stage 1 – and not its expected value – by financial risk

management. We restrict the feasible set of forwards to the range
[
−ωFRM

0
α1

, ωFRM
1

]
. Within this

range of forwards the firm never defaults on its financial transaction in stage 1. This ensures that

we can use default-free prices in forward transactions.

3.2 Stage 1

In stage 1, the market risk α1 is resolved. The value of the firm’s internal endowment and the

exercise of the financial contract (if any) determine the firm’s budget B. In this stage, the firm can

raise external capital if the budget is not sufficient to finance the desired capacity investment. The

firm determines the amount of external borrowing and the capacity investment level under demand

uncertainty.

Assumption 6 With the loan commitment contract, the firm can borrow up to credit limit E from

a unit interest rate of a > rf = 0. The face value of the debt eT (1 + a) is repaid out of the firm’s

assets in stage 2. The firm has physical assets of value P (e.g. real estate) that are pledged to the

creditor as collateral. The loan is secured (fully collateralized), i.e. E(1 + a) ≤ P . The physical

assets are illiquid; they can only be liquidated with a lead time. The value of the physical assets P

is sufficient to finance the budget-unconstrained optimal capacity investment level of the firm. The

salvage value of technology (γT FT ) cannot be seized by the creditor among the firm’s assets. Any

possible costs that may be incurred in the borrowing process by the creditor (e.g. fixed bankruptcy

costs) are charged ex-ante to the firm in a.

We assume that the loan commitment is fully collateralized by the firm’s physical assets P , i.e.

E(1 + a) ≤ P , since most bank loans are secured by the company’s assets (Weidner 1999) and

modelled as such (Mello and Parsons 2000). Although the loan is fully collateralized, if the firm’s

final cash position is not sufficient to cover the face value of the debt, the firm cannot immediately

liquidate the collateral assets to repay its debt since the physical assets are illiquid. Under limited
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shareholder liability, this leads to default, in which case the creditor can seize these physical assets,

liquidate them and use their liquidation value to recover the loan. The salvage value of technology

is assumed to be non-seizable; the creditor cannot use the salvage value to recover the face value of

the loan. We also assume that the creditor’s transaction costs associated with default (e.g. fixed

bankruptcy costs) are charged to the firm ex-ante in the unit borrowing cost.

A positive unit financing cost (a > 0) and a credit limit less than the value of the collateralized

asset (E < P ) can be interpreted as the deadweight costs of external financing that arise from

capital market imperfections: If the capital markets are perfect (i.e. there are no transaction costs,

default related costs, information asymmetries), then the contract parameters are determined such

that the loan is fairly valued in terms of its underlying default exposure. Since we focus on a

collateralized loan, in the absence of default-related deadweight costs, there is no risk for the

creditor associated with default. Consequently, in perfect capital markets, the fair unit financing

cost of the loan commitment contract would be the risk-free rate (a = 0), and the credit limit would

be the value of collateralized physical asset (E = P ). If there are capital market imperfections,

then a > 0 and E < P would be obtained in a creditor-firm interaction. Therefore, although we

assume that they are exogenous parameters in this paper, a positive unit financing cost (a > 0)

and a credit limit less than the value of the collateralized asset (E < P ) can be interpreted as

capturing the deadweight costs of external financing that arise from capital market imperfections.

This parallels the assumptions in Froot et al. (1993) who take the external financing costs as

exogenous and state that they can be argued to arise from deadweight costs associated with capital

market imperfections.

In a creditor-lender equilibrium, the (endogenous) contract parameters need not be identical

for each technology. In §8, we discuss conditions under which our results with identical contract

parameters are valid in a general equilibrium setting, and refer the reader to Boyabatlı and Tok-

tay (2006) for an analysis of equilibrium contract (a∗T , E∗
T ) for each technology in a creditor-firm

Stackelberg game.

To conclude, we note that our external financing cost structure provides a parsimonious model

that is consistent with real-life practices; allows us to implicitly capture capital market imperfections

and enables us to preserve tractability.

3.3 Stage 2

In this stage, demand uncertainty is resolved. The firm then chooses the production quantities

(equivalently, prices) to satisfy demand optimally. If the firm is able to repay its debt from its final

cash position, it does so and terminates by liquidating its physical assets. Otherwise, default occurs.
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In this case, because of the limited liability of the shareholders, the firm goes to bankruptcy. The

cash on hand and the ownership of the collateralized physical assets are transferred to the creditor.

The firm receives the remaining cash after the creditor covers the face value of the debt from the

seized assets of the firm.

Assumption 7 Price-dependent demand for each product is represented by the iso-elastic inverse-

demand function p(qi; ξ1) = ξiq
1/b
i for i = 1, 2. Here, b ∈ (−∞,−1) is the constant elasticity of

demand, and p and q denote price and quantity, respectively. ξi represents the idiosyncratic risk

component. (ξ1, ξ2) are correlated random variables with continuous distributions that have positive

support and bounded expectation (ξ1, ξ2) with covariance matrix Σ, where Σii = σ2
i and Σij = ρσ1σ2

for i 6= j and ρ denotes the correlation coefficient. (ξ1, ξ2) and α1 have independent distributions.

The marginal production costs of each product at stage 2 are 0.

4 Analysis of the Firm’s Optimal Risk Management Portfolio

In this section, we describe the optimal solution for the firm’s technology choice, and the levels of

financial risk management, external borrowing, capacity investment and production. A realization

of the random variable s is denoted by s̃ and its expectation is denoted by s. Bold face letters

represent vectors of the required size. Vectors are column vectors and ′ denotes the transpose

operator. Vector exponents are taken componentwise. xy denotes the componentwise product of

vectors x and y with identical dimensions. We use the following vectors throughout the text: ξ
′
=

(ξ1, ξ2) (product market demand), KF = KF (flexible capacity investment) and K
′
D = (K1

D,K2
D)

(dedicated capacity investment). Pr denotes probability, E denotes the expectation operator, χ(.)

denotes the indicator function with χ($) = 1 if $ is true, (x)+ .= max(x, 0) and Ω01 .= Ω0
⋃

Ω1.

Monotonic relations (increasing, decreasing) are used in the weak sense otherwise stated. Table

1 summarizes the decision variables. Table 6 that summarizes other notation and all proofs are

provided in Appendix A. We solve the problem by using backward induction starting from stage

2.

Stage Name Meaning

Stage 0 T ∈ {D,F} Technology choice, dedicated or flexible

HT Number of forwards with technology T

Stage 1 eT Borrowing level with technology T

KT Capacity investment level with technology T

Stage 2 QT Production quantity with technology T

Table 1: Decision variables by stage
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4.1 Stage 2: Production Decision

In this stage, the firm observes the demand realization ξ̃ and determines the production quantities

QT
′ = (q1

T , q2
T ) within the existing capacity limits to maximize the stage 2 equity value.

Proposition 1 The optimal production quantity vector in stage 2 with technology T ∈ {D,F} for

given KT and ξ̃ is given by

Q∗
D = KD, Q∗

F =
KF

ξ̃−b
1 + ξ̃−b

2

ξ̃
−b

.

Since the unit production cost is zero, the firm optimally utilizes the entire available capacity.

With dedicated technology, the optimal individual production quantities are equal to the available

capacity levels for each product. With flexible technology, the firm allocates the available capacity

KF between each product in such a way that the marginal profits for each product are equal.

4.2 Stage 1: Capacity Choice and External Financing

In this stage, the firm exercises the forward contract HT (if the firm has already decided to engage in

financial risk management at stage 0) and observes the asset price α̃1. With fair pricing, the strike

price of the forward is equal to α1. The stage 1 budgets with and without financial risk management

are therefore BFRM (α̃1,HT ) .= ωFRM
0 + α̃1(ωFRM

1 − HT ) + α1HT and B−FRM (α̃1)
.= ω0 + α̃1ω1,

respectively. We henceforth suppress α̃1 and HT and denote the available budget realization by

B̃ ∈ [0,∞). For given B̃ and T , the firm determines the optimal capacity investment level K∗
T(B̃)

and the optimal external borrowing level e∗T (B̃).

Proposition 2 The optimal capacity investment vector K∗
T(B̃) and the optimal external borrowing

level e∗T (B̃) for technology T ∈ {D, F} with a given budget level B̃ are

K∗
T(B̃) =





K0
T if B̃ ∈ Ω0

T
.= {B̃ : B̃ ≥ cT1′K0

T + FT }
KT if B̃ ∈ Ω1

T
.= {B̃ : cT1′K1

T + FT ≤ B̃ < cT1′K0
T + FT }

K1
T if B̃ ∈ Ω2

T
.= {B̃ : B̃ ≥ B̂T , cT1′K1

T + FT − ET ≤ B̃ < cT1′K1
T + FT }

KT if B̃ ∈ Ω3
T

.= {B̃ : B̂T ≤ B̃ < cT1′K1
T + FT −ET }

0 if B̃ ∈ Ω4
T

.= {B̃ : 0 ≤ B̃ < B̂T }

(1)

e∗T (B̃) =
(
cT1′K∗

T(B̃) + FT − B̃
)+

χ
(
B̃ > B̂T

)
. (2)

Here, χ(.) is the indicator function and B̂T is the unique budget threshold for technology T ∈ {F, D}
such that the firm optimally does not borrow (e∗T (B̃) = 0) and does not invest in capacity (K∗

T(B̃) =

0) for B̃ ≤ B̂T .
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The explicit expressions for the capacity vectors in the proposition are given in (28) in the proof. K0
T

is the optimal capacity investment in the absence of a budget constraint (the “budget-unconstrained

optimal capacity”). If the budget realization is high enough to cover the corresponding cost FT +

cT1′K0
T (B̃ ∈ Ω0

T ), then K∗
T(B̃) = K0

T with no borrowing. Otherwise, for each budget level

B̃ ∈ Ω1234
T , the firm determines to borrow or not by comparing the marginal revenue from investing

in an additional unit of capacity over its available budget with the marginal cost of that investment

including the external financing cost, (1+a)cT . For B̃ ∈ Ω1
T , the budget is insufficient to cover K0

T,

and the marginal revenue of capacity is lower than its marginal cost. Therefore, the firm optimally

does not borrow, and only purchases the capacity level KT that fully utilizes its budget B̃. For

B̃ ∈ Ω23
T , the marginal revenue of capacity is higher than its marginal cost (1 + a)cT . Therefore,

the firm optimally borrows from external markets to invest in capacity. K1
T is the optimal capacity

investment with borrowing, in the absence of a credit limit (the “credit-unconstrained optimal

capacity”). If the budget realization and the credit limit can jointly cover its cost, K1
T is the

optimal capacity investment; otherwise, the firm purchases the capacity level KT that fully utilizes

its budget and its credit limit. For B̃ ∈ Ω4
T , the firm must borrow to be able to invest in technology,

but the total cost of the capacity that can be purchased with the remaining B̃ + eT − FT cannot

be covered by the expected revenue it generates for any eT . Therefore, the firm optimally does not

borrow and does not invest in capacity. Appendix B characterizes B̂T and provides a closed-form

expression for a subset of parameter values.

The optimal external borrowing level e∗T (B̃) is such that the firm borrows exactly what it needs

to cover its capacity investment. Since production is costless, the firm does not incur any further

costs beyond this stage. Moreover, since the face value of the debt is always deducted from the

firm’s assets, the firm cannot transfer wealth from the creditor to shareholders by borrowing more

money than what is needed for its capacity investment. Therefore, the firm only borrows for funding

the capacity investment, which yields (2).

The optimal expected (stage 1) equity value of the firm with a given budget level B̃, πT (B̃), is

obtained in closed form (Equation 34 in Appendix A).

Corollary 1 πT (B̃) strictly increases in B̃ for B̃ ≥ 0, and is concave in B̃ on [B̂T ,∞). It is not

concave in B̃ on [0,∞).

As we will see in 4.3.1, this structure has implications for the optimal financial risk management

level.
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4.3 Stage 0: Financial Risk Management Level and Technology Choice

In this stage, the firm decides on the technology choice T ∈ {D,F}, whether to engage in financial

risk management (FRM) and if so, the financial risk management level HT , the number of forward

contracts written on the stage 1 asset price α1. The optimal expected (stage 0) equity value Π∗(W)

as a function of the internal (stage 1) endowment W
′
= (ω0, ω1) is

Π∗(W) = max
{
Λ−FRM , ΛFRM , ω0 + α1ω1 + P

}
. (3)

Here, ΛFRM and Λ−FRM denote the expected (stage 0) equity value of the better technology

with and without financial risk management (FRM), respectively, where ΛFRM is calculated at the

optimal risk management level H∗
T . In (3), the firm compares these equity values with ω0+α1ω1+P ,

the expected (stage 0) equity value of not investing in any technology. §4.3.1 derives H∗
T , §4.3.2

characterizes the optimal technology choice with and without FRM, and §4.3.3 characterizes the

solution to (3). This characterization is valid for any continuous α1 and ξ distribution with positive

support and bounded expectation.

4.3.1 Financial Risk Management

The expected direct gain from the financial contract is 0 due to the fair pricing assumption. At the

same time, financial risk management affects the distribution of the stage 1 budget BFRM (α1, HT ),

which is used to finance the firm’s capacity investment after paying for the fixed cost commitment.

In choosing HT , the goal of the firm is to engineer its budget to maximize the expected gain

from the technology commitment made in stage 0. When HT > 0 (HT < 0), the firm decreases

(increases) its exposure to the asset price risk α1. Following Hull (2000, p.12), we refer to the

first case as financial hedging, and to the second as financial speculation. We call HT = ωFRM
1 full

hedging because it isolates the budget from the underlying risk exposure. We call HT = −ωFRM
0
α1

full

speculation because it maximizes the firm’s asset risk exposure within the feasible range of forward

contracts. Proposition 3 characterizes H∗
T .

Proposition 3 There exists a unique technology fixed cost threshold F T such that

(i) If FT ≤ F T , then the firm fully hedges (H∗
T = ωFRM

1 ).

(ii) If FT > F T then

1. if ωFRM
0 + α1ω

FRM
1 ≤ B̂T , then full speculation is optimal (H∗

T = −ωFRM
0
α1

);

2. if ωFRM
0 + α1ω

FRM
1 > B̂T , H∗

T ∈
{{

HT <
bBT−ωFRM

0
α1

}
∪ {

ωFRM
1

}}
and is distribution

dependent.

15



The structure of πT is key to these results. If πT is a concave function of the available budget

B̃ on [0,∞), then full hedging is optimal. This follows by Jensen’s inequality: For concave πT ,

E [πT (BFRM (α1,HT ))] ≤ πT (E[BFRM (α1,HT ]) = πT (ωFRM
0 + α1ω

FRM
1 ), the equity value under

full hedging. However, πT is not concave if Ω4
T 6= ∅, i.e. if there is a budget range in which the firm

would not invest in capacity in stage 1 despite having made the technology investment in stage 0.

This happens when the fixed cost of the technology investment is too high to leave sufficient funds

for a profitable capacity investment.

Below the fixed cost threshold F T , Ω4
T = ∅, πT is concave, and full hedging is optimal. Above

this threshold, H∗
T depends on the expected value of the internal (stage 1) endowment ωFRM

0 +

αωFRM
1 , which is also the budget available to the firm under full hedging. When this value is

lower than B̂T , the firm would optimally not invest in capacity if it were to fully hedge. Instead,

the firm optimally chooses to increase its exposure as much as possible so as to maximize the

probability of realizing high-budget states in which it is able to invest in capacity and generate

revenue from its technology investment. (This also increases the probability of realizing low-budget

states, but the outcome in those states does not change - no capacity investment is optimal.) For

ωFRM
0 + α1ω

FRM
1 > B̂T , the optimal risk management level is distribution dependent and a full

characterization is not possible without making further assumptions.

4.3.2 Technology Choice

We now turn to the technology selection problem with and without financial risk management. The

choice T ∗ between flexible versus dedicated technology is determined by a unit cost threshold that

makes the firms indifferent between the two technologies.

Proposition 4 For given technology cost parameters (FT , γT ) and financing cost scheme (a,E),

and under the financial risk management level H∗
T for each technology, there exists a unique variable

cost threshold cF (cD,H∗) such that when cF < cF (cD,H∗) it is more profitable to invest in flexible

technology (T ∗ = F ). Without financial risk management, there is a parallel threshold cF (cD,0).

These thresholds increase in cD, FD, γF and demand variability (σ), and they decrease in FF , γD

and the demand correlation (ρ)2. With symmetric fixed costs and salvage rates,

cF (cD,H∗) = cF (cD,0) = cS
F (cD) = cD



E−b

[(
ξ−b
1 + ξ−b

2

)− 1
b

]

E−b[ξ1] + E−b[ξ2]




− 1
b+1

≥ cD, (4)

where the equality only holds if the product markets are deterministic (σ = 0), or the product

markets are perfectly positively correlated (ρ = 1) and ξ has a proportional bivariate distribution.
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The comparative statics results developed here are used in §6 to analyze the drivers of the firm’s

optimal risk management portfolio. The threshold cS
F (cD) is independent of unit financing cost a,

credit limit E, and engaging in financial risk management. Although these factors do have an

effect on the equity value of each technology, the differential value of this effect is never sufficient to

induce the firm to alter its technology decision. This threshold is independent of α1 and valid for

any distribution of ξ. The threshold cS
F (cD) is a variant of the mix flexibility threshold in Chod et

al. (2006a), and has the same structure. It is interesting to note that the same threshold structure

is valid despite the existence of external financing costs and financial risk management policy in

the symmetric cost case.

Due to the risk pooling benefit of flexible technology, we have cS
F (cD) ≥ cD. Proposition 4

shows that there is no risk pooling benefit (cS
F (cD) = cD) only if the product market demand is

deterministic, or the multiplicative demand uncertainty is perfectly positively correlated and it has

a proportional bivariate distribution (ρ = 1, σ1 = kσ2 and ξ1 = kξ2 for k > 0). Flexible technology

can have risk pooling value even if the product markets are perfectly positively correlated. This

observation is in the spirit of Proposition 6 in Van Mieghem (1998), which is based on the price-

differential of two products in a price-taking newsvendor setting. In our case, the value comes from

the fact that for non-proportional bivariate distributions, the optimal production quantities with

the flexible technology in stage 2 are state dependent such that there is still value from production

switching at different ξ realizations.

4.3.3 Optimal Portfolio Choice

The cost thresholds developed in Proposition 4 reveal which technology is more profitable with and

without financial risk management, but we need several more elements to fully characterize the

solution to (3). Four more cost thresholds achieve this purpose. These thresholds are summarized

in Table 2 and derived in the Appendix A.

