
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2007

Globally Distributed Software Development
Project Performance: An Empirical Analysis
Narayanasamy RAMASUBBU
Singapore Management University, nramasub@smu.edu.sg

Rajesh Krishna BALAN
Singapore Management University, rajesh@smu.edu.sg

DOI: https://doi.org/10.1145/1287624.1287643

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
RAMASUBBU, Narayanasamy and BALAN, Rajesh Krishna. Globally Distributed Software Development Project Performance: An
Empirical Analysis. (2007). ESEC/FSE 2007: The 6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering: Dubrovnik, Croatia, September 3-7, 2007. 125-134. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/819

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13239916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/1287624.1287643
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Globally Distributed Software Development Project
Performance: An Empirical Analysis

Narayan Ramasubbu, Rajesh Krishna Balan
Singapore Management University

nramasub, rajesh @ smu.edu.sg

ABSTRACT
Software firms are increasingly distributing their software
development effort across multiple locations. In this paper we
present the results of a two year field study that investigated the
effects of dispersion on the productivity and quality of distributed
software development. We first develop a model of distributed
software development. We then use the model, along with our
empirically observed data, to understand the consequences of
dispersion on software project performance. Our analysis reveals
that, even in high process maturity environments, a) dispersion
significantly reduces development productivity and has effects on
conformance quality, and b) these negative effects of dispersion
can be significantly mitigated through deployment of structured
software engineering processes.

Categories and Subject Descriptors
D.2.9 [Management]: productivity, programming teams, software
process models, software quality assurance

General Terms
Economics, Management

Keywords
Globally distributed software development, software engineering
economics, quality management, empirical analysis

1. INTRODUCTION
Globally distributed software development achieves division of
labor by dispersing software development tasks among several
remote development centers. This mode of software development
has become a popular business model for software organizations.
There are several compelling business reasons supporting the
adoption of distributed software development: 1) ability to extend
work beyond the regular office hours at a single site, 2) software
development costs at offshore centers, like in India, are as much
as four times less expensive [42], 3) the capabilities of workforce
in remote centers located in emerging economies have improved
significantly in the recent years [10], 4) advances in information
and communication technology have facilitated easier
collaboration between remote workforce [8, 9].

At the same time several challenges in distributed software
development have been reported. For example, Mockus and Weiss
[40] report that distributing product maintenance work across
global development centers increases the cycle time of a project.
Likewise, Herbsleb et. al. [24-26] report that, compared to same-
site work, cross-site work takes a much longer time and requires
more effort for work of similar size and complexity. Also
behavioral researchers investigating distributed work report that a
remote workforce, even with advanced technologies in place,
often encounter difficulties in coordination and administration that
lead to decreased project performance [11, 30, 39, 43].

Structured and disciplined software engineering processes have
often been advocated as a key remedy for addressing the
aforementioned challenges [13, 20, 21, 28]. In this paper, we
report our findings, from our field study, on the effectiveness of
deploying structured software engineering processes and stringent
quality management practices in globally distributed software
development. The main contribution of this paper is in developing
empirical models of distributed software project performance and
verifying them using data collected from large scale, real world
projects. In doing so, we answer the following research questions:

1. To what extent does “dispersion” in software tasks affect

software productivity and quality?
2. To what extent can investments in structured software

engineering processes mitigate the effect of dispersion?
3. What are the relative effects of individual quality management

practices in improving distributed project performance?

2. MODELING GLOBALLY DISTRIBUTED
SOFTWARE DEVELOPMENT
To answer the above questions, a model that captures the
individual effects of factors that influence global software
development project performance is necessary. The modeling
framework for this study is developed based on the economic
view of software development [2, 3, 7]. Researchers using this
framework treat software development as a production process,
and model software performance indicators, such as productivity
and quality, as a function of personnel related factors and software
methodology related factors. Prior studies using the economic
view of software development have predominantly focused on co-
located software development scenarios [6, 22, 32, 33]. In this
study we extend this framework to address distributed software
development. Also, prior software engineering research studies
have not extensively focused on right mix of quality practices in
different stages of product development to improve the net
outcome in a project. To address this, we study the effects of
prevention, appraisal and failure-based quality activities on
distributed project performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009...$5.00

125

Figure 1. Research Model

Prevention Appraisal Failure
• Programming training
• Business domain training
• Process training
• Configuration management
• Task Planning and Scheduling

• Requirement, Specification and Design
reviews

• Code inspection
• Status reviews

• Unit testing
• Module testing
• Integration Testing
• System testing
• Error tracking and correction

Figure 2. Categorization of individual quality management practices

2.1 Research Model
Figure 1 gives a pictorial overview of our research model. On the
left side of the model are the factors affecting software
development; namely work dispersion and Quality Management
Approaches (QMA). On the right side of the model are the project
performance indicators. To model the other factors affecting both
project performance and software development, and to understand
the development process in more detail, we introduce a number of
control variables. We explain work dispersion, quality
management approaches, project performance, and control
variables in more detail in the next few subsections.

