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Abstract

A limit theory is developed for multivariate regression in an explosive cointegrated
system. The asymptotic behavior of the least squares estimator of the cointegrating
coefficients is found to depend upon the precise relationship between the explosive
regressors. When the eigenvalues of the autoregressive matrix Θ are distinct, the cen-
tered least squares estimator has an exponential Θn rate of convergence and a mixed
normal limit distribution. No central limit theory is applicable here and Gaussian
innovations are assumed. On the other hand, when some regressors exhibit common
explosive behavior, a different mixed normal limiting distribution is derived with rate
of convergence reduced to

p
n. In the latter case, mixed normality applies without

any distributional assumptions on the innovation errors by virtue of a Lindeberg type
central limit theorem. Conventional statistical inference procedures are valid in this
case, the stationary convergence rate dominating the behavior of the least squares
estimator.

Keywords: Central limit theory, Exposive cointegration, Explosive process, Mixed
normality.

AMS 1991 subject classification: 62M10; JEL classification: C22



1. Introduction

Autoregressions with an explosive root jθj > 1 came to prominence after the early
work of White (1958) and Anderson (1959). Assuming Gaussian innovation errors,
these authors derived a Cauchy limit theory for the centered least squares estimator
with rate of convergence θn. The theory was generalized by Mijnheer (2002) to non
Gaussian explosive processes generated by innovations satisfying a stability property.
In each of these works, no central limit theory applies and the asymptotic distribu-
tion of the least squares estimator is characterised by the distributional assumptions
imposed on the innovations.
In this paper, we consider an explosively cointegrated system

yt = Axt + εt (1)

xt = Θxt−1 + ut (2)

Θ = IK + C, C = diag(c1, ..., cK), ci 2 (¡1,¡2) [ (0,1) 8i,

where A is an m £ K matrix of cointegrating coefficients, xt is a K¡vector of ex-
plosive autoregressions initialized at x0 = 0, and vt = (ε0t, u

0
t)
0 is a sequence of in-

dependent, identically distributed (0,Σ) random vectors with absolutely continuous
density, where Σ is a positive definite matrix partitioned conformably with vt as Σ =
diag(Σεε,Σuu). We denote by θi = 1 + ci the i-th diagonal element of Θ and by
kΘk = max1≤i≤K jθij the spectral norm of Θ.
The asymptotic behavior of the least squares estimator

Ân =

Ã
nX
t=1

ytx
0
t

!Ã
nX
t=1

xtx
0
t

!−1
is found to depend on the relationship between the regressors in (2), i.e. on the
precise form of the matrix Θ. As Theorem 2.1 below shows, the rank of the limit
matrix of the normalized sample second moments, and hence the order of magnitude
of (

Pn
t=1 xtx

0
t)
−1, is determined exclusively by Θ. When Θ yields a nonsingular limit

in Theorem 2.1, Ân¡A is found to have a Θn rate of convergence and a mixed normal
limiting distribution, under the assumption of Gaussian innovations (cf. Anderson,
1959). But when the limit moment matrix of Theorem 2.1 is singular, Ân ¡ A has
a degenerate mixed normal limiting distribution with convergence rate reduced to
n1/2. The asymptotics in the singular case are obtained by rotating the regression
coordinates in a way that the singularity is eliminated and central limit theory applies.
Consequently, the mixed normal limit theory in the singular case applies without any
distributional assumptions on the innovation errors.
Explosive systems are useful in modeling periods of extreme behavior in economic

and financial variables. Economic growth among the Asian dragons during the 1980s
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and recent growth in China provide examples of mildly explosive growth in macroeco-
nomic variables. Hyperinflation in Germany in the 1920s and Yugoslavia in the 1990s
are examples of some of the many historical instances of explosive behavior in prices.
Financial bubbles in asset prices are another example, the recent rise and subsequent
fall in price of internet stocks in the NASDAQ market creating and destroying some
$8 trillion of shareholder wealth. To the extent that periods of explosive movement in
such variables influence economic decisions or contaminate other variables, we may
expect models of explosive cointegration such as (1) - (2) to be relevant in relat-
ing these variables. When there is a single source of the extreme movement, then
such a system may also have explosively cointegrated regressors and the degeneracy
described above may occur.

2. Results

We develop a limit theory for the centered least squares estimator

Ân ¡ A =

Ã
nX
t=1

εtx
0
t

!Ã
nX
t=1

xtx
0
t

!−1
.

It turns out that the asymptotic order of Ân ¡A depends on the rank of the limit of
the normalized sample moment matrix

Pn
t=1 xtx

0
t. The latter can be derived, using a

similar method to Anderson (1959), in terms of the random vector

XΘ =
∞X
j=1

Θ−juj, (3)

where the series converges almost surely by virtue of the martingale convergence
theorem.

2.1 Theorem. The sample moment matrix of the explosive process (2) satisfies

Θ−n
nX
t=1

xtx
0
tΘ
−n !a.s.

∞X
j=0

Θ−jXΘX
0
ΘΘ

−j as n ! 1, (4)

where XΘ is the random vector defined in (3).

Note that the almost sure limit
P∞

j=0Θ
−jXΘX

0
ΘΘ

−j of the normalized sample
moment matrix is not always non singular. Denote the i-th element of the random
vector XΘ by X

(i)
Θ and define the matrices

MΘ :=

·
θiθj

θiθj ¡ 1
: i, j 2 f1, ..., Kg

¸
and X̌Θ := diag

³
X
(1)
Θ , ..., X

(K)
Θ

´
.
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Since u1 admits an absolutely continuous density, X
(i)
Θ 6= 0 a.s. for each i. Thus, the

identity

∞X
j=0

Θ−jXΘX
0
ΘΘ

−j = X̌ΘMΘX̌Θ

implies that
P∞

j=0Θ
−jXΘX

0
ΘΘ

−j is nonsingular whenever the matrix MΘ is nonsin-
gular, i.e. if and only if ci 6= cj for all i 6= j (cf. Lemma 4.3). On the other hand,
when any two localising coefficients ci, cj are the same, the matrix MΘ will have two
identical columns and will, therefore, be singular.
We begin by discussing the non singular asymptotic moment matrix case.

2.2 Theorem. For the explosive cointegrated system generated by (1) and (2) with
vt =d N (0,Σ) and ci 6= cj for all i 6= j, the following limit theory applies as n ! 1

vec
h³

Ân ¡A
´
Θn

i
) MN

0@0,Ã ∞X
j=0

Θ−jXΘX
0
ΘΘ

−j

!−1
− Σεε

1A .