The “algorithm” to solve (3) is as follows: We use the variable cost thresholds derived in

Proposition 4 to determine the optimal technologies yielding ΛFRM and Λ−FRM . Using the fixed

technology cost thresholds F−FRM
T and FFRM

T , if we determine that not investing in any technology

dominates either exactly one or both of ΛFRM and Λ−FRM , (3) is solved. Otherwise, we need to

compare ΛFRM and Λ−FRM . If the same technology is optimal in both cases, then the fixed

financial risk management cost threshold F T
FRM is used to determine whether FRM or no FRM

is optimal with that technology and (3) is solved. If different technologies are optimal with and

without FRM, then cT (c−T ,H∗
T , 0) is used to determine the optimal solution. This completes the

characterization of the optimal portfolio. The next three sections highlight and discuss a series of
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Threshold Usage

cF (cD,0) Comparison between technologies without engaging in FRM

cF (cD,H∗) Comparison between technologies with optimal FRM

cS
F (cD) Comparison between technologies with symmetric FT and γT

F−FRM
T Comparison between investing in T without FRM and not investing in any technology

FFRM
T Comparison between investing in T with FRM and not investing in any technology

FT
FRM Comparison between FRM and no FRM with technology T

cT (c−T ,H∗
T , 0) Comparison between technology T with FRM and the other technology (−T ) without FRM

Table 2: Thresholds used in solving for the firm’s optimal strategy. The first three were derived in

Proposition 4 and the last four are derived in Propositions 11, 12 and 13 in the Appendix.

insights that can be obtained from this analysis.

5 Observations Concerning the Optimal Risk Management Port-

folio

In this section, we make several observations about the structure of the optimal risk management

portfolio and its managerial implications. We start with an observation that illustrates the limits

of the value of each risk management strategy.

Corollary 2 If capital markets are perfect, F
F
FRM = F

D
FRM = 0: financial risk management

has no value. If product markets are perfect, and absent a fixed cost or salvage value advantage,

cF (cD,H∗) = cF (cD,0) = cD: flexible technology has no value.

Without capital market imperfections, the firm is not exposed to deadweight costs of external

financing, as discussed in Assumption 6. In this case, financial risk management does not have any

value. This is consistent with the decoupling of operational and financial decisions in perfect capital

markets (Modigliani and Miller 1958). If there is no demand uncertainty (Σ = 0), the product

markets are perfect, and the firm is not exposed to supply-demand mismatch costs. Absent a fixed

cost or salvage value advantage, flexible technology does not have any value. Observation 2 confirms

our intuition about the risk management role of each strategy in counterbalancing the effects of

costs that originate from product and capital market imperfections.

Corollary 3 The firm can optimally speculate with forward contracts. Flexible technology can

trigger speculative behavior.

While firms frequently use financial derivatives for hedging purposes, Bodnar et al. (1998)

document that some firms take speculative positions with financial derivatives. Froot et al. (1993)
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show that speculation may indeed be optimal when there is an external financing cost and the

return on the operational investments and the risk variable are statistically correlated. They also

conclude that in the absence of such correlation, the firm optimally fully hedges. In Proposition

3, we prove that the full-hedging conclusion need not hold if there are fixed costs of technology

investment: Firms with limited expected internal endowment may optimally speculate to be able

to invest in capacity. The majority of empirical papers assume that firms use financial derivatives

for hedging purposes (Geczy et al. 1997). Observation 3 illustrates that such an assumption can

be problematic in industries with fixed cost requirements.

It is interesting to note that speculation can be triggered by investment in flexible technology.

The higher investment cost of flexible technology induces the firm to speculate while it uses forward

contracts for hedging purposes with dedicated technology. This illustrates the intertwined nature

of the integrated risk management portfolio. Engaging in operational risk management (flexible

technology) may have a structural effect (going from hedging to speculation) on financial risk

management.

Firms may limit their usage of financial risk management to hedging only, since speculation

is typically not viewed as a desired strategy. Non-speculative use of financial risk management

imposes a hedging constraint on the feasible set of forwards by imposing HT ≥ 0, which yields the

following outcome:

Proposition 5 If the firm uses forward contracts for hedging purposes only, then the firm optimally

may not engage in financial risk management even if it is costless (FFRM = 0).

The intuition of this result is similar to the full speculation case above, obtained in the case of low

expected internal endowment value. The firm is better off by leaving the exposure to asset price

as high as possible (this corresponds to H∗
T = 0) to be able to invest in capacity. Empirical studies

unanimously demonstrate more widespread usage of financial risk management among large firms,

and this observation is attributed to the fixed costs of establishing a financial risk management

program (Allayannis and Weston 1999). Proposition 5 proposes another possible explanation: the

no-speculation constraint on financial derivative usage. With this constraint, small firms (that have

low internal endowments) do not engage in financial risk management.

In a recent empirical study, Guay and Kothari (2003) find no significant usage of financial risk

management among non-financial firms, and suggest that these firms may be using operational

hedges instead to manage their risks. We observe that indeed, firms can rely only on operational

hedges in an integrated risk management framework.

Corollary 4 Any risk management portfolio can be optimal. Financial risk management is not a

panacea. Firms can rely only on flexible technology for risk management purposes.
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If financial risk management was costless, it would always be in the optimal risk management

portfolio. Our analysis finds two reasons why firms may not use financial risk management: i)

Its fixed cost is high. Since non-financial firms do not have as much expertise as financial firms

in financial risk management, its effective fixed cost could be higher for them, which provides

support for the observed difference in usage. ii) The firm limits itself to only hedging even if

it is costless. Thus, not only the investment cost of financial risk management, but also the

interplay between financial and operational decisions is important in determining the optimal risk

management portfolio. The firm should evaluate financial risk management as an integral part of

the firm’s overall investment strategy. The next section provides guidelines about optimal portfolio

selection.

6 Characteristics of the Optimal Risk Management Portfolio

In this section, we delineate the main drivers of the optimal risk management portfolio and analyze

the interplay between financial and operational risk management. In §6.1, we relate the optimal

risk management portfolio to firm, industry, technology, product market (demand variability and

correlation) and capital market (external financing frictions) characteristics. We then analyze the

interaction between operational and financial risk management strategies in §6.2. For this analysis,

we proxy the firm size using the level of internal (stage 1) endowment. In particular:

Definition 1 The firm is defined to be small (large) if the firm borrows (does not borrow) from

external markets with flexible technology and full hedging, ωFRM
0 + α1ω

FRM
1 ∈ Ω2

F (Ω0
F ).

The finance literature qualitatively refers to small and large firms according to the degree to which

they are affected by external financing frictions. This definition formalizes this concept in the

context of our model. We parameterize the internal (stage 1) endowment as (λω0, λω1) and the

fixed technology costs as FD = F , FF = F + δ with δ ≥ 0. For tractability, we impose some

parameter restrictions.

Assumption 8 Let β = ω0
ω0+α0ω1

, γT = 0, E ≥ cT 1′K1
T(1−ab)

−(b+1)a , FT ≤ F T = cT K1
T(1+a)

−(b+1)a , and FT <

F−FRM
T .

These assumptions ensure the following: FFRM ≤ ω0 + α0ω1, so that financial risk management is

feasible, and undertaking financial risk management or not can be optimal. If the firm engages in

financial risk management, it optimally fully hedges; this rules out cases where the optimal financial

risk management level cannot be uniquely characterized. The firm is not constrained by the credit

limit, so the effective financing friction is the unit financing cost a. Finally, the optimality of not

investing in either technology is ruled out.
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6.1 Comparative Statics Results

We define ∆T as the value of financial risk management (FRM) with technology T :

∆T
.= E

[
πT

(
BFRM (α1, ω

FRM
1 )

)]− E [πT (B−FRM (α1))] . (5)

To investigate the main drivers of the optimal portfolio choice, we carry out comparative statics

analysis on the variable cost thresholds cF (cD,H∗) and cF (cD,0), and on ∆T . The results below

hold locally such that Assumption 8 and the defining regions for small and large firms are not

violated.

Proposition 6 (Technology Choice) With symmetric fixed technology costs (FF = FD), cF (cD,H∗)

and cF (cD,0) are invariant to the unit financing cost (a), the fixed costs of both technologies (F ) and

the internal endowment (λ) of the firm. With asymmetric fixed costs (FF > FD), cF (cD,H∗) and

cF (cD,0) decrease in the fixed costs of both technologies and the unit financing cost, and increase

in the internal (stage 1) endowment of the firm.

With symmetric fixed costs, the technology ordering is independent of financing cost, fixed

costs and internal (stage 1) endowment. With asymmetric fixed costs, since flexible technology

has a higher investment cost, any increase in costs (fixed cost, financing cost) favors the dedicated

technology; a decrease in costs (such as an increase in the internal (stage 1) endowment), favors

the flexible technology.

Proposition 7 (Value of FRM) The value of FRM increases in the external financing cost (a) for

large firms. For small firms, the value of full hedging increases (decreases) in the external financing

cost at low (high) levels of FFRM . For large (small) firms, the value of FRM increases (decreases)

in the fixed cost of technology (F ) and the demand variability (σ), and decreases (increases) in the

internal (stage 1) endowment (λ) and the demand correlation (ρ).

We now explain the drivers of Proposition 7 by grouping the results that have similar intuition.

Since with Assumption 8, the firm optimally fully hedges with financial risk management, we refer

to the firm engaging (not engaging) in financial risk management as the hedged (unhedged) firm.

The effect of external financing cost. Financial risk management is valuable since it reduces

risk exposure and hence the expected borrowing level. At the same time, it is costly, and there

is an opportunity cost for engaging in FRM: the firm may even need to borrow additional funds

to finance its operational investments. These two drivers combine to determine how an increase

in financing cost impacts the financial risk management decision of the firm. For large firms, the

hedged firm – by Definition 1– does not borrow at all, while the unhedged firm is adversely affected
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from increasing financing costs. Therefore, the value of financial risk management increases in the

financing cost. For small firms, this trade-off depends on the fixed cost of financial risk management.

For low fixed costs, the value of financial risk management increases in financing costs; at high fixed

costs, the opposite occurs.

The effect of fixed technology cost and internal (stage 1) endowment. The proof of the

proposition reveals that there is one fundamental driver that explains both comparative statics

results: the level of reliance on external financing, as summarized in Table 3. A firm’s reliance

on external financing increases as the fixed investment cost F increases and the internal (stage 1)

endowment level λ decreases. By Definition 1, the large hedged firm does not need to borrow and

the large unhedged firm borrows in some budget realizations. Therefore, increasing the reliance

on external financing adversely affects the unhedged firm while not affecting the hedged firm. We

conclude that for large firms, the value of FRM increases as the need for external financing increases.

Since the small hedged firm, by Definition 1, always borrows and the small unhedged firm only

borrows in some budget realizations, increasing the reliance on external financing adversely affects

the unhedged firm, but it affects the hedged firm even more. We conclude that for small firms, the

value of FRM decreases as the need for external financing increases.

Case Borrowing level Increasing reliance on external financing

Large unhedged firm Borrows in some states Increases the value of FRM since

Large hedged firm Does not borrow the unhedged firm borrows more in expectation

Small unhedged firm Borrows in some states Decreases the value of FRM since

Small hedged firm Borrows in all states the hedged firm borrows more in expectation

Table 3: Increasing the reliance on external financing has the opposite effect on the value of financial

risk management for large and small firms. A firm’s reliance on external financing increases as the

fixed investment cost F increases, and it decreases as the internal (stage 1) endowment level λ

increases.

The effect of demand correlation and demand variability. These two factors have an effect

on the firm only with flexible technology. The proof of the proposition reveals that there is one

fundamental driver that explains these two comparative statics results: the marginal change in the

optimal investment level with changes in these factors, as summarized in Table 4. A firm’s optimal

investment level decreases as the demand variability decreases or the demand correlation increases.

The small unhedged firm borrows only in some budget realizations, while the small fully hedged firm

always borrows. As a result, the small hedged firm employs a more conservative investment policy

(the capacity investment level is lower at each state) than the unhedged firm since its exposure to

external financing costs is higher. Consequently, a similar change in variability or correlation alters
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the small hedged firm’s optimal investment policy to a lower extent than the unhedged firm’s; its

optimal investment level is more robust to changes in these factors. Therefore, while a reduction in

the optimal investment level (due to a decrease in variability or an increase in correlation) adversely

affects the small hedged firm, it affects the small unhedged firm even more. We conclude that for

small firms, the value of FRM increases as the optimal investment level decreases. For large firms,

the opposite result holds. This follows from parallel arguments based on the fact that the large

unhedged firm needs to borrow in some budget realizations, while the large hedged firm does not.

Case Borrowing level Reduction in the optimal investment level at each budget state

Large unhedged firm Borrows in some states Decreases the value of FRM since the hedged firm’s

Large hedged firm Does not borrow optimal investment is less conservative and less robust

Small unhedged firm Borrows in some states Increases the value of FRM since the hedged firm’s

Small hedged firm Borrows in all states optimal investment is more conservative and more robust

Table 4: A reduction in the optimal investment level at each state has the opposite effect on the

value of financial risk management for large and small firms. A firm’s optimal investment level

decreases as the demand variability decreases or the demand correlation increases.

Synthesis. Table 5 summarizes the main drivers of each optimal portfolio choice for large and small

firms by combining Propositions 4, 6 and 7 for technologies with asymmetric fixed cost (FF > FD).

By definition, if the variable cost thresholds increase in a parameter, flexible technology is preferred

under a larger set of conditions as that parameter increases, and we say that “flexible technology is

favored.” Similarly, if ∆T increases in a parameter, we say “financial risk management is favored.”

While not exact, this usage captures the direction of change. For example, high demand variability

and low demand correlation favor investing in flexible technology and undertaking financial risk

management for large firms. This is how Table 5 is constructed. We note that the capital intensity

of an industry can be captured by keeping the internal endowment level constant and altering the

fixed technology costs. With a given internal endowment level, a sufficiently high (low) fixed cost

implies a small (large) firm according to our definition. Therefore, our results about small and large

firms can be interpreted as being relevant for capital intensive and non-capital intensive industries,

respectively.

The main message of Table 5 is that the size of the firm is key to optimal portfolio choice. As

explained earlier, the three fundamental drivers behind the optimal portfolio choice (opportunity

cost of financial risk management, level of reliance on external financing, and robustness of the

optimal capacity investment level to variability and correlation) work in opposite directions for

small and large firms. Therefore, different size firms may choose the same optimal portfolio for

entirely different reasons.
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Portfolio Choice Large Firms Small Firms

High demand variability High internal endowment

F with FRM Low demand correlation Low technology fixed costs

Low financing costs with low FFRM

Low internal endowment Low demand variability

D with FRM High technology fixed costs High demand correlation

High financing costs High financing costs with low FFRM

High internal endowment High demand variability

F without FRM Low technology fixed costs Low demand correlation

Low financing costs Low financing cost with high FFRM

Low demand variability Low internal endowment

D without FRM High demand correlation High technology fixed costs

High financing costs with high FFRM

Table 5: Main Drivers of the Optimal Risk Management Portfolio with Asymmetric Fixed Tech-

nology Costs.

Table 5 is for asymmetric fixed technology costs. With symmetric fixed costs, it follows from

Proposition 4 that the technology ordering is independent of changes in any parameter. Therefore,

changes in parameter levels only affect the choice between undertaking FRM or not. Consequently,

all the conditions in Table 5 that favor flexible or dedicated technology with FRM and without

FRM for a given firm size favor using FRM and not using FRM, respectively. We conclude that

the technology cost characteristic is also key to the optimal portfolio structure.

We now relate our theoretical findings to the associated empirical literature. The financial

risk management literature relates the value of financial risk management to underlying exposure,

growth opportunities and size of firms (Allayannis and Weston 1999). Our results demonstrate

that the value of financial risk management also depends on the product market and technology

characteristics, and that there are subtle differences between large and small firms.

Gay and Nam (1998) say that firms with higher investment opportunities that are exposed to

higher external financing frictions and lower levels of cash make greater use of financial derivatives.

We show (in the proof of Proposition 7) that the effect of cash ω0 is the same as the effect of

internal (stage 1) endowment: A lower internal (stage 1) endowment increases the value of hedging

for small firms, but not for large firms. Therefore, our results support their argument for small

firms, but not for large firms.

The financial risk management literature hypothesizes that the value of financial risk manage-

ment increases as financing frictions increase by invoking the counterbalancing effect of financial
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risk management with respect to external financing frictions (Mello and Parsons 2000). Our results

support this argument for large firms, but not for small firms. The key is how much the firm needs

to borrow after undertaking financial risk management.

6.2 The Interaction of Operational and Financial Risk Management

We first investigate whether flexible technology and financial risk management are substitutes or

complements in an integrated risk management framework. They are defined to be substitutes if

the firm invests in flexible technology when the firm is not allowed to use financial risk management

and switches to dedicated technology when the firm engages in financial risk management; they are

called complements if the switch is from dedicated to flexible technology.

Proposition 8 Flexible technology and financial risk management can be complements or substi-

tutes. Small (large) firms tend to substitute (complement) flexible technology with financial risk

management.

The main driver of Proposition 8 is the value of financial risk management with each technology.

Flexible technology is more expensive, so it is more exposed to external financing costs. The use

of financial risk management allows large firms to secure a budget level sufficient to eliminate bor-

rowing. Thus, large firms complement flexible technology with financial risk management in their

integrated risk management portfolio. Small firms need to borrow to invest in flexible technology,

even using financial risk management, but may not need to borrow for dedicated technology if they

use financial risk management. In other words, the value of financial risk management is higher

with dedicated technology. This explains why flexible technology and financial risk management

are substitutes for small firms.

Interestingly, the empirical literature also finds mixed results on this question, albeit in other

contexts. Geczy et al. (2000) document complementarity between operational (physical storage)

and financial means of risk management among natural gas pipeline firms. In a multinational con-

text, Allayannis et al. (2001) find that financial and operational (geographical diversification) risk

management tools are substitutes. In a different framework, Chod et al. (2006b) provide another

theoretical justification for these mixed empirical results by focusing on the effect of financial risk

management on the optimal flexibility level of the firm. They demonstrate that financial risk man-

agement is a complement (substitute) to operational flexibility when the optimal flexibility level

increases (decreases) with financial hedging.

We next analyze whether the value of operational risk management (defined as the expected

(stage 0) equity value difference between flexible and dedicated technologies) is more or less robust
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to changes in product and capital market conditions when financial risk management is undertaken.

Robust strategies are preferable because they perform well under a wider range of parameters, and

can be implemented with more confidence.

Proposition 9 For large (small) firms, the value of operational risk management is less (more)

robust to changes in product market conditions (ρ, σ) and more (less) robust to changes in capital

market conditions (a) with financial risk management than without.

The proof of the proposition reveals that the robustness with respect to product market conditions

is linked to the value of FRM with flexible technology. The value of operational risk management

is more or less robust with respect to correlation if the value of FRM decreases or decreases in

correlation, respectively. This is valid for small and large firms, respectively, as we discussed in

§6.1. Robustness with respect to variability follows from a similar argument. Robustness with

respect to the unit financing cost is determined by the difference between the value of FRM with

flexible and dedicated technologies: The value of operational risk management is more robust to

changes in a if the value of FRM with flexible technology increases more rapidly than the value of

FRM with dedicated technology in response to an increase in a.

Proposition 9 again illustrates the intertwined nature of operational and financial risk manage-

ment strategies: Engaging in financial risk management has the opposite impact on the robustness

of the value operational risk management with respect to product and capital market conditions.

7 Value and Effect of Integrated Decision Making

Sections 5 and 6 analyzed the properties of the optimal integrated risk management portfolio and

its drivers. In practice, firms may not take an integrated approach to these decisions; operational

and financial risk management decisions may be taken independently. In this section, we focus on

the value and effect of integrated decision making. We relax the restrictions of Assumption 8 and

focus on general parameter settings.

