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his paper was motivated by an observation in an international airport with regard to allocation of resources

for check-in counters. In an exclusive check-in counter system, each flight has a dedicated number of coun-
ters that will be open until at least a half-hour before the scheduled departure of that flight. Currently, in many
of the airports around the world, the decision to open or close check-in counters is done on an ad hoc basis
by human schedulers. In doing so, the schedulers are almost always forced to perform a balancing act in meet-
ing the quality of service stipulated by the airport authority vis-a-vis the optimal allocation of the resources
to the counters. There appear to be very few academic and application papers in counter management, and
most of those that have looked into this problem have resorted to simulation to study the queue characteristics.
Ours is the first paper to show that for a specific flight, this complicated problem is amenable to analytical
treatment. We first propose a multicounter queueing model with a special type of arrival process reflecting
reality from the population of passengers booked for the flight. Most importantly, we derive the time-dependent
operating characteristics to the queueing process under a specified time-window constraint. Then a stochastic
dynamic programming model is formulated to determine the optimal numbers of counters to open over the
time window specified. A numerical example is provided to illustrate the model solution and gain managerial
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1. Introduction
Globally, the recent years have witnessed a dramatic
surge in demand for air transportation. Notwithstand-
ing the post-9/11 impact, factors like globalization
and the measures taken by governments in deregulat-
ing air traffic have borne fruit in the form of increased
passenger load factor. The advent of low-cost carri-
ers, like ValueAir and Air Asia in Asia-Pacific, Jet
Star in Australia, and similar airlines in other regions,
bear testimony to this. According to Boeing’s Current
Market Outlook 2007,' worldwide passenger traffic
growth will average 4.5% up to the year 2026. In the
developing economies of the Asia-Pacific region, this
figure will be around 5.5%, and in China alone the
growth is expected to be 8.1%. A similar trend is also
expected in cargo traffic.

Although increase in demand for air transporta-
tion is a promising sign for airlines, civil aviation

! Accessed November 11, 2007, http://www.boeing.com/commercial/
cmo/highlights.html.
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authorities, terminal operators, and ancillary service
providers, it also raises a whole range of challenges
due to the increased congestion that will result at
the terminals. Even though extra capacity will be
added to profitable routes, airline terminal handling
nonetheless still remains confined to within the ter-
minals. Also, increased capacity only leads to greater
congestion on the runway of airports, and hence
the need to ensure timely aircraft takeoffs. Typically,
any delay in scheduled flight departures will cas-
cade down in further upheavals in downstream flight
itineraries for the rest of the day. As such, these oper-
ational challenges require immediate attention and
swift resolution. The imperative is to clear passengers
checking into a terminal counter within a specified
time window, without having to incur unnecessary
additional counter openings or compromises on cus-
tomer service. In the worst case, terminal operators
have to open or even “borrow” additional coun-
ters from nearby counters meant for other scheduled
flights to ease the surge in demand and to meet the
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deadline set by the airport authority. These are usu-
ally intended on a discretionary basis to meet the
upsurge in the economy-class passengers who form
the bulk of passengers and are without any prior
check-in done. Clearly, costwise, this knee-jerk reac-
tion is not optimal because it incurs additional cost
and strain in staffing, counterspace rental, equipment,
and operations planning.

The motivation for the work presented in this
paper arose from an observation by the authors in
an international airport on the balancing act the air-
port operator had to perform in meeting the perfor-
mance standards set by the airport authority while
at the same time maintaining a judicious use of the
valuable resources. For example, the most important
concern for the aviation authority and the ground ser-
vice provider is the ability to consistently maintain
high-quality schedules for the daily check-in counter
management, given the variations in the skill and
experience level of each human scheduler. The check-
in counter allocation schedule (or the delay experi-
enced) has a very important impact on the overall
image of the airport and airlines as perceived by the
passengers. An efficient schedule simply translates to
shorter queues, less congestion at the counters, faster
check-in, more time to spend at the duty-free section,
and, consequently, less harried passengers.

This paper presents a model based on the evalua-
tion of the operational practices of international air-
ports. Although the trend in airports now is to use
paperless tickets and self check-in kiosks, this is not
so in many of the airports around the world, and
especially in the high-growth Asia-Pacific region. Cur-
rently, the decision to open or close check-in coun-
ters is done on an ad hoc “gut-feel” basis by the
counter supervisor in most of Asia (presumably sim-
ilar to those practices found in the retail sector).
Hence, this research is motivated for the exact pur-
pose of developing a counter allocation management
system to help predict the resource requirements at
international airports. The thrust of such a system
is to assign valuable resources efficiently to meet
business demands without compromising service
standards.

This research should be approached in two phases.
The first phase is the queueing and statistical analy-
sis phase to help determine the optimal number of
counters needed for each flight over time to mini-
mize a certain expected cost function (while implicitly
achieving a desired level of customer service). The
second phase is the optimization phase required to
schedule and assign counters to flights, subject to
meeting the various airport- and airline-specific con-
straints. This paper attempts to model and analyze
the first phase only. For this phase of work, we
first obtain the operational characteristics of the basic
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queueing model and then use stochastic dynamic
programming to determine the number of counters
to allocate to each scheduled flight for the dura-
tion of time required. The basic model proposed is
a multicounter single queue with the arrival process
occurring according to a “passenger show-up pro-
cess” from the finite population of passengers hold-
ing confirmed bookings. In stochastic processes, this
arrival process is referred to as a death process
(see Bhat 1984, p. 208; Feller 1968, p. 478). In the
most generous case, this population is no more than
550 passengers on the Boeing 747-400, the capac-
ity of the largest passenger plane today. We high-
light that the multicounter model considered in this
paper will also be useful for a multicounter system
with the assumption of independent arrivals to each
counter.

Our main contribution to the research literature in
this area is in deriving the time-dependent solution
to the queueing process. Lee’s (1966) very interesting
anecdotal description of his experiences in modeling
this problem provides detailed insights into the diffi-
culties encountered in modeling and analysis. Hence,
we feel that our work in this paper is an important
progress in this area. Another significant contribution
of our work is the dual purpose our results can serve.
Our main thrust here is to minimize the operating
cost for the service provider through the use of the
dynamic programming model analyzed. However, if
the service provider’s primary objective is to meet
the quality of service (QoS) mandated by the airport
authority, our results can still be used to analyze the
resource requirements to meet the QoS. Because our
model is analytical and more realistic, the optimiza-
tion results are on firmer ground than those based on
simulation.

The rest of this paper is organized as follows. Sec-
tion 2 presents the relevant literature for the area
of study. The model and assumptions are presented
in §3. We perform the analysis of the multicounter
model in §4, where we seek to determine the time-
dependent operating characteristics of a stochastic
process operating under a specified time-window
constraint. In §5, we discuss a more general model
with Erlang service times and compare it to the stan-
dard model with exponential service times using the
properties of the time-to-absorption random variable
for the queueing process. In §6, we present a statistical
procedure for estimating the parameters of the pure-
death process where the show-up rate is time depen-
dent. In §7, our objective is to determine the optimal
number of counters to open over time. We do this by
developing a stochastic dynamic programming model
that provides some managerial insights. Suggestions
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for future research and some concluding remarks on
this piece of applied work are highlighted in the final
section. All appendices are provided online in the
e-companion.?

