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Incorporating Diversification into Risk Management

Abstract

Artzner, Delbaen, Eber and Heath (1999) introduce the concept of a coherent risk

measure. However, these measures only allow the addition of riskfree capital to reduce

portfolio risk. In contrast, through portfolio rebalancing, our proposed measure enables

diversification to lower risk. Consequently, the importance of derivative and insurance

contracts to risk management is explicitly recognized. Moreover, we derive the price

of portfolio insurance, a security whose addition to a portfolio ensures its acceptability

to an external regulator. Throughout our analysis, market frictions such as illiquidity

and transaction costs may be incorporated into portfolio rebalancing decisions.

1 Introduction

The question of “how a firm should measure its risk?” is of fundamental importance to

financial practice. According to Modigliani and Miller (1958), risk management policies are

irrelevant. However, market frictions such as bankruptcy costs, managerial incentives, taxes

and costly external financing motivate risk management activities (see Stulz (1984), Smith

and Stulz (1985) and Froot, Scharfstein and Stein (1993)).

Given the wide-spread usage of risk management tools such as Value-at-Risk (VaR),

firms actively manage risk and are concerned with its measurement. Unfortunately, VaR is

not derived from fundamental economic principles and its usage may lead to economically

sub-optimal decision rules as shown by Shapiro and Basak (2001).

Substantial progress in the academic risk management literature began with Artzner,

Delbaen, Eber and Heath (1999), abbreviated ADEH hereafter, who develop an axiomatic
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framework for risk measurement. Their axioms stem from intuitive economic principles

that define a coherent risk measure. The intent of ADEH is to provide a regulator with a

methodology for determining the riskfree capital requirements of a firm, conditional on their

existing portfolio. Indeed, a coherent risk measure is defined as the minimum amount of

riskfree capital a portfolio requires to become acceptable to the regulator.

ADEH spawned an entire literature on coherent risk measures. These extensions include

Delbaen (2000) and Roorda, Engwerda and Schumacher (2002) who generalize the framework

to an infinite dimensional state space and a multiperiod context respectively. Follmer and

Schied (2002) introduce convex risk measures that account for market frictions by allowing

risk to increase nonlinearly with portfolio size. After altering an ADEH axiom, Jarrow (2002)

enables a put option written on firm value (with zero strike price) to be coherent. Jaschke

and Kuchler (2001) study the relationship between coherent risk measures and good-deal

bounds on asset prices while Carr, Geman and Madan (2001) introduce acceptable trading

opportunities in their study of incomplete markets.

This paper introduces a risk measure that is appropriate for the portfolio selection de-

cisions of firms, while maintaining the concept of acceptable portfolios. To achieve this

objective, we define risk on portfolio holdings, a domain conducive to having diversification

reduce portfolio risk. We maintain an axiomatic structure and define the risk of a portfolio

as its distance from the set of acceptable portfolios. More importantly, distance involves

as many components as available assets, including but not limited to riskfree capital. After

developing our risk measure, we also provide an implementation strategy involving quadratic

programming, a technique with prior applications in finance originating from portfolio the-

ory.

In contrast to coherent risk measures which focus on the regulator, this paper operates

from the firm’s perspective. In particular, we recognize that firms prefer to pursue investment

opportunities that are capable of earning excess economic rents. This desire may stem

from a perception of having superior information or investment ability. By implication,

the ambitions of firms result in portfolios that are not well diversified. Intuitively, firms are

unable to demonstrate investment skill by increasing their position in the riskfree asset. Thus,

they are adverse to adding riskfree capital to their portfolio for performance considerations,
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yet are constrained by an external regulator.

Balancing the demands of an external regulator and the performance objectives of firms

is accomplished by introducing portfolio theory into the measurement of risk. Specifically,

our proposed risk measure offers firms the ability to rebalance their portfolio. During this

rebalancing, the addition of riskfree capital remains a potential option, but is not the exclu-

sive means by which a portfolio becomes acceptable. Since every asset portfolio weight may

be altered, diversification is capable of reducing portfolio risk. Consequently, as discussed

in Merton (1998), instruments with nonlinear payoffs such as derivative and insurance con-

tracts become important tools for risk management. In addition, market frictions may be

incorporated into a firm’s rebalancing decisions as demonstrated in Section 4.

We also consider the pricing of portfolio insurance, a single contract whose addition to

the existing portfolio is capable of ensuring its acceptability. This contract does not reduce

positive payoffs but insures against negative outcomes to avoid insolvency. Provided a firm

is willing to rebalance their portfolio, only a fraction of this security is required.

The organization of this paper is as follows. Section 2 details the properties of our

proposed risk measure while a simple example which illustrates our approach is given in

Section 3. Section 4 focuses on the implementation of our risk measure and demonstrates

that coherent risk measures are contained in our framework. Section 5 considers the pricing

of portfolio insurance while the conclusion of the paper is found in Section 6.

2 Risk Measure with Diversification

Consider the time horizon [0, T ] and a finite number N of risky assets denoted xi for i =

1, . . . , N with x0 representing riskfree capital. Let P denote an M×(N+1) payoff matrix with

M rows corresponding to the regulator’s set of scenarios and N + 1 columns corresponding

to the available assets. Elements of P are individual asset payoffs in a given scenario. A

vector of portfolio holdings η = [η0, η1, . . . , ηN ]� represents the number of units, not dollar

amounts or fractions of a portfolio, invested in the various assets. Portfolio values Pη in

the M scenarios determine whether a portfolio complies with the demands of an external

regulator by being nonnegative, as in the ADEH literature.
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Coherent risk measures evaluate a portfolio’s risk according to its value in the worst

possible scenario or under the probability measure that produces the largest negative out-

come. Mathematically, these risk measures are defined in terms of terminal portfolio values,

X = Pη, as

ρ(X) = max
i

EPi [−X|Pi ∈ P]

1 + r
(1)

with P representing a set of scenarios and r the riskfree rate of interest. In our frame-

work, EPi[−X] is replaced by Pη−
i , the ith row of Pη− = −min{0, P η} as each row of Pη

corresponds to a regulator’s scenario.