If we ignore its effects on operational decisions, financial risk management does not have any

value because forward contracts are investments with zero expected return. For this reason, we

take no FRM as the non-integrated benchmark. Since the non-integrated benchmark is no FRM,

the results of this section can also be interpreted as the effect of engaging in FRM on the firm’s

performance and optimal decisions. The effect of FRM on the optimal expected capacity investment

and external borrowing level is ambiguous:

Proposition 10 Engaging in financial risk management can increase or decrease the optimal ex-

pected capacity investment and the optimal expected borrowing levels.
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Since financing frictions negatively impact the stage 1 capacity investment level at each budget

state, and the firm uses FRM to counterbalance the effect of financing frictions, one may expect

that with FRM, the firm’s expected borrowing level would be lower and the expected capacity

investment level would be higher than without. On the other hand, if there is cost associated with

engaging in financial risk management (FFRM > 0), the firm has less internal endowment to invest

in capacity at each budget state, and has to borrow additionally to compensate for FFRM . In the

proof of Proposition 10, we illustrate that even if FRM is costless, the optimal expected capacity

investment can decrease and the expected borrowing level can decrease. This is a direct consequence

of the joint optimization in external borrowing and capacity levels. The fundamental driver of this

result is the marginal profit of the capacity investment in the joint optimization problem as we

discussed in §4.2.

Proposition 10 shows the dependence of capacity investment on financial risk management. We

now analyze the effect of engaging in financial risk management on the technology choice:

Corollary 5 The firm may make different technology decisions with and without financial risk

management.

In their numerical analysis, Ding et al. (2005) demonstrate that financial risk management can alter

more strategic operational decisions (global supply chain structure) than the capacity investment

levels. Observation 5 is in line with their conclusion. We analytically prove that the technology

choice of the firm may be altered by engaging in FRM. The direction of change in technology choice

is determined by the value of FRM with each technology. Proposition 8 is an example for such

changes and provides the intuition with some restrictions on the parameter levels.

The analysis above illustrates the effect of integrating risk management decisions on the firm’s

decisions. We now analyze the value of such integration as a function of firm size. To separate

the value of integration from the cost of FRM, we use FFRM = 0. Here, our definition of a large

firm is the same as Definition 1, but our definition of a small firm is slightly more restrictive. We

refer to firms with very limited expected internal endowment value that optimally fully speculate

with FRM as small firms. Since under the conditions of Assumption 8, these firms fully hedge with

FRM, the new definition is consistent with Definition 1 and corresponds to a subset of small firms

in §6 that have a significantly low expected internal endowment value.

Corollary 6 The value of integration is low for small firms with low cash levels (ω0) and large

firms with high cash levels. If the firm uses financial risk management only for hedging purposes,

the value of integration is higher for large firms than for small firms.

The value of integration is equivalent to the value of engaging in FRM. Since large firms with high
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cash levels are not significantly exposed to external financing frictions without FRM, the value

of FRM, and hence the value of integration is low. In the extreme case, a cash level sufficient

to finance the budget-unconstrained optimal investment level completely removes the exposure to

external financing frictions and FRM has no value. For small firms with low levels of cash, the

additional benefit of full speculation (H∗
T = ω0

α1
) over not using FRM (H∗

T = 0) is low. In the

extreme case, if the small firm does not have any cash (ω0 = 0), then FRM has no value.

When the firm uses financial risk management only for hedging purposes, it follows from Propo-

sition 5 that small firms optimally do not engage in FRM. In this case, integration has no value.

Large firms generally fully hedge with FRM, therefore integration has value for them. In a nu-

merical analysis not reported here, we observe a similar pattern without imposing the hedging

constraint.

8 Robustness of Results to Model Assumptions

In this section, we investigate the robustness of our results to the assumptions presented in §3.

Non-identical and exogenous financing costs. We assumed a unique external financing cost

structure (a,E). The firm can be exposed to a different external financing cost structure (aT , ET )

with each technology T ∈ {D, F}. All the analytical results of §4 continue to hold by replacing

(a,E) with (aT , ET ) where a lower unit borrowing cost is associated with a higher credit limit. The

main insights of the paper do not change except that the technology with lower aT and higher ET

is favored in the optimal risk management portfolio.

Endogenous financing costs. In this paper, we focus on a partial equilibrium setting where

the financing costs are exogenous and identical for each technology. In a general equilibrium

setting, the financing cost for each technology is determined by the interaction between the firm

and a creditor. In Boyabatlı and Toktay (2006), we derive the equilibrium level of secured loan

commitment contracts (a∗T , E∗
T ) for each technology in a creditor-firm Stackelberg game using a

similar firm model. We show that the borrowing terms will be independent of technology choice

when the creditor has limited information about the firm and the technologies, there is no credible

way of information transmission, and the creditor bases its assessment of default probability on

the same cash flow distribution of the firm for any technology. These conditions are relevant for

bank financing where banks rely on the credit history of the firm for credit risk estimation and do

not have operational expertise. All of the results in this paper are valid in the general equilibrium

sense under these conditions. We refer the reader to Boyabatlı and Toktay (2006) for a detailed

treatment of endogenous financing costs.

Unsecured loan commitment contracts. If the firm uses unsecured loan commitment contracts
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(P = 0), the firm only receives the salvage value of the non-pledgable technology in the default

states. The limited liability of the shareholders left-censors the stage 2 equity value distribution at

0. The expected (stage 1) equity value is calculated using conditional expectations with respect to

default and non-default events. The probability of default depends on the capacity investment level,

external borrowing level and the risk-pooling value of the technology choice. At stage 1, similar to

secured lending, the firm optimally borrows so as to finance the optimal capacity investment level.

In a single-product price-taking newsvendor setting, Babich et al. (2006) provide conditions under

which the expected (stage 1) equity value is unimodal (though not concave) in capacity. With

two products and endogenous pricing, the optimal capacity investment level is very hard to solve

and becomes intractable for flexible technology because of the dependence on default regions with

bivariate product market uncertainty. In our paper, the effect of limited liability is inherent in

the financing cost structure (a,E). When the capital market imperfection costs are default-related

(e.g. bankruptcy costs), if there were no limited liability then the creditor would be sure to recoup

the face value of the loan and default-related costs from the shareholders’ personal wealth. With

such a riskless loan, the cost of the loan would be the risk-free rate (a = 0) and the firm could raise

sufficient funds to finance the budget unconstrained capacity level (E = P ).

If we allow unsecured lending in our setting, we conjecture that the optimal capacity investment

level would be lower: The marginal cost of borrowing is less than 1+a because of the default, which

should induce the firm to borrow more and invest more in capacity. Structural results related to

financial risk management are expected to hold. How the technology choice would change is not

clear because of the dependence on default regions. The arguments in this section are also relevant

for i) partially secured lending (P is positive but not sufficient to finance the budget unconstrained

capacity investment), and ii) secured lending with default-related costs deducted from the firm’s

seized assets by the creditor in the case of default.

Positive production cost at stage 2. Let y denote the unit production cost for both products

with either technology. With y > 0, the optimal production vector at stage 2 is limited by the cash

availability of the firm in addition to the physical capacity constraints. In this case, the literature

often uses a clearing-pricing strategy for tractability that fully utilizes the physical capacity (see

for example, Chod and Rudi 2005). If we assume a clearing-pricing strategy, the firm optimally

borrows so as to fully utilize the physical resource in stage 2 and all the results of our paper continue

to hold by replacing cT with cT + y.

If we focus on the optimal pricing policy with y > 0, the optimal production vector with flexible

(dedicated) technology is state dependent and has a complex form that is characterized by a two-

region (six-region) partitioning of the demand space (ξ1, ξ2) with respect to capacity constraints3.
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The optimal capacity level is lower than the y = 0 case, and accounts for the state-dependent

optimal production vector. With flexible technology, the firm optimally borrows the exact amount

required for the full utilization of the physical resource. With dedicated technology, the optimal

borrowing level is such that the physical resources are never fully utilized. Financial capacity has a

risk-pooling benefit with dedicated technology because the firm can allocate the financial resource

to each physical capacity contingent on the demand realization. Because of this additional risk-

pooling benefit of dedicated technology, flexible technology is more adversely affected from y > 0

compared to y = 0. With y > 0, the majority of the insights and the structural results obtained

with y = 0 remain valid. The results concerning the product market characteristics (ρ, σ) are among

the few exceptions. Similar to flexible technology, the value of dedicated technology decreases in ρ

and increases in σ. This is a direct consequence of the declining risk-pooling value of the financial

capacity. The optimal technology choice as a function of product market conditions is not clear in

this setting.

Seizable salvage value of technology. We assume that the creditor cannot seize the salvage

value of the technology in case of default. If the salvage value of the technology is offered as

an additional collateral, then the creditor can seize the technology. With exogenous financing

costs, seizable technology does not have any impact on the results of this paper. With endogenous

financing costs and immediate liquidation of technology, collateralizing the technology reduces the

default risk and hence external financing costs in equilibrium. Different salvage values of the

technologies have a significant impact on the technology choice in equilibrium as we discuss in

Boyabatlı and Toktay (2006).

Fixed cost of technology is incurred at stage 0. If the firm incurs the fixed cost of technology

at the time of commitment (at stage 0), then this fixed cost is deducted from the firm’s internal

stage 1 endowment (ω0, ω1) in the same way as FFRM . With this assumption, the firm always

optimally fully hedges with financial risk management; hence Observation 3 and Proposition 5 do

not hold. All the other results remain valid. The same conclusions hold in the absence of technology

fixed costs (FF = FD = 0).

9 Conclusions

This paper analyzes the integrated operational and financial risk management portfolio of a firm

that determines whether to use flexible or dedicated technology and whether to undertake financial

risk management or not. The risk management value of flexible technology is due to its risk

pooling benefit under demand uncertainty. The financial risk management motivation comes from

the existence of deadweight costs of external financing. Financial risk management has a fixed cost,
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while technology investment incurs both fixed and variable costs. The firm’s limited budget, which

depends partly on a tradable asset, can be increased by borrowing from external markets, and its

distribution can be altered via financial risk management.

In a parsimonious model, we solve for the optimal risk management portfolio, and the related

capacity, production, financial risk management and external borrowing levels, the majority of

them in closed form. We characterize the optimal risk management portfolio as a function of firm

size, technology and financial risk management costs, product market (demand variability and

correlation) and capital market (external financing costs) characteristics.

We find that three fundamental drivers explain the optimal portfolio choice: the robustness of

the optimal capacity investment with respect to product market characteristics, the level of reliance

on external financing and the opportunity cost of financial risk management. Our results provide

managerial insights about the design of integrated operational and financial risk management pro-

grams. A firm that operates in highly variable or highly negatively correlated product markets

should use flexible technology with financial risk management if the firm has sufficiently high inter-

nal endowment (large firm); and without financial risk management if the firm has limited internal

endowment (small firm). For large firms with low (high) external financing costs, flexible technol-

ogy with financial risk management (dedicated technology without financial risk management) is

the best risk management portfolio. For small firms, the insights related to technology choice under

high and low external financing costs continue to hold but the firm should only use financial risk

management if the fixed cost of financial risk management is sufficiently low.

Our analysis clearly shows the intertwined nature of operational and financial risk management

strategies and illustrates their subtle interactions. For example, operational and financial risk

management can be complements or substitutes depending on the firm size. Flexible technology and

financial risk management tend to be substitutes for small firms and complements for large firms.

The fundamental driver of this result is the difference in the value of financial risk management

with each technology. We also show that the firm’s use of financial instruments for speculative

reasons can be triggered by choosing the higher cost flexible technology.

Our analysis extends the modelling framework of Froot et al. (1993) by formalizing operational

investments and imposing a cost for financial risk management. With our more detailed operational

model, some of their findings do not continue to hold. For example, firms can optimally use financial

risk management for speculative purposes even if the returns from operational investments are

independent from the financially hedgable risk variable. The driver of this result is the fixed cost

of technology. In addition, we show that firms may choose not to use financial risk management

due to its cost when resources are limited. The effective cost of financial risk management is larger

31



than its fixed cost because of the existence of operational investments: After incurring the fixed

cost of financial risk management, the firm may need to borrow additional funds to finance its

operational investments, which imposes an opportunity cost on the firm. These results enhance our

understanding of the effect of operational factors in risk management and underline the importance

of integrated decision making.

This paper brings constructs and assumptions motivated by the finance literature into a classical

operations management problem. In turn, we provide theoretical support for some observations

made in the empirical finance literature and highlight additional trade-offs in some others. For

example, we establish that the value of financial risk management increases in external financing

costs only for large firms and not for small firms. This is in contrast to the existing understanding

that this is true for any firm. There is evidence that large firms use financial instruments more

frequently than small firms. This observation is attributed to the fixed cost of establishing a

financial risk management program. Our analysis proposes another explanation that is based on the

hedging constraint sometimes imposed in practice: If firms are allowed to use financial instruments

for hedging purposes only, it is optimal for small firms to not undertake financial risk management

even if it is costless.

Our paper opens new empirical avenues. The existing literature on risk management typically

does not capture operational aspects such as characteristics of different technologies and product

market characteristics. As demonstrated by our analysis, these can have a significant effect on

the risk management portfolio and generally have opposite effects for large and small firms. The

distinction we make between large and small firms (or equivalently, between capital intensive and

non-capital intensive industries), and our results related to the effect of technology and product

market characteristics on the risk management portfolio provide new hypotheses that can be tested

empirically. For example, we expect to see that large firms engage in financial risk management less

frequently than small firms in highly positively correlated markets. We also expect to see a positive

relation between fixed technology costs and the frequency of engaging in financial risk management

for large firms and a negative relation for small firms.

In §8, we discussed the implication of relaxing some of our assumptions. Other interesting re-

search directions remain. For example, this paper focuses on a monopolistic firm. In an integrated

risk management framework, strategic risk management has not received much attention. Goyal

and Netessine (2005) analyze the value of flexible technology under product market competition. It

would be interesting to incorporate financial risk management decisions of the firm in this compet-

itive setting. The financially hedged firm may invest in more costly flexible technology whereas the

non-hedged competitor may not because of external financing frictions. Financial risk management
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will certainly have a non-trivial impact on the equilibrium of the game. Dong et al. (2006) take a

step in this direction by modeling operational flexibility and financial risk management decisions

of a global firm facing a local competitor that can only respond by setting its production quantity.

We assume an exogenous external financing cost structure. Technology characteristics can

affect the external financing costs in equilibrium; this occurs if the lender has information about

the firm’s technology options and the ability to assess their operational and collateral value. In this

case and with loan commitment contracts, the financing cost structure would depend on the firm’s

likelihood of borrowing and the default risk conditional on the borrowing level. Flexible technology

has higher costs, and requires more external borrowing than dedicated technology; but the risk-

pooling value of flexible technology decreases the default risk. The different collateral values of

each technology bring another facet to this interaction. It is interesting to analyze which effect

dominates under what conditions. The broader question is whether firms should use flexible versus

dedicated technology in imperfect capital markets. We analyze these issues in a companion paper

(Boyabatlı and Toktay 2006).

Notes

1With the exception of sensitivity results with respect to demand variability and correlation: These

results require formalization of demand variability and correlation via specific distributional or

structural (using stochastic orderings) assumptions.
2To capture the effect of demand correlation and variability, we use different measures that are

commonly used in the literature. Throughout the paper, by “an increase in demand variability,”

we refer to any one of the following cases: i) ξ has a symmetric bivariate lognormal distribution

and σ monotonically increases, ii) ξ with independent marginal distributions is replaced with ξ
′

with independent marginal distributions such that ξ = ξ
′

and ξ
′
i is stochastically more variable

than ξi for i = 1, 2, or iii) ξ with σ = 0 is replaced with ξ
′

with σ 6= 0. By “an increase in

demand correlation,” we refer to any one of the following cases: i) ξ has a bivariate lognormal

distribution and ρ monotonically increases, ii) ξ is replaced with ξ
′

which dominates ξ according

to the concordance ordering, or iii) ξ with ρ 6= 1 is replaced with ξ
′
with ρ = 1. The details of the

analysis can be found in the proof.
3The proofs for the stage 2 optimal production vector for each technology with y > 0 are available

upon request.
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A Appendix A

Name Meaning

(ω0, ω1) cash and asset holdings of the firm, called the firm’s endowment

β proportion of FFRM deducted from cash holdings of the firm

α0 stage 0 price of tradable asset

(FT , cT ) fixed and variable capacity costs of technology T

γT salvage rate of fixed cost of technology T

FFRM fixed cost of financial risk management (FRM)

B stage 1 budget

(a,E) interest rate and credit limit of the loan contract

rf (= 0) risk-free rate

P value of collateral physical asset

α1 stage 1 price of tradable asset

ξ = (ξ1, ξ2) multiplicative demand intercept in product markets

Σ covariance matrix of ξ

ρ coefficient of correlation in ξ

σ standard deviation of ξ1 and ξ2)

ΓT optimal stage 2 operating profits

ΠT optimal stage 2 equity value

πT optimal expected (stage 1) equity value

ΛFRM expected (stage 0) equity value of better technology with FRM

Λ−FRM expected (stage 0) equity value of better technology without FRM

Π∗ optimal expected (stage 0) equity value

∆T Value of financial risk management with technology T

Table 6: Summary of Notation

Proof of Proposition 1: We start by formulating the stage 2 optimization problem. Let

ΓT

(
KT, eT , B̃, ξ̃

)
denote the optimal stage 2 operating profit as a function of the state vector

(KT, eT , B̃, ξ̃). Since we assume production is costless, this profit is equal to the maximum sales

revenue that can be obtained with the existing capacity.

In stage 1, the firm will have observed the budget realization B̃ and borrowed eT to invest

in capacity level KT. The remaining cash holdings of B̃ + eT − cT1′KT − FT , non-negative by

construction, will have been invested into a cash account with return rf (= 0).

Two outcomes are possible in stage 2: If the firm’s final cash position (operating profits and

cash account holdings) is sufficient to cover the face value of the loan, i.e. ΓT (KT, eT , B̃, ξ̃) + (B̃ +

eT − cT1′KT−FT ) ≥ eT (1+ a), then the firm does not default; otherwise, it does. If the firm does
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not default, it repays the face value of its loan and liquidates the non-pledged technology and the

physical assets, generating γT FT and P , respectively. If the firm defaults, the cash on hand and

the ownership of the collateralized physical asset are transferred to the bank. The firm receives the

salvage value of the technology γT FT and the cash R(KT, eT , B̃, ξ̃) remaining after the face value

of the loan is deducted from its seized assets. We write

R(KT, eT , B̃, ξ̃) = P + ΓT (KT, eT , B̃, ξ̃) + (B̃ + eT − cT1′KT − FT )− eT (1 + a), (6)

where we invoke the assumptions that any additional fees in the default state (e.g. bankruptcy fee)

are borne by the creditor as out-of-pocket expenditures, and that the loan is fully-collateralized by

the physical asset.