2. Literature Review

The literature in this area is scant, and there has been
a host of methods used to model the real-life problem.
The earliest work in this area is by Lee (1966) who
provides a very interesting account of a similar exer-
cise carried out over a period of time for an airport
in the United Kingdom, where the passenger arrival
stream was assumed to be Poisson, and an M/M/s
queue was used to model the check-in counter sys-
tem. A recent work on this problem for the Hong
Kong Airport by Chun and Mak (1999) also assumes
a Poisson arrival stream at the counter and beta dis-
tributed service times. The work still employed only
simulation to determine the number of counters to
open for each flight, but markedly differed from the
earlier works (see, e.g, Haeme et al. 1988), all of which
simulated the overall situation in an airport termi-
nal building after a schedule had been developed.
Further, one can only find predominantly application
papers, which rely mainly on simulation to present
a prima facie case. For example, Bitauld et al. (1997)
describe the IBM and Air Canada joint effort called
“Journey Management.” They apply the simulation
technique to capture the impact of new technologies
in managing congestion in airports. They highlight
IBM’s initiative in developing a library of building
blocks and templates, called the IBM Journey Man-
agement Library, for use with simulation tools.

SmartAirport® is a comprehensive software suite
developed jointly by IBM and Ascent Technology Inc.
This integrated application suite can merge the plan-
ning and real-time management of multiple airline
activities, such as gate management and real-time
personnel allocation, making the best use of limited
and costly assets. On the counter allocation aspect, it
claims to use probabilistic models to analyze the prob-
lem, but no information on the type of models used
is made available.

Other recent papers on Asian airports, and related
to our work here, include that of Littler and Whitaker
(1997). They have provided a procedure to estimate
the staffing requirements to meet a preset process-
ing time target, using stochastic simulation of passen-
ger arrivals into the terminal of an airport in New
Zealand. More recently, Park and Ahn (2003) revisited

2 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.

% Accessed November 11, 2007, http://www.ascent.com/resource-
management-airports.html.

RIGHTS L

the problem of passenger arrivals at the Gimpo air-
port in Korea. They have argued that utilizing check-
in counters efficiently is key for operators (the space
owners) and for airlines (the renters). They derive the
optimal assignment for check-in operations making
use of passenger arrival distribution patterns to deter-
mine the most appropriate number of check-in coun-
ters. Using a different methodology, Yan et al. (2004)
provide an integer programming model to assign
common-use check-in counters for Taipei’s Interna-
tional Airport. However, due to the large problem
size and complexity, they had to resort to a heuristic
method to solve the model.

Very recently van Dijk and van der Sluis (2006) con-
sidered a check-in counter management problem that
is similar in spirit to ours. They highlight the fact
that one of the important features of this problem
for any single flight is the finite calling population
size. Hence, they resort to “terminating simulation”
to identify the number of counters to open, unlike
almost all the other works, which use nonterminating
simulation. In our paper, we too incorporate this real-
istic characteristic in our model, but instead of using
simulation, we demonstrate the analytical tractability
of the model.

From the foregoing, it is clear that there has not
been much academic research progress, particularly
in terms of the structure of the problem and gaining
analytical insights. Hence, this paper is an attempt to
fill this gap in the literature. Most importantly, time-
dependent solution is what is required for this prob-
lem, and we have demonstrated that it is possible to
obtain closed-form formulas. Use of these formulas
will enhance the quality of the solution for such real-
life problems. As noted in the introduction, in this
paper we use stochastic dynamic programming and
build a basic model for allocating counters to a single
flight, which would then be extended in the future to
capture the comprehensive check-in allocation prob-
lem for allocating counters to multiple flights, subject
to capacity limitations.

3. Multicounter Single-Line Check-In

Counter System

There are two kinds of check-in counter systems used
in airports. They are the common-use system and the
exclusive-use system. The common-use system con-
sists of a long continuum of counters. Passengers, irre-
spective of their flight, can check in at any of those
counters. Obviously, the common-use system yields
higher utilization of the resources. As opposed to this,
the exclusive-use system is a set of counters dedi-
cated to every flight. They are opened just a few hours
before the scheduled departure of a flight and closed
about a half-hour before the departure.
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In the airport terminal the authors visited, the sys-
tem in use is an exclusive-use system. Further, the
terminal has been designed for the use of an island-
type check-in facility. In an island-type system, the
counters are arranged in a U-shape around a sin-
gle conveyor. Although this provides some flexibil-
ity, the current layout of the islands does not permit
the change to a common-use check-in counter system.
Therefore, in this paper the focus is on the exclusive-
use system.

The problem analyzed in this paper has some
resemblance to the management of call centers
and supermarket check-out counters. We refer the
reader to the website http://www.math.vu.nl/obp/
callcenters/* for a wealth of information on call cen-
ter management, and to Koltai and Kall6 (2007) for
supermarket check-out counter management. How-
ever, the striking features in our model that do not
exist in the above two areas are (i) the calling popula-
tion size is finite, and (ii) the system will never reach
the steady state.

The four primary features that stand out in typical
check-in counter queues at the terminal are as fol-
lows: (i) The system in use is an exclusive-use system,
with multiple counters and a single queue of pas-
sengers. These counters will service only those pas-
sengers booked for that flight. (ii) The finite value of
the number of confirmed passengers (i.e., calling pop-
ulation size) for each flight is known a priori. This
implies that the calling population size for these coun-
ters will decrease with time; that is, such a system
will never reach the steady state. Therefore, a tran-
sient solution will be needed to effectively understand
and manage the queue. (iii) Counters typically open
three (or four) hours before the onset of the scheduled
flight departure and have to close 30 minutes before
the boarding gate closes irrespective of whether or not
all passengers show up at the counters. Those who
failed to show up are classified as “no-shows,” in the
air travel parlance, and (iv) on observing the grow-
ing queue, the counter staff always tends to speed
up service, making the service time depend on the
state of the system. Hadidi (1969) was the first to con-
sider such service rates. In fact, our observation sug-
gests that the counter staff tend to spend more time
with passengers when the queue is relatively short or
empty. At the same time, when the queue grows to
unwieldy levels within the traffic island (area around
the counter), some other unallocated staff or supervi-
sor goes to the help of the staff manning the overly
busy counter, thereby increasing the effective service
rate for the particular counter.

Note that in a common-use system where passen-
gers of any flight at any time can check in at any

4 Accessed November 11, 2007.
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of the counters (as opposed to the exclusive-use sys-
tem described in feature (i) above), the calling popu-
lation will be, effectively, infinity, and so the system is
expected to reach the steady state. It is possible that
the arrival process may be Poisson due to the super-
position of several renewal arrival processes. For such
a system, infinite population queueing results can be
used. However, our model, which reflects reality in
the airport visited, clearly does not admit a steady-
state solution.

Queueing models with finite population size have
already been studied in the context of machine repair.
Again, the feature that distinguishes our model from
this literature is that in the machine repair problem,
a repaired machine returns to the pool after repair,
whereas a passenger never returns to the pool in our
model, but proceeds to take the flight. It should be
noted again that this is the sole reason that the check-
in counter system we model will never reach the
steady state. The other area of study where a similar
stochastic process input is considered is the stochastic
epidemic or, more generally, the stochastic population
models. However, it should be noted that these mod-
els are more akin to infinite server queueing models
where waiting never occurs, whereas in the airport
check-in counter scenario waiting occurs and so is
very relevant.

