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Abstract—As human-agent teams get increasingly deployed in
the real-world, agent designers need to take into account that
humans and agents have different abilities to specify preferences.
In this paper, we focus on how human biases in specifying
preferences for resources impacts the performance of large,
heterogeneous teams. In particular, we model the inclination of
humans to simplify their preference functions and to exaggerate
their utility for desired resources, and show the effect of these
biases on the team performance. We demonstrate this on two
different problems, which are representative of many resource
allocation problems addressed in literature. In both these prob-
lems, the agents and humans optimize their constraints in a
distributed manner. This paper makes two key contributions: (a)
Proves theoretical properties of the algorithm used (named DSA)
for solving distributed constraint optimization problems, which
ensures robustness against human biases; and (b) Empirically
illustrates that the effect of human biases on team performance
for different problem settings and for varying team sizes is not
significant. Both our theoretical and empirical studies support the
fact that the solutions provided by DSA for mid to large sized
teams are very robust to the common types of human biases.

I. INTRODUCTION

A range of exciting proposed applications will involve many
humans and agents working along side each other to achieve
a complex objective. Domains for such applications include
search and rescue [5], disaster response [12], military applica-
tions [1] and commerce [3]. Researchers envision automating
the allocation of shared resources using algorithms such as
distributed constraint optimization algorithms (DCOPs) [7].
For example, access to satellites, robots, computation or space
may be automatically assigned using DCOPs. Due to the
computational load and communication intensity of these
algorithms, humans in the team will need to communicate their
preferences and utilities to a proxy that executes the algorithm
on their behalf. If there are many resources these preferences
may be communicated incompletely or approximately. How-
ever, agents participating in the allocation process will be
able to precisely and completely specify their preferences for
all resources. The question addressed by this paper is what
happens to the quality of the overall resource allocation when
human and agent preference specifications differ in this way.

Preference elicitation is known to be a difficult problem
that takes a lot of time and effort for humans [2]. When the
preferences correspond to utilities, e.g., the value to the team to
assign a particular robot to a particular human, a considerable
computational burden is placed on the human since the utility
of many resources must be computed by planning for each
set of resources they might get and compare against other
possible resource allocations. Many well known human biases
will come into play, either consciously or sub-consciously,

when reporting the utility of a resource. In this paper, we
use a combination of empirical and theoretical analysis to
understand the impact of these biases using a DCOP algorithm.

Using two commonly known models of human biases [4],
we performed an extensive empirical evaluation of overall
utility for a generic resource allocation problem and a generic
event scheduling problems. These are benchmark problems
that have been well-studied in literature [13], [6]. The ex-
periments measured the difference between the utility of the
solution for accurate preference values and the utility of
the same solution with biased preference values. We have
employed the Distributed Stochastic Algorithm (DSA) [14]
in this paper, because it is the only algorithm that scales to
the problems of interest [11] in this paper.

A key observation from our experiments was that even for
extreme biases, there was a minor change in the utility on aver-
age. While the actual solution changed substantially, the utility
of the changed solution was slightly less than the original
utility. There was no consistent advantage or disadvantage to
team members that had biased utilities, suggesting that humans
would neither gain nor lose by not describing their preferences
for each resource precisely. In addition, we were able to prove
that the solution provided by DSA is dependent on the local
ranking of preferences and not on the absolute preference
values of the agent. This makes DSA a particularly attractive
option for use in human-agent systems, because it removes the
need for humans to accurately calibrate their utility estimates
with the overall team.

In an attempt to understand why the human biases led
to relatively minor impact on the overall utility, we looked
more closely at the resource allocation and distributed event
scheduling problems. We observed that for large problems,
involving 100 or more agents, many agents were allocated
one of their top few preferred resources/events. This means
that provided the humans specify their top options, there is
no significant impact on the overall utility. Moreover, these
larger problems had many solutions that were of similar overall
utility, and thus, inaccurate specification of preferences simply
pushed the solution between generally good ones rather than
towards bad ones.