2.3 Remarks.

(i) The assumption of Gaussian innovations is essential in order to obtain a mixed
normal limiting distribution for the least squares estimator. This is because,
despite being asymptotically equivalent to a martingale array (see (34)), the
sample covariance does not satisfy the requirement of uniform asymptotic neg-
ligibility nor the Lindeberg condition (cf. section 3.2 of Hall and Heyde, 1980).
As a result, no central limit theory applies in general and mixed normality
requires Gaussian innovations, as in the AR(1) case of Anderson (1959).

(ii) When vt =d N (0,Σ), XΘ =d N
³
0,
P∞

j=1Θ
−jΣuuΘ

−j
´
.

(iii) In the simplest case of a 2-equation system, K = 1, so xt, A = a and Θ = θ are
scalar. Letting Z be a N (0, 1) variate, the previous remark yields¡

θ2 ¡ 1
¢1/2

XΘ =d N (0,Σuu) =d Σ
1/2
uu Z,

∞X
j=0

Θ−jXΘX
0
ΘΘ

−j =
∞X
j=0

θ−2jX2
Θ =d

θ2¡
θ2 ¡ 1

¢2ΣuuZ
2.

Thus, Theorem 2.2 reduces to

θn (ân ¡ a)) MN

Ã
0,

Σεε

ΣuuZ2

¡
θ2 ¡ 1

¢2
θ2

!
=d

µ
θ2 ¡ 1
θ

¶µ
Σεε

Σuu

¶1/2
Y

Z
,

3



where Y and Z are independent N (0, 1) variates, or

θn+1

θ2 ¡ 1
(â¡ a))

µ
Σεε

Σuu

¶1/2
C,

where C is a standard Cauchy variate. In the general case, the exact form of the
limiting distribution of Theorem 2.2 can be obtained by using a matrix quotient
argument, as in Phillips (1985).

We now turn to the discussion of the limit theory in the case of two or more
equal localising coefficients. We have seen that this case gives rise to a singular limit
matrix for the sample variance, reflecting the fact that the regressors xt are themselves
explosively cointegrated. Since the mixing random matrix

P∞
j=0Θ

−jXΘX
0
ΘΘ

−j is
singular, the limit theory of Theorem 2.2 does not apply. The asymptotic behavior of
the least squares estimator can be determined by a rotation of coordinates to isolate
the explosive and non-explosive behavior, a method used by Park and Phillips (1988,
1989) in the setting of cointegrated processes. Here, however, the rotation is random
and is determined by the limit vector XΘ.
We start by grouping together the repeated diagonal elements of Θ. This can be

done without loss of generality by premultiplying (2) by an appropriate permutation
matrix (i.e. a square matrix consisting of zeros and ones that contains exactly one
element 1 in each row and each column). If there are p groups of repeated diagonal
elements of Θ the autoregressive matrix can be rearranged as

Φ = diag (Φ1,Φ2)
Φ1 = diag

¡
θ1Ir1, ..., θpIrp

¢
Φ2 = diag

¡
ϕ1, ..., ϕK−r

¢
r =

Pp
i=1 ri

(5)

where all ϕi and θi are diagonal elements of Θ with ϕs 6= θl for all s, l and ϕi 6= ϕj,
θi 6= θj for all i 6= j. This effectively rearranges the system of equations in (2) into a
system of the form 2664

x1t
...
xpt

xp+1,t

3775 =
2664

θ1x1t−1
...

θpxpt−1
Φ2xp+1,t−1

3775+
2664

u1t
...
upt

up+1,t

3775 , (6)

where xit 2 Rri includes the regressors in (2) that contain the repeated root θi for each
i 2 f1, ..., pg and xp+1,t 2 RK−r includes the regressors that contain all distinct di-
agonal elements of Θ. Letting x̃t =

¡
x01t, ..., x

0
pt, x

0
p+1,t

¢0
and ũt =

¡
u01t, ..., u

0
pt, u

0
p+1,t

¢0
,

(6) can be obtained from (2) as follows. Consider the K £ K permutation matrix
Π that transforms xt into x̃t: Πxt = x̃t. Then, using orthogonality of permutation
matrices, (2) yields

x̃t = ΠΘxt−1 + ũt = ΠΘΠ0Πxt−1 + ũt = Φx̃t−1 + ũt, (7)

4



where Φ = ΠΘΠ0 has the explicit form given in (5) and, by orthogonality of Π,
satisfies the useful identity

Φ−j = ΠΘ−jΠ0 for all j 2 N. (8)

Similarly, we can write (1) in terms of x̃t as

yt = AΠ0x̃t + εt = Ψx̃t + εt, (9)

where Ψ = AΠ0. Since Ψ̂n ¡ Ψ =
³
Ân ¡A

´
Π0, the asymptotic behavior of Ân is

completely determined by that of Ψ̂n. In what follows, we show that only the first
r rows of the permutation matrix Π will contribute to the limiting distribution ofp
n
³
Ân ¡A

´
. It is therefore convenient to partition Π as

Π =

24 Π1
r×K
Π2

(K−r)×K

35 ,

where, by the orthogonality of Π, Π1 and Π2 satisfy

Π1Π
0
1 = Ir, Π2Π

0
2 = IK−r, Π1Π

0
2 = 0

Π01Π1 +Π02Π2 = IK .
(10)

In particular, the first line of (10) implies that rank(Π1) = r and rank(Π2) = K ¡ r.
Conformably, we partition Φ−j as Φ−j =diag

¡
Φ−j1 ,Φ−j2

¢
. The partitioned form of Π

together with (8) then give rise to the identities

Φ−j1 = Π1Θ
−jΠ01, Φ

−j
2 = Π2Θ

−jΠ02, Π1Θ
−jΠ02 = 0 (11)

Θ−j = Π01Φ
−j
1 Π1 +Π02Φ

−j
2 Π2 (12)

for all j 2 N.
The limit theory for the cointegrated system (9) and (7) is derived by rotating

the regression space in a direction orthogonal to

XΦ := Π1XΘ =
∞X
j=1

¡
Π1Θ

−jΠ01
¢
Π1uj =

∞X
j=1

Φ−j1 Π1uj,

where the last equality is obtained using (11). Corresponding to the partition of
Π1xt, define XΦ =

¡
X 0

Φ1, ...,X
0
Φp

¢0
, XΦi 2 Rri, and HΦi = XΦi/ (X

0
ΦiXΦi)

1/2 for each
i 2 f1, ..., pg. We consider an ri £ (ri ¡ 1) orthogonal complement H⊥i to each HΦi