Since the shareholders are risk neutral and the risk-free rate is 0, the stage 2 equity value can be

written as the sum of the individual components cash flows, regardless of when they are realized:

ΠT

(
KT, eT , B̃, ξ̃

)
=





ΓT (KT, eT , B̃, ξ̃) + (B̃ + eT − cT1′KT − FT )

−eT (1 + a) + γT FT + P
if no default

γT FT + R(KT, eT , B̃, ξ̃) if default

(7)

Inspecting (7) reveals that the equity value can simply be written as

ΠT

(
KT, eT , B̃, ξ̃

)
= ΓT (KT, eT , B̃, ξ̃) + (B̃ + eT − cT1′KT − FT ) + γT FT − eT (1 + a) + P (8)

regardless of whether the firm defaults or not. Obtaining this unique functional form is essential in

preserving tractability and in deriving closed-form expressions for the firm’s capacity, technology

and financial risk management decisions for a subset of parameter levels.

The production decision only affects the operating profit Γ in (8), so optimizing the stage 2

equity value is equivalent to the following optimization problem:

max
Q∈ΘT

Q′p(Q; ξ̃) = max
Q∈ΘT

ξ̃
′
Q1+ 1

b . (9)

Here, p(Q; ξ̃)′ =
(
p(q1; ξ̃1), p(q2; ξ̃2)

)
, ΘF

.= {Q : Q ≥ 0,1′Q ≤ KF} and ΘD
.= {Q : Q ≥ 0,Q ≤

KD} are the feasibility sets for production quantity levels for each technology T .

Let f(Q) .= ξ̃
′
Q1+ 1

b and Q∗
T denote the optimal production vector that solves (9) for technology

T ∈ {F, D}. It is easy to establish that f(Q) is strictly concave in Q′ = (q1, q2). Since the

constraints are linear, KKT conditions are necessary and sufficient for optimality and Q∗
T is unique.

Since ∂f
∂qi

= (1 + 1/b)ξ̃1q
1/b
i > 0, and with b ∈ (∞,−1), limqi→0+

∂f
∂qi

→ ∞, the non-negativity

constraints will be non-binding and the capacity constraint will be binding at optimality. With the

dedicated technology, this yields Q∗
D = KD and

ΓD

(
KD, eD, B̃, ξ̃

)
= f(Q∗

D) = ξ̃
′
KD

1+ 1
b .
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With the flexible technology, according to the KKT conditions, Q∗
F solves ∂f

∂q1

∣∣∣
q1
F

= ∂f
∂q2

∣∣∣
KF−q1

F

.

After some algebra, we obtain Q∗
F = KF

ξ̃−b
1 +ξ̃−b

2

ξ̃
−b

and

ΓF

(
KF , eF , B̃, ξ̃

)
= f(Q∗

F) =
K

1+ 1
b

F(
ξ̃−b
1 + ξ̃−b

2

)1+ 1
b

[
ξ̃−b
1 + ξ̃−b

2

]
=

(
ξ̃−b
1 + ξ̃−b

2

)− 1
b
K

1+ 1
b

F .

Defining NF
.=

(
ξ̃−b
1 + ξ̃−b

2

)− 1
b and ND

.= ξ̃ and substituting ΓT in (8) yields the expression for

the optimal equity value ΠT :

ΠT

(
KT, eT , B̃, ξ̃

)
= N′

TKT
1+ 1

b + (B̃ + eT − cT1′KT − FT ) + γT FT − eT (1 + a) + P (10)

Proof of Proposition 2: We start by formulating the stage 1 optimization problem. The optimal

expected (stage 1) equity value of the firm, πT (B̃), is given as follows:

πT (B̃) =





max
{

ΨT (B̃), B̃ − (1− γT )FT + P
}

if B̃ + E > FT

B̃ − (1− γT )FT + P if B̃ + E ≤ FT

(11)

where

ΨT (B̃) = max
KT, eT

B̃ + eT − (cT1′KT + FT )− (B + eT − cT1′KT − FT ) + E
[
ΠT

(
KT, eT , B̃, ξ̃

)]

s.t. eT ≥ cT1′KT + FT − B̃

eT ≤ ET (12)

KT ≥ 0, eT ≥ 0.

We start with explaining the formulation of the optimization problem (12). The firm has available

budget B̃ and borrows eT from the creditor. Out of this sum B̃ + eT , the firm invests cT1′KT +FT

in capacity and places the remainder (B + eT − cT1′KT − FT ) into the cash account. The return

from the cash account and the operating profits from the capacity investment are included in the

expected value of the equity in stage 2, E
[
ΠT

(
KT, eT , B̃, ξ̃

)]
. Using (8), the objective function

can be rewritten as B̃ + P − (1− γT )FT + ΓT (KT, eT , B̃, ξ̃)− cT1′KT − aeT . Here, the first three

terms are equal to the equity value of the firm if the firm does nothing (does not borrow and does

not invest). Note that since the firm has already committed to technology T , the fixed cost FT

is incurred even if KT = 0. The last three terms are the net profit derived from borrowing and

investing in capacity.

The first constraint ensures that the amount of external borrowing is greater than the difference

between the cost of the investment and the available budget, otherwise the investment is not feasible.
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The second constraint states that the external borrowing is less than the credit limit (E) of the

firm.

Equation (11) states the firm will either choose a positive capacity level in stage 1 or do nothing

(not borrow and not invest in capacity). The former will be the case when the optimal capacity

investment level obtained in (12) is positive, and this solution dominates doing nothing; with

πT (B̃) = ΨT (B̃). In the latter case, the equity value of the firm is B̃ + P − (1 − γT )FT , with

K∗
T(B̃) = 0 and e∗T (B̃) = 0. This is the optimal solution if (i) the budget plus the credit limit

is insufficient (or only sufficient) to cover the fixed cost of investment (B̃ + E ≤ FT ), so the

firm liquidates the physical asset and salvages the technology; or if (ii) the budget plus credit

limit is sufficient to cover the fixed cost, but the firm optimally chooses not to invest in capacity

(B̃ + P − (1 − γT )FT > ΨT (B̃) when B̃ + E ≥ FT ). Note that if KT = 0 in the optimal solution

of (12), the formulation in (12) forces the firm to (suboptimally) borrow E − B̃, but the optimal

objective function value is then dominated by B̃ + P − (1− γT )FT , the value of doing nothing, so

the joint formulation in (5) and (6) yields the correct optimal solution.

Since a > 0, the firm optimally does not borrow if it does not invest in capacity (eT = 0 if

KT = 0) and only borrows exactly enough to cover the capacity investment when this investment

level is positive (eT =
(
cT1′KT + FT − B̃

)+
if KT > 0). Substituting ΠT from (8) and ΓT from

Proposition 1 in (12), we obtain the equivalent formulation

ΨT (B̃) = max
KT

B̃ − cT1′KT − (1− γT )FT − a
(
cT1′KT + FT − B̃

)+
+ E [NT] ′KT

1+ 1
b + P

s.t. cT1′KT + FT − B̃ ≤ E (13)

KT ≥ 0.

Let g(KT) denote the objective function in (13) and Kp
T(B̃) be the optimal solution of (13). The

corresponding optimal borrowing ep
T (B̃) is equal to

(
cT1′Kp

T(B̃) + FT − B̃
)+

. For B̃ > FT , the

function g(KT) has a kink and is not differentiable at 1′KT = B̃−FT
cT

. We rewrite (13) as a

combination of two sub-problems i = 0, 1 with

ΨT (B̃) =





maxi Ψi
T (B̃) if B̃ > FT

Ψ1
T (B̃) if B̃ ≤ FT

(14)

such that

Ψi
T (B̃) = max

KT

B̃ − cT1′KT − (1− γT )FT − ai
(
cT1′KT + FT − B̃

)
+ E [NT] ′KT

1+ 1
b + P

s.t. Zi
L ≤ cT1′KT + FT − B̃ ≤ Zi

U (15)

KT ≥ 0,
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where a0 = 0, a1 = a and Z0
L = −∞, Z1

L = 0, Z0
U = 0, Z1

U = E. Subproblem 0 (1) is the restriction

of the problem to the no borrowing (borrowing) regions. Let gi(KT) denote the objective function

and Kpi
T (B̃) be the optimal solution of sub-problem i. We have

g(KT) =





g0(KT) if cT1′KT + FT ≤ B̃

g1(KT) if cT1′KT + FT > B̃.

The remainder of the proof has the following structure:

1. We show that gi(KT) is strictly concave and solve each sub-problem i for Kpi
T (B̃).

2. We show that g(KT) is strictly concave. It follows that

Kp
T(B̃) = Kpi

T (B̃) where i =





arg maxi Ψi
T (B̃) if B̃ > FT

1 if B̃ ≤ FT

We derive ΨT (B̃) by using Kpi
T (B̃).

3. We compare ΨT (B̃) with B̃ − (1 − γT )FT + P , the value of not investing in capacity, and

derive K∗
T(B̃) and e∗T (B̃).

1. Solution for Kpi
T (B̃)

1.a. Flexible Technology:

Let A
.= E [NF] = E

[(
ξ−b
1 + ξ−b

2

)− 1
b

]
. The first and second order conditions in (15) are

∂gi

∂KF
= −cF − aicF + (1 + 1/b) A K

1/b
F ,

∂2gi

∂K2
F

=
1
b

(1 + 1/b) A K
(1/b−1)
F .

Since b < −1, we have limKF→0+
∂2K

(1/b−1)
F

∂K2
F

→ ∞ and ∂2K
(1/b−1)
F

∂K2
F

> 0 ∀KF ≥ 0. With b < −1, it

follows that ∂2gi

∂K2
F

< 0 for KF ≥ 0 and the function gi(KF ) is strictly concave for i = 0, 1. Since the

constraints in (15) are linear, first-order KKT conditions are necessary and sufficient for optimality

for each sub-problem i and Kpi

F (B̃) is unique.

From KKT conditions if i has a non-empty feasible region then the optimal solution is either the

solution of ∂gi

∂KF
= 0, Kpi

F (B̃) =
(

A(1+ 1
b )

cF (1+ai)

)−b

, or is a boundary solution. Since B̃ > FF for i = 0

from (14) and B̃ > FF − E for i = 1 from (11), the non-negativity constraint is never binding

in (15). Since limKF→0+
∂gi

∂KF
→ ∞, KF = 0 is never optimal. If Zi

L+B̃−FF

cF
> 0 and ∂gi

∂KF
< 0

at this point, then Kpi

F (B̃) = Zi
L+B̃−FF

cF
, i.e., the optimal solution occurs at the lower bound of

42



the financing constraint. If ∂gi

∂KF
> 0 at KF = Zi

U+B̃−FF

cF
> 0, then Kpi

F (B̃) = Zi
U+B̃−FF

cF
, i.e., the

optimal solution occurs at the upper bound of the financing constraint. To summarize, Kpi

F (B̃) for

i = 0, 1 is characterized by

Kp0

F (B̃) =





K0
F

.=
(

A(1+ 1
b )

cF

)−b

if cFK0
F + FF − B̃ ≤ 0

KF
.=

(
B̃−FF

cF

)
if cFK0

F + FF − B̃ > 0,
(16)

Kp1

F (B̃) =





KF
.=

(
B̃−FF

cF

)
if cFK1

F + FF − B̃ ≤ 0

K1
F

.=
(

A(1+ 1
b )

cF (1+a)

)−b

if 0 < cFK1
F + FF − B̃ ≤ E

KF
.=

(
E+B̃−FF

cF

)
if cFK1

F + FF − B̃ > E.

Here, K0
F is the budget-unconstrained optimal capacity investment and K1

F is the credit-unconstrained

optimal capacity investment.

1.b. Dedicated Technology:

We obtain

∂2gi

∂(Kj
D)2

=
1
b

(1 + 1/b) ξj (Kj
D)(1/b−1) < 0,

∂2gi

∂(K1
D)2

∂2gi

∂(K2
D)2

−
[

∂2gi

∂K1
DK2

D

]2

=
∏

j

1
b

(1 + 1/b) ξj (Kj
D)(1/b−1) − 0 > 0

for i = 0, 1 and j = 1, 2. Therefore, the Hessian matrix D2gi(KD) is negative definite for KD ≥ 0

and gi(KD) is strictly concave. Since the constraints in (15) are linear, first-order KKT conditions

are necessary and sufficient for optimality in each sub-problem i and Kpi
D (B̃) is unique.

If Kpi
D (B̃) is an optimal solution to (15), then there exist λi′ = (λi

1, λ
i
2) and µi′ = (µi

1, µ
i
2) that

satisfy

cD1′Kpi
D (B̃) + FD − B̃ ≤ Zi

U , (17)

cD1′Kpi
D (B̃) + FD − B̃ ≥ Zi

L, (18)

Kpi
D (B̃) ≥ 0, (19)

−(1 + ai)cD + (1 + 1/b) ξ Kpi
D (B̃)1/b − cD(λi

1 − λi
2) + µi = 0, (20)

λi
1[Z

i
U − cD1′Kpi

D (B̃)− FD + B̃] = 0, (21)

λi
2[−Zi

L + cD1′Kpi
D (B̃) + FD − B̃] = 0, (22)

µiKpi
D (B̃) = 0 (23)

with λi ≥ 0 and µi ≥ 0 for i = 0, 1. Observe that lim
Kj

D→0+
∂gi

∂Kj
D

→∞ for j = 1, 2, so it is never

optimal to invest in only one of the resources. Since we will compare ΨD(B̃) with B̃−(1−γD)FD+P
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(the value of not investing in either resource) in Step 3, we can focus on Kpi
D (B̃) > 0 here. This

implies µi = 0 for (23) to be satisfied.

Case 1: cD1′Kpi
D (B̃) + FD − B̃ < Zi

U and cD1′Kpi
D (B̃) + FD − B̃ > Zi

L

In this case λi = 0, and (20) yields

Kpi
D (B̃) = Ki

D
.=

( (
1 + 1

b

)

cD(1 + ai)

)−b

ξ
−b

.

For (17), (18) and (19) to be satisfied, and the solution Kpi
D (B̃) = Ki

D to be valid, we need

Zi
L < cD1′Ki

D +FD− B̃ < Zi
U . Here, K0

D is the budget-unconstrained optimal capacity investment

and K1
D is the credit-unconstrained optimal capacity investment.

Case 2: cD1′Kpi
D (B̃) + FD − B̃ = Zi

U

In this case (18) holds as a strict inequality, so λi
2 = 0 for (22) to be satisfied. Rewriting the

equality as K2
D = Zi

U+B̃−FF−cDK1
D

cD
, and combining this with (20) yields

Kpi
D (B̃)′ =

((
Zi

U + B − FD

cD

) (
ξ
−b
1

ξ
−b
1 + ξ

−b
2

)
,

(
Zi

U + B − FD

cD

) (
ξ
−b
2

ξ
−b
1 + ξ

−b
2

))
. (24)

The condition λi
1 ≥ 0 should be satisfied at optimality. After some algebra, this condition implies

that (24) is optimal if B̃ ≤ cD1′Ki
D + FD − Zi

U .

Case 3: cD1′Kpi
D (B̃) + FD − B̃ = Zi

L

This case is only relevant for i = 1 since Z0
L = −∞. In this case, (17) holds as a strict inequality,

so λ1
1 = 0 for (21) to be satisfied. Rewriting the equality as K2

D = Z1
L+B̃−FF−cDK1

D
cD

, and combining

with (20) yields

Kp1

D (B̃)′ =

((
Z1

L + B − FD

cD

)(
ξ
−b
1

ξ
−b
1 + ξ

−b
2

)
,

(
Z1

L + B − FD

cD

)(
ξ
−b
2

ξ
−b
1 + ξ

−b
2

))
. (25)

The condition λ1
2 ≥ 0 should be satisfied at optimality. After some algebra, this condition implies

that (25) is optimal if B̃ ≥ cD1′K1
D + FD − Z1

L.

Combining cases 1, 2 and 3, Kpi
D (B̃) for i = 0, 1 is characterized by

Kp0

D (B̃) =





K0
D =

(
(1+ 1

b )
cD

)−b

ξ
−b if cD1′K0

D + FD − B̃ ≤ 0

K′
D =

((
B−FD

cD

)(
ξ
−b
1

ξ
−b
1 +ξ

−b
2

)
,
(

B−FD
cD

) (
ξ
−b
2

ξ
−b
1 +ξ

−b
2

))
if cD1′K0

D + FD − B̃ > 0,
(26)

Kp1

D (B̃) =





K′
D =

((
B−FD

cD

)(
ξ
−b
1

ξ
−b
1 +ξ

−b
2

)
,
(

B−FD
cD

) (
ξ
−b
2

ξ
−b
1 +ξ

−b
2

))
if cD1′K1

D + FD − B̃ ≤ 0

K1
D =

(
(1+ 1

b )
cD(1+a)

)−b

ξ
−b if 0 < cD1′K1

D + FD − B̃ ≤ E

K
′
D =

((
E+B−FD

cD

)(
ξ
−b
1

ξ
−b
1 +ξ

−b
2

)
,
(

E+B−FD
cD

)(
ξ
−b
2

ξ
−b
1 +ξ

−b
2

))
if cD1′K1

D + FD − B̃ > E.
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2. Solution for Kp
T(B̃) and ΨT (B̃):

To show that g(KT) is strictly concave, we need to show that ∀ KI
T,KII

T ≥ 0 and λ ∈ (0, 1),

g(λKI
T + (1− λ)KII

T )− λg(KI
T)− (1− λ)g(KII

T ) > 0. (27)

Since gi(KT) is strictly concave, we only need to focus on KI
T,KII

T such that cT1′KI
T+FT ≤ B̃ and

cT1′KII
T + FT > B̃. We have two cases to consider. First, if cT1′

(
λKI

T + (1− λ)KII
T

)
+ FT ≤ B̃

then after some algebra, the left-hand side of (27) becomes

E [NT] ′
(
λKI

T + (1− λ)KII
T

)1+ 1
b − λE [NT] ′KI

T
1+ 1

b − (1− λ)E [NT] ′KII
T

1+ 1
b + (1− λ)a(cT1′KII

T + FT − B̃).

Since x1+ 1
b is strictly concave for x ≥ 0 and cT1′KII

T + FT − B̃ is positive by definition, the above

equation is strictly greater than 0. Second, if cT1′
(
λKI

T + (1− λ)KII
T

)
+ FT > B̃ then after some

algebra, the left-hand side of (27) becomes

E [NT] ′
(
λKI

T + (1− λ)KII
T

)1+ 1
b − λE [NT] ′KI

T
1+ 1

b − (1− λ)E [NT] ′KII
T

1+ 1
b − λaT (cT1′KI

T + FT − B̃).