2.1.1 Work Dispersion
Work dispersion is a key variable in our model, and describes how
distributed a project’s development process is. We measure work
dispersion between development centers using a variable similar
to the Herfindahl-Hirschman Index [47]. This index is a well
tested and widely used measure that quantifies how diversified a
large corporation or a particular industry is. Since there are only
two development centers in our data set (explained in more detail
in Section 3), the work dispersion measure is defined as

Work
dispersion

= 1002 – (% effort at first development center)2 –
(% effort at second development center)2

A value of zero for our work dispersion measure indicates that the
software project is completely co-located, and an increasing value
represents increasing levels of work dispersion. For example,
when 90% of the project is performed at one development center
with the remaining 10% performed at another center, the value of
our work dispersion variable is 1800 (1002 – (90)2 – (10)2 = 1800).
Similarly, for an 80/20 scenario, the dispersion variable value is
3200 (1002 – (80)2 – (20)2 = 3200). The maximum value of
dispersion in the two development center scenario is 5000 when
the work allocation percentage is 50/50.

2.1.2 Quality Management Approaches
A key component of the model is determining how to categorize
software management quality. Instead of creating our own
categories, we use the well studied and accepted categorization
used in manufacturing quality research [16, 37, 41]. This
categorization has three components; prevention-based, appraisal-
based, and failure-based QMAs. Figure 2 provides a detailed
breakdown of the elements of each approach.

Prevention-based approach: Prevention-based quality
management practices in software development involve activities
such as training that are primarily done to avoid the occurrence of
errors. For our model, we compute a score for this approach based
on the percentage of total development effort spent on training,
project planning and configuration management activities.

Appraisal-based approach: Appraisal-based activities involve
proactively assessing progress, performance and quality of
intermediate artifacts at various stages of development. We assign
a score for this approach based on the percentage of total
development effort spent on peer reviews of requirement, design,
status reviews and code inspection.

Failure-based approach: Failure-based quality approaches
include testing the adherence of applications to customer
specifications and subsequent defect correction activities. We
assign a score for this approach based on the percentage of total
development effort spent on unit tests, module integration tests
and system tests.

2.1.3 Project Performance
Similar to past software engineering economics studies [21, 34],
we use two different performance indicators to determine the
quality of the software product. They are:

Development Productivity

Conformance Quality

Project Performance Work Dispersion

Prevention-based

Appraisal-based

Failure-based

Quality management approaches

Control Variables
Team size, Code size, Reuse, Upfront investment, Design
Rework

126

1) Development productivity: Development productivity is
defined as the ratio of software code size in function points
to the total development effort in person-hours. The
advantage of function point measurement for code size is that
it incorporates measures of customer perceived software
functionality as well as complexity [29]. Function points
have also been shown to be a reliable output measure in the
context of commercial systems [31]. The development effort
includes effort incurred in all stages of development until the
customer signs off the project.

2) Conformance Quality: Our quality measure captures the

number of unique problems reported by customers during the
acceptance tests and production trials before the project
signoff. It is calculated as follows:

Conformance Quality =
1)(defects

1

+

This reciprocal formulation represents quality as a decreasing
function as the number of defects increases.

2.1.4 Control Variables
We introduced a number of control variables into the model.
These variables serve two purposes; a) provide a deeper
understanding of the distributed software development process,
and b) allow us to create empirical models that can be computed
(shown in Section 2.2). We use five variables; two that affect
primarily productivity, two that affect primarily quality, and one
that affects both.

2.1.4.1 Productivity Variables
We used two control variables that affect primarily productivity;
Team Size and Reuse.

Team Size: Team size is the headcount of the number of persons
involved in the project. Team size is expected to be a good
surrogate for the coordination difficulties that could occur within
the software project team. An increased team size poses
difficulties in both administrative and expert coordination [17].

Reuse: Reuse in this study is measured as the percentage of lines
of code that have been utilized from the generic code libraries
maintained centrally in the knowledge database at our research
site. All reused modules and objects in the projects we studied
were maintained with unique tags for readability and hence could
be easily identified in applications. Reuse in software enables
developers to use standardized routines that have been stored in
organization-wide repositories and libraries to accomplish certain
functionality. Usage of such standardized and pre-tested functions
helps developers to avoid reinventing the wheel, and to focus on
customer specific needs. Thus we believe reuse plays an important
role in impacting development productivity. Reuse has other
indirect influences such as a potential effect on software quality as
well. However, similar to other software modeling studies [4], we
use it primarily to observe productivity.

2.1.4.2 Quality Variables
We used two control variables that affect primarily quality; Code
Size, and Upfront Investment.