5



satisfying H 0
⊥iHΦi = 0 and H 0

⊥iH⊥i = Iri−1 a.s. for all i 2 f1, ..., pg. Then

H =

266666666666664

H 0
⊥1 0 ... 0 0
0 H 0

⊥2 ... 0 0
... ... ... ... ...
0 0 ... H 0

⊥p 0
H 0

Φ1 0 ... 0 0
0 H 0

Φ2 ... 0 0

... ... ... ... ...
0 0 ... H 0

Φp 0
0 0 ... 0 IK−r

377777777777775
(13)

is a K £K orthogonal matrix which can be partitioned as

H =

·
U 0
⊥

U 0
Φ

¸
, U⊥ =

"
H⊥
0

(K−r)×(r−p)

#
, UΦ =

24 HΦ 0
r×(K−r)

0
(K−r)×p

IK−r

35
H⊥ = diag (H⊥1, ...,H⊥p) , HΦ = diag (HΦ1, ...,HΦp) .

(14)

By construction, the orthogonal complement matrixH⊥ satisfiesH 0
⊥XΦ = H 0

⊥HΦ = 0
and H 0

⊥H⊥ = Ir−p almost surely. Although H⊥ is not unique, its outer product is
uniquely defined by the relation

H⊥H
0
⊥ = Ir ¡HΦH

0
Φ a.s. (15)

(see e.g. 8.67 in Abadir and Magnus, 2005). Moreover, (14) implies a similar rela-
tionship between UΦ and U⊥, viz.,

U 0
⊥UΦ = 0, U 0

⊥U⊥ = Ir−p and U⊥U
0
⊥ = IK ¡ UΦU

0
Φ a.s. (16)

Applying the orthogonal transformation H to the explosive regressor yields

zt = Hx̃t = [z
0
1t, z

0
2t]
0

z1t = H 0
⊥Π1xt 2 Rr−p z2t = U 0

ΦΠxt 2 RK−r+p (17)

and

Ψ̂n ¡Ψ =

Ã
nX
t=1

εtx̃
0
tH

0

!Ã
H

nX
t=1

x̃tx̃
0
tH

0

!−1
H

=

Ã
nX
t=1

εtz
0
t

!Ã
nX
t=1

ztz
0
t

!−1
H. (18)

With this rotation, the limit matrices of both
Pn

t=1 ztz
0
t and (

Pn
t=1 ztz

0
t)
−1 are well

defined after appropriate normalization. To see this, first observe that, in view of the
identities ¡

H 0
⊥Φ

−1
1 H⊥

¢j
= H 0

⊥Φ
−j
1 H⊥, H 0

⊥Φ
i
1HΦ = 0 8j 2 N, i 2 Z (19)

6



z1t satisfies the reverse autoregression

z1t =
¡
H 0
⊥Φ

−1
1 H⊥

¢
z1t+1 ¡H 0

⊥Φ
−1
1 Π1ut+1 (20)

which, upon recursion, yields for each t · n

z1t =
¡
H 0
⊥Φ

−1
1 H⊥

¢n−t
z1n ¡H 0

⊥

n−tX
j=1

Φ−j1 Π1ut+j. (21)

Proofs of (19) and (20) are given in Section 4. Using (10) and (12) the second term
of (21) can be written as

H 0
⊥

n−tX
j=1

Φ−j1 Π1ut+j = H 0
⊥Π1

n−tX
j=1

¡
Π01Φ

−j
1 Π1

¢
ut+j

= H 0
⊥Π1

n−tX
j=1

¡
Θ−j ¡Π02Φ

−j
2 Π2

¢
ut+j

= H 0
⊥Π1

n−tX
j=1

Θ−jut+j

!a.s. H 0
⊥Π1

∞X
j=1

Θ−jut+j

as n ! 1 by the martingale convergence theorem. For the first term of (21), using
(19) (15), (10) and (12) we obtain¡

H 0
⊥Φ

−1
1 H⊥

¢n−t
z1n = H 0

⊥Φ
−(n−t)
1 H⊥H

0
⊥Π1xn

= H 0
⊥Φ

−(n−t)
1 (Ir ¡HΦH

0
Φ)Π1xn

= H 0
⊥Φ

−(n−t)
1 Π1xn

= H 0
⊥Φ

t
1Π1

¡
Π01Φ

−n
1 Π1

¢
xn

= H 0
⊥Φ

t
1Π1

¡
Θ−n ¡ Π02Φ

−n
2 Π2

¢
xn

= H 0
⊥Φ

t
1Π1Θ

−nxn

= H 0
⊥Φ

t
1 (H⊥H

0
⊥ +HΦH

0
Φ)Π1Θ

−nxn

=
¡
H 0
⊥Φ

t
1H⊥

¢
H 0
⊥Π1Θ

−nxn

!a.s.

¡
H 0
⊥Φ

t
1H⊥

¢
H 0
⊥Π1XΘ = 0

since XΦ = Π1XΘ. Thus, (21) implies that z1t is an Rr−p-valued stationary ergodic
process with the following linear process representation:

z1t = ¡H 0
⊥Π1ζt+1 a.s. ζt+1 =

∞X
j=1

Θ−jut+j . (22)

7



The ergodic theorem then yields, as n ! 1,

1

n

nX
t=1

z1tz
0
1t = H 0

⊥Π1

Ã
1

n

nX
t=1

ζt+1ζ
0
t+1

!
Π01H⊥ !a.s. H

0
⊥Π1E (ζ1ζ

0
1)Π

0
1H⊥

= H 0
⊥Π1

∞X
j=1

Θ−jΣuuΘ
−jΠ01H⊥ > 0, (23)

where positive definiteness follows since Σuu > 0, Π1 has full row rank equal to r and
H⊥ has full column rank equal to r ¡ p. Thus, in the direction of H⊥, the sample
variance has the usual n−1 normalization that applies under stationarity. By standard
inversion of a partitioned matrix (e.g. 5.18 in Abadir and Magnus, 2005) we obtainÃ

nX
t=1

ztz
0
t

!−1
=

· Pn
t=1 z1tz

0
1t

Pn
t=1 z1tz

0
2tPn

t=1 z2tz
0
1t

Pn
t=1 z2tz

0
2t

¸−1
=

·
Z 01Z1 Z 01Z2
Z 02Z1 Z 02Z2

¸−1
=

·
(Z 01Q2Z1)

−1 ¡ (Z 01Q2Z1)
−1 P 0

2n

¡P2n (Z 01Q2Z1)
−1 (Z 02Z2)

−1 + P2n (Z
0
1Q2Z1)

−1 P 0
2n

¸
, (24)

where Z1 = [z011, z
0
12, ..., z

0
1n]

0 2 Rn×(r−p), Z2 = [z021, z
0
22, ..., z

0
2n]

0 2 Rn×(K−r+p),

P2n = (Z
0
2Z2)

−1
Z 02Z1 and Q2 = In ¡ Z2 (Z

0
2Z2)

−1
Z 02.