II. PROBLEMS AND MODELS

In this section, we provide a brief background of the mo-
tivating problems, models used to represent the problems and
the approach employed to solve the models. Specifically, we
describe two generic distributed resource allocation problems
from literature [13], [6], [8] and then explain the DCOP
framework used to represent these problems. We then formally



represent the biases introduced by humans in specifying the
preference function within the utility function of DCOP and
finally present the DSA algorithm which is used to solve the
DCOP models. In both these domains, the constraint functions
represent both hard constraints (avoid scheduling one meeting
in two different time slots etc.) and soft constraints (prefer to
meet in mornings rather than afternoons etc).

A. Problem 1: Discrete Resource Allocation

Resource allocation problems [13] represent bipartite graph
matching which is representative of an entire class of matching
problems, specifically ones in coding theory, task to capability
matching and others. In this domain, resources need to be
allocated to a group of agents and humans, E based on their
preferences. For ease of explanation, we assume only one
resource is allocated to one agent or human (Extension to a
multi-resource problem involves enumerating all the possible
valid resource combinations that can be allocated to each
agent). We model this domain as a DCOP as follows:

Each agent/human has a variable, represented as e ∈ E.
The values that the variable can take correspond to the
resource allocated to the agent. This domain for variable e is
specified as De and belongs to the set {0, 1, 2, · · · , R}. The
utility for e when a resource, re ∈ De, is allocated to e is

ue(re) = L ∗ Ire 6=0 ∗ (1−
∏

ẽ∈E,ẽ 6=e

Ire 6=rẽ) + pe(re), (1)

where pe(re) is the preference value of agent e for resource
r (soft constraint) and equals 0 when re is 0. L is a large
negative number that represents the penalty for allocating one
resource to two different entities (hard constraint) and

Icondition = 1, ifcondition = true

= 0, otherwise

B. Problem 2: Distributed Event Scheduling

Distributed event scheduling introduced by [6] captures
problems such as meeting scheduling, sensor scheduling in
sensor networks and other distributed scheduling domains.
Here, we explain this problem using meeting scheduling,
however, it extends directly to other distributed event schedul-
ing domains. M meetings need to be scheduled for humans
and agents (acting on behalf of humans). A meeting, m can
require multiple humans, Em and a human could be part of
multiple meetings, Me. Furthermore, each human/agent, e has
preference values over the time slots, pe(t) and meetings,
pe(m). For a variable, v, these preferences are specified
as pve(t) and pve(m). Given this information, the goal is to
compute a schedule which maximizes the utility of the team.
This domain is modeled as a DCOP by [6] as follows:
(a) Each agent/human, e has multiple variables, Me, corre-
sponding to all the meetings where e is required.
(b) The values that each variable can take, correspond to any
of the time slots where the meeting can be scheduled. This
domain for variable me ∈Me is specified as De

m and belongs
to the set {0, 1, 2, · · · , T}, where T is the set of time slots
available in which a meeting can be scheduled.
(c) If a meeting, m for e is scheduled at tme ∈ De

m, then the
utility for e is defined as

um
e (tme ) = L ∗ (1−

∏
m̃∈Me,m̃ 6=m,tme 6=0,tm̃e 6=0

Itm̃e 6=tme
)∗

(1−
∏

ẽ∈Em,e6=ẽ

Itme =tmẽ
) + (pme (m) + pme (tme )) (2)

Here, L is a large negative number that represents a penalty
for scheduling the two meetings at the same time slot or for not
scheduling a meeting at the same time slot for all participants.
(pme (m) + pme (tme )) represents the agent/human preferences
and the sum equals zero when tme is zero.
C. Distributed Constraint Optimization