Code Size: Code size is measured as function points over the
entire project code base. Code size is a widely recognized control
variable for software quality models as software size captures
both the magnitude of the project and much of the complexity
involved in developing the application.

Upfront Investment: Upfront investment is measured as the
percentage of total effort spent during the requirements and design
stages of the life cycle. Higher levels of investment in activities
done before commencing actual coding of system, such as
requirement analysis and high level design, have been shown to
positively influence system quality [34].

2.1.4.3 Common Variable
We use a control variable, design rework, which affects both
productivity and quality as it gives deeper insights into the effect
of dispersion on the overall project performance.

Design Rework: As stated earlier, we measure code size in terms
of function points. Hence, we define design rework as the effort,
in terms of person hours, spent per function point to implement
the new design. Agreeing on a common non-volatile design early
in the project life cycle is likely to be very important in a
distributed environment. We hypothesize that changing the basic
design framework often results in cascading changes and rework
in individual components that affects project performance. Hence,
we also account for design rework when determining the effect of
dispersion on project performance.

2.2 Empirical Equations

Given the research model presented in Section 2.1, we formulate
the following empirical formulations:

Development
productivity

= f (conformance quality, work dispersion,
prevention-based approach, appraisal-based
approach, failure-based approach, reuse,
design rework, team size) (Eq. 1)

Conformance
quality

= f (development productivity, work
dispersion, prevention-based approach,
appraisal-based approach, failure-based
approach, design rework, code size, upfront
investment) (Eq. 2)

Equation (1) states that development productivity is functionally
dependent on conformance quality, work dispersion, the various
quality management approaches as well as the values of certain
variables. Equation (2) states that conformance quality is
functionality dependent on development productivity, work
dispersion, the various quality management approaches, and some
control variables. Note that development productivity depends on
conformance quality and vice versa and also that most of the
variables in the two equations are common. The unique control
variables (productivity has team size and reuse etc.) were
introduced specifically to resolve this circular dependency.

Before converting the generic functional equations (Equations 1
and 2) into the final equations (with coefficients and errors etc.),
we note that the effects of size and effort on quality and
productivity are not linear, and that scale economies exist in
software development [5]. Hence, we posit that the effects of

127

dispersion and quality management practices on both
conformance quality and development productivity are not linear
either. We thus use a general multiplicative specification and
derive the final empirical equations (equations (3) and (4)) using a
log-log transformation of equations (1) and (2). We present the
values obtained using these equations in Section 4.

ln (development
 productivity)

= α0 + α 1* ln(conformance quality) + α2*
ln(work dispersion)+ α3 *
ln(prevention) + α4* ln(appraisal) +
α5* ln(failure) + α6* ln(reuse) + α7*
ln(design rework) + α 8* ln(team size)
+ ε1 (Eq. 3)

ln (conformance
 quality)

= β0 + β1* ln(development productivity)
+ β2* ln(work dispersion)+ β3*
ln(prevention) + β4* ln(appraisal) +
β5* ln(failure) + β6* ln(design rework)
+ β7* ln(Code size) + β8* ln(Upfront
investment) + ε2 (Eq. 4)

3. DATA COLLECTION AND
METHODOLOGY
In this section we provide details of our research site, and data
collection procedure, and present our empirical models. We
collected detailed distributed development data from a leading
software service company that employs over 19,000 people in 17
countries and has annual revenue of more than one billion dollars,
at the time of our data collection. This firm provides an ideal
research setting to study software productivity and quality in a
distributed development scenario because the firm has adopted a
global delivery model for its services, and employs a very high
maturity development processes. Our research site was assessed to
operate at the highest maturity level (level 5) of the software
Capability Maturity Model instituted by the Software Engineering
Institute at Carnegie Mellon University. High maturity operations
at our research site helped us to gather reliable data to empirically
investigate our research questions.

Our data collection involved gathering information on forty-two
completed projects in a recent two year time period. During this
time, one of the authors was present in the field and observed the

software development processes in the projects using an
ethnographic observation approach. To complement our
understanding of the software processes and culture at our site, we
conducted structured interviews with two senior business
development managers, four project managers, and with ten
randomly selected project team members.

We obtained the data required for the various components in our
model (project performance, control variables, etc.) from an
internal company software engineering process database
maintained by the quality division of the organization. Each of the
forty-two projects studied in this paper were required to regularly
report these values in order to achieve CMM-level 5 compliance.
The company routinely internally audited these project teams to
ensure that they were compliant with the reporting requirements.
In addition, the quantitative data we gathered had been audited by
an independent external assessment auditor for CMM and ISO
9001 conformance certifications. We are thus confident that the
data used in this paper is reliable and of high quality and that we
have a rich understanding of the context in which these software
projects were executed.

All the projects studied were development projects of commercial
business applications using high level programming languages
and relational databases. We found very little variance across
different projects with respect to adherence to key process areas
specified by CMM-level 5.