Lemma 4.4 implies that kZ 02Z2k = Op

¡
kΘk2n

¢
, kP2nk = Op

¡
kΘk−n

¢
and¡

n−1Z 01Q2Z1
¢−1

=
¡
n−1Z 01Z1

¢−1
+Op

¡
n−1

¢
.

Thus, in view of (23), the large sample behavior of the sample moment matrix after
rotation of the regression space is given byÃ

1

n

nX
t=1

ztz
0
t

!−1
=

" ³
Z01Q2Z1

n

´−1
Op

¡
kΘk−n

¢
Op

¡
kΘk−n

¢
Op

¡
kΘk−2n

¢
#

=

· ¡
1
n

Pn
t=1 z1tz

0
1t

¢−1
+Op (n

−1) Op

¡
kΘk−n

¢
Op

¡
kΘk−n

¢
Op

¡
kΘk−2n

¢ ¸
!p

" ³
H 0
⊥Π1

P∞
j=1Θ

−jΣuuΘ
−jΠ01H⊥

´−1
0

0 0

#
. (25)

Having established a nonsingular limit for the sample moment matrix in the new
regression coordinates the limit theory for the coefficient matrix Ψ in (9) is driven
by the sample covariance n−1/2

Pn
t=1 (z1t − εt) which has a mixed normal asymptotic

distribution

1p
n

nX
t=1

(z1t − εt)) MN

Ã
0,

Ã
H 0
⊥Π1

∞X
j=1

Θ−jΣuuΘ
−jΠ01H⊥

!
− Σεε

!
(26)
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by virtue of a martingale central limit theorem. The proof of (26) is given in Section
4. For the least squares estimator of Ψ, combining (18), (14) and (25) yields

p
n
³
Ψ̂n ¡Ψ

´
=

h
1√
n

Pn
t=1 εtz

0
1t

¡
1
n

Pn
t=1 z1tz

0
1t

¢−1
H 0
⊥, 0

i
+ op (1) .

It is now straightforward to derive a limit theory for the original cointegrated system
(1) and (2) by using the relationship Ân ¡ A =

³
Ψ̂n ¡Ψ

´
Π, so that

p
n
³
Ân ¡A

´
=

1p
n

nX
t=1

εtz
0
1t

Ã
1

n

nX
t=1

z1tz
0
1t

!−1
H 0
⊥Π1 + op (1)

p
nvec

³
Ân ¡A

´
=

24Π01H⊥
Ã
1

n

nX
t=1

z1tz
0
1t

!−1
− Im

35 1p
n

nX
t=1

(z1t − εt) + op (1)

and the limit distribution of the least squares estimator follows as a consequence of
(23) and (26).

2.4 Theorem. For the explosive cointegrated system generated by (1) and (2) with
ci = cj for some i 6= j the following limit theory applies as n ! 1

p
nvec

³
Ân ¡A

´
) MN

0@0,Π01H⊥
Ã
H 0
⊥Π1

∞X
j=1

Θ−jΣuuΘ
−jΠ01H⊥

!−1
H 0
⊥Π1 − Σεε

1A .

2.5 Remarks.

(i) The limit distribution of the least squares estimator is mixed Gaussian and
singular, since rank(H⊥) = r ¡ p and rank(Π1) = r implies that

Π01H⊥

Ã
H 0
⊥Π1

∞X
j=1

Θ−jΣuuΘ
−jΠ01H⊥

!−1
H 0
⊥Π1

is a singular matrix of rank r ¡ p. Moreover, a
p
n convergence rate applies,

which is much slower than the usual Θn rate for explosive processes appearing
in Theorem 2.2. This reduction in the convergence rate results from the fact
that some regressors in certain directions are explosively cointegrated with a
common explosive form, while the complementary set of regressors behave like
stationary variates. These variates slow down the convergence rate and standard
limit theory applies.

9



(ii) Unlike Theorem 2.2, Theorem 2.4 does not require any distributional assump-
tions on the innovations vt. The limiting distribution of Theorem 2.4 is valid
for non Gaussian innovations as a consequence of the central limit theorem
applying for the sample covariance in (26).

(iii) In the polar case where all localising coefficients are equal, Θ = θIK, r = K,
p = 1 and Π1 = IK , so Theorem 2.4 reduces tor

n

θ2 ¡ 1
vec

³
Ân ¡A

´
) MN

³
0,H⊥ (H

0
⊥ΣuuH⊥)

−1
H 0
⊥ − Σεε

´
.

(iv) An interesting feature of the limit distribution of Theorem 2.4 is the relationship
between the rank of the limiting covariance matrix and the order of cointegration
between the explosive regressors. As noted in Remark 2.5 (i), the rank of the
limiting covariance matrix is given by

(r ¡ p)m =

Ã
pX

i=1

ri ¡ p

!
m,

where p is the number of repeated roots of Θ and ri is the number of times
that the repeated root θi appears in Θ. Hence, the limiting covariance matrix
assumes its maximum rank, (K ¡ 1)m, when all diagonal elements of Θ are
equal. On the other hand, the inequality r ¸ 2p implies that the minimum
rank, m, occurs when r = 2 and p = 1, i.e. when Θ has exactly 2 equal
diagonal elements. The rank of the limiting distribution of Theorem 2.4 reflects
the fact that the orthogonal transformation H removes the singularity in (4)
by cancelling out the effect of the regressors in (2) that are not cointegrated.
The

p
n limit theory of Theorem 2.4 is driven exclusively from the cointegrated

part of xt, i.e. the regressors in (2) that contain repeated explosive roots.

(v) In view of Theorem 2.4, the limit behavior ofÃ
1

n

nX
t=1

xtx
0
t

!−1
= Π0H 0

Ã
1

n

nX
t=1

ztz
0
t

!−1
HΠ

!p Π01H⊥

Ã
H 0
⊥Π1

∞X
j=1

Θ−jΣuuΘ
−jΠ01H⊥

!−1
H 0
⊥Π1,

and the fact that Σ̂εε = n−1
Pn

t=1 ε̂tε̂
0
t !p Σεε, where ε̂t = yt ¡ Ânxt, we obtain

conventional asymptotic chi-squared distributions under the null hypothesis for
regression Wald tests such as

Wn = g
³
Ân

´0 24GA

8<:
Ã

nX
t=1

xtx
0
t

!−1
− Σ̂εε

9=;G0
A

35−1 g ³Ân

´
, GA =

∂g

∂vecA0
,

10



for some analytic restrictions of the form H0 : g (A) = 0.