Let us add here that Hadidi (1969), who was the
first to consider such state-dependent service rates
in a single-server system, refers to it as “a poten-
tially infinite capacity system.” Hadidi and Conolly
(1969) comment further on the analogy of the state-
dependent single-server system to the M/M /oo sys-
tem by indicating that even though the single server
increases his rate of service when an arrival occurs,
the problem of waiting time is still relevant.

One additional comment is needed on the assump-
tion of exponential service-time distribution. Because
the counters are open only for a finite length of time
(e.g., T =3 hours), the following natural question may
arise: Isn’t a truncated exponential (truncated at T)
more suitable than a distribution with infinite support
because the counters are open only for a duration of
T hours? However, in reality, there may be no-shows,
and so there will be passengers who might arrive
beyond T, also. Further, such an assumption would
also destroy the Markovian nature of the process and
make the model intractable.

We assume that arrivals form a “death process”
from the population of N travelers booked on the
flight. Formally, a death process is defined as fol-
lows: Consider a population of size N. For some rea-
son, the members of the population get removed from
the population at random times. This phenomenon of
removal is called a death. The random lifetime of a
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member is assumed to follow an exponential distribu-
tion with mean A~'. Now, the stochastic process A(t),
which is the number of removals until time f, is
a death process where each death corresponds to a
removal from the population (and, for our problem,
showing up at the airport). Given that at time 0 a total
of m individuals have been removed (already showed
up), the conditional probability of A(t) is given as
(Bhat 1984, p. 208)

Pr{A(t) = i | A(0) = m)
— <N - m> (1 _ e—)\t)i—m(e—/\t)(N—z’). (1)

i—m
This is clearly the binomial distribution where 1 — e~
is the probability that an individual will “die” before ¢,
i.e., will show up at the airport before t. Thus,
the expected value of A(t) is E[A(t) | A(0) = m] =
(N —m)(1—e ™).

We now see that an arrival at a check-in counter for
a flight is a removal from the population of passen-
gers booked for that flight. Henceforth, we will use
the term “passenger show-up process” instead of the
term “death process.”

Let us assume the show-up rate to be A. As high-
lighted above in the discussion of the features of
check-in counter queues [feature (iv)], it is appropri-
ate that we consider a state-dependent service rate.
Hence, we assume a special type of state-dependent
service according to which the effective instantaneous
service rate depends both on the number of passen-
gers in the check-in counter system and also on the
number of counters open at that instant. This means
that if at time ¢ there are c = c¢(m, n) counters open
and there are k passengers in the system (including
the passengers undergoing service at the counters),
then the instantaneous service rate at any counter is
cku, i.e., the probability that a departure occurs in
(t, t+ At) is ckuAt + o(At). This is almost always true
in the check-in counter system because new counters
will be opened only if they are absolutely needed.
Further, if any counter is idle, then that would signal
the closure of that counter. This is so in reality, and
also in the dynamic programming model to be consid-
ered in the sequel, where the system will be observed
in short time intervals to decide whether to add more
counters or close down idle counters.

The number of counters to open, ¢ = c(m, n), is
a decision variable in this problem. We analyze the
queue behavior for the multi-check-in-counter system.
Specifically, we use the notation in Table 1 listed in
alphabetical order.

We also define Pj, ,(i,], t) = Pr{A(t) =i, S(t) =
j | A(0) =m, S(0) = n} as the transient probability that
at time t, i have arrived and j have been served
given that at time 0, m had already arrived and n
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Table 1 List of Notation in Alphabetical Order

Symbol Description

A(t)=m Number of passengers that have arrived by time ¢
equals m

c=c(m,n) Number of check-in counters that are open
(decision variable)

C, The unit cost of operating a counter [$/counter-time]

C, The unit cost of making a passenger wait
[$/passenger-time]

h Variable cost for each arrived passenger not cleared

check-in by time T [$/passenger]
A The passenger show-up rate [passenger/time]
I The service rate [passenger/time]
N Number of passengers booked for the flight
T Duration of time the check-in counter system will
be open
T Time to absorption from state (0, 0) to state (N, NV)
Transient probability of finding the system in state
(A(t), S(t)) = (i, j) at time £ given that the
system was in state (m, n) at time 0 and ¢
counters were open

I, ,(u,v,t) The p.g.f. of By (7, ], 1)
M, (0, 1) The p.g.f. of Q,, ,(k, t)
Q,.q(k, 1) Transient probability of finding k passengers in the

system at time ¢, i.e., Y (t) = k, given that the
system was in state (m, n) at time 0

S(Hy=n Number of passengers that have been served by
time t equals n

Y(t)=A(t) — S(t) Number of passengers in the system at time ¢

had been served (i=m,...,N and j=mn,...,i) and
¢ = c(m, n) counters had been opened. The probability
generating function (p.g.f.) of Py, (i, j, t) is defined as
0, (w0, ) =Y, ¥, P @, ], u'v.

Before we present an analysis of the transient solu-
tion of Py, (i, ],t), we would like to point out a use-
ful property of the (A(t), S(t)) process: Assume that
the process is in state (0, 0) when the counter(s) open
at time f = 0. Eventually, the process is absorbed in
state (N, N) after all passengers arrive and all are
served. If we define 7 as the time to absorption,
then 7 is the phase-type random variable associated
with the continuous-time Markov chain (CTMC) with
N = }(N + 1)(N + 2) states (0,0),(1,0),...,(N,0) |
(1,1,....,(N, 1) | 2,2),...,(N,2) | --- | (N,N), as
depicted in Figure 1. Thus, the infinitesimal generator
matrix for the resulting CTMC can be written as

S | S,
Qu.n = ,
0 0

where S is the (N —1) x (N — 1) subgenerator matrix
and S, is an (ﬁ —1) x 1 column vector.

If we further define the 1 x N row vector a =
(ary, ..., ag) as the vector of initial probabilities, then
for our case @ = (1,0,...,0), assuming the process
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Figure 1 Transition Rate Diagram of the Airline Check-In Counter with
¢ > 1 Counters and NV Confirmed Passengers

(N,N)
K
(N-1,N-1) —> (N,N-1)
A
feu Focu

Awv-3en fV-2en
2,2) —» -+ —> (N-1,2) —> (N,2)

(N-2)L  2A A
o fov-2)e fv-ten
) — 2,1) —> -+« — (N-1,1) —> (N,])
(N=1)A (N-2L 2
cu 2cp (N=1)cpu TNc'u
0,0) — (1,0) —— (2,0) —> ... —>» (N-1,0) ——> (N,0)
N (N=1)A (N-2L 2

Notes. The state vector is (m, n), where m is the number of passengers who
have already arrived and n is the number of passengers who have already
been served. Both the arrival rates and service rates are state dependent.
When the state vector is (m, n), the arrival rate is A,, , = (N — m)A and the
service rate is ., , = c(m—nu.

starts at the first state (0, 0). With these definitions,
the cumulative distribution function F,(t) =Pr(7 < t)
of the time until absorption is found as (see Neuts
1981, p. 45)

E.(t)=1— aexp(St)e, (2)

where e =(1,...,1) and exp(St) is the matrix expo-
nential function. It is also possible to show (Neuts
1981, p. 46) that the rth moment of 7 is

E(t") = (=1)r'a(S7")"e, ©)]

where (S7')" is the rth power of the inverse of the
S matrix. Thus, the mean E(7) and the variance
Var(r) = E(72) — [E(7)]* can be easily computed after
inverting the (N —1) x (N — 1) matrix S.