It is important to emphasize that coherent risk measures do not account for diversifi-

cation. Instead, they focus solely on the amount of riskfree capital required to ensure the

portfolio has nonnegative terminal values in the scenarios considered relevant by the regula-

tor. This limitation is overcome by our methodology which operates on a different domain.

Define M ⊂ RN+1 as the space of portfolio holdings with the subset of acceptable portfolios

denoted Aη ⊂ M.

Definition 2.1. The set of acceptable portfolio holdings Aη ⊂ M contains all portfolios that

have nonnegative outcomes, Pη ≥ 0, in all M scenarios evaluated by the regulator.

Clearly, the acceptance set Aη depends on the payoff matrix P with the regulator con-

trolling the number of scenarios (rows) in which the firm must remain solvent.

Proposition 2.1. The acceptance set Aη has the following two properties:

1. Closed under multiplication by γ ≥ 0 and

2. Convexity.

Proof:

1. It must be shown that if η ∈ Aη, then γη ∈ Aη for γ ≥ 0. This property follows

from η ∈ Aη being equivalent to Pη ≥ 0 and the property P [γη] = γPη which is

nonnegative since both γ and Pη are nonnegative.

4



2. Convexity is a consequence of the first property. If η1, η2 ∈ Aη, implying Pη1 ≥ 0 and

Pη2 ≥ 0, then γη1 + (1 − γ)η2 ∈ Aη for 0 ≤ γ ≤ 1 since

P [γη1 + (1 − γ)η2] = γPη1 + (1 − γ)Pη2 ≥ 0 .

Unless each element of Pη is nonnegative, the portfolio η is unacceptable. In this instance,

an optimal acceptable η∗ is found based on its proximity to η as we assume firms prefer

to engage in as little portfolio rebalancing as possible given their initial preference for η.

Quadratic programming solves for the portfolio η∗ in Section 4.

Define a trivial acceptable portfolio ηc consisting of $1 invested only in riskfree capital,

in other words, an N + 1 vector with one as the first element and zero in the remaining

elements. This portfolio has the property Pηc = (1 + r)1 > 0 where 1 is an N + 1 vector

of ones. Given the acceptance set Aη in Definition 2.1, portfolio risk is defined in terms of

the l2 norm1 on M. Our risk function ρ(η) maps from the domain of portfolio holdings, M,

into the nonnegative real line, ρ(η) : M → R1
+.

Definition 2.2. Given Aη defined by the payoff matrix P , the risk of a portfolio η equals

ρ(η) = inf {||η − η′||2 : η′ ∈ Aη} .

Observe the fundamental difference between our approach and that of ADEH, instead

of defining risk on terminal portfolio values, risk is defined on portfolio holdings. Thus,

although both measures of risk are derived from a distance to the acceptance set, our concept

of distance has N + 1 variables (one for each asset) instead of only one (riskfree capital).

If η already comprises an acceptable portfolio, then its associated risk equals zero. For

example, the portfolio ηc has zero risk, ρ(ηc) = 0. Otherwise, portfolio risk is determined

by the amount of rebalancing a portfolio requires to become acceptable. This illustrates a

major advantage of our risk measure. A firm may rebalance their portfolio by purchasing

derivative instruments, insurance contracts, or simply reducing their exposure to certain

risky assets. The important point is that portfolio rebalancing may include, but is not

limited to, increasing the amount of riskfree capital.

The lemma below is invoked in subsequent discussions and proofs.

1The l2 norm ||x − y||2 equals
√∑N

i=0(xi − yi)2.
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Lemma 2.1. The acceptance set Aη is closed and compact.

Proof: The function ρ(η) is continuous and equals zero for acceptable portfolios that com-

prise Aη. The inverse image of a closed and compact set {0} for a continuous function is

itself closed and compact.

2.1 Properties of Risk Measure

The next proposition summarizes the properties of our risk measure. Interestingly, all but one

of ADEH’s coherence axioms are preserved. However, removal of the translation invariance

axiom results in an important generalization by eliminating the strict dependence on riskfree

capital to reduce risk. Note that the operations η1±η2 are applied componentwise to signify

operations on two vectors representing portfolio holdings.

Proposition 2.2. The proposed risk measure with diversification has the following proper-

ties:

1. Subadditivity ρ(η1 + η2) ≤ ρ(η1) + ρ(η2)

2. Monotonicity ρ(η1) ≤ ρ(η2) if Pη1 ≥ Pη2

3. Positive Homogeneity ρ(γη) = γρ(η) for γ ≥ 0

4. Riskfree Capital Monotonicity ρ(η + γηc) ≤ ρ(η) for γ ≥ 0

5. Relevance ρ(η) > 0 if η /∈ Aη

6. Shortest Path For every η /∈ Aη and for 0 ≤ γ ≤ ||η − η∗||2,

ρ(η + γ · ũ) = ρ(η) − γ

where ũ is the unit vector in the direction η∗− η defined as η∗−η
||η∗−η||2 given a portfolio η∗

that lies on the boundary of Aη and minimizes the distance ||η − η∗||2.