(vi) Note that the matrix

Π01H⊥

Ã
H 0
⊥Π1

∞X
j=1

Θ−jΣuuΘ
−jΠ01H⊥

!−1
H 0
⊥Π1

is invariant to the coordinate system definingH⊥, so the limit theory of Theorem
2.4 is also invariant to the choice of coordinates.

We now provide a discussion of the asymptotic behavior of Ân¡A in the direction
of XΘ. Recalling the partitioned form of Π and (14), the vector

HΠXΘ =

·
U 0
⊥ΠXΘ

U 0
ΦΠXΘ

¸
=

·
H 0
⊥Π1XΘ

U 0
ΦΠXΘ

¸
=

"
0

(r−p)×1
U 0
ΦΠXΘ

#

cancels out the effect of
³
Z01Z1
n

´−1
on the variance matrix in (24) and produces a

typical explosive limit theory for Ân. More specifically, letting D := U 0
ΦΦUΦ, (8),

(18) and (24) yield³
Ân ¡A

´
ΘnXΘ =

³
Ψ̂n ¡Ψ

´
ΦnΠXΘ

=
³
Ψ̂n ¡Ψ

´
H 0 (HΦnH 0)HΠXΘ

=
³
Ψ̂n ¡Ψ

´
H 0diag (U 0

⊥Φ
nU⊥, U

0
ΦΦ

nUΦ)HΠXΘ

=

Ã
nX
t=1

εtz
0
t

!Ã
nX
t=1

ztz
0
t

!−1 "
0

(r−p)×1
DnU 0

ΦΠXΘ

#

=

Ã
nX
t=1

εtz
0
2t

!h
(Z 02Z2)

−1
Dn + P2n (Z

0
1Q2Z1)

−1
P 0
2nD

n
i
U 0
ΦΠXΘ

¡
Ã

nX
t=1

εtz
0
1t

!
(Z 01Q2Z1)

−1
P 0
2nD

nU 0
ΦΠXΘ. (27)

From the analysis preceding Theorem 2.4, we know that kP2nk = Op

¡
kΘk−n

¢
,

(Z 01Q2Z1)
−1 = Op (n

−1) and
Pn

t=1 εtz
0
1t = Op

¡
n1/2

¢
. Thus, since D is a diagonal

matrix consisting of all distinct diagonal elements of Θ, kDk = kΘk and the last
term in (27) has asymptotic order Op

¡
n−1/2

¢
. On the other hand, using (16) and the

11



fact that U 0
⊥Φ

nUΦ = H 0
⊥Φ

n
1HΦ = 0, we can write

nX
t=1

εtz
0
2tD

−n =
nX
t=1

εtx
0
tΠ

0UΦU
0
ΦΦ

−nUΦ

=
nX
t=1

εtx
0
tΠ

0 (IK ¡ U⊥U
0
⊥)Φ

−nUΦ

=
nX
t=1

εtx
0
t

¡
Π0Φ−nΠ

¢
Π0UΦ

=
nX
t=1

εtx
0
tΘ
−nΠ0UΦ, (28)

so that
Pn

t=1 εtz
0
2t = Op (kΘkn), and the second term in (27) has asymptotic order

Op (n
−1). Thus, Lemma 4.4 (a) and (28) yield³

Ân ¡A
´
ΘnXΘ =

Ã
nX
t=1

εtz
0
2tD

−n

!¡
D−nZ 02Z2D

−n¢−1 U 0
ΦΠXΘ +Op

¡
n−1/2

¢
=

nX
t=1

εtx
0
tΘ
−nΠ0UΦ

Ã
U 0
ΦΠΘ

−n
nX
t=1

xtx
0
tΘ
−nΠ0UΦ

!−1
U 0
ΦΠXΘ.

The asymptotic behavior of Ân¡A in the direction of XΘ is determined by an argu-
ment identical to the non singular case of Theorem 2.2. For Gaussian innovations ut,
Lemma 4.2, (33) and (34) imply that Θ−n

Pn
t=1 xtx

0
tΘ
−n and

Pn
t=1 εtx

0
tΘ
−n converge

jointly in distribution, leading to a mixed normal limit, stated formally as follows.

2.6 Theorem. For the explosive cointegrated system generated by (1) and (2) with
vt =d N (0,Σ) and ci = cj for some i 6= j the following limit theory applies on the
direction of XΘ³

Ân ¡A
´
ΘnXΘ ) MN

¡
0, X 0

ΘΠ
0UΦV−1U 0

ΦΠXΘΣεε

¢
where

V = U 0
ΦΠ

∞X
j=0

Θ−jXΘX
0
ΘΘ

−jΠ0UΦ.

2.7 Remarks.

(i) The limit theory for the least squares estimator in the direction of XΘ is mixed
Gaussian with full rank covariance matrix of order m and the usual explosive
rate of convergence. As in the non singular case, the assumption of Gaussian
innovations is essential for the reasons explained in Remark 2.3 (i).

12



(ii) Rotation of the regression space in the direction of XΘ determines the limit
theory in the explosive direction resolving the singularity of the limiting moment
matrix

P∞
j=0Θ

−jXΘX
0
ΘΘ

−j.

(iii) In the polar case of equal localising coefficients, we have Θ = θIK with Π = IK.
Thus, Theorem 2.6 reduces to

θn+1p
θ2 ¡ 1

³
Ân ¡A

´
XΘ ) MN (0,Σεε) .

3. Discussion

This paper provides a limit theory for explosively cointegrated systems. Both the
normalisation and the limit distribution of the centred least squares estimate Ân¡A
are found to vary according to whether the regressors contain common explosive roots.
When all the explosive roots are distinct, theΘn exponential rate of convergence and a
full rank mixed normal limiting distribution apply under the assumption of Gaussian
innovations. On the other hand, repeated explosive roots give rise to a degeneracy in
the regression limit theory. This degeneracy is resolved analytically by an appropriate
orthogonal rotation of the regression coordinates. The resulting limit theory is mixed
normal and of reduced rank. The rank of the limit distribution depends on the
number of repeated roots but is invariant to both the choice of coordinates and the
distribution of the innovations. Thus, in the case where some explosive roots are
common, an invariance principle holds.
The authors have shown that similar results to those given here hold for mildly

explosive cointegrated systems with roots that approach unity at rates slower than
n−1. In particular, Magdalinos and Phillips (2006) consider models such as (1) and
(2) with mildly explosive roots of the form

Θn = IK +
C

nα
, α 2 (0, 1) , C = diag(c1, ..., cK) > 0.