Each of the forty-two projects studied was executed using two
software development centers, one in India and one in the United
States. The primary reason for this split was because the clients
were located in North America with additional development
resources located in India. It is interesting to note that human
resource allocation across the two centers was primarily sourced
from the Indian center.

The project development process occurred as follows; When the
firm won a customer bid to build an application, the business
development manager would form the project team. As the project
work started, a part of the team traveled from India to the
development center in the United States and typically stayed there
until project sign off. There were occasional rotations among team
members across the development centers.

Variable Unit Mean Std. Dev. Min Max

Productivity Func. Pts / Person Hrs 0.26 0.15 0.02 0.64
Quality 1/ (No. defects +1) 0.28 0.35 0.01 1.00
Dispersion Unit less measure 4220.58 739.66 1781.80 4994.30
Prevention QMA % of total project hrs 4.57 4.56 1.00 25.67
Appraisal QMA % of total project hrs 22.45 7.59 8.89 42.69
Failure QMA % of total project hrs 19.85 9.18 4.11 44.53
Code Size No. of Function Points 2191.83 2927.72 33.00 18247.00
Team Size No. project personnel 11.19 6.43 2.00 30.00
Design Rework % of total project hrs 0.44 0.72 0.00 4.39
Upfront Investment % of total project hrs 13.64 7.71 0.43 32.32
Reuse % of lines of code 5.26 3.25 1.00 20.00

Figure 3. Summary Statistics of the Variables Used in the Analysis

128

Variables Model 1
Development Productivity

Model 2
Conformance Quality

Development Productivity 0.893**
 NA (0.046) β1

Conformance Quality -0.308***
 (0.002) α 1 NA

Dispersion -1.018*** -0.621
 (0.004) α 2 (0.444) β2

Prevention-based quality management 0.059 0.470**
 (0.584) α 3 (0.026) β3

Appraisal-based quality management 0.573** 0.363
 (0.014) α 4 (0.549) β4

Failure-based quality management 0.324** 0.656**
 (0.035) α 5 (0.037) β5

Reuse 0.845***
 (0.000) α 6 NA

Design Rework -0.106 0.233
 (0.177) α 7 (0.229) β6

Team Size -0.182
 (0.247) α 8 NA

Code Size -1.067***
 NA (0.000) β7

Upfront Investment 0.375**
 NA (0.049) β8

Constant 2.530 8.050
 (0.418) α 0 (0.236) β0

F (8, 33) 10.89***
(0.000)

4.89***
(0.001)

Observations 42 42
This figure shows the regression results of our data using equations 3 (model 1) and 4 (model 2). Probability-
values are shown in parentheses; results significant at 5% are indicated by **; results significant at 1% are
indicated by ***. Other values, which are not in bold, are not statistically significant. We use a two-tailed
hypothesis test. The values indicate the effect of each variable on productivity (model 1) and quality (model 2).
E.g, Reuse has a strong positive effect on productivity while Code Size has a strong negative effect on quality.

Figure 4. Regression Results

4. DATA ANALYSIS, MODEL
VERIFICATION AND RESULTS
The empirical models described in section 2, indicate the presence
of endogeneity between conformance quality and development
productivity. That is, development productivity and conformance
quality affect each other. We confirmed (with 1% significance
level) the presence of such an effect in our dataset by using the
Durbin-Wu-Hausman endogeneity test [15]. Because of the
presence of endogenous variables in our models, classical
Ordinary Least Square regression is not suitable. Therefore, we
used an instrumental variable regression method, Two Stage Least
Squares, to estimate the coefficients of equations (3) and (4).

The summary statistics of our data set is presented in Figure 3
while the results of our regression tests on our data are presented
in Figure 4. Overall, the results of our regression analysis indicate
that our empirical models are valid. The Fisher statistic (F) values
for both our empirical models are significant at 1% and indicates
that our regression results are statistically valid.

4.1. Results: Effect of Dispersion on Project
Performance
Our results indicate that work dispersion, even in high process
maturity environments, negatively affects development
productivity. However, our analysis, as shown in Figure 5,
indicates an exponential decrease in productivity as dispersion
increases. Thus the marginal decrease in productivity is much
higher as dispersion starts to increase and this has to be taken into
consideration when teams initiate distributed development.

Our analysis indicates that in high process maturity environments,
dispersion does not have a statistically significant direct effect on
conformance quality. However, dispersion does have an indirect
effect on conformance quality because of the endogeneity present
between productivity and conformance quality.

 Figure 6 shows an example of this indirect effect. In the figure,
we plot productivity against quality for various levels of
dispersion. Note that while the shape of the curves look about the
same, different dispersion levels affect two things; 1) the rate at
which productivity decreases as you increase your quality
expectations. In particular, highly dispersed teams will have to
spend more time to create high quality code relative to less
dispersed teams. 2) When dispersion is high, the productivity

129

achievable, for the same output quality, is significantly affected
(compare the three dispersion lines in the graph).