The proof is contained in Appendix A. The shortest path property imposes cardinality

on the risk measure with ũ representing a unit of rebalancing. Observe that riskier portfolios
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are farther from the acceptance set with larger associated risk measures ρ(η). Versions of

the subadditivity, monotonicity, and positive homogeneity properties found in the original

ADEH paper remain with subadditivity responsible for incorporating diversification into our

framework. The second and third properties, monotonicity and positive homogeneity, are

discussed in ADEH. Monotonicity guarantees that a portfolio whose terminal payoffs are

larger than another portfolio in every scenario has lower risk than its counterpart. Positive-

homogeneity allows a firm to scale an acceptable portfolio up or down with the resulting

portfolio remaining acceptable.2

The key distinction arises from ADEH’s translation invariance axiom. Our risk measure

with diversification employs a weaker concept manifested in the riskfree capital monotonicity

and shortest path properties. The relevance property ensures the risk function is positive if

there exists a scenario, considered relevant by the regulator, where the terminal value of the

portfolio is negative. Consequently, the relevance property ensures unacceptable portfolios

have positive risk.3

2.2 Economic Motivation

An unacceptable portfolio may initially be chosen by a firm which believes it has superior

information or investment skill. Moreover, additional riskfree capital does not permit a firm

to exhibit investment ability or skill. Provided firms pursue excess economic rents and fail

to maintain well diversified portfolios, a coherent risk measure is shown in Section 4 to

overestimate their risk.

To enhance the motivation behind our risk measure, we introduce a nonnegative metric

R(η) ≥ 0 which determines the aggregate desirability of a portfolio. Since the selection

2To account for market frictions, Follmer and Schied (2002) replace positive homogeneity and subadditiv-

ity with a convexity axiom. In our framework, market frictions influence the solution for η∗ as demonstrated

in Section 4.
3When ρ(η) = 0, an amount γ∗ of riskfree capital may be removed from the portfolio according to

supγ∗ ρ(η− γ∗ηc) = 0, which is unique by the monotonicity of riskfree capital property. Since Aη is closed,

there exists a boundary point which minimizes the required amount of riskfree capital. Although quadratic

programming is capable of solving for γ∗, this issue is not elaborated on further as our focus concerns

unacceptable η portfolios.
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criteria and perceived desirability of individual assets are highly variable across firms, very

little structure is imposed on R(η). For illustration, we merely assume this function equals

R(η) =

∑N
i=0 ηi · ci∑N

i=0 ηi

(2)

where ci implicitly denotes a ranking of the assets. For example, ci may represent numerical

weightings associated with strong outperform, weak outperform, or hold among other possi-

bilities. Equation (2) allows several variables, including expected returns and variances, to

influence a portfolio’s desirability. However, covariances are not considered in equation (2)

as diversification is reserved for our subsequent discussion of the proposed risk measure.

Regardless of the exact functional form for R(η), the ci elements may be derived from

an infinite number of scenarios, not only those evaluated by the regulator. Indeed, the

regulator is primarily concerned with a small subset of extreme scenarios. In contrast, the

firm’s investment criteria is comprised of more frequently occuring scenarios. This disparity

reflects the diverging interests of the regulator and firm which our proposed risk measure

attempts to bridge.

In the absence of portfolio rebalancing, define the amount of additional riskfree asset

required to ensure the portfolio η becomes acceptable as α ≥ 0. This quantity equals

α = inf{γ : η + γηc ∈ Aη}
= min{0, P η} , (3)

and depends on η but is written as α rather than α(η) for notational simplicity. Overall,

for η /∈ Aη, diversification is beneficial from the firm’s perspective whenever there exists an

η′ ∈ M (not necessarily acceptable) such that

Condition 1: η + η′ ∈ Aη (4)

Condition 2: R(η + η′) ≥ R(η + αηc) . (5)

The first condition ensures that η′, when added to η, is capable of constituting an acceptable

portfolio. A solution for η′ that satisfies the first condition is provided in Section 4. The

second condition states that portfolio rebalancing is preferred to the addition of riskfree
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capital when complying with the regulator.4 The existence of a portfolio η′ is motivated by

the inability of ηc to generate excess economic rents.5

In practice, the regulator may impose a fine denoted f on firms that continue to hold un-

acceptable portfolios. Thus, the second condition expressed in equation (5) may be extended

to

R(η + η′) ≥ max
{
R(η + αηc), R(η) − f1{η/∈Aη}

}
. (6)

Assuming the fine is large enough to satisfy both

1. f ≥ R(η) − R(η + αηc)

2. f ≥ R(η) − R(η + η′) ,

firms strive to be in compliance with the regulator. Indeed, the firm is better off rebal-

ancing the portfolio than adding riskfree capital or paying the fine and maintaining their

original portfolio. Since R(η + η′) ≥ R(η + αηc), the two requirements above reduce to the

first statement,

f ≥ R(η) − R(η + αηc) .

Hence, the required fine is a function of both η and the firm’s aversion to adding riskfree

capital expressed via R(η). Intuitively, firms which are less adverse to holding riskfree capital

require smaller fines to induce compliance.

Observe that the addition of riskfree capital increases a portfolio’s payoffs in all scenar-

ios, even those for which the original portfolio already has nonnegative values. Indeed, the

portfolio payoff increases in scenarios that are not even considered by the regulator. There-

fore, the addition of riskfree capital is a very conservative approach to risk management, one

suitable from the perspective of a regulator but not firms. Section 5 investigates the pricing

of portfolio insurance, a security which only increases payoffs in scenarios that prevent the

portfolio from being acceptable. Note that firms are able to evaluate scenarios beyond those

4Observe that setting η′ = αηc results in equality for the second condition.
5Although many other functions besides equation (2) are possible, the property ci ≥ c0 for i ≥ 1 guarantees

the second condition is satisfied.
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considered by the regulator if their internal risk management procedures are designed to be

more stringent.

The next section considers a simple example to differentiate our risk measure from co-

herent risk measures.

3 Numerical Example

Consider an economy with two risky assets and riskfree capital. Uncertainty in the economy

is captured by a coin toss. For the first risky asset, the payoff is $4 if heads and -$2 if tails,

while their counterparts are $0 and $2 respectively for the second risky asset. The rate of

interest is assumed to be zero (r = 0) implying riskfree capital is worth $1 at time T .