For such systems, a mixed normal asymptotic distribution is derived for the least
squares estimator with the mildly explosive rate of convergence, nαΘn

n, when C has
distinct diagonal elements and with the moderately stationary rate, n(1+α)/2, when C
has repeated roots, corresponding to Theorems 2.2 and 2.4 respectively. An attractive
feature of mildly explosive systems is that central limit theory applies in both cases
and asymptotic mixed normality is valid without distributional assumptions on the
innovations even when C has distinct diagonal elements. Such systems may also be
more realistic for practical work.
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4. Proofs

This section contains some technical lemmas as well as proofs of various statements
and results in the paper. Throughout, we use the notation

κn := bn/2c , Xκn :=
κnX
j=1

Θ−juj, (29)

Ft := σ (v1, ..., vt) for the natural filtration of the innovations, and let C be a bounding
constant in (0,1) that may assume different values. The above choice for κn is made
for the sake of simplicity, and the results hold for any integer valued sequence κn
satisfying

∞X
n=1

n kΘk−2κn < 1 and kΘk−(n−κn) κ1/2n ! 0 as n ! 1.

4.1 Lemma. For κn and Xκn as defined in (29), we have

max
κn+1≤t≤n

°°°°°
tX

j=κn+1

Θ−juj

°°°°° = oa.s.

µ
1p
n

¶
as n ! 1.

Proof. Using Doob’s inequality for martingales we obtain, for each δ > 0,

∞X
n=1

P

Ã
max

κn+1≤t≤n

°°°°°
tX

j=κn+1

Θ−juj

°°°°° >
δp
n

!
· 1

δ2

∞X
n=1

nE

°°°°°
nX

j=κn+1

Θ−juj

°°°°°
2

=
E ku1k2

δ2

∞X
n=1

n
nX

j=κn+1

kΘk−2j

· C
∞X
n=1

n kΘk−2κn

· C
∞X
n=1

n kΘk−n < 1.

4.2 Lemma. For κn and Xκn as defined in (29), we have, as n ! 1,

¡
Θ−n − Im

¢ nX
t=1

(xt − εt) =
nX

t=κn+1

¡
Θ−n+t − Im

¢
(Xκn − εt) + oa.s. (1) .
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Proof. The lemma will follow by showing (30) and (31) below.°°°°°
κnX
t=1

¡
Θ−n+t − Im

¢ £¡
Θ−txt

¢
− εt

¤°°°°° = oa.s. (1) (30)°°°°°
nX

t=κn+1

¡
Θ−n+t − Im

¢Ã tX
j=κn+1

Θ−juj − εt

!°°°°° = oa.s. (1) . (31)

For (30), since kΘ−txtk · kΘ−txt ¡XΘk+kXΘk and kΘ−txt ¡XΘk = oa.s. (1), there
exists a constant C 2 (0,1) such that°°Θ−txt°° · C + kXΘk 8t ¸ 1 a.s. (32)

with kXΘk < 1 a.s. by the martingale convergence theorem. Thus, by ergodicity,°°°°°
κnX
t=1

¡
Θ−n+t − Im

¢ £¡
Θ−txt

¢
− εt

¤°°°°°
· (C + kXΘk) kΘk−n

κnX
t=1

kΘkt kεtk

· (C + kXΘk) kΘk−n
Ã

κnX
t=1

kΘk2t
!1/2Ã κnX

t=1

kεtk2
!1/2

= Oa.s.

³
kΘk−(n−κn) κ1/2n

´
= oa.s. (1) ,

showing (30). For (31), Lemma 4.1 and the ergodic theorem yield°°°°°
nX

t=κn+1

¡
Θ−n+t − Im

¢Ã tX
j=κn+1

Θ−juj − εt

!°°°°°
· max

κn+1≤t≤n

°°°°°
tX

j=κn+1

Θ−juj

°°°°°
Ã

nX
t=κn+1

kΘk−n+t kεtk
!

· max
κn+1≤t≤n

°°°°°
tX

j=κn+1

Θ−juj

°°°°°
Ã

nX
t=κn+1

kΘk−2(n−t)
!1/2Ã nX

t=κn+1

kεtk
!1/2

· C
p
n max
κn+1≤t≤n

°°°°°
tX

j=κn+1

Θ−juj

°°°°°
Ã
1

n

nX
t=κn+1

kεtk
!1/2

= oa.s. (1) .

Proof of Theorem 2.1. By (32) we obtain, almost surely,°°°°°
κnX
t=1

Θ−(n−t)Θ−txtx
0
tΘ
−tΘ−(n−t)

°°°°° · (C + kXΘk)2
κnX
t=1

kΘk−2(n−t)

= Oa.s.

³
kΘk−2(n−κn)

´
.
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Thus, Lemma 4.1 yields

Θ−n
nX
t=1

xtx
0
tΘ
−n =

nX
t=κn+1

Θ−(n−t)Θ−txtx
0
tΘ
−tΘ−(n−t) + oa.s. (1)

=
nX

t=κn+1

Θ−(n−t)XκnX
0
κnΘ

−(n−t) + oa.s. (1)

=
n−κn−1X
j=0

Θ−jXκnX
0
κnΘ

−j + oa.s. (1) , (33)

and Theorem 2.1 follows immediately by the martingale convergence theorem.

Proof of Theorem 2.2. By (33) and Lemma 4.2,

vec
h³

Ân ¡A
´
Θn

i
=

24Ã nX
t=1

Θ−nxtx
0
tΘ
−n

!−1
− Im

35¡
Θ−n − Im

¢ nX
t=1

(xt − εt)

=

24Ãn−κn−1X
j=0

Θ−jXκnX
0
κnΘ

−j

!−1
− Im

35 nX
t=κn+1

¡
Θ−n+tXκn − εt

¢
+ oa.s. (1) .

The assumption of Gaussian errors yields, conditional on Fκn,

nX
t=κn+1

¡
Θ−n+tXκn − εt

¢
=d N

Ã
0,

Ã
n−κn−1X
j=0

Θ−jXκnX
0
κnΘ

−j

!
− Σεε

!
(34)

which leads to

vec
h³

Ân ¡A
´
Θn

i
= d

24Ãn−κn−1X
j=0

Θ−jXκnX
0
κnΘ

−j

!−1
2

− Im

35N (0, IK − Σεε)

) MN

0@0,Ã ∞X
j=0

Θ−jXΘX
0
ΘΘ

−j

!−1
− Σεε

1A ,

as n ! 1, since Xκn !a.s. XΘ.