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60
Dispersion (% of work at second site)

Pr
od

uc
tiv

ity
 (F

un
c.

 P
ts

 /
Pe

rs
on

 H
rs

)

We plotted the graph by holding all variables at their
mean levels and using the regression results for model 1
(Equation 3)

Figure 5. Effect of Dispersion on Productivity

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15
Quality (1 / (Defects +1))

Pr
od

uc
tiv

ity
 (F

un
c.

 P
ts

 /
Pe

rs
on

 H
rs

)

Higher Dispersion

Lower Dispersion

Mean Dispersion

We see that for a given quality output requirement,
projects with higher dispersion show lower
development productivity.

Figure 6. Productivity – Quality Tradeoff

4.2. Results: Reducing Dispersion Effects
through QMA
Our results show that investments in structured quality
management practices, by using processes based on the three
approaches described in Section 2.1.2, can mitigate the negative
effect of work dispersion on project performance. For example,
ceteris paribus, we notice that a 1% loss of productivity caused by
increased work dispersion, can be reduced to just a 0.1% loss by
investing in increased appraisal and failure-based quality
management processes. Figure 7 shows the effect of appraisal-

based practices in reducing the productivity loss of dispersion
while Figure 8 shows the same result for failure-based practices.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60
Dispersion (% of work at second site)

Pr
od

uc
tiv

ity
 (F

un
c.

 P
ts

 /
Pe

rs
on

 H
rs

)

Low Appraisal QMA

High Appraisal QMA

Mean Appraisal QMA

We see that more appraisal QMA effort helps to reduce
the productivity loss caused by dispersion.

Figure 7. Mitigating Dispersion Effect - Appraisal QMA

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60
Dispersion (% of work at second site)

Pr
od

uc
tiv

ity
 (F

un
c.

 P
ts

 /
Pe

rs
on

 H
rs

)

Low Failure QMA

High Failure QMA
Mean Failure QMA

We see that more Failure QMA effort helps to reduce
the productivity loss caused by dispersion.

Figure 8. Mitigating Dispersion Effect - Failure QMA

4.3. Results: Relative Effects of Different
QMAs
In this section, we discuss the relative effects of each QMA on
distributed project performance.

Effect on Productivity: From our results we find that appraisal-
based approaches have the highest impact on development
productivity followed by failure-based approaches, Prevention-

130

based approaches seem to have no statistically significant effect
on productivity.

Effect on Conformance Quality: We found that failure-based
approaches have the highest impact on conformance quality
followed by prevention-based approaches. Appraisal-based
approaches seem to have no statistically significant effect on
conformance quality.

Figure 9 shows the effect that failure-based approaches have on
quality while Figure 10 shows the effect that appraisal-based
approaches have on productivity.

0

2

4

6

8

10

12

14

0 1 2 3 4 5

Failure Approach (% of Total Project Effort)

N
um

be
r o

f D
ef

ec
ts

Higher Dispersion

Lower Dispersion

Mean Dispersion

We see that more Failure QMA effort helps to reduce the number of
defects across different dispersion levels

Figure 9. Effect of Failure Approach on Quality

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5
Appraisal Approach (% of Total Project Effort)

Pr
od

uc
tiv

ity
 (F

un
ct

io
n

Po
in

ts
 /

Pe
rs

on
 H

ou
rs

) Higher Dispersion

Lower Dispersion

Mean Dispersion

More Appraisal QMA effort improves development
productivity across different dispersion levels

Figure 10. Effect of Appraisal Approach on Productivity

Our analysis indicates that no one approach is best and that the
approach to choose greatly depends on the circumstances. For
example, failure-based approaches appear to be the best option to
improve quality and appraisal-based approaches seem to be best at
improving productivity. However, we have to caution that these
trends 1) were observed in high process maturity environments, 2)
were for data that was tracked for only a one to two year period,
and 3) do not capture all the subtleties involved in software
development. Hence, they are only indicative of possible trends
and may not reflect the full potential of each approach. For
example, even though the data suggests that prevention-based
approaches have minimal effect, in reality, the effects of activities
such as training 1) have longer term impacts, and 2) impact the
effectiveness of other approaches as well. Hence, these trends
should not be construed as prescriptive.

4.4. Summary of Results
 We presented our analysis to answer the three question posed in
the Introduction. Namely:

1. To what extent does “dispersion” in software tasks
affect software productivity and quality? We found, as
shown in Section 4.1, that dispersion has a significant
effect on productivity and a harder-to-capture secondary
effect on quality.

2. To what extent can investments in structured software
engineering processes mitigate the effect of dispersion?
We showed, in Section 4.2, that the effect of dispersion
can be significantly mitigated through the use of
structured software engineering processes.

3. What are the relative effects of individual quality
management practices in improving distributed project
performance? Finally, we showed, in Section 4.3, that
different QMAs have significantly different impacts on
different dimensions of project performance.