Asset Heads Tails

Riskfree Capital 1 1

Risky Asset #1 4 -2

Risky Asset #2 0 2

Table 1: Asset payoffs at time T in both scenarios.

The two risky assets are negatively correlated. Indeed, the second risky asset resembles a

“put” option on the first risky asset. The space of portfolio holdings whose terminal values

are nonnegative in both scenarios is characterized as follows:

1 η0 + 4 η1 + 0 η2 ≥ 0 Heads (7)

1 η0 − 2 η1 + 2 η2 ≥ 0 Tails (8)

Consider the portfolio η = [1, 1, 0]� consisting of one unit of riskfree capital, one unit of the

first risky asset and none of the second. The portfolio η is not acceptable since the payoff is

negative if the coin toss results in tails.
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Portfolio Heads Tails

η = [1, 1, 0]� 5 -1

Table 2: Payoffs at time T in both scenarios for the unacceptable portfolio η.

In the coherent risk measure framework, η requires an additional unit of riskfree capital

resulting in η∗
ADEH = [2, 1, 0]�.

Acceptable Portfolio - ADEH Heads Tails

η∗
ADEH = [2, 1, 0]� 6 0

Table 3: Payoffs at time T in both scenarios for the η∗
ADEH portfolio.

Solving for our optimal portfolio η∗ involves minimizing the distance between η = [1, 1, 0]�

and η∗ ∈ Aη under the l2 norm using quadratic programming (QP). The portfolio η∗ equals6

[1.11, 0.78, 0.22]� with details pertaining to its solution found in the next section.

Optimal Portfolio - QP Heads Tails

η∗ = [1.11, 0.78, 0.22]� 4.22 0

Table 4: Payoffs at time T in both scenarios for the η∗ portfolio.

As demonstrated above, a coherent risk measure evaluates the risk of η as 1 due to the

negative payoff when the coin toss is tails. However, the portfolio [1.11, 0.78, 0.22]� ∈ Aη

implies the risk of η in our framework is

||η∗ − η||2 =
√

(1.11 − 1)2 + (0.78 − 1)2 + (0.22 − 0)2 = 0.33.

Thus, our proposed risk measure evaluates the risk of η at one third that of a coherent risk

measure. However, the rebalanced portfolio has nonnegative payoffs in both scenarios and

therefore satisfies the regulator.

Finding more general solutions for η∗ that incorporate market frictions into the rebal-

ancing decision is addressed in Section 4. Note that our risk measure reduced the positive

portfolio payoff in the heads scenario. Section 5 computes the value of a portfolio insurance

contract that eliminates negative terminal values without reducing positive terminal values.
6MATLAB code which solves for η∗ is available from the authors.
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To summarize, the example illustrates that firms may comply with the demands of a

regulator while holding less riskfree capital. Indeed, regulators may adopt our risk measure

without compromising their original role of preventing insolvency in each scenario.

4 Implementation

If Pη has any negative elements, then the regulator deems the portfolio to be unacceptable.

This section is concerned with implementing our risk measure by solving for the portfolio

η∗ ∈ Aη such that Pη∗ ≥ 0 and η∗ is “as close as possible” to the firm’s original portfolio η.

Definition 4.1. Allowing g to represent the l2 norm, the portfolio η∗ ∈ Aη is the solution

to the optimization problem:

minη∗∈RN+1 g (η∗ − η) (9)

subject to Pη∗ ≥ 0 .

In a financial context, quadratic programming, implied by the l2 norm, is equivalent to the

mean-variance analysis underlying much of portfolio theory. Since the objective function g is

twice differentiable and strictly convex and the feasible region is also convex, the Kuhn Tucker

conditions imply a unique solution. Although this problem cannot be solved analytically,

very efficient numerical solutions are available. In particular, the problem is well suited for

a pivoting scheme described in Luenberger (1990).

Proposition 4.1. Let y = Pη∗ and g(η∗) = 1
2
(η∗ − η)�(η∗ − η). The optimal solution to

equation (9) is given by η∗ = η + P�λ where λ solves the linear complementarity conditions


y − PP�λ = Pη

y ≥ 0, λ ≥ 0, λ�y = 0 .

(10)

Proof: The Kuhn Tucker conditions are


η∗ − P�λ = η

Pη∗ ≥ 0, λ ≥ 0, λ�Pη∗ = 0
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since the gradient of the objective function, g(η∗) − (Pη∗)�λ, equals η∗ − η − P�λ. Hence,

with y = Pη∗, the above conditions become




y − PP�λ = Pη

y ≥ 0, λ ≥ 0, λ�y = 0

which completes the proof.

Hence, the optimization problem in equation (9) is reduced to solving the linear comple-

mentary conditions in (10). Furthermore, the optimal portfolio η∗ is a linear function of the

vector λ which satisfies these linear complementary conditions. However, there may exist

multiple solutions to (10), raising the question whether all possible solutions yield the same

optimal portfolio η∗ in Definition 4.1. This issue is addressed in the following proposition

whose proof is found in appendix B.

Proposition 4.2. All solutions to the linear complementary conditions in (10) yield the

same optimal portfolio η∗ in Definition 4.1.

The λ parameters have interesting interpretations as each element corresponds to a spe-

cific regulator scenario. If the constraint Pη ≥ 0 is not binding in scenario i with (Pη)i ≥ 0,

then the corresponding λi equals 0. Otherwise, the optimal λi is a positive number repre-

senting the cost of preventing insolvency.

If Pη ≥ 0, then (10) has an obvious solution; λ = 0 and y = Pη, implying η is optimal.