As we will see later in §5, the observation that the
absorption time from (0, 0) to (N, N) is a phase-type
random variable [denoted by PH (e, S)] can be useful
in the analysis of more general cases where the life-
times and/or service times are not exponential. For
example, by defining either or both of these random
variables as Erlang (rather than exponential), the fun-
damental structure of the process does not change,
and we can still calculate the distribution function
E.(t) and the moments E(7"), albeit at the expense of
dealing with a much larger state space (depending
on the number of stages used in the Erlang random
variables).

4. Transient Analysis of the System

It is now easy to see that the stochastic process
{(A(t), S(t)): t =0} is a Markov process. In this sec-
tion our goal is to find an exact expression for the

RIGHTS L

time-dependent (transient) probability Py, (i, ], t) for
a given (m,n) withm<i<N,n<j<i,and t>0. To
that end, we establish a system of differential equa-
tions in terms of Py (i, j,t), whose solution would

produce the required transient probabilities.

4.1. Transient Distribution of the

Process (A(t), S(t))
To calculate the conditional probabilities Py, (i, j, t) =
Pr{A(t) =i, 5(t) =j| A(0) =m, S(0) = n}, we develop
a system of differential equations in terms of the
unknown function Py, (i, j, t) for fixed (given) values
of (m, n) at time 0.

Casel. i=m and j=n.

This implies that there has been neither an arrival
nor a departure in the interval (0, t). Hence, the rel-
evant difference equation for P;  (m,n,-) over the
infinitesimal interval (¢, t + At) is P, (m,n,t+ At) =
[1 — (N — m)AAt — (m — n)cuAt]|Py,  (m, n, t) + o(At).
Note here that to be in state (m, n) at time t 4 At after
starting at the same state (m, n) at time f is equiva-
lent to saying that there must have been no arrivals
and no departures in the short time interval At. There
are still (N — m) customers at time ¢ who still have
not arrived (with individual arrival rates of A), and
there are already (m — n) customers in the system
waiting to be served (by ¢ open counters, each with
an individual service rate of u, totalling cw). Thus,
the probability of no arrivals and no departures in
At is [1 — (N — m)AAt — (m — n)cuAt + o(At)]. Rear-
ranging terms, dividing both sides by At and let-
ting At — 0 gives, dPy, ,(m,n,t)/dt = —[(N —m)\ +
(m — m)cplP5, ,(m, n, 1),

For the remaining cases, we apply the standard
steps of rearranging terms, dividing both sides by At,
and letting At — 0, and obtain the following;:

Casell. i=m+1,m+2,...,N and j=n.

For this case, more passengers have arrived, but
none have left between 0 and t. Thus,

dpS (i, n, t)/dt = —[(N = )A+ (i —n)cp]PS, (i, n, b)
+(N—i+DAPS (i—1,n,t).

m,n

Caselll. i=m+1,m+2,...,Nand j=n+1,n+
2,...,i—1

Here, more passengers have arrived and some have
also left between 0 and tf, but there still remain some
passengers who have not been served. This gives
dPs, (i, j, 0)/dt = —[(N — A+ (i — )eulPS, (i, f, £) +
(N—i+1DAP;, (i=1,j, )+ (@ —j+DcuPy, (i, j—1,1).

Case IV. i=m,m+1,m+2,...,Nand j=1.

In this case, all passengers who have arrived have
left, and there is no one at time t. Thus,

dpy, ,(i,i,t)/dt = —(N —i)AP;, (i, 1,1)
FepPs (i, i—1,8).
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Case V.i=mand j=n+1,n+2,...,i—1.

Finally, in this case no more passengers have
arrived, some have left, but there still remain some in
the system. For this case we have

dps, (m, j, B)/dt

= _[(N - ﬂ’l)/\+ (m _j)CM]P;I,H(m/j’ t)
+(m _j+1)C/*LPrft,n(mlj_ l/ t)

Multiplying both sides of the (i, j)th differential
equation dP;, (i, j, t)/dt by u'v/ and summing over i
and j, the above system of differential equations
transforms into the following partial differential equa-
tion (PDE) in terms of the p.g.f. =11, ,(u, v, t) =
Y, Y, P (i, j, Hu'v) with the initial condition
IL,, ,(u,v,0)=u"ov"

a1l o1l o1l
— -1)- -1]— -1)—
pn +ulA(u—1)—cu(v—1)] 0 +cpo(v )80
=NA(u—1)IL 4)
The next theorem gives the exact solution of the
PDE for the unknown function II,, ,(u, v, t):

THEOREM 1. The solution of the PDE in (4) is
I, ,(u,0,t) = u"v"{e ™ +[alc, t) + B(c, t)v]upN "
A [e—cp,t + (1 _ e—cut)v]m—nl (5)

for 0<m <N and 0 <n <m, where

a(c, t)= (e —e™), c>1,t>0, (6)

A—cu
cue ™M — pe~Ht
=14+ ———
Bl n =1+ L2
=(1—-eM—alc,t), c>1,t>0, (7)

with lim, , , a(c,t) = cute™* and lim,_ ., B(c, t) =
e~ (et — 1 — cut).

Proor. See Online Appendix A. O

Because the exact form of the p.g.f. I, ,(u, v, t) is
available, it can now be expanded to find the exact
form of the distribution of the process {A(t), S(f)}.
This result is provided in the next theorem.

THEOREM 2. The transient probability distribution
P, (i, j, 1) =Pr{A(t) =i, S5(t) = j | A(0) = m, 5(0) = n}
of {A(t), S(t)} for m <i <N and n <j <i, is given as

P (i, 1)

_ N-—m o~ (N=Dt
i—m

max(i—m, m—n)

> (7" tate, nr s oy

r=0

« < . m-—n >e_(m_]‘+r)mt(1 _ e—c,ut)j—n—r/ 8)

j—n—r

RIGHTS LI L)

Figure 2 Transient Probability A7 (/,/,t) for N =10, ¢ =1, 2,3 with
(m,n)=(4,2), (i,j)=(7,3), and (A, ) = (1.5, 5); the Graph
with ¢ =1 Is the Highest One

0.020
0.015
0.010

0.005
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with the convention that a binomial coefficient (}) =0, if
either b > a or b <O.

Proor. See Online Appendix B. O

Note that the transient probability Py ,(i,],t) is a
function of the decision variable c. This result will
be useful when we formulate the functional equa-
tions of DP to determine the optimal number of
counters to open. See Figure 2 for the graph of
Py (i, j,t) for N =10, ¢ =1,2,3, (m,n) = (4,2),
(i,j)=1(7,3),and (A, u) = (1.5, 5). From the figure we
note that the transition probability as a function of ¢ is
unimodal.