5. DISCUSSION
In this section, we discuss some of the questions raised by this
study. In particular, we discuss the robustness and the limitations
of this study as well as provide some intuitive explanations for
some of the observed effects.

5.1 Robustness of Analysis
We verified the robustness of our data analysis in multiple ways.
First, we checked for outliers by deriving Cook’s distance statistic.
Figures 11 and 12 show the cook’s distance plot and residual plot
of our data. This revealed two observations that appeared as
outliers. We removed these observations from our data set and re-
computed the regression results. This revealed no significant
changes in any of our results.

131

The box-plot shows the distribution of the Cook’s D statistic for our

regression results. The two outliers lie above the main box-plot.
Figure 11 Cooks’ Distance Plot

This graph plots standardized residuals (y-axis) against
leverage (x-axis) and shows a uniform funnel pattern of
distribution indicating that no on data point is significantly
impacting the results

Figure 12 Residual Leverage Plot

Further, we checked for multicollinearity problems by analyzing
the Variance Inflation Factor (VIF) statistic of independent
variables in our models. The maximum value of the VIF statistic
in the productivity model was 1.96, and 3.65 in the quality model,
which are both well below permissible limits [19].

5.2 Why do we see these Results?
To determine why dispersion negatively affect productivity, we
noticed (from our field observations) that distributed team
members often had difficulties in managing uncertainties caused
by interdependent tasks. Uncertainty in the observed projects'
interdependent tasks arose primarily because of 1) information
asymmetry between the remote teams, and 2) ambiguous authority.
Information asymmetry (either related to customer initiated
changes, updated schedules, etc.) between remote teams hinders
coordination and task orchestration, which in turn affects project
performance. Ambiguous authority refers to the break down in a
planner's decision making authority because of a lack of complete
control over the processes at both the remote sites. Ambiguous
authority leads to poor project management and hence eventually
impacts project performance.

One reason for the observed differences in the relative
effectiveness of different QMAs could be because of the different
learning related benefits that these approaches facilitate. For
example, preventive and appraisal-based approaches facilitate
learning-before-doing whereas failure-based approach facilitates
learning-by-doing. Past organizational learning research has
reported different effects of learning-before-doing and learning-
by-doing [44]. We believe that in a distributed development
environment, learning-by-doing as facilitated by a failure based
approach might be the most effective learning method.

In contrast to behavioral oriented studies, we have not extensively
focused on cultural issues to explain the trends. Cultural effects
are minimal in our data set because all the human resources, for
both the development centers, were effectively sourced from a
single country's employee base. Further, we assessed if there were
significant differences in human resource practices among the
different centers by analyzing employee performance appraisal
templates, code of conduct guidelines, and incentive structures
from different centers. We found that the firm had a uniform
human resource policy throughout the world and there were no
significant differences across development centers. Also, the
research site was recently assessed, for maturity in human
resources management practices, and was certified at level 5 of
the People Capability Maturity Model standards [14].

5.3 Limitations of Study
Some of the limitations of this study are: 1) Our model did not
consider the task level interdependencies among individual team
members. We, instead, focused on aggregate project level data
and did analyze the interdependencies at the team member level.
2) Our data set was collected from a firm that had already attained
high process maturity operational capability. Hence we can not
generalize our results to scenarios with different process maturity
levels. 3) All the projects we observed were custom, business
application software development projects. Hence, even though
the broad results we observe in this study are still relevant, other
types of software development projects such as re-engineering,
product development or maintenance projects might require
additional analysis.

6. RELATED WORK
There are, two streams of research work that are directly relevant
to this research study. First, there is a growing body of work that
examine globally distributed software development from a
software engineering point of view. A variety of practical issues
faced by practitioners of distributed development was presented in
the special issues of IEEE software [23] and Communications of
the ACM [1]. Also, there are several experience reports that elicit
lessons learnt from real world projects [27, 36]. There is also an
emerging body of work that specifically investigates the
appropriate software process frameworks that are suitable for
distributed development [45, 46] and specific architectural
methods that could be employed to facilitate distributed division
of labor[35, 40].

A second stream of research work that is relevant is the quality
management literature that provides insights for analyzing the
effectiveness of individual quality management practices in
improving project performance. The classical model of economics

S
tu

de
nt

iz
ed

 re
si

du
al

s

Leverage
.070608 .544688

-2.20396

2.20626

.000016

.519515
 Cook's D

2

17

132

of quality [37] posits that there exists a cost minimizing
conformance quality level resulting from the tradeoffs between
the costs of attaining higher quality (prevention and appraisal) and
the costs of having produced poor quality (failure costs). However,
an alternate school of thought [12, 18] believes that producing
high quality products is always less costly and posits a zero
defects process as the optimal in the longer run. Recent studies
extend the above mentioned operations oriented research views to
the software context [34, 38, 48].