Otherwise, the general pivoting approach transforms (10) to optimality. After finitely many

pivots, bounded above by the number of rows (scenarios), the vector Pη∗ is nonnegative. In

terms of computational complexity, a total of M linear equations are solved for each pivot

operation. The algorithm stops when Pη∗ ≥ 0, providing the optimal solution to (10).
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4.1 Incorporating Market Frictions

In general, the objective function g may be defined with respect to a positive definite matrix

A as in (η∗ − η)�A (η∗ − η). Consider a diagonal matrix of positive elements ai

A =




a0

a1

. . .

aN




representing the associated market friction (illiquidity and transaction costs) of the ith asset

as well as the firm’s unwillingness to alter their position in this asset. Larger ai values

correspond to larger penalties for altering that element of the portfolio. Even if riskfree

capital has the smallest corresponding penalty, the addition of riskfree capital may still be

sub-optimal. Indeed, a portfolio may require a large amount of additional riskfree capital to

become acceptable, but only minor modifications to positions with larger ai penalties. This

issue is re-examined in the next section when pricing portfolio insurance.

Also note that we do not incorporate the ci elements of the R(η) function from equation

(2) into A. Indeed, solving for the optimal acceptable portfolio that maximizes R(η) is well

beyond the scope of this paper and would require far greater structure on firm preferences,

information and beliefs. Since η represents the firm’s optimal portfolio in the absence of the

regulator, we merely assume any deviation from η is disliked by the firm.

Proposition 4.1 has an immediate corollary when the positive definite matrix A is inserted

into the objective function which alters the values of both η∗ and λ.

Corollary 4.1. Let y = Pη∗ and g(η∗) = 1
2
(η∗− η)�A(η∗− η) where A is a positive definite

matrix. The optimal portfolio η∗ equals η + A−1P�λ, where λ satisfies the modified linear

complementarity conditions



y − PA−1P�λ = Pη

y ≥ 0, λ ≥ 0, λ�y = 0 .

Given Corollary 4.1 above, we now reconsider the example in Section 3 for different A

matrices and their corresponding optimal acceptable portfolios.
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4.2 Continuation of Example

Once again, the original unacceptable portfolio η = [1, 1, 0]� is considered. Suppose a firm is

extremely7 adverse to adding riskfree capital to their portfolio. This preference is expressed

through the matrix

A1 =



∞

1

1




which implies η∗
1 equals [1, 0.75, 0.25]�. The portfolio η∗

1 is acceptable with Pη∗
1 being non-

negative in both scenarios. Therefore, our proposed risk measure generates an acceptable

portfolio without any additional riskfree capital by reducing the firm’s exposure to the first

risky asset and purchasing a portion of the second risky asset as a hedge.

Interestingly, one may begin with the portfolio η̄ = η − ηc = [0, 1, 0]� and find η̄∗
1, with

the prevailing A1 matrix, without utilizing any additional riskfree capital. Indeed, [0, 1, 1]�

consists entirely of risky assets and is acceptable.

Furthermore, suppose the firm also has a strong desire to maintain their position in the

first risky asset. Returning to the original η portfolio, the A matrix

A2 =



∞

∞
1




generates an optimal portfolio η∗
2 = [1, 1, 0.50]�. As expected, only the position in the second

risky asset is modified.

Finally, we examine an A matrix capable of replicating the optimal ADEH portfolio

AADEH =




1

∞
∞




7For implementation, ∞ is replaced with a large number, 1000 in the context of the numerical examples

presented in this paper.
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which implies η∗
ADEH = [2, 1, 0]�. In this situation, only additional riskfree capital is chosen.

Overall, by eliminating the possibility of rebalancing the risky assets, the ADEH risk measure

implicitly has aj �=0 = ∞.

The above examples illustrate the ability of our methodology to find optimal acceptable

portfolios that reflect market frictions, as well as an aversion to additional riskfree capital or

altering positions in specific risky assets. In summary, implementing our framework reduces

to solving a quadratic programming problem, a situation encountered in many financial

applications involving portfolio theory.

5 Pricing Portfolio Insurance

This section determines the price of portfolio insurance, a single contract whose combination

with the original portfolio satisfies the regulator.

Let IC denote the nonnegative price of the contract in circumstances where Pη contains

at least one negative value. Denote X+ = max{0, X} and X− = −min{0, X}. To become

acceptable, the firm requires a contract with a payoff profile equal to (Pη)−. In addition,

we ensure the portfolio, when combined with the insurance contract, continues to provide

(Pη)+ in scenarios with positive values. Thus, the insurance contract does not reduce positive

terminal values, only increases negative terminal values to zero. Hence, in contrast to riskfree

capital, portfolio insurance only provides a positive payoff in scenarios where it is necessary.

We endogenously determine the value of portfolio insurance by equating the dollar value of

the optimal portfolios at time zero with and without this contract. This indifference stems

from portfolio insurance being redundant since an acceptable portfolio may be obtained

via rebalancing. Indeed, portfolio insurance provides an economically intuitive short-cut to

acceptability.

5.1 Insurance without Rebalancing

Let q denote the price vector of the N + 1 assets at time zero which is assumed to be free

of arbitrage. The proposition below solves for the price of portfolio insurance under the

assumption that no additional rebalancing is conducted after its introduction.
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Proposition 5.1. The price of the portfolio insurance, without additional portfolio rebal-

ancing, equals

ICwo = q�P�λwo

where λwo is determined by the resulting linear complementary conditions.

Proof: Consider the alternative to purchasing an insurance contract. The firm must rebal-

ance their portfolio to obtain η∗ which satisfies Pη∗ ≥ (Pη)+. The optimization problem

which solves for η∗ is

min
η∗ g(η∗ − η)

subject to Pη∗ ≥ (Pη)+ .