4.2, Transient Distribution of the Number in the
System Y (t)

To compute the expected cost incurred for the pas-
sengers waiting to be served, we need to find the
transient distribution of the number in the system
Y(t) = A(t) — S(t). Because the p.g.f. I, ,(u,v,t) =
E[u*®5® | A(0) =m, S(0) = n] of the vector stochas-
tic process {A(t), S(t)} is available, the p.g.f. ﬁm,n(”/ t)
of Y(t) is obtained simply as

ML, (u, 1)
=E[uO0 A(0)=m, S(0)=n] =11, ,(u, u™", t)
={[1—a(c, ]+ alc, Hyu)N"[(1 — e=) + e~ Py "

The next theorem gives the exact form of the dis-
tribution Q,, ,(k, t) =Pr{Y(t) =k | A(0) =m, S(0) = n}
of the Y(t) process where we define
Y, (i, K, )

= [a(c, t)]k—i[l _ a(C, t)]N—m—(k—i)e—ic,ut[l _ e—cut]m—n—i.
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THEOREM 3. The distribution of Y(t) is found as
follows:
For m < (N +n)/2, we have

K IN—m\ (m—n
S () ("t ko,
T\ k—i i
fork<sm—-n—1
/N —m\[m—n .
Qm,n(kl [’): Z(:) ( k_l >< l >’Ym,n(1/ k/ t)/
orm—n<k<N-m
f
iy N—-m\[/m—n
> (32" ik,
i=k—(N—m) k—i !
for N—m+1<k<N-n,
and for m > (N + n)/2, we obtain

ST [

fork<N-m-—1

N-—m N—m "m—n '
Z < / >< H )’Ym,n(l/ k/ t),
Qm,n(k, t): i=0 k—1 1

for N—m<k<m-—n

= G0 o,

i=k—(N—m)

form—n+1<k<N-—n.

Proor. Follows from the observation that the dis-
tribution of Y(¢) is the convolution of two binomial
distributions. 0O

4.3. Expected Number of Passengers in the System
Because the p.g.f. of Y(t) is available, it is now easy to
derive all the moments of Y(t). For example, we can
obtain the expected number in the system given that
at time 0 a total of m — n passengers are in the sys-
tem as E[Y(t) | Y(0)=m —n] = (d/du)ﬁm,n(u, Dlyoq =
(N —m)a(c, t) + (m — n)e™ .

The expected number in the system is a function
of several parameters, but let us concentrate on two
important parameters (c,t) and write the expected
number as f(c, t) =E[Y(t) | Y(0) = m —n]. The follow-
ing lemma and the corollary provide some insights
into the behavior of f(c,t) as a function of time ¢t
when the number of counters is fixed.

LemMma 1. For a fixed ¢ =c, the a(c,t) function is
unimodal.

Proor. See Online Appendix C. O

CoRroLLARY 1. Consider a fixed ¢ =c. If A\(N —m) >
b(m —n), the expected number in the system f(t)= f(c, t)
is a unimodal function of time t with a unique maximizer.
Otherwise, f(t) is monotone decreasing in time t.

RIGHTS L

Proor. See Online Appendix D. O

We see that A(N — m) is the instantaneous effec-
tive arrival rate at time t and b(m — n) is the in-
stantaneous departure rate at time ¢. Therefore, when
A(N —m) > b(m —n), the instantaneous arrival rate
exceeds the instantaneous departure rate. Hence,
Corollary 1 implies that in such a situation we can
expect an accumulation of passengers (a “bunching
up”) at some later time. Otherwise, the expected num-
ber in the system will decline as time progresses.

The following lemma and the corollary provide
insights into the behavior of f(c, t) as a function of ¢
when the time f is fixed where we assume, for ana-
lytical ease, that c is a continuous variable.

LEMMA 2. For a fixed t =t and A # cu, the a(c,t)
function is a monotone-decreasing function of c.

ProoF. See Online Appendix E. O

Note that in the analysis presented in Lemma 2, we
examined the behavior of a(c) as a function ¢, assum-
ing that the parameters (A, ) are fixed and t =t. We
do not consider here the limiting case where A — cu
because it is not possible to fix A and vary c at the
same time.

COROLLARY 2. Consider a fixed t =t and A # cp.
The expected number in the system f(c) = f(c,t) is a
monotone-decreasing function of the number of counters c.

Proor. See Online Appendix F. [0

If there is a service-level requirement that the
expected number in the system should not exceed a
given value, say, 7, at time ¢t = t, then the unique value
of ¢ that satisfies this requirement can be computed
by solving the transcendental equation f(c, t) = .

5. A More General Process with

Erlangian Service Times

In our previous discussion we have always assumed
that the lifetimes and the service times are both expo-
nential, and with this assumption we derived analytic
expressions for quantities of interest (the most impor-
tant being the transient solution of the conditional
probability Py (i, ], t)). In this section we present a
brief discussion of a more general case where the ser-
vice times are Erlang random variables (r.v.) with
k stages. (The Erlang r.v. with parameters (k, u) is
constructed as the sum of k i.i.d. exponential random
variables, each with rate ku and mean 1/(ku).) The
generality we introduce can also be extended to the
case where the lifetimes are also Erlang, but we do
not pursue this direction in the present work.

Consider first a simple example with N =3, where
all service times are still exponential as in the origi-
nal problem. For this case, the transition rate diagram
given in Figure 1 for N confirmed passengers reduces
to the diagram in the upper-left corner of Figure 3.
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Figure 3 Transition Rate Diagrams for NV =3
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Notes. The smaller diagram in the upper-left corner corresponds to the simple case where all lifetimes and service times are exponential. The larger diagram at
the lower-right corner corresponds to the more general case where the service times are Erlang with two stages (but with the same mean as the exponential).

With N =3, the corresponding CTMC possesses a
total of N = 1(4)(5) = 10 states for which the 9 x 9
subgenerator matrix S is obtained as

0,00 [=31  3A 0 0 0 0 0 0 0 7
1,0 | 0 —@A+cw)  2A 0 cp 0 0 0 0
0| o 0 —(A+2cm) A 0 2cp 0 0 0
G0 o 0 0  —3cu3cu O 0 0 0
Seo=(1,1) | © 0 0 0 —21 21 0 0 0
en| o 0 0 0 0 —(A+cw) A cu O
Gn| o 0 0 0 0 0  —2cu 0 2cp
22| o 0 0 0 0 0 0 —A A
G2L o 0 0 0 0 0 0 0 —cu

For general (A, u, ¢) values, we were able to invert
the S matrix symbolically and obtain the mean of 7 as

2204 4+101cuA® +143c2 A2 +89c3 P A +22c* ut
6c A (2N + ) (A +2cm) (A +-cu) ('9)

We have also obtained a closed-form expression for
the variance, but due to its complicated form, we do
not display it here.