7. CONCLUSION
In this paper, we presented data collected at a leading software
company that has multiple projects that distribute work between
India and the United States of America. This dispersion of work
had significant effects on productivity and, indirectly, on the
quality of the software. Fortunately, this effect can be mitigated
by using structured quality management approaches.

This paper suggests that companies need to account for the
inevitable loss in productivity and quality when deciding to move
software production to a second or third location (to reduce labour
costs, etc.). It also suggests that companies that institute high
quality software processes are far more likely to overcome the
effects of dispersion than companies that don’t. However, it is
currently difficult to specifically state which processes are best
suited for which types of companies – this remains an item for
future work.

In addition to determining the processes that best suit different
companies, we plan to work on the following pieces of future
work; a) determining how to reduce the interdependence between
tasks in distributed environments (this will reduce the loss of
productivity), b) understanding how these results apply to other
types of companies, and c) developing a general model that
applies across different types software methodologies.

8. REFERENCES
[1] P. J. Ågerfalk and B. Fitzgerald, “Flexible and distributed

software processes: old petunias in new bowls?:
Introduction,” Communications of the ACM, vol. 49, pp. 26-
34, 2006.

[2] R. D. Banker, S. M. Datar, and C. F. Kemerer, “A model to
evaluate variables impacting the productivity of software
maintenance projects,” Management Science, vol. 37, pp. 1-
18, 1991.

[3] R. D. Banker, G. B. Davis, and S. A. Slaughter, “Software
development practices, software complexity, and software
maintenance: A field study,” Management Science, vol. 44,
pp. 433-450, 1998.

[4] R. D. Banker and R. J. Kauffman, “Reuse and productivity in
integrated computer-aided software engineering: An
Empirical Study,” MIS Quarterly, vol. 15, pp. 375-401, 1991.

[5] R. D. Banker and C. F. Kemerer, “Scale economies in new
software development,” IEEE Transactions on software
engineering, vol. 15, pp. 1199-1205, 1989.

[6] R. D. Banker and S. A. Slaughter, “The moderating effects of
structure and volatility and complexity in software
environment,” Information Systems Research, vol. 11, pp.
219-240, 2000.

[7] B. W. Boehm, Software engineering economics. Upper
Saddle River, NJ: Prentice Hall, 1981.

[8] F. Cairncross, The Death of Distance: How the
Communications Revolution Will Change Our Lives. Boston,
MA: Harvard Business School Press, 1997.

[9] E. Carmel, Global software teams: Collaborating across
borders and time zones. Upper Saddle River, NJ: Prentice
Hall, 1999.

[10] E. Carmel and R. Agarwal, “The maturation of offshore
sourcing of information technology work,” MIS Quarterly
Executive, vol. 1, pp. 65-76, 2002.

[11] C. D. Cramton, “The mutual knowledge problem and its
consequences for dispersed collaboration,” Organization
Science, vol. 12, pp. 346-371, 2001.

[12] P. B. Crosby, Quality is Free: The art of making quality
certain. New York: McGraw-Hill, 1979.

[13] B. Curtis, “The global pursuit of process maturity,” IEEE
Software, vol. 17, pp. 76-78, 2000.

[14] B. Curtis, W. Hefley, and S. Miller, “People Capability
Maturity Model,” Carnegie Mellon University, Pittsburgh
CMU/SEI-2001-MM-01, 2001.

[15] R. Davidson and J. G. Mackinnon, Estimation and Inference
in Econometrics. New York: Oxford University Press, 1993.

[16] W. E. Deming, Quality, Productivity and Competitive
Position. Cambridge, MA: MIT Center for Advanced
Engineering Study, 1982.

[17] S. Faraj and L. Sproull, “Coordinating expertise in software
development teams,” Management Science, vol. 46, pp.
1554-1568, 2000.

[18] C. H. Fine, “A quality control model with learning effects,”
Operations Research, vol. 36, pp. 437-444, 1988.

[19] J. Fox, Applied Regression, Linear Models, and Related
Methods. Thousand Oaks, California: Sage, 1997.

[20] A. Gopal, T. Mukhopadhyay, and M. S. Krishnan, “The role
of software processes and communication in offshore
software development,” Communications of the ACM, vol.
45, pp. 193-200, 2002.

[21] D. E. Harter, M. S. Krishnan, and S. A. Slaughter, “Effects of
process maturity on quality, cycle time, and effort in
software product development,” Management Science, vol.
46, pp. 451-466, 2000.

[22] D. E. Harter and S. A. Slaughter, “Quality Improvement and
Infrastructure Activity Costs in Software Development: A
Longitudinal Analysis,” Management Science, vol. 49, pp.
784-800, 2003.

[23] J. Herbsleb and D. Moitra, “Global Software Development,”
IEEE Software, vol. 18, pp. 16-20, 2001.