(11)

The Kuhn Tucker conditions imply that the optimal solution is given by the solution to the

following linear complementarity conditions8




y − PP�λ = −(Pη)−

y ≥ 0, λ ≥ 0, λ�y = 0

(12)

where y = Pη∗ − (Pη)+. Denote the solution to (12) by (ηwo, λwo) where ηwo represents the

optimal portfolio without the insurance contract. The following linear relationship between

ηwo and the original portfolio η holds

ηwo = η + P�λwo . (13)

With firms indifferent between buying the contract or rebalancing their portfolio, the dollar

values of the two acceptable portfolios at time zero are equated. Thus, the price of the

insurance contract equals ICwo + q�η = q�ηwo implying

ICwo = q�(ηwo − η) = q�P�λwo , (14)

which completes the proof.

The value of ICwo is positive since the payoff (Pη)− is nonnegative in each scenario and

strictly positive in at least one scenario.9

8Using the property Pη = −(Pη)− + (Pη)+, y − PP�λ = −(Pη)− in equation (12) is equivalent to

Pη∗ − Pη − PP�λ = 0 in Proposition 4.1.
9Pη ≥ 0 with strict inequality in at least one scenario implies the initial cost of the portfolio q�η is positive.
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5.2 Insurance with Rebalancing

The following analysis has firms willing to engage in additional rebalancing to exploit the

diversification benefit offered by the availability of portfolio insurance. Let the insurance

contract be the N + 2nd security resulting in an additional column being appended to P

to form Q = [P (Pη)−]. This column increases negative terminal values in scenarios that

previously implied insolvency. In addition, enhanced portfolios with and without portfolio

insurance are defined as

δ1 =


η

1


 and δ0 =


η

0


 .

While δ0 is not acceptable, δ1 is acceptable since Qδ1 = Pη +(Pη)− = (Pη)+ ≥ 0. However,

we later prove that δ1 is not optimal when there are fewer scenarios than available assets.

Proposition 5.2. The price of portfolio insurance, with additional portfolio rebalancing,

equals

ICw =
q�P�(λwo − λw)

((Pη)−)�λw

with λwo previously determined in Proposition 5.1 and λw by the resulting linear complemen-

tary conditions.

Proof: Denote δ∗ =


ηw

xw


. The optimal solution defined over the N + 2 assets is given by

min
δ∗∈RN+2

g(δ∗ − δ0)

subject to Qδ∗ ≥ (Pη)+

(15)

with linear complementarity conditions




y − QQ�λ = −(Pη)−

y ≥ 0, λ ≥ 0, λ�y = 0

(16)

The condition y ≥ 0 in (12) implies Pηwo−(Pη)+ ≥ 0 which implies that P (ηwo−η) ≥ 0 with strict inequality

in at least one scenario provided (Pη)− �= 0. Therefore, no arbitrage implies ICwo = q�(ηwo − η) > 0.
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for y = Qδ∗ − (Pη)+. Denote the optimal solution to (16) by (ηw, xw, λw) which implies
ηw

xw


 =


η

0


 +


 P�

((Pη)−)�


λw . (17)

Therefore, the second equation of (17) implies the optimal amount of insurance to purchase

equals

xw = ((Pη)−)�λw ≥ 0 . (18)

Hence, conditional on additional rebalancing from η to ηw, the price of the insurance contract

is ICw · xw + q�ηw = q�ηwo which is equivalent to

ICw =
q�P�(λwo − λw)

((Pη)−)�λw
(19)

by equation (18) and the relationship ηwo−ηw = η+P�λwo−η−P�λw = P�(λwo−λw).

The magnitude of xw in equation (18) quantifies the importance of diversification. Ad-

ditional portfolio rebalancing reduces the required amount of portfolio insurance contract

from 1 to xw when P is of full row rank as proved in the following corollary.

Corollary 5.1. The optimal amount of portfolio insurance to purchase, xw, is strictly less

than one unit if P is of full row rank.

Proof: The inequality xw ≤ 1 follows from λ�
wQQ�λw = λ�

w(Pη)− by (16), which is equiv-

alent to λ�
wPP�λw + (λ�

w(Pη)−)2 = λ�
w(Pη)−. When P is of full row rank, PP� is positive

definite implying λ�
wPP�λw ≥ 0 which yields (λ�

w(Pη)−)2 ≤ λ�
w(Pη)− and proves that

xw = λ�
w(Pη)− ≤ 1 . (20)

Thus, the optimal amount of insurance to purchase is strictly less than one unit.

The strict inequality in the above corollary reinforces the importance of diversification.

Specifically, we are able to diversify risk more effectively once the insurance contract becomes

available. With little loss of generality, we may assume the number of assets N + 1 exceeds

the number of scenarios M .10 Therefore, for the remainder of this paper, it is assumed that

P is of full row rank.
10For example, consider the total number of futures contracts and options ranging across time-to-maturities

and strike prices for scenarios involving the underlying asset.
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To summarize, it is not necessary for firms to purchase the entire insurance contract

provided they engage in subsequent portfolio rebalancing. As indicated in the next corollary,

fewer dollars are also required to be spent on portfolio insurance, a result that is later

reinforced by Proposition 5.3.

Corollary 5.2. The dollar value of required insurance is less with portfolio rebalancing,

xwICw < ICwo.

Proof: This result follows from equations (18) and (19),

xwICw = ICwo − q�P�λw

and the fact that the last term q�P�λw = q�(ηw −η) is positive. Indeed, q�(ηw −η) > 0 is a

consequence of the condition y = Qδ∗−(Pη)+ = Pηw+(Pη)−xw−(Pη)+ ≥ 0 from (16) which

implies Pηw + (Pη)− − (Pη)+ ≥ 0 since 1 > xw ≥ 0. Therefore, Pηw − Pη ≥ 0 with strict

inequality in at least one scenario and by the assumption of no arbitrage, q�(ηw−η) > 0.

In addition, equation (17) implies that neither δ1 nor ηwo are optimal in the presence of

the insurance contract. These statements are formalized in the following corollary.