If we now assume, for example, that (A, u,c) =
(1,5,1), we find the mean and the standard devi-
ation of 7 from (3) as E(r) = 2.09 and ,/Var(r) =
1.169, respectively. (The mean of 7 can be computed
more easily from (9).) We also find the exact distribu-
tion, F,(t), of the time-to-absorption random variable
T from (2) as

E.(f) = 1+0.0003¢" +0.273¢ 1 — 0.616¢ 7"
+1.757¢7 7t —1.458¢% —0.187¢ 7> — 1.813¢ ™%
+4.927¢7% —3.883¢7",

E(m)=

RIGHTS L1 N Hig

which is increasing in ¢, F,(0) =0, and lim,_, , F.(¢) = 1.
Note that F,(1) = 0.144, F.(2) = 0.560, F.(3) = 0.818,
and F,.(4) =0.930; that is, even though the mean time
to absorption is 2.09 (hours), there is a 0.144 probabil-
ity that actual time may be shorter than one (hour). If
the counter opens three hours before the flight, then
the probability is only 0.818 that all passengers will
arrive and will be served within three hours.

We now pose the following questions: (i) What if
the service times were in fact all Erlang random vari-
ables with several stages, rather than exponential as
discussed above (both exponential and Erlang service
times having the same means)? (ii) How does this
change the problem’s structure, and what are the per-
centage errors for the mean and the standard devia-
tion of the time-to-absorption r.v. 7 when the service
times are assumed (possibly incorrectly) as exponen-
tial rather than Erlang?

To answer these questions on a limited scale, first
assume that the service times are all Erlang with
two stages. Because each stage is exponentially dis-
tributed, this assumption results in the transition rate
diagram that is in the lower-right corner of Figure 3.
Each service time is now represented by the sum of
two ii.d. exponentials; hence, the state space enlarges
and we obtain a CTMC with a total of 16 states. For
example, state (1,0;1) represents the first stage of
the service time of one passenger who has already
arrived, but whose service time is not yet completed.
Similarly, (1, 0; 2) represents the second stage of the
same passenger’s service time, which has not yet
been completed. Naturally, this idea can be used to
incorporate Erlang random variables for any lifetime
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and/or service time, but at the expense of quickly
enlarging the state space. It is important to note that
because the enlarged state space still continues to be
the state space of a CTMC, it is possible, in principle,
to develop the system of differential equations as was
done in §4 for the Erlang service-time case and com-
pute the transient probabilities—at least numerically
(which is beyond the scope of the present paper). For
this model, again using (A, u, c) = (1, 5, 1) as the base
values of the parameters, we find the mean and stan-
dard deviation of the absorption time r.v. 7 as E(7) =
2.049 and /Var(7) = 1.163, respectively. The exact dis-
tribution, G, (t), of 7 is also computed from (2) as

G, (t) = 140.04te™>" +0.01e7" — 14.35te7*!"
—34.40e 2 —20.74te 2" 4 34,2502
+180.04te ™ 4-627.78¢ 7% 4-1,074.07te
+358.12¢ 711 4 358.97t 1% — 985.78¢ 1%
—1.79¢7% 4 4.50e* — 3.70e~",

which is increasing in ¢, and G,(0) =0, lim,_, ., G.(#)
=1 with G,(1) =0.157, G,(2) =0.576, G,(3) = 0.826,
and G,(4) = 0.933. When we compare these results
to the F.(t) values given above, we observe that if
indeed the service times were Erlangian, then using
the exponential model would result in more “pes-
simistic” completion (i.e., absorption) times because
E.(t) < G,(t) for all t considered. (In fact, for the case
under consideration, the same property holds true for
all t>0.)

To answer the second question, we have conducted
some experiments and calculated the mean and the
standard deviation of the absorption time r.v. 7 for dif-
ferent values of the parameters (A, u, c) for both the
exponential and Erlang service times. Starting with
the base values of (A, u, c) = (1,5, 1), we kept two of
these parameters constant and varied the third one to
obtain the results in Table 2. For example, we calcu-
late the error for the expected value E(7) for the base
case as 100 - [(2.090 — 2.049)/2.049]% = 2.00%.

These results show that percentage errors increase
and they can be as large as 10% (or more) as A approa-
ches u, i.e., when congestion increases. On the other
hand, as ¢ increases, errors for both the mean and
the standard deviation diminish and approach zero.
Even though this is a very limited experiment, the
movement and magnitude of these errors are likely
to be mirrored in the performance of an optimization
model that determines the time-dependent allocation
of the check-in counters. Thus, if the management
predicts a highly congested system, it may be worth-
while to use a more accurate model that may involve
Erlangian service (and/or lifetime) distributions.

In this section we considered a generalization
where the service times at each state depicted in

RIGHTS L

Table 2 Errors Resulting from Using the Exponential Rather Than
the Erlang Service Times in the Calculation of the Mean
and Standard Deviation of the Absorption Time Random

Variable 7
E(7) Var(r)
A p ¢ Exponential Erlang Error (%) Exponential Erlang |Error| (%)
151 2.090 2.049 2.00 1.169 1.163 0.51
2 51 1.205 1.148  4.96 0.605 0.580 4.31
351 0.919 0.857 7.23 0.433 0.391 10.74
121 2.583 2.431 6.25 1.250 1.164 7.38
131 2.300 2.211 4.02 1.191 1.160 2.67
141 2.166 2108 275 1.175 1.162 1.11
152 1950 1.937  0.67 1.1655  1.1656 0.001
153 1907 1.901 0.31 1.1657  1.1661 0.034
154 1887 1.884  0.16 1.1660  1.1663 0.025

Figure 1 was assumed an Erlang r.v. with two stages
giving rise to the transition rate diagram in Figure 3
for the case of N =3 confirmed passengers. Naturally,
the service times can be generalized even further (at
the expense of increasing the number of states of the
CTMC) by using an arbitrary number of stages for
each Erlang r.v. It may even be possible to assume that
the lifetimes are Erlang with any number of stages,
say, I. However, such a generalization would proba-
bly require a computational approach (rather than an
analytic approach as used in this paper) due to the
resulting high dimensionality.

6. Estimation of Parameters

So far we have just analyzed only a basic model
of a check-in counter system with the assumption
that the arrival process is a death process with con-
stant death or “show-up” rate. However, in real oper-
ations the arrival process is actually nonstationary,
i.e., the show-up rate is actually time dependent. In
the airport the authors visited, each flight had its
own idiosyncrasies with respect to arrivals and ser-
vice. It should also be so in other airports around
the world. For some flights, passengers tend to arrive
very early, and for some others—especially for very
early morning flights—they tend to arrive late. Thus,
the pattern of arrivals varies widely across flights (see,
for example, Chun and Mak 1999). For the dynamic
programming model to be analyzed in the next sec-
tion, the nonstationary show-up rates are needed as
inputs. Therefore, for each flight we would need to
know the passenger arrival profile. Using this pro-
file, we can divide the interval T into smaller subin-
tervals over which the show-up rate A is constant.
Thus, we need to estimate the show-up rates for
each of these subintervals. For our work, we use the
procedure given in Basawa and Prakasa Rao (1980)
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(see also Keiding 1975), which we briefly describe
below:

Consider an arbitrary subinterval k of length T, and
observe the show-ups continuously at t € [7;, 7y + T;],
where 7, = 7 is the start of the subinterval. Assume
that at the start of this subinterval there is a total of
Xy = X;o passengers who have not yet arrived at the
airport. Let 1, < 7, <--- < 7, be the epochs during
this subinterval where n = n, transitions (deaths, or
removals) occur.