4.3 Lemma. The determinant of the matrix

W (s) :=

·
1

wiwj ¡ 1
: i, j 2 f1, ..., sg

¸
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is given by¯̄
W (s)

¯̄
=

1

(w21 ¡ 1) ... (w2s ¡ 1)

s−1Y
j=1

(wj ¡ wj+1)
2 (wj ¡ wj+2)

2 ... (wj ¡ ws)
2

(wjwj+1 ¡ 1)2 (wjwj+2 ¡ 1)2 ... (wjws ¡ 1)2
.

Consequently, the matrix

MW :=

·
wiwj

wiwj ¡ 1
: i, j 2 f1, ..., sg

¸
is nonsingular if and only if wi 6= wj for all i 6= j.

Proof. We use induction. The result is immediate for s = 2. If we assume the
result for s¡ 1, and partition W (s) as

W (s) =

·
W (s−1) w
w0 1

w2s−1

¸
w :=

·
1

w1ws ¡ 1
, ...,

1

ws−1ws ¡ 1

¸0
,

we have (e.g., 5.29 of Abadir and Magnus, 2005)¡
w2s ¡ 1

¢ ¯̄
W (s)

¯̄
=

¯̄
W (s−1) ¡

¡
w2s ¡ 1

¢
ww0

¯̄
.

Since the matrix on the right is equal to

diag
µ

w1 ¡ ws

w1ws ¡ 1
, ...,

ws−1 ¡ ws

ws−1ws ¡ 1

¶
W (s−1)diag

µ
w1 ¡ ws

w1ws ¡ 1
, ...,

ws−1 ¡ ws

ws−1ws ¡ 1

¶
and

¯̄
W (s−1)

¯̄
is known from the induction hypothesis, we obtain¯̄

W (s)
¯̄
=

1

w2s ¡ 1
(w1 ¡ ws)

2

(w1ws ¡ 1)2
...
(ws−1 ¡ ws)

2

(ws−1ws ¡ 1)2
¯̄
W (s−1)¯̄

=
1

(w21 ¡ 1) ... (w2s ¡ 1)

s−1Y
i=1

(wi ¡ ws)
2

(wiws ¡ 1)2
s−2Y
j=1

(wj ¡ wj+1)
2 ... (wj ¡ ws−1)

2

(wjwj+1 ¡ 1)2 ... (wjws−1 ¡ 1)2

=
1

(w21 ¡ 1) ... (w2s ¡ 1)

s−1Y
j=1

(wj ¡ wj+1)
2 ... (wj ¡ ws)

2

(wjwj+1 ¡ 1)2 ... (wjws ¡ 1)2

as required. Hence, W (s) is nonsingular if and only if wi 6= wj for all i 6= j. The
identityMW =diag(w1, ..., ws)W

(s)diag(w1, ..., ws) implies that nonsingularity ofMW

is equivalent to nonsingularity of W (s).

4.4 Lemma. Let D = U 0
ΦΦUΦ. The following hold as n ! 1:

(a) D−nZ 02Z2D
−n !a.s. U

0
ΦΠ

³P∞
j=0Θ

−jXΘX
0
ΘΘ

−j
´
Π0UΦ > 0 a.s.,

(b) kZ 02Z1k = Op (kΘkn),

(c)
³
Z01Q2Z1

n

´−1
=

³
Z01Z1
n

´−1
+Op (n

−1).
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Proof. For part (a), first note that U 0
ΦΦ

−jU⊥ = H 0
ΦΦ

−j
1 H⊥ = 0 for all j 2 N. Thus,

using (17) and (16) we obtain

D−jz2t = U 0
ΦΦ

−jUΦU
0
ΦΠxt

= U 0
ΦΦ

−j (IK ¡ U⊥U
0
⊥)Πxt

= U 0
ΦΦ

−jΠxt ¡
¡
U 0
ΦΦ

−jU⊥
¢
U 0
⊥Πxt

= U 0
ΦΠ

¡
Π0Φ−jΠ

¢
xt

= U 0
ΦΠΘ

−jxt, (35)

for all j 2 N, and similarly

D−jU 0
ΦΠXΘ = U 0

ΦΠΘ
−jXΘ. (36)

The limit matrix of part (a) now follows immediately from (35) and Theorem 2.1:

D−nZ 02Z2D
−n = U 0

ΦΦ
−nUΦ

nX
t=1

z2tz
0
2tU

0
ΦΦ

−nUΦ

= U 0
ΦΠΘ

−n
nX
t=1

xtx
0
tΘ
−nΠ0UΦ

!a.s. U 0
ΦΠ

∞X
j=0

Θ−jXΘX
0
ΘΘ

−jΠ0UΦ.

In order to establish the nonsingularity of the limit matrix, note that, by (5),

D = U 0
ΦΦUΦ = diag

¡
θ1, ..., θp, ϕ1, ..., ϕK−r

¢
consists of all distinct diagonal elements of Θ. Then, denoting by di the i-th diagonal
element of D, Lemma 4.3 implies that the matrix

MD :=

·
didj

didj ¡ 1
: i, j 2 f1, ...,K ¡ r + pg

¸
is nonsingular. Denoting by S

(i)
Φ the i-th element of the vector SΦ = U 0

ΦΠXΘ and

letting ŠΦ :=diag
³
S
(1)
Φ , ..., S

(K−r+p)
Φ

´
, (36) gives

U 0
ΦΠ

∞X
j=0

Θ−jXΘX
0
ΘΘ

−jΠ0UΦ =
∞X
j=0

D−jSΦS
0
ΦD

−j

= ŠΦMDŠΦ.

The last matrix is nonsingular a.s. sinceMD is nonsingular and S
(i)
Φ 6= 0 a.s. for each

i by absolute continuity of ut.
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For part (b), using a matrix Cauchy Schwarz inequality (e.g. 12.5 in Abadir and
Magnus, 2005) we obtain

kz1tk2 =
°°H 0

⊥ζt+1
°°2 = tr

¡
H⊥H

0
⊥ζt+1ζ

0
t+1

¢
· [tr (H⊥H

0
⊥)]

1/2
h°°ζt+1°°2 tr ¡ζt+1ζ 0t+1¢i1/2

= [tr (H 0
⊥H⊥)]

1/2 °°ζt+1°°2 = (r ¡ p)1/2
°°ζt+1°°2

since H 0
⊥H⊥ = Ir−p. Also, using (35) and a standard trace inequality we can write

E kz2tk2 · E [tr (z2tz
0
2t)] · E [tr (UΦU

0
Φ) tr (x̃tx̃

0
t)]

= KE kx̃tk2 ·
KE kũ1k2

kΦk2 ¡ 1
kΦk2t .