[24] J. D. Herbsleb and A. Mockus, “An Empirical Study of
Speed and Communication in Globally Distributed Software
Development,” IEEE Transactions on Software Engineering,
vol. 29, pp. 481-494, 2003.

[25] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“Distance, dependencies, and delay in a global
collaboration,” in 2000 ACM conference on computer
supported cooperative work, Philadelphia, PA, 2000, pp.
319-328.

[26] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“An empirical study of global software development:
distance and speed,” in 23rd International Conference on
Software Engineering, Toronto, Canada, 2001, pp. 81-90.

133

[27] J. D. Herbsleb, D. J. Paulish, and M. Bass, “Global software
development at Siemens: experience from nine projects,” in
International Conference on Software Engineering, St. Louis,
MO, USA, 2005, pp. 524-533.

[28] W. S. Humphrey, “Characterizing the software process: a
maturity framework,” IEEE Software, vol. 5, pp. 73-79, 1988.

[29] IFPUG, “Function point counting practices manual,”
International Function Point Users group, Mequon,
Wisconsin 1999.

[30] S. L. Jarvenpaa and D. E. Leidner, “Communication and
Trust in Global Virtual Teams,” Organization Science, vol.
10, pp. 791-815, 1999.

[31] C. F. Kemerer, “Reliability of function points measurement:
a field experiment,” Communications of the ACM, vol. 36, pp.
85-97, 1993.

[32] M. S. Krishnan, “The role of team factors in software cost
and quality: an empirical analysis,” Information technology
and people, vol. 11, pp. 20-35, 1998.

[33] M. S. Krishnan and M. I. Kellner, “Measuring Process
Consistency: Implications for Reducing Software Defects,”
IEEE Transactions on Software Engineering, vol. 25, pp.
800-815, 1999.

[34] M. S. Krishnan, C. H. Kriebel, S. Kekre, and T.
Mukhopadhyay, “An empirical analysis of productivity and
quality in software products,” Management Science, vol. 46,
pp. 745-759, 2000.

[35] O.-K. Lee, P. Banerjee, K. H. Lim, K. Kumar, J. v.
Hillegersberg, and K. K. Wei, “Aligning IT components to
achieve agility in globally distributed system development,”
Communications of the ACM, vol. 49, pp. 48-54, 2006.

[36] E. Lindgvist, B. Lundell, and B. Lings, “Distributed
development in an intra-national, intra-organisational
context: an experience report,” in International Conference
on Software Engineering, Shanghai, China, 2006, pp. 80-86.

[37] D. M. Lundvall and J. M. Juran, “Quality Costs,” in Quality
control handbook, 3 ed, J. M. Juran, Ed. San Francisco, CA:
McGraw-hill, 1974.

[38] A. MacCormack, C. F. Kemerer, M. Cusumano, and B.
Crandall, “Trade-offs between productivity and quality in
selecting software development practices,” IEEE Software,
vol. 20, pp. 78-85, 2003.

[39] M. L. Maznevski and K. M. Chudoba, “Bridging Space over
time: global virtual team dynamic and effectiveness,”
Organization Science, vol. 11, pp. 473-492, 2000.

[40] A. Mockus and D. M. Weiss, “Globalization by chunking: A
quantitative approach,” IEEE Software, vol. 18, pp. 30-37,
2001.

[41] P. Nandakumar, S. M. Datar, and R. Akella, “Models for
measuring and accounting for cost of conformance quality,”
Management Science, vol. 39, pp. 1-16, 1993.

[42] Nasscom-McKinsey, “NASSCOM-McKinsey Report,”
National Association of Software and Service Companies,
New Delhi 2002.

[43] G. M. Olson and J. S. Olson, “Distance Matters,” Human-
computer interaction, vol. 15, pp. 139-178, 2000.

[44] G. P. Pisano, “Knowledge, integration and the locus of
learning: An empirical analysis of process development,”
Strategic Management Journal, vol. 15, pp. 85-100, 1994.

[45] N. Ramasubbu, M. S. Krishnan, and P. Kompalli,
“Leveraging global resources: A process maturity framework
for managing distributed development,” IEEE Software, vol.
22, pp. 80-86, 2005.

[46] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed
software development be agile?,” Communications of the
ACM, vol. 49, pp. 41-46, 2006.

[47] F. M. Scherer and D. Ross, Industrial market structure and
economic performance. Boston: Houghton Mifflin, 1990.

[48] S. A. Slaughter, D. E. Harter, and M. S. Krishnan,
“Evaluating the Cost of Software Quality,” Communications
of the ACM, vol. 41, pp. 67-73, 1998.

134

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2007

	Globally Distributed Software Development Project Performance: An Empirical Analysis
	Narayanasamy RAMASUBBU
	Rajesh Krishna BALAN
	Citation

	tmp.1290756243.pdf.KBeP7