Corollary 5.3. If η is an unacceptable portfolio and P is of full row rank, then neither

δwo =


ηwo

0


 nor δ1 =


η

1




are optimal in the presence of the insurance contract.

Proof: If δwo is acceptable, then it is also acceptable in the presence of the insurance contract.

But if δwo is optimal, then (13) and (17) jointly imply that

P�(λwo − λw) = 0 and ((Pη)−)�λw = 0 .

Hence, with the payoff matrix P being of full row rank, it follows that λwo = λw with

(12) implying λ�
woPP�λwo = 0 which contradicts PP� being positive definite since (Pη)−

is strictly greater than 0 in at least one scenario. Hence δwo is not optimal. A similar

contradiction is obtained if one assumes δ1 is optimal.

The next proposition states that the two portfolio insurance prices, ICwo and ICw, are

identical when the market is arbitrage free.
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Proposition 5.3. If η is an unacceptable portfolio, then the prices ICwo and ICw are equal.

Proof: The binding property of the constraints in equations (11) and (15) imply




Pηwo = Pη + (Pη)−

Pηw + (Pη)−xw = Pη + (Pη)−.

It follows that η plus the insurance contract, ηwo and δ∗ =


ηw

xw


 all have the same payoff,

Pη + (Pη)−. By no arbitrage, their values at time zero are also equal with




q�ηwo = q�η + ICwo

q�ηw + ICw · xw = q�η + ICw

implying ICwo − ICw = q�ηwo − q�ηw − ICw · xw = 0 which completes the proof.

In summary, prices for portfolio insurance without portfolio rebalancing and with port-

folio rebalancing are given by Propositions 5.1 and 5.2 respectively. Additional portfolio

rebalancing exploits the diversification benefit offered by the introduction of the insurance

contract. As a result, the firm is able to purchase strictly less than one unit of the contract.

However, with or without portfolio rebalancing, the price for one unit of portfolio insurance

is identical according to Proposition 5.3. More intuition behind Proposition 5.3 is given in

the next subsection.

5.3 Insurance and Dollar-Denominated Risk

We now demonstrate that although the risk metric ρ(η) is defined on portfolio weights, our

results may be interpreted in terms of a dollar-denominated quantity. Furthermore, the

dollar-denominated amount of rebalancing equals the price of portfolio insurance.

Specifically, the difference between η∗ and η equals η∗ − η = P Tλ implying the dollar-

denominated amount of risk is

qT (η∗ − η) = qT P Tλ (21)

= ICwo .
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Therefore, although risk is defined in terms of the l2 norm on portfolio weights, it may

be converted into the more traditional dollar-based domain and coincides with the price of

portfolio insurance (with or without rebalancing).

As a consequence of equation (21), minimizing the distance in portfolio weights between

η and the acceptance set is equivalent to minimizing the dollar-denominated amount of

rebalancing. Therefore, the price of portfolio insurance equals the amount of rebalancing, in

dollars, required to ensure the portfolio η becomes acceptable.

5.4 Example Revisited

Returning to the example in Section 3, let the price vector equal q = [1, 1.3, 0.9]�. Existing

specifications imply (Pη)− = [0, 1]�, and η = [1, 1, 0]� along with the payoff matrix P

illustrates the results in Propositions 5.1 and 5.2. The vector λwo equals [0.0673, 0.1635]�

implying a price for portfolio insurance of ICwo = q�P�λwo which equals $0.45. The λwo

parameters are associated with two restrictions; preventing negative terminal values and not

reducing positive terminal values.

The second optimization in equation (15) based on δ0 and Q yields λw = [0.0579, 0.1405]�.

According to Proposition 5.2, the price ICw equals $0.45, in accordance with Proposition

5.3.

However, the optimal amount of portfolio insurance to purchase is xw = λ�
w(Pη)− =

(λw)2 = 0.1405, a quantity strictly less than one since P is of full row rank. Thus, with

additional portfolio rebalancing, the dollar-denominated reduction in the amount of portfolio

insurance that is required equals ICwo − xwICw = (1 − 0.1405) × $0.45 = $0.39.

6 Conclusion

A risk measure defined on the space of portfolio holdings is proposed which enables diversifi-

cation to reduce portfolio. Consequently, derivative and insurance contracts have important

roles in risk management. Through portfolio rebalancing, our risk measure offers firms

greater flexibility than coherent risk measures when complying with an external regulator.

Indeed, our approach allows every asset in the portfolio, including riskfree capital, to be
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adjusted. Thus, as in the existing literature, risk is defined as the distance to an acceptance

set. However, to incorporate diversification, the concept of distance is extended to include

the risky assets as well as riskfree capital.

Our analysis incorporates market frictions such as illiquidity and transaction costs into

the portfolio rebalancing decision. The price of portfolio insurance is also derived. When

combined with the original portfolio, this contract ensures nonnegative portfolio values in

every scenario considered by the regulator. Furthermore, the amount of required portfo-

lio insurance is determined by the firm’s willingness to rebalance their portfolio once this

contract is available.
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Appendices

A Proof of Proposition 2.2

Recall the properties of Proposition 2.1 regarding the acceptance set Aη.

1. Consider two portfolios η1 and η2 and let η∗
1 be the closest portfolio on the acceptance

set Aη. In other words, η∗
1 = η′ such that inf {||η1 − η′||2 : η′ ∈ Aη}. Similarly define

η∗
2 as the equivalent quantity for η2. Therefore, by definition

ρ(η1) = ||η1 − η∗
1||2

ρ(η2) = ||η2 − η∗
2||2
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and the following holds by the triangle inequality property of norms

||η1 + η2 − η∗
1 − η∗

2||2 ≤ ||η1 − η∗
1||2 + ||η2 − η∗

2||2 = ρ(η1) + ρ(η2).