DCOP [7] is a popular framework for representing co-
ordination in multiagent systems. A DCOP consists of n
variables, v1, v2, ..., vn. Variable vi can take on any value
from the discrete finite domain Di. The goal is to find an
assignment, A of values to variables, such that the sum over
a set of binary constraints and associated payoff or utility
functions, ui,j : Di ×Dj → N , is maximized. Formally, we
maximize

∑
vi,vj

ui,j(di, dj), where di ∈ Di, dj ∈ Dj and
{vi ← di, vj ← dj} ∈ A.
D. Bias 1: Simplification of preferences

As shown in [4], humans tend to simplify preference values
when faced with problems where multiple factors need to
be considered. One popular way of simplifying preferences
is thresholding. For example in meeting scheduling, it is
natural for a human to specify his preferences as 1:00-5:00 are
”good” and rest of the times are ”bad”, instead of specifying
a different preference value for each time slot even if they
do actually have different preferences. Formally, this involves
approximating the preference function over a variable v, pve()
as a function that has zero corresponding to all but the top “k”
values in its range. In general, it could be a “multi-step” step
function and defined as follows (with ordering of thresholds
given as thres1 > thres2 > · · · ):

p̃ve(d) = max
d̂

pve(d̂), if pve(d) > thres1

= thres1, if thres2 ≤ pve(d) ≤ thres1

= · · · · · ·

Instead of a threshold, humans may simply limit themselves to
specifying some number of top preferences. Specifically, we
consider the scenario where humans specify preferences for
only the most important resources while ignoring the rest. The
modified function for this preference simplification is defined
as:

p̃ve(d) = pve(d), if d ∈ maxK(pve)

= 0, otherwise

E. Bias 2: Preference Exaggeration
This bias of humans arises due to exaggeration of the

importance of certain features over others. To be precise, we
represent cases where humans subconsciously exaggerate their
preferences. For example it would be very natural for a person
to believe her/his task was critical to overall team success
and therefore set the utility of them getting access to the best
resources to be high. This involves increasing the preference
function value of a variable v, pve() for the top preferred value



assignments. The modified function for this type of preference
exaggeration is defined as:

p̃ve(d) = S ∗ pve(d) +A, if d ∈ maxK(pve())

= 0, otherwise
maxK(pve()) provides the set containing the top k values

in the range of the function pve(), S and A are scaling and
addition factors of exaggeration.

Another variant of this bias is where the humans exaggerate
the preference for values which are not part of the maxK set.
This exaggeration in bias of unimportant meetings/resources
could be arise due to selfish manipulation or lack of informa-
tion about the problem domain. We model this by adding a
random Gaussian noise to the original preference values (X
represents the Gaussian noise).
p̃ve(d) = S ∗ pve(d) +A, if d ∈ maxK(pve() +X)

= 0, otherwise

III. ALGORITHM FOR SOLVING DCOPS

Distributed Stochastic Algorithm (DSA) is the algorithm
that we employ for solving DCOPs. It should be noted that
DSA is the only algorithm that can realistically scale to the
type of problems considered in this paper. There are three key
steps to DSA: (a) Every variable starts with a random assign-
ment, d; (b) Each variable calculates its current local utility
and the overall best utility (over all possible assignments)
given the current assignments of the neighboring agents. It
then computes the gain for moving to the best assignment as
the difference of best utility and the current local utility. (c) If
gain greater than 0, the variable updates to the best assignment
with a probability p.

A. Key properties of DSA

In this section, we prove a key property of DSA for the type
of problems introduced earlier (Problems 1 & 2). For ease of
explanation in the proof, we provide the general structure of
utility functions for the DCOP variables given the types of
DCOPs mentioned in the Problems and Models section:

uv
e(d) = L ∗ I¬concur + pve(d), (3)

where L << −1 ∗maxd1
pve(d1)

Proposition 1. For DCOP problems 1 and 2, the solution
provided by DSA is reliant on ranking of preference values
and not on the actual preference values.