Since x1+ 1
b is strictly concave for x ≥ 0 and cT1′KI

T+FT −B̃ is negative by definition, the equation

above is strictly greater than 0. Since (27) is satisfied for both cases, g(KT) is strictly concave. It

follows that

Kp
T(B̃) = Kpi

T (B̃) where i =





arg maxi Ψi
T (B̃) if B̃ > FT

1 if B̃ ≤ FT

is the unique maximizer of g. Combining (16) and (26), the unique optimal solution to problem

(13) and the corresponding optimal amount of borrowing are given by

Kp
T(B̃) =





K0
T if cT1′K0

T + FT ≤ B̃

KT if cT1′K1
T + FT ≤ B̃ < cT1′K0

T + FT

K1
T if cT1′K1

T + FT − E ≤ B̃ < cT1′K1
T + FT

KT if B̃ < cT1′K1
T + FT − E,

(28)

ep
T (B̃) =

(
cT1′Kp

T(B̃) + FT − B̃
)+
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where

K0
D
′ =




(
ξ1

(
1 + 1

b

)

cD

)−b

,

(
ξ2

(
1 + 1

b

)

cD

)−b



KD
′ =

((
B − FD

cD

) (
ξ
−b
1

ξ
−b
1 + ξ

−b
2

)
,

(
B − FD

cD

) (
ξ
−b
2

ξ
−b
1 + ξ

−b
2

))

K1
D
′ =




(
ξ1

(
1 + 1

b

)

cD(1 + a)

)−b

,

(
ξ2

(
1 + 1

b

)

cD(1 + a)

)−b



KD
′ =

((
E + B − FD

cD

)(
ξ
−b
1

ξ
−b
1 + ξ

−b
2

)
,

(
E + B − FD

cD

) (
ξ
−b
2

ξ
−b
1 + ξ

−b
2

))

K0
F =

(
A

(
1 + 1

b

)

cF

)−b

KF =
(

B − FF

cF

)

K1
F =

(
A

(
1 + 1

b

)

cF (1 + a)

)−b

KF =
(

E + B − FF

cF

)
.

We substitute (28) in (13) and find

ΨT (B̃) =





B̃ − (1− γT )FT + cT 1′K0
T

−(b+1) + P if cT1′K0
T + FT ≤ B̃

MT

(
B̃−FT

cT

)1+ 1
b + γT FT + P if cT1′K1

T + FT ≤ B̃ < cT1′K0
T + FT

(B̃ − FT )(1 + a) + cT 1′K1
T(1+a)

−(b+1) + γT FT + P if cT1′K1
T + FT −E ≤ B̃ < cT1′K1

T + FT

−E(1 + a) + MT

(
E+B̃−FT

cT

)1+ 1
b + γT FT + P if B̃ < cT1′K1

T + FT − E.

(29)

where MF = E
[(

ξ−b
1 + ξ−b

2

)− 1
b

]
and MD =

(
ξ
−b
1 + ξ

−b
2

)− 1
b . It follows from (11) that ΨT (B̃) is

relevant (and is defined) only for B̃ > FT −E.

3. Solution for K∗
T(B̃) and e∗T (B̃):

To complete the characterization of K∗
T(B̃) and e∗T (B̃), we compare ΨT (B̃) with B̃−(1−γT )FT +P

(the value of the not borrowing and not investing in capacity) for B̃ > FT − E and establish that

the two functions intersect at most once on B̃ ∈ (FT −E,∞); and find K∗
T(B̃) and e∗T (B̃).

For B̃ > FT − E, we define GT (B̃) .= ΨT (B̃) − (B̃ − (1 − γT )FT + P ), the difference between

the equity values in (29) and not borrowing and not investing in capacity. It is easy to verify that,

lim
B̃→B̃k

+ ΨT (B̃) = lim
B̃→B̃k

− ΨT (B̃) for ∀ B̃k > FT − E therefore, ΨT (B̃) and, in turn, GT (B̃)
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are continuous functions of B̃. We have

∂GT (B̃)
∂B̃

=





0 if cT1′K0
T + FT ≤ B̃

MT
cT

(1 + 1
b )

(
B̃−FT

cT

) 1
b − 1 if cT1′K1

T + FT ≤ B̃ < cT1′K0
T + FT

a if cT1′K1
T + FT − E ≤ B̃ < cT1′K1

T + FT

MT
cT

(1 + 1
b )

(
E+B̃−FT

cT

) 1
b − 1 if B̃ < cT1′K1

T + FT − E.

(30)

For cT1′K1
T + FT ≤ B̃ < cT1′K0

T + FT ,

MT

cT
(1 +

1
b
)

(
B̃ − FT

cT

) 1
b

− 1 >
MT

cT
(1 +

1
b
)

(
1′K0

T

) 1
b − 1 = 0, (31)

and for B̃ < cT1′K1
T + FT − E,

MT

cT
(1 +

1
b
)

(
E + B̃ − FT

cT

) 1
b

− 1 >
MT

cT
(1 +

1
b
)

(
1′K1

T

) 1
b − 1 = a. (32)

It follows that lim
B̃→B̃k

+
∂

∂B̃
GT (B̃) = lim

B̃→B̃k
− ∂

∂B̃
GT (B̃) on the domain of GT (.). Therefore

GT (B̃) is differentiable for B̃ > FT − E and ∂
∂B̃

GT (B̃) ≥ 0 with equality holding only for B̃ ≥
cT1′K0

T + FT . For cT1′K0
T + FT ≤ B̃,

GT (B̃) = B̃ − (1− γT )FT +
cT1′K0

T

−(b + 1)
+ P − (B̃ − (1− γT )FT + P ) =

cT1′K0
T

−(b + 1)
> 0. (33)

We showed that GT (B̃) strictly increases for B̃ ∈ (FT − E, cT1′K0
T + FT ) and is positive for

B̃ ∈ [cT1′K0
T + FT ,∞). Let B̂T denote the budget level at which the two equity value curves

intersect, i.e. GT (B̂T ) = 0. For FT ≥ E, we have limB̃→(FT−E)+ GT (B̃) = −aE < 0. Since GT (B̃)

strictly increases in B̃, it follows that for FT ≥ E, there exists a unique B̂T > FT − E such that

GT (B̂T ) = 0. For FT < E, the domain of GT (B̃) is [0,∞). For notational convenience, we let

B̂T
.= 0 if the two curves do not intersect on this domain (GT (B̃) > 0 for B̃ ≥ 0). Since GT (B̃)

strictly increases in B̃, it follows that for FT < E, B̂T , if it exists on [0,∞), is unique. For B̃ ≤ B̂T

we have K∗
T(B̃) = 0 and e∗T (B̃) = 0. Combining this with (28) gives the desired result.

Proof of Corollary 1: The expected (stage 1) equity value of the firm with a given budget level

B̃ follows directly from Proposition 2:

πT (B̃) =





B̃ − (1− γT )FT + cT 1′K0
T

−(b+1) + P if B̃ ∈ Ω0
T

MT

(
B̃−FT

cT

)1+ 1
b + γT FT + P if B̃ ∈ Ω1

T

(B̃ − FT )(1 + a) + cT 1′K1
T(1+a)

−(b+1) + γT FT + P if B̃ ∈ Ω2
T

−E(1 + a) + MT

(
E+B̃−FT

cT

)1+ 1
b + γT FT + P if B̃ ∈ Ω3

T

B̃ − (1− γT )FT + P if B̃ ∈ Ω4
T

(34)
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where MF = E
[(

ξ−b
1 + ξ−b

2

)− 1
b

]
and MD =

(
ξ
−b
1 + ξ

−b
2

)− 1
b .

We calculate

(
∂πT (B̃)

∂B̃
,
∂2πT (B̃)

∂B̃2

)
=





(1, 0) if B̃ ∈ Ω0
T(

MT
cT

(1 + 1/b)
(

B̃−FT
cT

) 1
b
, 1

b
MT

c
(1+1/b)
T

(1 + 1/b)(B̃ − FT )
1
b
−1

)
if B̃ ∈ Ω1

T

(1 + a, 0) if B̃ ∈ Ω2
T(

MT
cT

(1 + 1/b)
(

E+B̃−FT
cT

) 1
b
, 1

b
MT

c
(1+1/b)
T

(1 + 1/b)(E + B̃ − FT )
1
b
−1

)
if B̃ ∈ Ω3

T

(1, 0) if B̃ ∈ Ω4
T

at the points where πT (B̃) is differentiable. It is easy to verify that lim
B̃→B̃k

+
∂

∂B̃
πT (B̃) =

lim
B̃→B̃k

− ∂
∂B̃

πT (B̃) for B̃k ∈ Ω0123
T , and πT (B̃) is differentiable everywhere in its domain except at

B̂T . Since πT (B̃) is a continuous function of B̃ it follows that πT (B̃) is strictly increasing in B̃.

We have ∂2

∂B̃2
πT (B̃) ≤ 0 for each Ωi

T and πT (B̃) is piecewise concave. From (31) we obtain
∂

∂B̃
πT (B̃) > 1 for B̃ ∈ Ω1

T and from (32) we have ∂
∂B̃

πT (B̃) > 1 + a for B̃ ∈ Ω3
T . Since πT (B̃) is

only kinked at B̂T it follows that πT (B̃) is concave in B̃ for B̃ ≥ B̂T , but not globally concave.

Proof of Proposition 3: The optimal risk management level H∗
T is given by

H∗
T = argmaxHT

E [πT (BFRM (α1,HT ))] (35)

s.t. −ωFRM
0

α1
≤ HT ≤ ωFRM

1

Since ξ and α1 are independent,

Eξ,α1 [πT (BFRM (α1,HT ))] = Eα1 [Eξ [πT (BFRM (α1, HT ))]] = Eα1 [πT (BFRM (α1, HT ))] .

Therefore we can write the expectation in (35) over α1. Let rα1(.) and Rα1(.) denote the density and

distribution function of α1, respectively. Since BFRM (α1,HT ) = ωFRM
0 +α1(ωFRM

1 −HT )+α1HT ,

for each HT the unique distribution function of BFRM (HT ) is

RBFRM (HT )(B̃) = Rα1

(
B̃ − ωFRM

0 − α1HT

ωFRM
1 −HT

)
B̃ ≥ ωFRM

0 + α1HT . (36)

It follows that HT determines the range and the probability distribution of the available budget in

stage 1. Since we do not impose any specific assumption on the type of the distribution of α1, we will

use general structural properties of the optimization problem (35) to solve for H∗
T . In particular,

we will focus on the functional form of πT (B̃) since the expected (stage 0) value of the equity is

the expectation of this function with respect to the budget random variable. We first provide the

following lemma that we will use throughout the proof. The proof is relegated to Appendix C.
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Lemma 1 There exist unique fixed cost threshold F T such that B̂T = 0 iff FT ≤ F T , and B̂T > 0

iff FT > F T .

We now conclude the proof by analyzing each case in Proposition 3.

Case (i), FT ≤ F T :

It follows from Lemma 1 that B̂T = 0. Since B̂T = 0, from Corollary 1 we have that πT (B̃) is

concave for B̃ ≥ 0. From Jensen’s inequality,

E [πT (BFRM (α1, HT ))] ≤ πT (E[BFRM (α1,HT )]) = πT

(
ωFRM

0 + α1ω
FRM
1 )

)

= πT

(
BFRM

(
α1, ω

FRM
1

))
(37)

for HT ∈
[
−ωFRM

0
α1

, ωFRM
1

]
. This implies that H∗

T = ωFRM
1 .

Case (ii), FT > F T :

From Lemma 1, we have B̂T > 0 and we cannot guarantee the concavity of πT for the whole range

of B̃. Therefore Jensen’s inequality is not sufficient to find H∗
T . In this case, H∗

T is either a solution

to the first order condition ∂
∂HT

E[πT ] = 0, or occurs at a boundary, i.e. H∗
T ∈ {−ωFRM

0
α1

, ωFRM
1 }.

To write the first-order condition, we utilize the following lemma proven in Appendix C:

Lemma 2 For any argument κT of πT , the expectation and the derivative operators can be inter-

changed, i.e. ∂
∂κT
E[πT ] = E

[
∂

∂κT
πT

]
.

Let
α0

T
.= cT 1′K0

T+FT−ωFRM
0 −HT α1

ωFRM
1 −HT

, α1
T

.= cT 1′K1
T+FT−ωFRM

0 −HT α1

ωFRM
1 −HT

,

α2
T

.= cT 1′K1
T+FT−E−ωFRM

0 −HT α1

ωFRM
1 −HT

, αB
T

.=
bBT−ωFRM

0 −HT α1

ωFRM
1 −HT

.

From Lemma 2 (letting κT = HT ), we can write the first-order condition ∂
∂HT

E[πT ] by using the

expression for πT (B̃) in (34) of Corollary 1 and the equivalence in (36). The integration ranges

correspond to the regions Ωi
T in (34) of Corollary 1.

E
[

∂πT

∂HT

]
=

∫ ∞

max(α0
T ,0)

(α1 − x) rα1(x) dx (38)

+
∫ max(α0

T ,0)

max(α1
T ,0)

MT

cT
(1 +

1
b
)
(

ωFRM
0 + x(ωFRM

1 −HT ) + α1HT − FT

cT

) 1
b

(α1 − x) rα1(x) dx

+
∫ max(α1

T ,0)

max(α2
T ,0,αB

T )
(α1 − x)(1 + a) rα1(x) dx

+
∫ max(α2

T ,0,αB
T )

max(0,αB
T )

MT

cT
(1 +

1
b
)
(

ωFRM
0 + x(ωFRM

1 −HT ) + α1HT + E − FT

cT

) 1
b

(α1 − x) rα1(x) dx

+
∫ max(0,αB

T )

0
(α1 − x) rα1(x) dx

49



Both the limits of integration and the integrants in (38) are functions of HT . Since we do not

impose any distributional assumptions on α1 it is not always possible to find a closed-form solution

for H∗
T .

We have α0
T > α1

T > α2
T by definition. For ωFRM

0 + α1ω
FRM
1 ≤ B̂T , αB

T ≥ α1. Therefore, for

ωFRM
0 + α1ω

FRM
1 ≤ B̂T , we either have α0

T > α1
T > α2

t > αB
T ≥ α1 > 0 or α0

T > α1
T > αB

T ≥ α1 >

0 > α2
T . Similar to (31) and (32) we establish

∫ α0
T

α1
T

MT

cT
(1 +

1
b
)
(

ωFRM
0 + x(ωFRM

1 −HT ) + α1HT − FT

cT

) 1
b

(α1 − x) rα1(x) dx

<

∫ α0
T

α1
T

(α1 − x) rα1(x) dx,

∫ max(α2
T ,αB

T )

αB
T

MT

cT
(1 +

1
b
)
(

ωFRM
0 + x(ωFRM

1 −HT ) + α1HT − FT

cT

) 1
b

(α1 − x) rα1(x) dx

<

∫ max(α2
T ,αB

T )

αB
T

(α1 − x)(1 + a) rα1(x) dx.

It follows that

∂πT

∂HT
<

∫ ∞

0
(α1 − x) rα1(x) dx + a

∫ α1
T

αB
T

(α1 − x) rα1(x) dx. (39)

The first term is equal to 0 and the second term is negative, therefore ∂πT
∂HT

< 0 and H∗
T = −ωFRM

0
α1

.

This concludes the proof for part (1) of this case.

If ωFRM
0 + α1ω

FRM
1 > B̂T , then H∗

T either satisfies E
[

∂πT
∂HT

]∣∣∣
H∗

T

= 0 or occurs at a boundary

{−ωFRM
0
α1

, ωFRM
1 } depending on the distributions of α1 and ξ. From Jensen’s inequality, ωFRM

1

dominates HT ≥ bBT−ωFRM
0

α1
because by (36) and Corollary 1, πT (BFRM (α1,HT )) is concave over

its domain for HT ≥
bBT−ωFRM

0
α1

. It follows that H∗
T ∈

{{
HT <

bBT−ωFRM
0

α1

}
∪ {

ωFRM
1

}}
.

Proof of Proposition 4: We first prove the existence of cF (cD,H∗). Notice from (35) that the

optimal financial risk management level H∗
T depends on cT

4. For each financial risk management

level HT , the expected (stage 0) equity value E [πT (cT , BFRM (α1,HT ))] is a continuous function

of cT . It follows that the expected (stage 0) equity value at the optimal risk management level

E [πT (cT , BFRM (α1,H
∗
T (cT )))] is also a continuous function of cT (because it is the upper envelope

of continuous functions). For a finite cD > 0, E [πD (cD, BFRM (α1,H
∗
D(cD)))] is also finite. It is

easy to prove that

lim
cF→∞

E [πF (cF , BFRM (α1,H
∗
F (cF )))] = ωFRM

0 + α1ω
FRM
1 − (1− γF )FF + P,

lim
cF→0

E [πF (cF , BFRM (α1,H
∗
F (cF )))] → ∞.

4Since from Proposition 3 we cannot guarantee the uniqueness of H∗
T , H∗

T (cT ) is a correspondence.
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Since the equity value is continuous in cF , if E [πD (cD, BFRM (α1,H
∗
D(cD)))] > ωFRM

0 +α1ω
FRM
1 −

(1− γF )FF +P , then there exists a cF such that the equity values with both technologies coincide.

If E [πD (cD, BFRM (α1,H
∗
D(cD)))] ≤ ωFRM

0 +α1ω
FRM
1 −(1−γF )FF +P then the threshold does not

exist and the flexible technology is always preferred over the dedicated technology. This concludes

the proof for existence of cF (cD,H∗). The existence of cF (cD,0) can be proven in the same manner

by substituting BFRM (.) with B−FRM (.) and H∗
T (cT ) with 0.

To prove the uniqueness of cF (cD,H∗) and cF (cD,0) we first provide the following lemma and

relegate the proof to Appendix C:

Lemma 3 In the optimal set of financial risk management levels, for a fixed level of H, the expected

(stage 0) value of the equity with technology T strictly decreases in the unit capacity investment

cost ( ∂
∂cT
E[πT (cT , BFRM (α1,H))] < 0).

From Lemma 3 it follows that the expected (stage 0) equity value with flexible technology is

strictly decreasing in cF for any (relevant) financial risk management level HF . This implies the

uniqueness of cF (cD,H∗). The uniqueness of cF (cD,0) follows from Lemma 3 using the identity

B−FRM (α1) = BFRM (α1,H) for H = 0 and FFRM = 0. For the comparative statics results with

respect to demand variability and correlation we first provide the following two lemmas and relegate

their proofs to Appendix C. Recall from Corollary 1 that MF (ξ) = E
[(

ξ−b
1 + ξ−b

2

)− 1
b

]
.

Lemma 4 MF (ξ) ≤ MF (ξ
′
) for ξ

′
that is obtained from ξ with an increase in σ in one of the

following ways:

i) ξ
′
is obtained by an increase in σ where ξ has a symmetric bivariate lognormal distribution,

ii) ξ
′

and ξ have independent marginal distributions, equal means (ξ = ξ
′
), and ξ

′
i ºv ξi (ξ

′
i is

stochastically more variable than ξi) for i = 1, 2 or the variability ordering holds for only one

of the marginals and the other marginal is identical,

iii) ξ
′
is random (σ 6= 0) while ξ is deterministic (σ = 0).

Lemma 5 MF (ξ) ≥ MF (ξ
′
) for ξ

′
that is obtained from ξ with an increase in ρ in one of the

following ways:

i) ξ
′
is obtained by an increase in ρ where ξ has a symmetric bivariate lognormal distribution,

ii) ξ
′
dominates ξ according to the concordance ordering (ξ

′ ºc ξ),

iii) ξ
′

is perfectly positively correlated (ρ = 1) and ξ is less than perfectly positively correlated

(ρ < 1).
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In Lemma 4 and Lemma 5, case i imposes distributional assumptions on ξ to analyze the effect

of σ and ρ, respectively. Case ii of each lemma analyzes different stochastic orderings to capture

the effect of product market conditions. Variability ordering is often used in the literature to

analyze the effect of increasing variability. Concordance ordering ξ
′ ºc ξ, as stated in Corbett and

Rajaram (2005, p. 13), essentially means that (ξ
′
1, ξ

′
2) move together more closely than (ξ1, ξ2).