Thus,

E kvec (Z 02Z1)k ·
nX
t=1

E (kz1tk kz2tk) ·
nX
t=1

¡
E kz1tk2

¢1/2 ¡
E kz2tk2

¢1/2
· (r ¡ p)1/4

¡
E kζ1k2

¢1/2 nX
t=1

¡
E kz2tk2

¢1/2
· (r ¡ p)1/4

Ã
KE kũ1k2E kζ1k2

kΦk2 ¡ 1

!1/2 nX
t=1

kΦkt

= O (kΦkn)
and the result follows since kΦk = kΘk. For part (c), note that part (a) implies that
kZ 02Z2k = Op

¡
kΘk2n

¢
. Thus,

1

n

°°°Z 01Z2 (Z 02Z2)−1 Z 02Z1°°° · 1

n
kZ 01Z2k

2 kZ 02Z2k
−1
= Op

µ
1

n

¶
,

by part (b) and the result follows from the definition of Q2.

Proof of (19). Since Φi
1 =diag

¡
θi1Ir1, ..., θ

i
pIrp

¢
, (14) gives, for all i 2 Z

H 0
⊥Φ

i
1HΦ = diag

¡
θi1H

0
⊥1HΦ1, ..., θ

i
pH

0
⊥pHΦp

¢
= 0.

On the other hand, (15) and the above identity for i = ¡1 yields¡
H 0
⊥Φ

−1
1 H⊥

¢2
= H 0

⊥Φ
−1
1 H⊥H

0
⊥Φ

−1
1 H⊥

= H 0
⊥Φ

−1
1 (Ir ¡HΦH

0
Φ)Φ

−1
1 H⊥

= H 0
⊥Φ

−2
1 H⊥ ¡

¡
H 0
⊥Φ

−1
1 HΦ

¢
H 0

ΦΦ
−1
1 H⊥

= H 0
⊥Φ

−2
1 H⊥,

so we have proved the identity
¡
H 0
⊥Φ

−1
1 H⊥

¢j
= H 0

⊥Φ
−j
1 H⊥ for j = 2. The general

case follows by straightforward induction.
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Proof of (21). Using (10) and (11) the definition of z1t yields

z1t = H 0
⊥Π1xt = H 0

⊥Π1
¡
Θ−1xt+1 ¡Θ−1ut+1

¢
= H 0

⊥Π1Θ
−1xt+1 ¡H 0

⊥Π1Θ
−1ut+1

= H 0
⊥Π1Θ

−1 (Π01Π1 +Π02Π2) xt+1 ¡H 0
⊥Π1Θ

−1 (Π01Π1 +Π02Π2)ut+1

= H 0
⊥
¡
Π1Θ

−1Π01
¢
Π1xt+1 ¡H 0

⊥
¡
Π1Θ

−1Π01
¢
Π1ut+1

= H 0
⊥Φ

−1
1 Π1xt+1 ¡H 0

⊥Φ
−1
1 Π1ut+1.

The second term has the form that appears in (21). For the first term, using the fact
that H 0

⊥Φ
−1HΦ = 0, we can write

H 0
⊥Φ

−1
1 Π1xt+1 = H 0

⊥Φ
−1
1 (H⊥H

0
⊥ +HΦH

0
Φ)Π1xt+1

=
¡
H 0
⊥Φ

−1
1 H⊥

¢
H 0
⊥Π1xt+1

=
¡
H 0
⊥Φ

−1
1 H⊥

¢
z1t+1,

as required.

Proof of (26). Recalling the notation ζt+1 =
P∞

j=1Θ
−jut+j, (22) yields the follow-

ing expression for the sample covariance:

1p
n

nX
t=1

(z1t − εt) = ¡ 1p
n

nX
t=1

¡
H 0
⊥Π1ζt+1 − εt

¢
= ¡ (H 0

⊥Π1 − Im)
nX
t=1

ξnt, (37)

where ξnt := n−1/2
¡
ζt+1 − εt

¢
is a martingale difference array with respect to Ft+1,

since ζt+1 is σ (vt+1, vt+2, ...)measurable. The conditional variance of
Pn

t=1 ξnt is given
by

nX
t=1

EFt (ξntξ
0
nt) =

1

n

nX
t=1

£
EFt

¡
ζt+1ζ

0
t+1

¢
− εtε

0
t

¤
=

1

n

nX
t=1

£
E
¡
ζt+1ζ

0
t+1

¢
− εtε

0
t

¤
=

Ã ∞X
j=1

Θ−jΣuuΘ
−j

!
−
Ã
1

n

nX
t=1

εtε
0
t

!

!a.s.

Ã ∞X
j=1

Θ−jΣuuΘ
−j

!
− Σεε,

by the ergodic theorem. Thus, provided that the Lindeberg condition
nX
t=1

EFt
¡
kξntk2 1 fkξntk > δg

¢
!p 0 δ > 0 (38)
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holds, Corollary 3.1 of Hall and Heyde (1980) and the Cramér Wold theorem imply
that

nX
t=1

ξnt ) N

Ã
0,

Ã ∞X
j=1

Θ−jΣuuΘ
−j

!
− Σεε

!
. (39)

The proof of (38) is given below. The proof of (26) follows from (37) and (39).

Proof of (38). The Lindeberg condition (38) is equivalent to

1

n

nX
t=1

kεtk2EFt
³°°ζt+1°°2 1©°°ζt+1°° kεtk > δn1/2

ª´
= op (1) . (40)

Applying the inequality

1
©°°ζt+1°° kεtk > δn1/2

ª
· 1

n°°ζt+1°° > δ1/2n1/4
o
+ 1

n
kεtk > δ1/2n1/4

o
to (40), we deduce that (38) will follow if the following terms

Sn1 =
1

n

nX
t=1

kεtk2E
³°°ζt+1°°2 1n°°ζt+1°° > δ1/2n1/4

o´
Sn2 =

1

n

nX
t=1

kεtk2 1
n
kεtk > δ1/2n1/4

o
E
°°ζt+1°°2

are op (1) . Sn1 ! 0 in L1 since, using the fact that ζt+1 is a strictly stationary
sequence with E kζ1k2 < 1,

ESn1 · max
1≤t≤n

E
³°°ζt+1°°2 1n°°ζt+1°° > δ1/2n1/4

o´
E kε1k2

= E
³
kζ1k2 1

n
kζ1k > δ1/2n1/4

o´
E kε1k2 ! 0.

Sn2 also tends to 0 in L1 since

ESn2 = E kζ1k2
1

n

nX
t=1

E
³
kεtk2 1

n
kεtk > δ1/2n1/4

o´
= E kζ1k2E

³
kε1k2 1

n
kε1k > δ1/2n1/4

o´
! 0,

by integrability of kε1k2. Thus, (40) and (38) follow.
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