However, the quantity η∗
1 + η∗

2 is also in the acceptance set since Aη is convex and

closed under multiplication by γ ≥ 0. For two portfolios η∗
1, η

∗
2 ∈ Aη convexity implies

η∗ = 1
2
η∗

1 + 1
2
η∗

2 ∈ Aη while 2η∗ = η∗
1 + η∗

2 ∈ Aη as a consequence of Aη being closed

under multiplication of positive scalars. Therefore

ρ(η1 + η2) ≤ ||η1 + η2 − η∗
1 − η∗

2||2 = ||(η1 + η2) − (η∗
1 + η∗

2)||2
since η∗

1 + η∗
2 is an element of Aη but need not be optimal. Hence, ρ(η1 + η2) ≤

ρ(η1) + ρ(η2) and subadditivity is proved.

2. Consider two portfolios η1 and η2 and let Pη1 ≥ Pη2 a.s. The proof for monotonicity

follows by recognizing that η1 = η1−η2+η2 and ρ(η1−η2) = 0 since the portfolio η1−η2

always generates a nonnegative payoff implying η1 − η2 ∈ Aη. Applying subadditivity,

ρ(η1) = ρ(η1 − η2 + η2) ≤ ρ(η2), demonstrates that ρ(η1) ≤ ρ(η2) and monotonicity is

proved.

3. Consider a portfolio η and a scalar γ ≥ 0. Define η∗ as in the proof of subadditivity.

The function ρ(η) is defined as ||η − η∗||2 which implies that

γρ(η) = γ ||η − η∗||2 = ||γη − γη∗||2 ≥ ||γη − (γη)∗||2 = ρ(γη)

since γη∗ is in the acceptance set but need not be optimal in terms of minimizing the

distance to the acceptable set. The reverse direction is proved by defining ρ(γη) as

||γη − (γη)∗||2 = γ
∣∣∣∣∣∣η − (γη)∗

γ

∣∣∣∣∣∣
2
≥ γρ(η) since 1

γ
(γη)∗ is an element of Aη but need not

be optimal. Thus, ρ(γη) and γρ(η) are equal and positive homogeneity is proved.

4. Consider two portfolios η1 and η2 that differ only in terms of the riskfree asset with

η2,0 > η1,0. It suffices to show that ρ(η2) ≤ ρ(η1). Consider a portfolio that is a

combination of η1 and another portfolio γηc for γ ∈ [0, 1] that consists entirely of an

amount η2,0−η1,0 in riskfree capital. This new portfolio is equivalent to η2 and implies

that

η2 = η1 + γηc ⇒ ρ(η2) = ρ(η1 + γηc) ≤ ρ(η1) + ρ(γηc)
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using subadditivity. However, ρ(γηc) equals zero since this portfolio is accepted by the

regulator, γηc ∈ Aη. Hence, ρ(η2) ≤ ρ(η1) and the monotonicity of riskfree capital is

proved.

5. Consider a portfolio η /∈ Aη such that Pη−
i < 0 for some i. It must be proved that

ρ(η) > 0. Proceed by contradiction by supposing that ρ(η) = 0 which implies that

η ∈ Aη by Definition 2.2. However, Definition 2.1 requires that Pη ≥ 0 for η ∈ Aη,

contradicting Pη−
i < 0 for any i. Hence, relevance is proved.

6. Consider a portfolio η that does not belong to the acceptance set. Recall that Aη is a

closed and convex set according to Lemma 2.1 and Proposition 2.1. Since η is a point

outside this set, by the separating hyperplane theorem, there exists a point η∗ on the

boundary of Aη such that ||η − η∗||2 is the unique minimum distance of η from set

Aη. Now consider any scaler γ and let ũ be the unit directional vector in the direction

η∗ − η. The vector η + γ · ũ is a point along the path of minimum distance and proves

the shortest path property.

ρ (η + γ · ũ) = ||η + γ · ũ − η∗||2
=

∣∣∣∣
∣∣∣∣ η + γ ·

(
η∗ − η

||η − η∗||2

)
− η∗

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣η∗ − η − γ ·

(
η∗ − η

||η − η∗||2

)∣∣∣∣
∣∣∣∣
2

=

(
1 − γ

||η − η∗||2

)
||η − η∗||2

= ||η − η∗||2 − γ

= ρ(η) − γ .

B Proof of Proposition 4.2

It is sufficient to prove that any two solutions to the linear complementary conditions in (10)

yield the same optimal portfolio η∗. Therefore, our procedure is optimal. Let (y1, λ1) and
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(y2, λ2) denote two solutions to (10) with the following conditions




y1 − PP�λ1 = Pη

y2 − PP�λ2 = Pη

λ1 ≥ 0, λ2 ≥ 0, y1 ≥ 0, y2 ≥ 0

λ�
1 y1 = 0, λ�

2 y2 = 0 .

(22)

We proceed to show

P�λ1 = P�λ2

with both solutions generating the same optimal portfolio η∗ = η + P�λi for i = 1, 2. From

(22),




λ�
1 Pη = −λ�

1 PP�λ1

λ�
2 Pη = −λ�

2 PP�λ2 .

Therefore,

(λ1 + λ2)
�(y1 + y2) = λ�

1 y2 + λ�
2 y1

= λ�
1 PP�λ2 + λ�

2 PP�λ1 + λ�
1 Pη + λ�

2 Pη

= −(λ1 − λ2)
�PP�(λ1 − λ2)

≤ 0 .

Since λ1 ≥ 0, λ1 ≥ 0, y1 ≥ 0, and y2 ≥ 0, it follows that

(λ1 − λ2)
�PP�(λ1 − λ2) = 0

which implies

P�(λ1 − λ2) = 0 .

Therefore, the optimal solution to equation (9) is

η∗ = η + P�λ1 = η + P�λ2 ,

which completes the proof.
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