Case iii focuses on limiting cases.

To establish the comparative statics results, we provide the following lemma and relegate the

proof to Appendix C:

Lemma 6 In the optimal set of financial risk management levels, for a fixed level of H, the expected

(stage 0) value of the equity with technology T

i) strictly decreases in the fixed cost of technology and strictly increases in the salvage rate

( ∂
∂FT

E[πT (FT , BFRM (α1,H))] < 0 and ∂
∂γT
E[πT (γT , BFRM (α1,H))] > 0),

ii) decreases in unit financing cost ( ∂
∂aE[πT (a,BFRM (α1,H))] ≤ 0), and the equality only holds

for H such that ωFRM
0 + α1H ≥ cT1′K1

T + FT ,

iii) increases in credit limit ( ∂
∂EE[πT (E, BFRM (α1,H))] ≥ 0), and the equality only holds for H

such that ωFRM
0 + α1H ≥ cT1′K1

T + FT −E,

iv) increases in demand variability ( ∂
∂σE[πT (E, BFRM (α1,H))] ≥ 0),

v) decreases in demand correlation ( ∂
∂ρE[πT (E, BFRM (α1,H))] ≤ 0).

Since the expected (stage 0) equity value is a continuous function of parameters a,E, FT , γT , ρ, σ for

a given financial risk management level H, the expected (stage 0) equity value at the optimal risk

management level (which also depends on these parameters) is also continuous in these parameters.

Therefore the monotonic relations stated in Lemma 6 are also satisfied in the weak sense (not

strict inequality) at the optimal financial risk management level without assuming differentiability

(because the expected (stage 0) equity value might not be differentiable at the points where the

optimal financial risk management level changes). The comparative static results for cF (cD,H∗)

follow from Lemma 6. The comparative static results for cF (cD,0) also follow from Lemma 6 using

the identity B−FRM (α1) = BFRM (α1,H) for H = 0 and FFRM = 0.

With symmetric fixed costs and salvage rates, we establish the functional form of cS
F (cD) with

the following Lemma and relegate the proof to Appendix C:

Lemma 7 When the fixed costs and the salvage rates of the two technologies are symmetric, at cF =

cS
F (cD) expected (stage 1) equity values, expected (stage 0) equity values at an arbitrary financial
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risk management level H and the optimal financial risk management actions are the same for both

technologies, i.e.πF (cF , B̃)
∣∣∣
cF =cS

F (cD)
= πD(cD, B̃) for B̃ ≥ 0, E[πF (cS

F (cD), BFRM (α1,H))] =

E[πD(cD, BFRM (α1,H))] and H∗
F (cS

F (cD)) = H∗
D(cD).

It follows from Lemma 7 that cS
F (cD) is the unique threshold with financial risk management in

the symmetric case (cF (cD,H∗) = cS
F (cD)). Using the identity B−FRM (α1) = BFRM (α1,H) for

H = 0 and FFRM = 0, it follows from Lemma 7 that cS
F (cD) is also the unique threshold without

financial risk management in the symmetric case (cF (cD,0) = cS
F (cD)). We now prove the relation

cS
F (cD) ≥ cD. It is sufficient to show

E−b

[(
ξ−b
1 + ξ−b

2

)− 1
b

]
≥ E−b[ξ1] + E−b[ξ2].

From Hardy et al. (1988, p.133,146) if d ∈ (0, 1) and X and Y are non-negative random variables

then the following is true:

E1/d
[
(X + Y )d

]
≥ E1/d[Xd] + E1/d[Y d] (40)

where the equality only holds when X and Y are effectively proportional, i.e. X = λY . In the

expression for cS
F (cD) we have d = −1

b ∈ (0, 1) and ξ > 0 therefore we can use this inequality.

Replacing X with ξ−b
1 and Y with ξ−b

2 gives the desired result. Notice that cS
F (cD) = cD only if

ξ1 = kξ2 for k > 0. This is only possible if either ξ is deterministic or it is perfectly positively

correlated and has a proportional bivariate distribution.

Proof of Corollary 2: If the capital markets are perfect we have E = P ≥ cT1′K0
T + FT and

a = 0 (as we discussed in Assumption 6). Since we have Ω1234
T = ∅, it follows from Proposition 2 that

the firm invests in the budget-unconstrained capacity investment level for any budget realization,

K∗
T(B̃) = K0

T, and borrows to finance this capacity level, e∗T (B̃) = [cT1′K0
T +FT −B]+. We obtain

E [πT (B−FRM (α1))] = E [πT (BFRM (α1,H))]|FFRM=0 = ω0 + α1ω1 − (1− γT )FT +
cT1′K0

T

−(b + 1)
+ P,

and it follows from Proposition 12 that F
T
FRM = 0 for T ∈ {D, F}. If the product markets are

perfect (Σ = 0), then with symmetric fixed costs and salvage rates, it follows from Proposition 4

that cF (cD,H∗) = cF (cD,0) = cD.

Proof of Corollary 3: The proof of the first argument follows from Proposition 3. For the second

argument, we provide a numerical example where the firm optimally fully speculates with flexible

technology and fully hedges with dedicated technology. We focus on the case with FFRM = 0 such

that financial risk management is costless. The horizontal line in Figure 1 denotes the value of not

investing any technology; hence the firm optimally chooses flexible technology with full speculation

in this example.
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Figure 1: Optimal Speculation is triggered by flexible technology investment: Dedicated technology

with full hedging (H∗
D = ω1 = 4) is dominated by flexible technology with full speculation (H∗

F =

−w0
α1

= −0.61.

Proof of Proposition 5: With a hedging constraint, the range of forward contracts is [0, ωFRM
1 ]

in (35). Substituting FFRM = 0 in (38) of Proposition 3, similar to (39), we obtain ∂πT
∂HT

< 0. It

follows that H∗
T = 0.

Proof of Corollary 4: It follows from Proposition 4 that for symmetric fixed costs and salvage

rates of technologies and for FFRM = 0, the optimal risk management portfolio is flexible (dedi-

cated) technology with financial risk management if cF < cS
F (cD) (cF > cS

F (cD)). From the proof of

Proposition 12, for β = ω0
ω0+α0ω1

we can have a sufficiently large feasible FFRM such that engaging

in financial risk management is not profitable. In this case, the optimal risk management portfolio

is flexible (dedicated) technology with financial risk management if cF < cS
F (cD) (cF > cS

F (cD)).

Proof of Proposition 6: The invariance of cF (cD,H∗) and cF (cD,0) to the unit financing cost,

the fixed cost of both technologies and the internal endowment of the firm follows from the definition

of cS
F (cD) in Proposition 4. For F = FD < FF = F + δ with δ > 0, we obtain cF (cD,H∗) < cS

F (cD)

and cF (cD,0) < cS
F (cD) from Proposition 4. We first provide the proof of the results with respect

to technology fixed costs. Comparative statics with respect to the internal endowment follow from

a similar argument. We define

S−FRM (cF ) .= E[πF (cF , F + δ,B−FRM (α1))]− E[πD(cD, F,B−FRM (α1))] where S−FRM (cF (cD,0)) = 0.(41)

From the implicit function theorem we have ∂
∂F cF (cD,0) = − ∂

∂F S−FRM
(

∂
∂cF

S−FRM
)−1

∣∣∣∣
cF (cD,0)

.

From Lemma 2, we can interchange derivative and expectation operators, and using Lemma 3 with

B−FRM (α1) = BFRM (α1,H) for H = 0 and FFRM = 0, we obtain

∂S−FRM

∂cF

∣∣∣∣
cF (cD,0)

= E
[

∂πF (B−FRM (α1))
∂cF

]∣∣∣∣
cF (cD,0)

< 0.
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Similarly we have

∂S−FRM

∂F

∣∣∣∣
cF (cD,0)

=
[
E

[
∂πF (B−FRM (α1))

∂F

]
− E

[
∂πD(B−FRM (α1)))

∂F

]]∣∣∣∣
cF (cD,0)

.

Since cF (cD,0) < cS
F and δ > 0 it follows that cFKi

F

∣∣
cF (cD,0)

+ F + δ > cD1′Ki
D + F for i = 0, 1.

This implies that Ω0
F ⊂ Ω0

D and Ω2
F ⊃ Ω2

D. We obtain

∂S−FRM

∂F

∣∣∣∣
cF (cD,0)

=
∫

Ω0
F

T
Ω0

D

(−1 + 1) dRB−F RM
(B̃) (42)

+
∫

Ω1
F

T
Ω0

D


−MF

(
1 + 1

b

)

cF (cD,0)

(
B̃ − F − δ

cF (cD,0)

) 1
b

+ 1


 dRB−F RM

(B̃)

+
∫

Ω1
F

T
Ω1

D

(
1 +

1
b

) [
− MF

(cF (cD,0))1+
1
b

(
B̃ − F − δ

) 1
b

+
MD

c
1+ 1

b

D

(
B̃ − F

) 1
b

]
dRB−F RM (B̃)

+
∫

Ω2
F

T
Ω0

D

(−(1 + a) + 1) dRB−F RM
(B̃)

+
∫

Ω2
F

T
Ω1

D

[
−(1 + a) + (1 +

1
b
)

MD

c
1+ 1

b

D

(
B̃ − F

) 1
b

]
dRB−F RM (B̃)

+
∫

Ω2
F

T
Ω2

D

(−(1 + a) + (1 + a)) dRB−F RM (B̃).

From (31), we have ∂
∂F S−FRM

∣∣
cF (cD,0)

< 0 for B̃ ∈ Ω1
F

⋂
Ω0

D and B̃ ∈ Ω2
F

⋂
Ω1

D. From Lemma 7,

we have MD

c
1+1

b
D

= MF

(cS
F (cD))1+

1
b
. Since cF (cD,0) < cS

F (cD) and δ > 0, we obtain ∂
∂F S−FRM

∣∣
cF (cD,0)

< 0

for B̃ ∈ Ω1
F

⋂
Ω1

D. In conclusion, we have ∂
∂cF

S−FRM
∣∣∣
cF (cD,0)

< 0 and ∂
∂F S−FRM

∣∣
cF (cD,0)

≤ 0. It

follows from the implicit function theorem that ∂
∂F cF (cD,0) ≤ 0 where the equality holds only for

ω0 > cFK0
F

∣∣
cF (cD,0)

+ F + δ.

To prove the result for cF (cD,H∗), we define SFRM (cF ), the counterpart of (41) by replacing

B−FRM (α1) with BFRM (α1,H
∗
T ). We have H∗

F (cF ) = H∗
D = ωFRM

1 for cF = cF (cD,H∗). We

establish ∂
∂cF

SFRM
∣∣∣
cF (cD,H∗)

< 0 using ∂
∂cF

H∗
F

∣∣∣
cF (cD,H∗)

= 0. The rest of the proof follows in a

similar manner using the facts that ∂
∂F H∗

T

∣∣
cF (cD,H∗) = 0 and that with full-hedging ωFRM

0 +α1ω
FRM
1

is realized in only one of the regions in (42). In conclusion, it follows from the implicit function

theorem that ∂
∂F cF (cD,H∗) ≤ 0 where the equality holds only for ωFRM

0 + α1ω
FRM
1 ∈ Ω0

F

⋂
Ω0

D or

ωFRM
0 + α1ω

FRM
1 ∈ Ω2

F

⋂
Ω2

D.

To prove the results with respect to the unit financing cost for cF (cD,0), we follow the same
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steps by replacing F with a in S−FRM (cF ). We obtain

∂S−FRM

∂a

∣∣∣∣
cF (cD,0)

=
∫

Ω2
F \Ω2

D

(
B̃ − (cFK1

F + FF )
∣∣
cF (cD,0)

)
dRB−FRM

(B̃) (43)

+
∫

Ω2
F

T
Ω2

D

(
cD1′K1

D + FD − (cFK1
F + FF )

∣∣
cF (cD,0)

)
dRB−FRM

(B̃)

+
∫

Ω3
F \Ω23

D

−E dRB−FRM
(B̃)

+
∫

Ω3
F

T
Ω2

D

(
−B̃ + (cFK1

F + FF )
∣∣
cF (cD,0)

− E
)

dRB−FRM
(B̃).

The first term and the last integrands are negative by the definition of the regions. From above

(comparative static with respect to fixed cost) we have cD1′K1
D + FD < cFK1

F

∣∣
cF (cD,0)

+ FF .

This implies ∂
∂aS−FRM

∣∣
cF (cD,0)

≤ 0. We conclude ∂
∂acF (cD,0) ≥ 0 where the equality holds for

ω0 > cFK1
F

∣∣
cF (cD,0)

+ FF .

The result for cF (cD,H∗) can be proven in a similar fashion. It follows that ∂
∂acF (cD,H∗) ≥ 0

where the equality holds if ωFRM
0 + α1ω

FRM
1 ∈ Ω01

F

⋃(
Ω3

F

⋂
Ω3

D

)
.

Proof of Proposition 7: We only prove the results for small firms. Results related to large firms

follow from similar arguments. We define

Υϕ .=
∂∆T

∂ϕ
=

∂E
[
πT

(
BFRM (α1, ω

FRM
1 )

)]

∂ϕ
− ∂E [πT (B−FRM (α1))]

∂ϕ
(44)

as the derivative of the value of full hedging with respect to the argument ϕ. For small firms, we

have E
[
πT

(
BFRM (α1, ω

FRM
1 )

)]
= (ωFRM

0 + α1ω
FRM
1 −FT )(1 + a) + cT 1′K1

T(1+a)

−(b+1) + γT FT + P . We

analyze each comparative static result separately.

Fixed cost of technology. We obtain

ΥFT = −(1 + a)−
∫

Ω0
T

−1 dRB−FRM
(B̃) −

∫

Ω1
T

(1 +
1
b
)
MT

cT

(
B̃ − FT

cT

) 1
b

dRB−FRM
(B̃)

−
∫

Ω2
T

−(1 + a) dRB−FRM
(B̃).

It is easy to show that (1 + 1
b )

MT
cT

(
B̃−FT

cT

) 1
b

< 1 + a for B̃ ∈ Ω1
T . It follows that ΥFT < 0.

Initial endowment. After parameterizing the initial endowment, we obtain βλ = λω0
λω0+α0λω1

=
ω0

ω0+α0ω1
= β. We have (ωFRM

0 , ωFRM
1 ) .= (λω0−βFFRM , λω1− 1−β

α0
FFRM ) and for small firms, it fol-

lows that
∂E[πT (BFRM (α1,ωFRM

1 ))]
∂λ = (ω0 +α1ω1)(1+a). After parameterizing the initial endowment,
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we define α0
T

.=
cT 1′K0

T+FT
λ

−ω0

ω1
, α1

T
.=

cT 1′K1
T+FT

λ
−ω0

ω1
. We obtain

Υλ = (ω0 + α1ω1)(1 + a)−
∫ ∞

max(α0
T ,0)

(ω0 + xω1) rα1(x) dx

−
∫ max(α0

T ,0)

max(α1
T ,0)

MT (1 + 1/b)
cT

(
λ(ω0 + xω1)− FT

cT

) 1
b

(ω0 + xω1) rα1(x) dx

−
∫ max(α1

T ,0)

0
(ω0 + xω1)(1 + a) rα1(x) dx

Notice that negative terms above are the expected value of the following function

f(α1) =





ω0 + α1ω1 if α1 ≥ α0
T

MT (1+1/b)
cT

(
λ(ω0+α1ω1)−FT

cT

) 1
b (ω0 + α1ω1) if α0

T > α1 ≥ α1
T

(ω0 + α1ω1)(1 + a) if α1 < α1
T

with respect to the asset price distribution α1. It is easy to prove that (ω0+α1ω1)(1+a) ≥ f(α1) for

α1 ≥ 0 with strict inequality for some α1. It follows that E[(ω0+α1ω1)(1+a)] = (ω0+α1ω1)(1+a) >

E[f(α1)] and we obtain Υλ > 0.

To analyze the effect of cash holdings (ω0) on the value of financial risk management, we only

parameterize the cash holdings as (λ′ω0, ω1) and set β = 0 such that FFRM is only deducted from

the value of asset holdings ω1. It follows that ωFRM
0 = λ′ω0 and ωFRM

1 = ω1 − FFRM
α0

. Υλ′ > 0

follows from the similar lines with Υλ > 0.

Demand variability and correlation. We only provide the proof for demand variability. The

proof for demand correlation is along the similar lines. It is sufficient to focus on flexible technology

because dedicated technology is not affected from changes in σ and ρ. We obtain

Υσ =
∂MF

∂σ

(
cF MF (1 + 1

b )
1 + a

)−b−1

−
∫

Ω0
F

∂MF

∂σ

(
cF MF (1 +

1
b
)
)−b−1

dRB−FRM
(B̃)

−
∫

Ω1
F

∂MF

∂σ

(
B̃ − FF

cF

)1+ 1
b

dRB−FRM
(B̃)−

∫

Ω2
F

∂MF

∂σ

(
cF MF (1 + 1

b )
1 + a

)−b−1

dRB−FRM
(B̃).

It is easy to show
(

B̃−FF
cF

)1+ 1
b

>
(

cF MF (1+ 1
b
)

1+a

)−b−1

for B̃ ∈ Ω1
F . From Lemma 4, we have ∂

∂σMF ≥ 0

and it follows that Υσ ≤ 0.

Unit financing cost. We obtain

Υa = ω0 + α1ω1 − (β +
(1− β)α1

α0
)FFRM − cT1′K1

T − FT −
∫

Ω2
T

(B̃ − cT1′K1
T − FT ) dRB−FRM

(B̃).

It follows that for ω0 > cT1′K1
T + FT , when the non-hedged firm does not borrow at all, we have

Υa < 0. We focus on the case where the firm borrows at some budget states without financial risk
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management (ω0 < cT1′K1
T + FT ).

For FFRM = 0, we have Υa =
∫
Ω2

T
(cT1′K1

T + FT − B̃) dRB−FRM
(B̃)− (cT1′K1

T + FT −B) where

B = ω0 + α1ω1. Notice that the first term is the expected value of the function

f(B̃) =





cT1′K1
T + FT −B if B̃ ≤ cT1′K1

T + FT

0 if B̃ > cT1′K1
T + FT

with respect to the budget distribution. Since f(B̃) is a convex function, Υa ≥ 0 for FFRM = 0

follows from Jensen’s inequality.

For FFRM > 0, we have

Υa =
∫

Ω2
T

(cT1′K1
T + FT − B̃) dRB−FRM

(B̃)− (cT1′K1
T + FT + (β +

(1− β)α1

α0
)FFRM −B).

We observe that the first term is strictly less than cT1′K1
T + FT − ω0. For FFRM ≥ F 0

FRM =
α0ω1

(1−β)+ β
α1

, we obtain cT1′K1
T + FT + (β + (1−β)α1

α0
)FFRM − B ≥ cT1′K1

T + FT − ω0 and it follows

that Υa < 0. Notice that FFRM ≤ α0ω1
(1−β) is the feasiblity condition; hence such FFRM exists.