We form the likelihood function (that is, the joint
density function of the sample observations) as

L (M)
= [xpArexp(=xA (11 —7))] - [X1 Arexp(—x1 A (T — 7))] -+
' [xn—l)‘kexp(_xn—l/\k(’rn - Tn—l))] : [exp(_ank(Tk - Tn))]'

Here, x;,.; = x; — 1 is the number of passengers not
yet arrived at 7, (fori=0,1, ..., n—1) with x, = x,,
and the last term exp(—x,A (T, — 7,)) represents the
contribution of the last interval T, — 7, during which
no deaths occur. Defining V; = S xi(Tiy — ) +
x,(T, — 7,) as the total time lived before “death,”
we have L;(A;) = A} exp(—/\kVTk)]_[;-:01 x;. The usual
steps of maximizing the log-likelihood function
log L, (A;) gives the maximum-likelihood estimator of
the parameter as Ao =n,/ Vi

In the dynamic programming model we consider
in the next section, we assume that the arrival times
of passengers, which are used to estimate the arrival
rates, have been observed. To illustrate, consider a
simple example of a small airplane with N = 15
booked passengers. We take T =3 hours and assume
that the historic passenger arrival profile reveals that
the As are constant over intervals of one-hour dura-
tion. Hence, to estimate the As, the management
observes and groups the arrival instants for every
T =1 hour. Suppose the arrival times [, < --- < 7,] of
passengers are observed as in the third column of the
following table. Using Ao=n,/ V., the estimates A are
computed as in the last column of the table.

No. of passengers Arrival times

Period k arrived (n;) [fn<--<7,] (hrs.) A

1 4 [0.32, 0.34, 0.42, 0.47] 0.31
6 [1.15, 1.46, 1.47, 1.58, 1.93, 1.96] 0.69

3 5 [2.11, 2.44, 2.57, 2.71, 2.87] 1.83

7. The Dynamic Programming Model

Having obtained the exact expressions for the tran-
sient probabilities Py, (i, ], t) and the expected num-
ber of passengers in the system E[Y(t)], we can
optimize the system by deciding on the number of
counters to open. We highlight here that our work is
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the first paper to consider optimization of the check-
in counter system based on cost, because almost
all the papers use only the service-level approach.
Although service-level constraints can be included in
our model, we have chosen optimization based on
cost only because most of the time cost is the main
concern.

7.1. Total Expected Cost in a Subinterval
We assume that the management will be observ-
ing the system periodically, say, every 20 minutes,
and will decide to increase or decrease the number
of counters to keep open in order to minimize an
expected total cost defined as the sum of the cost of
waiting passengers plus the cost of keeping the coun-
ters open. In the airport the authors visited, the ser-
vice provider has supervisory staff who continuously
monitor the counter congestion and acts to minimize
the congestion by opening more counters. The service
provider also had commissioned some mobile coun-
ters to ease the congestion at the counters.

To find the optimal solution, we will construct
a stochastic dynamic programming model. To that
end, consider a subinterval [f;, t,,;]. Assume that at
time f;, we observe a total of m, passengers to have
arrived and 7, to have departed. Let ¢, be the num-
ber of counters to keep open at f,. The total expected
wait during this subinterval in passenger-hours is

Wioo = | [ Y0 4Gk = m, S0 = |
= [ BIYE) | AG) =, S(0) =,

= /ttk+1 [(N - mk)a(ck, 5) + (mk _ le)e_ckMS] s

A(N — —Ckty _ p—Crpitiiq
- [M+(mk_nk)j| (e e )
A= Cr
4 (N - mk) (67)\151#1 _ e*)\tk)'

A —Cpp

If ¢, counters are open during the subinterval
[t, tr11], then we incur a (deterministic) service cost
of C,(t;,1 — ty)c, where C, is the unit cost of operating
a counter. Defining C,, as the unit cost of making a
passenger wait, the total expected cost incurred dur-
ing the subinterval [f;, t, ;] with ¢, counters are open
is gi(cr) = grlew, my, my) = CuWiler) + Cilbin — B)ex,
which consists of the cost of waiting passengers (first
term) and the cost of operating the counters (second
term).

7.2. Functional Equations

To determine the optimal time-dependent policy for
the number of counters to keep open, we now for-
mulate a stochastic dynamic programming model. We
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first divide the total time T into K subintervals of
equal length, ie., [t, ], [t t3], ..., [tk, txe1] Where
t; =0 and fx,; =T and write the DP functional equa-
tion as follows:

Define V,(m, n) as the minimum expected cost-to-
go from time f;, i.e., the beginning of the subinterval
[t;, tr1], to the final time T using the optimal policy
when m passengers have arrived and n have been
served at time t,. This gives, for k=1, ..., K,

Vim,m)=  min &mg

min max
rin<e =]

ck(N, N)=0, Vx(N, N)=0

N i
+szﬂwwﬂ4mmmw]<m

i=m j=n

where ¢ is the minimum number of counters that
must be kept open before the flight (usually one), and
™ is the maximum number of counters that can be
made available for the flight. The conditional tran-
sient probability Py, (i, j, t,,1 — t;) appearing in (10)
is calculated from (8).

Note that the minimization is performed with
(N, N) =0 and V. (N, N) =0, because we assume
that if all customers have arrived and all have been
served at some time t,, then we close all counters and
set the value function to zero because no costs will be
incurred after ¢,.

To establish the boundary condition, we assume
that there is a unit variable cost of h resulting from
uncompleted passenger service. In other words, for
each passenger who has arrived but whose service is
not yet completed by the time the flight is to take off,
the system incurs a cost of /1 dollars. Thus, the bound-
ary condition is written as Vi, (m, n) = h(m —n).

7.3. Numerical Example
Consider now an example with the following data:

T K N ¢ ¢ A A A u C, C h

1 3 10 1 5 058 160 274 5 40 60 20

Thus, in this example, a maximum of ¢ =5 coun-
ters are available for T =1 hour before the flight,
and the management decides K =3 times (i.e., every
20 minutes) on the number of counters to keep open,
with the stipulation that there must be at least ¢ =1
counter open at all times. Thus, the decisions must
be made at epochs t, =0 hours, t, = % hours, and
ty=2 hours to determine the optimal number of
counters to open—cj(m, n), c;(m,n), and c;(m,n),
during [0, 1], [3, 2], and [£, 1], respectively, if the sys-
tem is found in state (m, n) at ¢, k = 1,2,3. T}}e esti-
mates of the arrival-rate parameters (A, A,, A;) are
obtained using the procedure described in §6.
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To obtain our cost estimates, we performed an
Internet search and used values for (C,, C,, k) that
are very close to these estimates available in the pub-
lic domain. We point out that our intention here is
just to highlight the usability of our model rather than
the use of very realistic estimates as input into our
models.

7.3.1. Passenger Delay Cost C,. To estimate this
cost we consulted three sources: European Organiza-
tion for the Safety of Air Navigation (EOSAN 2005),
Federal Aviation Administration (2003), and Smith
(2004). Whereas EOSAN’s estimates range from €38
to €49 per hour,” Smith gives an estimate of €18. The
FAA-APO estimate for personal travel is $23.30, for
business travel is $40.10, and for all purposes it is
$28.60 per hour. We have used C, = $40, which is
very close to the estimate recommended by Federal
Aviation Administration for business class passengers.