We calculate ∂
∂FFRM

Υa = −(β + (1−β)α1

α0
) < 0. Since Υa strictly decreases in FFRM , Υa ≥ 0 for

FFRM = 0 and Υa < 0 for F 0
FRM , we conclude that there exists a unique F̂FRM such that Υa < 0

for FFRM > F̂FRM and Υa ≥ 0 for FFRM ≤ F̂FRM .

Proof of Proposition 8: We focus on the case where it is profitable for the firm to engage

in financial risk management. To prove the proposition, we use the ordering between cF (cD,H∗)

and cF (cD,0). If cF (cD,0) < cF (cD,H∗) (cF (cD,0) > cF (cD,H∗)) then flexible technology and

financial risk management are complements (substitutes) because engaging in financial risk man-

agement enables the firm to invest in flexible (dedicated) technology at some technology cost levels

where dedicated (flexible) technology was more profitable without financial risk management. From

Proposition 4, we obtain cF (cD,H∗) < cS
F (cD) and cF (cD,0) < cS

F (cD). From Assumption 8, we

have H∗
D(cD) = H∗

F (cF (cD,H∗)) = ωFRM
1 . From Lemma 3, it follows that cF (cD,H∗) ≷ cF (cD,0)

if and only if

E
[
πD(BFRM (α1, ω

FRM
1 ))

]
≶ E

[
πF (cF (cD,0), BFRM (α1, ω

FRM
1 )))

]
. (45)

Recall that 4T (cT , FT ) is the value of financial risk management with technology T ∈ {D, F} at

given cost parameters (cT , FT ) as defined in (5). Inequality (45) holds if and only if4F (cF (cD,0), FF ) ≷
4D(cD, FD). We will use the relation between 4F (cF (cD,0), FF ) and 4D(cD, FD) to prove the

proposition. We provide the following lemma and relegate the proof to Appendix C.

Lemma 8 For FT < F T and E > cT1′K1
T + FT ,

(i) If ωFRM
0 + α1ω

FRM
1 ∈ Ω0

T (∈ Ω2
T ) then ∂

∂FT
4T ≥ 0 ( ∂

∂FT
4T < 0);

(ii) If ωFRM
0 + α1ω

FRM
1 ∈ Ω0

T (∈ Ω2
T ) then ∂

∂cT
4T ≤ 0 ( ∂

∂cT
4T > 0).
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For large firms (ωFRM
0 + α1ω

FRM
1 ∈ Ω0

F ), we obtain from Lemma 8, cS
F (cD) > cF (cD,0) and

FF ≥ FD that

4D(cD, FD) = 4F (cS
F (cD), FD) ≤ 4F (cF (cD,0), FD) ≤ 4F (cF (cD,0), FF ).

From the proof of Lemma 8, the inequalities above are strict for sufficiently low ω0. We conclude

that cF (cD,H∗) ≥ cF (cD,0) and large firms tend to use flexible technology and financial risk

management as complements.

For small firms (ωFRM
0 + α1ω

FRM
1 ∈ Ω2

F ), we obtain

4D(cD, FD) = 4F (cS
F (cD), FD) > 4F (cF (cD,0), FD) > 4F (cF (cD,0), FF ).

We conclude that cF (cD,H∗) < cF (cD,0) and small firms tend to substitute flexible technology

with financial risk management.

Proof of Proposition 9: We only prove the results for small firms. Results related to large firms

follow from similar arguments. Recall that in the proof of Proposition 6 we defined

SFRM = E
[
πF

(
BFRM (α1, ω

FRM
1 )

)]− E [
πD

(
BFRM (α1, ω

FRM
1 )

)]

S−FRM = E [πF (B−FRM (α1))]− E [πD (B−FRM (α1))]

as the value of operational risk management with and without financial risk management respec-

tively. The value of operational risk management is more robust to a change in ϕ ∈ {a, ρ, σ} with

financial risk management then without if
∣∣∣∣
∂ SFRM

∂ϕ

∣∣∣∣ <

∣∣∣∣
∂ S−FRM

∂ϕ

∣∣∣∣ .

To analyze the robustness of the value of operational risk management, we focus on the cases

where operational risk management has a value, i.e. flexible technology is preferred over dedicated

technology with and without financial risk management. Recall from the proof of Proposition 6

that we have cF (cD,H∗) < cS
F (cD) and cF (cD,0) < cS

F (cD) in this setting. Therefore, for any

relevant unit investment cost pair (cF , cD) we have cF < cS
F (cD). We now analyze each market

condition separately.

Robustness with respect to capital market condition (a). Since cF < cS
F (cD), it follows from

(43) that ∂
∂aSFRM ≤ 0 and ∂

∂aS−FRM ≤ 0. Therefore, it is sufficient to show ∂
∂aSFRM ≤ ∂

∂aSFRM

to prove the result of lower robustness. It follows from (44) that this condition is equivalent to
∂
∂a∆F ≤ ∂

∂a∆D. We obtain

∂∆F

∂a
− ∂∆D

∂a
= ω0 + α1ω1 − s(α1)FFRM − cFK1

F − FF −
∫

Ω2
F

(B̃ − cFK1
F − FF ) dRB−FRM

(B̃)

− [ω0 + α1ω1 − s(α1)FFRM − cD1′K1
D − FD]χ(B ∈ Ω2

D) +
∫

Ω2
D

(B̃ − cD1′K1
D − FD) dRB−FRM

(B̃).
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where s(α1) = β + (1−β)α1

α0
, B = ω0 + α1ω1 − s(α1)FFRM and χ(.) is the indicator function.

We have the indicator function because a small firm (that always borrows with financial risk

management with flexible technology) need not to borrow with financial risk management with

dedicated technology. We now show that ∂
∂a∆F ≤ ∂

∂a∆D by focusing on two cases.

Case i : (B ∈ Ω2
D) We obtain

∂∆F

∂a
− ∂∆D

∂a
=

∫

Ω2
F \Ω2

D

(cFK1
F + FF − B̃) dRB−FRM

(B̃)

+
∫

Ω2
F

T
Ω2

D

(cFK1
F + FF − cD1′K1

D − FD) dRB−FRM
(B̃)− (cFK1

F + FF − cD1′K1
D − FD).

Since for B̃ ∈ Ω2
F \Ω2

D we have B̃ ≥ cD1′K1
D + FD, it follows that ∂

∂a∆F < ∂
∂a∆D.

Case ii : (B ∈ Ω01
D ) We obtain

∂∆F

∂a
− ∂∆D

∂a
=

∫

Ω2
F \Ω2

D

(cFK1
F + FF − B̃) dRB−FRM

(B̃)

+
∫

Ω2
F

T
Ω2

D

(cFK1
F + FF − cD1′K1

D − FD) dRB−FRM
(B̃)− (cFK1

F + FF − ω0 − α1ω1 + s(α1)FFRM ).

Since we have ω0 + α1ω1 − s(α1)FFRM > cD1′K1
D + FD, it follows that ∂

∂a∆F < ∂
∂a∆D. This

concludes the proof for the robustness result with respect to capital market condition.

Robustness with respect to product market conditions (ρ, σ). We only provide the proof

for ρ. From Lemma 6, we have ∂
∂ρSFRM ≤ 0 and ∂

∂ρS−FRM ≤ 0. Therefore, it is sufficient to

show ∂
∂ρSFRM ≥ ∂

∂ρSFRM to prove the result of higher robustness for small firms. It follows from

(44) that this condition is equivalent to ∂
∂a∆F ≥ 0. The result follows from Proposition 7.

Proof of Proposition 10: To demonstrate the ambiguous effect of financial risk management

on expected (stage 0) capacity investment level, it is sufficient to provide examples for each case

of E[1′K∗
T∗(B−FRM (α1))] T E[1′K∗

T∗(BFRM (α1,H
∗
T ∗))]. We consider FF = FD = 0 which implies

from Proposition 3 that the firm optimally fully hedges with both technologies (Ω4
T = ∅). Let

FFRM = 0 such that financial risk management is costless. Without loss of generality we consider

cF < cF which implies from Proposition 4 that T ∗ = F with or without financial risk management.

Let E be sufficiently large (E ≥ cT 1′K1
T(1−ab)

−(b+1)a is sufficient as follows from Lemma 9 in Appendix

B) such that the firm does not borrow up to the credit limit (Ω3
F = ∅). With these parameter

restrictions, we obtain

E[K∗
F(B−FRM (α1))] =

∫

Ω0
F

K0
F dRB−FRM

(B̃) +
∫

Ω1
F

KF dRB−FRM
(B̃) +

∫

Ω2
T

K1
F dRB−FRM

(B̃),

E[K∗
F(BFRM (α1, ω1))] =





K0
F if ω0 + α1ω1 ∈ Ω0

F

KF if ω0 + α1ω1 ∈ Ω1
F

K1
F if ω0 + α1ω1 ∈ Ω2

F .
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We have K0
F > K1

F, and K0
F > KF ≥ K1

F for B̃ ∈ Ω1
F with equality only holding for the lower

bound of the region Ω1
F . For ω0 ∈ Ω0

F (and hence ω0 + α1ω1 ∈ Ω0
F ), E[K∗

F(B−FRM (α1))] =

E[K∗
F(BFRM (α1, ω1))]. For ω0 ∈ Ω2

F and ω0+α1ω1 ∈ Ω0
F , E[K∗

F(B−FRM (α1))] < E[K∗
F(BFRM (α1, ω1))].

For ω0 + α1ω1 ∈ Ω2
F (and hence ω0 ∈ Ω2

F ), E[K∗
F(B−FRM (α1))] > E[K∗

F(BFRM (α1, ω1))].

If we relax our assumption on E, we obtain

E[e∗F (B−FRM (α1))] =
∫

Ω2
F

[cFK1
F − B̃] dRB−FRM

(B̃) +
∫

Ω3
F

E dRB−FRM
(B̃),

E[e∗F (BFRM (α1, ω1))] =





0 if ω0 + α1ω1 ∈ Ω01
F

cFK1
F − ω0 − α1ω1 if ω0 + α1ω1 ∈ Ω2

F

E if ω0 + α1ω1 ∈ Ω3
F .

It follows that for ω0 + α1ω1 ∈ Ω3
F we have E[e∗F (B−FRM (α1))] < E[e∗F (BFRM (α1, ω1))] and for

ω0 + α1ω1 ∈ Ω0
F we have E[e∗F (B−FRM (α1))] > E[e∗F (BFRM (α1, ω1))].

Proof of Corollary 5: The proof follows from Proposition 8.

Proof of Corollary 6: From Proposition 3, it follows that small firms, as we define in §7,

optimally fully speculates H∗
T = −ω0

α1
. For ω0 = 0, the firm optimally does not engage in financial

risk management. The low value of integration follows from a continuity argument and the bounded

derivative of expected (stage 0) equity value with respect to ω0. For large firms, financial risk

management does not have any value if ω0 ≥ cT1′K0
T + FT , i.e. the cash level is sufficient to

finance the budget-unconstrained optimal capacity investment level. Low value of financial risk

management at high cash levels follow from similar arguments with small firms. When the firm

uses financial risk management only for hedging purposes, it follows from Proposition 5 that small

firms optimally do not engage in financial risk management. Therefore, the value of integration is

zero for small firms. Large firms tend to use financial risk management for full-hedging purposes.

For ω0 < cT1′K0
T+FT , financial risk management has positive value; hence the value of integration

is higher for large firms than small firms. This concludes the proof.

Proposition 11 If the firm does not engage in financial risk management, there exists a unique

technology fixed cost threshold F−FRM
T <

cT 1′K0
T

−(b+1)(1−γT ) for technology T ∈ {D,F} such that when

FT < F−FRM
T , investing in technology T without financial risk management is more profitable than

not investing in technology.

If the firm engages in financial risk management, only one of the following cases holds, depending

on the level of the fixed cost FFRM :

i) There exists a unique technology fixed cost threshold FFRM
T ≤

cT 1′K0
T

−(b+1)
−
�
β+

(1−β)α1
α0

�
FFRM

1−γT
for

technology T ∈ {D,F} such that when FT < FFRM
T , investing in technology T is more
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profitable than not investing in technology; this case occurs at sufficiently low levels of FFRM .

ii) Not investing in technology is more profitable for FT ≥ 0.

Proof of Proposition 11: We first prove the first part of the proposition. From Lemma 6

in the proof of Proposition 4 (using H = 0 and FFRM = 0), E [πT (B−FRM (α1), FT )] is strictly

decreasing in FT . We define LT (B̃) .= πT (B̃)− (B̃ +P ), the difference between the equity values of

investing in technology T and not investing in technology at each state B̃. It is easy to verify that

for F 0
T

.= 0, πT (B̃) > B̃ + P for B̃ ≥ 0. It follows that E
[
πT (F 0

T , B−FRM (α1))
]

> ω0 + α1ω1 + P .

For F 1
T >

cT 1′K0
T

−(b+1)(1−γT ) we have LT (B̃) < 0 for B̃ ≥ 0. It follows that E
[
πT (F 1

T , B−FRM (α1))
]

<

ω0 + α1ω1 + P . Since E [πT (FT , B−FRM (α1))] is strictly decreasing in FT , there exists a unique

F−FRM
T <

cT 1′K0
T

−(b+1)(1−γT ) .

The second part of the proposition follows from a similar argument. We obtain E [πT (BFRM (α1,H
∗
T ))] ≤

ω0 + α1ω1 −
(
β + (1−β)α1

α0

)
FFRM − (1 − γT )FT + cT 1′K0

T
−(b+1) + P , where the latter is the expected

(stage 0) equity value with budget-unconstrained optimal capacity investment. It follows that for

FT > F 1
T =

cT 1′K0
T

−(b+1)
−
�
β+

(1−β)α1
α0

�
FFRM

1−γT
, not investing in technology is more profitable. Two cases

may arise with respect to the level of FFRM . When FFRM is sufficiently low, for F 0
T = 0 we have

E
[
πT (F 0

T , BFRM (α1, H
∗
T ))

]
> ω0+α1ω1+P . In this case (case i), a unique FFRM

T < F 1
T exists since

E [πT (FT , BFRM (α1,H
∗
T ))] is strictly decreasing in FT . For a sufficiently high level of FFRM and

appropriate allocation scheme β (that makes such a FFRM feasible), not investing in technology

is more profitable for FT = 0. In this case (case ii), FFRM
T does not exist and not investing in

technology is more profitable for FT ≥ 0.

Proposition 12 Only one of the following cases holds for technology T :

i) There exists a unique financial risk management fixed cost threshold F T
FRM such that when

FFRM < F T
FRM , it is more profitable to engage in financial risk management than not;

ii) For any feasible FFRM , engaging in financial risk management is more profitable than not.

Proof of Proposition 12: The proof follows from showing that E [πT (BFRM (α1,H
∗
T ))] strictly

decreases in FFRM . From Lemma 2, we can interchange the derivative and expectation operators
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and using the Leibniz’ rule we obtain

E
[
∂πT (BFRM (α1,H))

∂FFRM

]
=

∫ ∞

max(α0
T ,0)

(−β − 1− β

α0
x) rα1(x) dx (46)

+
∫ max(α0

T ,0)

max(α1
T ,0)

MT (1 + 1/b)
cT

(
U(x)
cT

) 1
b

(−β − 1− β

α0
x) rα1(x) dx

+
∫ max(α1

T ,0)

max(α2
T ,0,αB

T )
(−β − 1− β

α0
x)(1 + a) rα1(x) dx

+
∫ max(α2

T ,0,αB
T )

max(0,αB
T )

MT (1 + 1/b)
cT

(
U(x) + E

cT

) 1
b

(−β − 1− β

α0
x) rα1(x) dx

+
∫ max(0,αB

T )

0
(−β − 1− β

α0
x) rα1(x) dx

for any feasible H, where U(x) = ωFRM
0 + x(ωFRM

1 − H) + α1H − FT . Since all terms are neg-

ative, it follows that E [πT (BFRM (α1,H
∗
T ))] is strictly decreasing in FFRM . For FFRM = 0, we

have E [πT (BFRM (α1,H
∗
T ))] ≥ E [πT (B−FRM (α1))] from the optimality of H∗

T . The existence of

F T
FRM ≤ min

(
ω0
β , α0ω1

1−β

)
depends on the allocation scheme β. If β is such that a sufficiently large

level of FFRM is feasible, then since E [πT (BFRM (α1, H
∗
T ))] is strictly decreasing in FFRM , there

exists a unique F T
FRM (case i). Otherwise, since E [πT (BFRM (α1,H

∗
T ))] is preferred for FFRM = 0,

case ii holds.

We show that ∃ β such that case i holds. Let β = ω0
ω0+α0ω1

. It follows that the condition FFRM ≤
min

(
ω0
β , α0ω1

1−β

)
is equivalent to FFRM ≤ ω0+α0ω1. We obtain limFFRM→ω0+α0ω1 BFRM (α1,H) = 0;

therefore E [πT (BFRM (α1,H
∗
T ))]|FFRM→ω0+α0ω1

< E [πT (B−FRM (α1))]. It follows that a unique

F T
FRM exists.

Proposition 13 For technology T ∈ {D, F} there exists a unique variable cost threshold cT (c−T ,H∗
T , 0)

such that investing in technology T with financial risk management is more profitable than investing

in the other technology (−T ) without financial risk management.

Proof of Proposition 13: The proof follows as in Proposition 4, and is omitted.
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B Appendix B. Characterization of B̂T

Recall from Proposition 2 that B̂T is the budget threshold below which the firm does not borrow

or invest. From the proof of Proposition 2, for FT ≥ E, B̂T > FT − E is the unique solution to

GT (B̂T ) = 0 where GT (B̃) .= ΨT (B̃) − (B̃ − (1 − γT )FT + P ), the difference between the equity

values in (29) and not borrowing and not investing in capacity. For FT < E, B̂T , if it exists on

[0,∞), is unique. For notational convenience, we let B̂T
.= 0 if the two curves do not intersect on

the domain of GT (.) for FT < E. From (29) for B̃ ≥ FT we obtain limKT→0+ ∇KT
ΨT → ∞. It

follows that the firm always optimally invests in capacity if internal budget B̃ is sufficient to cover

the fixed cost of the technology. We conclude that FT −E < B̂T < FT . Since ΨT (B̃) can take four

different forms we have four different cases to analyze.

Case 1: cT1′K0
T + FT ≤ B̃

From (33), GT (B̃) > 0 in this range, so it is not possible to have cT1′K0
T + FT ≤ B̂T .

Case 2: cT1′K1
T + FT ≤ B̃ < cT1′K0

T + FT

GT (B̃) = MT
(B̃ − FT )

cT

(
cT

B̃ − FT

)− 1
b

+ γT FT + P − (B̃ − (1− γT )FT + P )

≥ MT
(B̃ − FT )

cT

(
1

1′K0
T

)− 1
b

+ FT − B̃ =
−1

b + 1
(B̃ − FT ) > 0.

Therefore, it is not possible to have cT1′K1
T + FT ≤ B̂T < cT1′K0

T + FT .