7.3.2. Check-In Counter Operating Cost C,.
There does not appear to be much information avail-
able on this cost because we could locate only one
reference, Aéroport International Strasbourg (2006),
which provides costs, among others, for the following
two cases: (i) For rental of check-in counters, the cost
is estimated as €11.68 per hour and, (ii) for services
of airport personnel the estimates range from €25 per
hour (for a maintenance agent) to €70 per hour (for a
project manager). In the international airport we vis-
ited, it is the service provider who also provides the
counter staff. This is unlike other airports, where the
check-in counters are managed by the airline’s staff.
Therefore, in our work the check-in counter operating
cost includes the service of a highly qualified worker.
In addition to these cost components there are other
overhead charges such as use of the software, tele-
phones, washrooms, etc. In all, we have used an esti-
mate of C; =$60 in our numerical example.

7.3.3. Aircraft Delay Cost h. Here, & is the cost
incurred by the airline for every arrived passen-
ger who has not cleared check-in by the time the
counter is expected to close. This will most likely
result in a delay to the departure of the aircraft.
In the airlines operations literature there have been
many studies on airline schedule disruptions (see, for
example, Shavell 2000). However, these papers con-
sider mainly delays and diversions due to major rea-
sons like weather, etc. Some of the cost components in
the delay cost are (Shavell 2000) additional fuel, crew
time, maintenance, passenger costs like meals and
accommodation, and/or payments to other airlines.
Only one document, EOSAN (2005), provides cost esti-
mates due to delays in air transportation. It provides a

> On November 11, 2007, the exchange rate was €1 = $1.46.
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Table 3 Optimal Number of Counters to Open c;(m, n) for Any State (m, n) atk=1,2,3
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list of sources and their corresponding delay costs per
minute. However, for our purposes, we need the delay
cost per passenger which can be obtained by dividing
the average duration of delay by the number of pas-
sengers still to be served. In our numerical example,
we used an estimate of h =$20 per passenger.

Now, implementing the DP algorithm with the
above parameter values, we find the optimal policy as
in Table 3, which gives the optimal number of coun-
ters to keep open during the one-hour interval, i.e.,
c;(m,n) for any combination of the state variables
(m,n) at t,, k=1, 2, 3, respectively:

Note in Table 3 the interesting (and expected)
monotonicity in the optimal policy: For any fixed
value of (m,n), the number of counters to open is
nondecreasing as we approach the time to takeoff.
In other words, we have for fixed (i, 1), ¢, (im, n) <
ce(m,n), k=1,2,...,K—1. We also note that for
fixed (k, n1), the number of counters to keep open is
also nondecreasing in the number of passengers who
have already arrived, m, i.e., c;(m, n) < cp(m +1,n),
m=0,..., N —1. Finally, for fixed (k, i), the number
of counters to open is nonincreasing in the number
of passengers who have been serviced, i.e., c;(i1, n) >
g(m,n+1), n=0,..., N —1. This is also an intuitive
result—if there are fewer passengers who are yet to
arrive, one should keep open fewer counters.

It is interesting to note that in this example ¢ =
c; =1 when m —n is small, e.g.,, m —n =1 or 2. This
means that it is optimal to open only one counter in
the early stages (k =1, 2) when there are few passen-
gers in the system. However, when we reach the last
subinterval (k =3), we find that ¢ may exceed one
even if m —n is small. This happens when m itself is
small (i.e., very few passengers have arrived so far),
so that a large number of passengers are expected to
arrive in the last stage (subinterval). Thus, it makes
sense to open more than one counter in the last stage
to accommodate the large influx of passengers that
will arrive just before the plane takes off.
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In Table 4 we find the values assumed by the value
function V(m, n) for any (m,n), k=1,2,3.

As in the optimal policy, we also observe in Table 4
that the value functions are monotonic. For exam-
ple, for a fixed (k, 1), the value function is decreasing
in m, that is, Vi(m, n) > Vi(m+1,n), m=0,..., N —1.
Similarly, for a fixed (k,m), the value function is
also decreasing in m, ie., Vi(m,n) > Vi(m,n + 1),
n=0,...,N —1. We should note that these intuitive
monotonicity properties are also observed in other
problems with more passengers (larger values of N)
and more frequent observations (larger values of K).

8. Conclusion

In this paper we examine the problem of optimal
dynamic assignment of check-in counters for a flight
with a given number of booked passengers. Because
the counters are kept open for a period of only a
few hours before the flight, we compute the transient
probabilities of the queueing process. Using these
probabilities, we calculate some important operating
characteristics of the system including the expected
number of passengers in system and the probability
of an empty system at any time ¢. Because the arrival
rate of the passengers is usually time dependent,
we present a procedure to estimate these rates over
different subintervals. We then develop a stochas-
tic dynamic programming model to find the optimal
dynamic assignment of the counters to minimize a
suitable expected cost function. The paper concludes
with the discussion of a numerical example and the
resulting monotonicity properties of the optimal pol-
icy and the corresponding value function.

As mentioned in the introduction, in this paper we
have analyzed only the single-flight problem. The nat-
ural next step is to apply this analysis for all the
flights scheduled to depart during a day or during
a particular period of time to identify the number of
counters and the number of counter clerks to allocate
to each flight. Then, using the constraint on the total
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Table 4 Value Function V, (m, n) for Any State (m,n) atk=1,2,3

Vi, Vy, Vy 0 1 2 3
m=0 172,157
145
m=1 171,151 164, 149
139 138
m=2 170,144 163,143 156, 141
133 132 132
m=3 168,137 162,136 155,135 172,133
126 125 124 123

m=4 167,131 160,129 153,128 146,126 139,125

117 116 116 115

m=5 164,123 157,122 150,120 143,118 137,117 130,115

109 108 107 106

m=6 160,115 154,113 147,112 140,110 133,108 126,106 119,104

100 99 99 98 97 96
m=7 154,106 149,104 142,102 135,101 128, 99 121, 97 114,94 107,92
92 91 90 90 88 86 82
m=38 143, 96 139, 94 135, 92 128, 90 121, 88 113, 86 106, 83 99, 81 92,78
83 82 82 81 79 75 72 68
m=9 126, 80 122,79 117,78 113,77 108, 75 101, 72 93, 69 85,65 78,61 70,57
75 74 73 73 68 65 61 57 47
m=10 87,53 83, 52 78, 51 73,49 68, 48 64, 47 59, 45 53,42 43,36 31,28 0,0
66 66 65 64 57 54 50 47 39 0
number of counters in the airport and the number of = References

counter clerks available for each period, the resource
allocation problem for the entire airport for a spe-
cific periods can be solved as shown in Chun (1995)
and van Dijk and van der Sluis (2006). We consider
this step to be pretty straightforward. Another exten-
sion is to consider other types of counter topology,
like common-use counters. We conjecture this to be a
much simpler problem because it is possible here to
assume the arrival process to be Poisson because the
arrivals are superpositions of several point processes.

9. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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