Case 3: cT1′K1
T + FT − E ≤ B̃ < cT1′K1

T + FT

GT (B̂T ) = (B̂T − FT )(1 + a) +
cT1′K1

T (1 + a)
−(b + 1)

+ γT FT + P − (B̂T − (1− γT )FT + P ) = 0

⇒ B̂T = FT − cT1′K1
T (1 + a)

−(b + 1)a
.

For B̂T to be feasible in Case 3, B̂T ≥ 0 and B̂T ≥ cT1′K1
T + FT − E should hold. Therefore, if

FT ≥ cT 1′K1
T(1+a)

−(b+1)a and E ≥ cT 1′K1
T(1−ab)

−(b+1)a then B̂T is feasible. Otherwise, it is not possible to have

cT1′K1
T + FT − E ≤ B̂T < cT1′K1

T + FT .

Case 4: cT1′K1
T + FT − E > B̃

In this case, we can derive a sufficient condition for non-existence of intersection. We obtain

GT (B̃) = −E(1 + a) + MT
(E + B̃ − FT )

cT

(
cT

E + B̃ − FT

)− 1
b

+ γT FT + P − (B̃ − (1− γT )FT + P )

≥ −E(1 + a) + MT
(E + B̃ − FT )

cT

(
1

1′K1
T

)− 1
b

+ FT − B̃

≥ E(1 + a)
−(b + 1)

+
1− ab

−(b + 1)
(B̃ − FT ).
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Therefore if FT < E(1+a)
1−ab , then GT (B̃) > 0 and it is not possible to have cT1′K1

T + FT − E > B̂T .

Otherwise, B̂T is a solution of a non-integer polynomial of degree b
b+1 and it is not possible to find

closed-form expression in the whole range of parameters. The following lemma summarizes the

analysis and provides a closed-form expression for B̂T for a subset of parameter levels.

Lemma 9 Let E be such that E ≥ cT 1′K1
T(1−ab)

−(b+1)a .

If FT ≤ cT K1
T(1+a)

−(b+1)a then B̂T = 0 and Ω34
T = ∅.

If FT >
cT 1′K1

T(1+a)

−(b+1)a then B̂T = FT − cT 1′K1
T(1+a)

−(b+1)a and Ω3
T = ∅.

We also provide the following lemma which we will occasionally use in the comparative statics

analysis throughout the paper.

Lemma 10 The budget threshold B̂T is increasing in cT , FT , a and decreasing in E.

Proof We only provide the proof for the result related to a. The other results can be shown in a

similar fashion. Let B̂T (ai), i = 0, 1 define the threshold levels for an arbitrary a0 < a1 . We want

to show that B̂T (a0) ≤ B̂T (a1). Notice that not only the functional form of GT (B̃) in any region

but also the budget levels defining the regions in (29) depend on a. We obtain

∂GT (B̃)
∂a

=





0 if cT1′K0
T + FT ≤ B̃

0 if cT1′K1
T + FT ≤ B̃ < cT1′K0

T + FT

B̃ − cT1′K1
T − FT if cT1′K1

T + FT − E ≤ B̃ < cT1′K1
T + FT

−E if FT −E < B̃ < cT1′K1
T + FT − E.

at the points where GT (B̃) is differentiable in a. It follows that ∂
∂aGT (B̃) ≤ 0 for any B̃ where

the function is differentiable. Since GT (B̃) is a continuous function of B̃ for any a, we conclude

that GT (B̃) is decreasing in a. This implies GT (B̃, a0) ≥ GT (B̃, a1) for B̃ > FT − E. At this

point, two different cases may arise regarding the definition of B̂T (a0). If B̂T (a0) is the solution of

GT (B̃, a0) = 0, then we have GT (B̂T (a0), a1) ≤ GT (B̂T (a0), a0) = 0. Since GT (B̃) is increasing in

B̃ from (30), it follows that B̂T (a1) ≥ B̂T (a0). If B̂T (a0) = 0 because GT (B̃, a0) > 0 for B̃ ≥ 0,

then from (30) either we have B̂T (a1) = 0, (GT (B̃, a1) > 0 for B̃ ≥ 0) or B̂T (a1) is a solution to

GT (B̃, a1) = 0. In either case, we have B̂T (a1) ≥ B̂T (a0).
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C Appendix C. Proofs of Supporting Lemmas

Proof of Lemma 1: From Appendix B, we calculate

∂GT (B̃)
∂FT

=





0 if cT1′K0
T + FT ≤ B̃

−MT
cT

(1 + 1
b )

(
B̃−FT

cT

) 1
b + 1 if cT1′K1

T + FT ≤ B̃ < cT1′K0
T + FT

−a if cT1′K1
T + FT − E ≤ B̃ < cT1′K1

T + FT

−MT
cT

(1 + 1
b )

(
E+B̃−FT

cT

) 1
b + 1 if FT −E < B̃ < cT1′K1

T + FT − E.

From (31), (32) and the continuity of GT (B̃), it follows that GT (B̃) strictly decreases in FT for

B̃ < cT1′K0
T + FT . Recall from Proposition 2 (or Appendix B) that either B̂T is a solution to

GT (B̃) = 0 or B̂T = 0 (if GT (B̃) > 0 for B̃ ≥ 0).

We first prove the necessity of the second argument. Let F T be the fixed cost that satisfies

GT (B̂T (F T ), F T ) = 0 with B̂T (F T ) = 0. In other words, F T is the fixed cost of technology T that

makes the two equity values intersect at B̃ = 0. From Appendix B, it follows that for FT = 0,

GT (B̃) > 0 for B̃ ≥ 0. For FT ≥ E, we have limB̃→(FT−E)+ GT (B̃) < 0, and two curves intersect

at B̂T > FT − E. Since GT (B̃) is strictly decreasing in FT , such an F T < E always exists. Let

F 0
T ≤ F T be an arbitrary fixed cost. We have GT (B̂T (F T ), F 0

T ) < GT (B̂T (F T ), F T ) = 0 since

B̂T < cT1′K0
T +FT (follows from Appendix B) and GT strictly decreases in FT . From (30) we have

GT (B̃) is strictly increasing in B̃ so it follows that B̂T (F 0
T ) > B̂T (F T ) = 0.

We now prove the necessity of the first argument. Let F 1
T < F T be an arbitrary fixed cost.

Since B̂T (F T ) = 0 and GT (B̃) strictly decreases in FT , we have GT (B̃, F 1
T ) > 0 for B̃ ≥ 0. This

implies that B̂T (FT ) = 0 for FT < F T . The uniqueness of F T follows from the fact that GT (B̃) is

strictly decreasing in FT and the uniqueness of B̂T .

The proof for sufficiency follows easily using a contrapositive argument.

Proof of Lemma 2: The expectation and differentiation operators can be interchanged if the

function under expectation is integrable and satisfies the Lipschitz condition of order one (Glasser-

man 1994, p.245). The function πT (α̃1) satisfies the Lipschitz condition of order one if

|πT (α̃
′
1)− πT (α̃

′′
1)|

|α̃′1 − α̃
′′
1 |

≤ YπT ∀ (α̃
′
1, α̃

′′
1) > 0 for some YπT with E[YπT ] < ∞. (47)

Clearly, condition (47) is satisfied if
∣∣∣∂πT

∂α̃1

∣∣∣ is bounded. Note that ∂
∂α̃1

πT =
(

∂
∂B̃

πT

)(
∂

∂α̃1
B̃

)
=(

∂
∂B̃

πT

)
(ω1 −HT ). From Corollary 1, we know that πT is differentiable in α̃1 everywhere except

at αB
T as defined in (38). If B̃ ∈ Ω1

T we have

∂πT

∂B̃
≤ MT

cT
(1 +

1
b
)
(
1′K1

T

) 1
b ≤ (1 + a),

66



and for B̃ ∈ Ω3
T since B̂T ≥ 0 and ET > FT (from (11)) we have

∂πT

∂B̃
≤ MT

cT
(1 +

1
b
)
(

E − FT

cT

) 1
b

≤ YT

where 1 + aT < YT < ∞. It follows that
∣∣∣∂πT

∂α̃1

∣∣∣ ≤ YT (ω1 −HT ) < ∞ for α1 ≥ 0 except αB
T . Since

πT is continuous in α1 and the first derivative is bounded at the differentiable points of πT , the

non-differentiability at αB
T does not violate (47). Since πT (α̃1) is integrable, the interchange of the

derivative and expectation is justified.

Proof of Lemma 3: From Lemma 2, we can interchange the derivative and the expectation

operators and using the Leibniz’ rule we obtain

∂E[πT (BFRM (α1,H))]
∂cT

=
∫

Ω0
T

−1′K0
T dRBFRM (H)(B̃) (48)

+
∫

Ω1
T

−(1 +
1
b
)
MT

cT

(
B̃ − FT

cT

)1+ 1
b

dRBFRM (H)(B̃)

+
∫

Ω2
T

−1′K1
T(1 + a) dRBFRM (H)(B̃)

+
∫

Ω3
T

−(1 +
1
b
)
MT

cT

(
E + B̃ − FT

cT

)1+ 1
b

dRBFRM (H)(B̃).

It follows that ∂
∂cT
E[πT (BFRM (α1,H))] ≤ 0 with equality holding only for H = ωFRM

1 and

ωFRM
0 + α1ω

FRM
1 ∈ Ω4

T (i.e. Ω0123
T = ∅). From Proposition 3, we know that in this case

H∗
T = −ωFRM

0
α1

, so we can ignore H = ωFRM
1 . In other words, in the relevant set of BFRM (α1,H)

we have ∂
∂cT
E[πT (BFRM (α1,H))] < 0.

Proof of Lemma 4:

Case i): The proof follows from Lemma 3 of Chod et al. (2006) by substituting τ = 1 and noting

that ρ and σ in that paper correspond to parameters of the underlying bivariate normal distribution

(ln ξ) of ξ. In our paper, ρ and σ are the parameters of ξ in the covariance matrix Σ.

Case ii): We only prove the more general case where both of the marginal distributions of ξ
′

are

pairwise stochastically more variable than the marginal distributions of ξ. The proof for the case

where one of the marginals is identical for ξ
′
i and ξi is a special case of this proof. For ξi ≥ 0, ξ

′
i ≥ 0

and ξi = ξ′ i it follows from Ross (1983, p.271) that ξ
′
i ºv ξi if and only if E[h(ξi)] ≤ E[h(ξ

′
i)] for all

convex functions h(.). With independent marginal distributions of ξ we have

E
[(

ξ−b
1 + ξ−b

2

)− 1
b

]
=

∫ ∞

0

∫ ∞

0

(
x−b

1 + x−b
2

)− 1
b
f1(x1)f2(x2)dx1dx2 =

∫ ∞

0
g(x1;x2)f1(x1)dx1

where fi(.) is the marginal distribution of ξi and g(k; x2) =
∫∞
0

(
k−b + x−b

2

)− 1
b
f2(x2)dx2 for k ≥ 0.

To conclude the proof, we need to show that g(k; x2) is convex in k and
(
k−b + x−b

2

)− 1
b is convex
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in x2. To prove both of the desired convexity results, it is sufficient to show that g
′
(k, x2) is convex

in k. We obtain

∂2g
′

∂k
= (−b− 1)

(
k−b + x−b

2

)− 1
b
−1

k−b−2 x−b
2(

k−b + x−b
2

) ≥ 0

for k ≥ 0 and x2 ≥ 0. This concludes the proof.

Case iii): Follows from (40) in the proof of Proposition 4.

Proof of Lemma 5:

Case i): The proof follows from Lemma 4 of Chod et al. (2006) by substituting τ = 1 and noting

that ρ and σ in that paper correspond to parameters of the underlying bivariate normal distribution

(ln ξ) of ξ. In our paper, ρ and σ are the parameters of ξ in the covariance matrix Σ.

Case ii): The proof of this case is adapted from Corbett and Rajaram (2005). If ξ
′ ºc ξ, it

follows from Muller and Scarsini (2000, p.110) that ξ
′ ºsm ξ (ξ

′
dominates ξ in the sense of

supermodular order). From the definition of supermodular stochastic ordering, it is sufficient to

show that g(ξ1, ξ2) = −
(
ξ−b
1 + ξ−b

2

)− 1
b is supermodular. From Muller and Scarcini (2003), it

follows that g is supermodular if and only if all mixed derivatives are non-negative, i.e. ∂2

∂ξ1∂ξ2
g ≥ 0

for ξ ≥ 0. We obtain

∂2g

∂ξ1∂ξ2
= (−b− 1)

(
ξ−b
1 + ξ−b

2

)− 1
b
−2

(ξ1ξ2)−b−2 ≥ 0.

This concludes the proof.

Case iii): Follows from (40) in the proof of Proposition 4.

Proof of Lemma 6:

Case i): As in Lemma 3, we obtain

∂E[πT (BFRM (α1,H))]
∂FT

=
∫

Ω0
T

−(1− γT ) dRBFRM (H)(B̃) (49)

+
∫

Ω1
T

−

(1 +

1
b
)
MT

cT

(
B̃ − FT

cT

) 1
b

− γT


 dRBFRM (H)(B̃)

+
∫

Ω2
T

−(1− γT + a) dRBFRM (H)(B̃)

+
∫

Ω3
T

−

(1 +

1
b
)
MT

cT

(
E + B̃ − FT

cT

) 1
b

− γT


 dRBFRM (H)(B̃)

+
∫

Ω4
T

−(1− γT ) dRBFRM (H)(B̃).

Since γT < 1 by definition, it follows from (31) and (32) that the second and the fourth terms are

negative. This implies that ∂
∂FT

E[πT (BFRM (α1,H))] < 0. We have ∂
∂γT
E[πT (BFRM (α1,H))] = FT
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and it follows that the expected (stage 0) equity value is strictly increasing in the salvage rate for

FT > 0.

Case ii): We obtain

∂E[πT (BFRM (α1,H))]
∂E

=
∫

Ω3
T


−(1 + a) +

MT

(
1 + 1

b

)

cT

(
E + B̃ − FT

cT

) 1
b


 dRBFRM (H)(B̃).

It follows that ∂
∂EE[πT (BFRM (α1,H))] ≥ 0 with equality holding for H such that ωFRM

0 + α1H ≥
cT1′K1

T + FT −E; or H = ωFRM
1 and ωFRM

0 + α1ω
FRM
1 < B̂T . From Proposition 3 we know that

in the latter case H∗
T = −ωFRM

0
α1

and we can ignore this case in the relevant set of financial risk

management levels.

Case iii): We obtain

∂E[πT (BFRM (α1,H))]
∂a

=
∫

Ω2
T

(
B̃ − cT1′K1

T − FT

)
dRBFRM (H)(B̃)−

∫

Ω3
T

ET dRBFRM (H)(B̃).

It follows that ∂
∂aE[πT (BFRM (α1,H))] ≤ 0 with equality holding for ωFRM

0 +α1H ≥ cT1′K1
T +FT ;

or H = ωFRM
1 and ωFRM

0 + α1ω
FRM
1 < B̂T . From Proposition 3 we know that in the latter case

H∗
T = −ωFRM

0
α1

and we can ignore this case in the relevant set of financial risk management levels.

Case iv): The expected (stage 0) equity value with dedicated technology is independent of σ.

Therefore, we focus only on flexible technology. We obtain

∂E[πF (BFRM (α1,H))]
∂σ

=
∫

Ω0
F

∂MF

∂σ

(
cF MF (1 +

1
b
)
)−b−1

dRBFRM (H)(B̃) (50)

+
∫

Ω1
F

∂MF

∂σ

(
B̃ − FF

cF

)1+ 1
b

dRBFRM (H)(B̃)

+
∫

Ω2
F

∂MF

∂σ

(
cF MF (1 + 1

b )
1 + a

)−b−1

dRBFRM (H)(B̃)

+
∫

Ω3
F

∂MF

∂σ

(
E + B̃ − FF

cF

)1+ 1
b

dRBFRM (H)(B̃).

From Lemma 4, we have ∂
∂σMF ≥ 0 with respect to our definitions of demand variability. It follows

that ∂
∂σE[πT (BFRM (α1,H))] ≥ 0.

Case v): The proof of the comparative static result with respect to ρ is similar to σ and is omitted.

Proof of Lemma 7: It is easy to verify that we have cFKj
F

∣∣∣
cS
F (cD)

= cD1′Kj
D for j = 0, 1.

Since FF = FD and γF = γD from (29) we have ΨF (B̃) = ΨD(B̃) which implies B̂F = B̂D. It

follows that the regions in (1) overlap, i.e. Ωi
F ≡ Ωi

D for i = 0, .., 4. Since the budget distribution
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BFRM (H) is independent of cost parameters, the expected (stage 0) equity values are the same at

the threshold level. Moreover, from (35), it follows that H∗
F (cS

F (cD)) = H∗
D(cD) because both of

them are solutions to the same optimization problem.

Proof of Lemma 8: Recall from the proof of Proposition 7 we have

Υϕ .=
∂∆T

∂ϕ
=

∂E
[
πT

(
BFRM (α1, ω

FRM
1 )

)]

∂ϕ
− ∂E [πT (B−FRM (α1))]

∂ϕ

For ϕ = cT (ϕ = FT ), we calculate the derivative from Lemma 3 (Lemma 6) by letting Ω34
T = ∅

(because of our assumptions on FT and E).

In (48) of Lemma 6, for B̃ ∈ Ω1
T we have

1− γT <


(1 +

1
b
)
MT

cT

(
B̃ − FT

cT

) 1
b

− γT


 < 1 + a− γT .

For ωFRM
0 + α1ω

FRM
1 ∈ Ω0

T , it follows that

∂E[πT (BFRM (α1, ω
FRM
1 ))]

∂FT
= −(1− γT ) ≥ ∂E[πT (B−FRM (α1))]

∂FT
,

and we obtain ΥFT ≥ 0 where the equality holds for ω0 > cT1′K0
T + FT .

For ωFRM
0 + α1ω

FRM
1 ∈ Ω2

T ,

∂E[πT (BFRM (α1, ω
FRM
1 ))]

∂FT
= −(1 + a− γT ) <

∂E[πT (B−FRM (α1))]
∂FT

,

and we obtain ΥFT < 0. This concludes the proof for part (i).

Similarly, in (49) of Lemma 6, for B̃ ∈ Ω1
T we have

∣∣1′K0
T

∣∣ >

∣∣∣∣∣∣
(1 +

1
b
)
MT

cT

(
B̃ − FT

cT

)1+ 1
b

∣∣∣∣∣∣
>

∣∣1′K1
T(1 + a)

∣∣ .

For ωFRM
0 + α1ω

FRM
1 ∈ Ω0

T , it follows that

∂E[πT (BFRM (α1, ω
FRM
1 ))]

∂cT
= −1′K0

T ≤
∂E[πT (B−FRM (α1))]

∂cT

and we obtain ΥcT ≤ 0 where the equality holds for ω0 > cT1′K0
T + FT .

For ωFRM
0 + α1ω

FRM
1 ∈ Ω2

T ,

∂E[πT (BFRM (α1, ω
FRM
1 ))]

∂cT
= −1′K1

T(1 + a) >
∂E[πT (B−FRM (α1))]

∂cT

and we obtain ΥcT > 0. This concludes the proof for part (ii).
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