Proof. To prove the proposition, we create a new preference
function for all variables v, p̂ve() by modifying the original
preference function, pve(), i.e. pve(d1) is modified to p̂ve(d1),
pve(d2) to p̂ve(d2) and so on. Ordering of preference values in
the new preference function, p̂ve(), is preserved by using the
following constraint.

∀d1, d2 ∈ Dv
e , p̂

v
e(d1) > p̂ve(d2), if pve(d1) > pve(d2)

< p̂ve(d2), if pve(d1) < pve(d2)

= p̂ve(d2), if pve(d1) = pve(d2) (4)

Now, we show that the solution provided by DSA will be
the same for both preference functions, given identical initial
random seed. For this, we show that in every update phase of
DSA, the updates made at each variable are the same.

Since we have identical initial random seeds, the neighbors
for agent e in both cases (original and modified preferences)
initially will be the same. Without loss of generality, we
assume that the preference value ordering for a variable v
is pve(d1) ≥ pve(d2) ≥ . . . ≥ pve(dl). There are two cases
of importance for each variable during its assignment update
phase (step (c) of algorithm) :

(a) Firstly, we consider the case where current value assign-
ment, d at agent e is not in agreement with the neighboring
agents, i.e. the first part of Equation 3 is equal to L. For
instance, in task allocation, this happens if the same resource
is allocated to two different agents. Similarly, this happens
in meeting scheduling, if two meetings are scheduled at the
same time or a meeting is scheduled in two different time slots
for two humans. Since L is a large negative number and all
preferences values (both original, pve(d) and modified, p̂ve(d))
are greater than or equal to zero (zero for not scheduling a
meeting or allocating a resource), the gain is less than zero in
both cases. Thus in both cases, the assignment for variable v of
e will need to be be changed to a value which is in concurrence
with the neighbors (i.e. first part of utility equations is equal to
zero) and has the highest preference value amongst all values
which are in concurrence with their neighbors. We define this
sub set of values that are in concurrence with neighbors as

CDv
e = {d|uv

e(d) ≥ 0} and CDv
e = {d̂|ûv

e(d̂) ≥ 0}.
Since the variable assignments are the same for both cases

before the value update phase, CDv
e = CDv

e . Given this, the
value d to which variable v should be updated in the DCOP
with original preference function is given by:

d = argmaxd̃∈CDv
e
uv
e(d̃)

Since uv
e(d̂) >= 0, from Equation 1, d =

argmaxd̃∈CDv
e
pve(d̃)

From Equation 4, d = argmaxd̃∈CDv
e
p̂ve(d̃)

Therefore, d = d̂, where d̂ is the value to which variable
v should be updated in the DCOP with modified preference
function.

(b) Secondly, we consider the case where current assign-
ment, d at agent e is in agreement with neighboring agents,
i.e. the first part of the utility equation is equal to 0. Therefore,
the new assignment should be the one with the highest pve or
p̂ve . As we saw in (a) above, this leads to both cases (original
and modified DCOPs) having the same assignment.

Therefore, after the first assignment update phase (step
(c)), the new assignments are identical for the original and
modified DCOP problems. By continuing the above analysis
until convergence, the solutions provided by DSA remain
similar for both DCOPs. �

Although we are unable to prove analytically, we illustrate
experimentally in the future sections that DSA is robust even
to cases where there are disruptions to the preference order.

IV. IMPACT OF APPROXIMATIONS

In this section, we examine the impact of the human biases
introduced earlier as biases 1 and 2. Firstly, in domains
where the ordering of preference values remains the same
as the original preferences after human biases, according to
Proposition 1 the impact is zero. Since, we have already proved
this theoretically, we will not provide further empirical results
to illustrate this. Our empirical analysis will be primarily



focused on showing that even if there are disruptions to
the preference order (due to human biases), DSA provides
solutions that are close to the optimal solution obtained with
the original preference function. All our experiments were
performed on the generic problems of distributed resource
allocation and event scheduling that were described earlier.

Subscript Description
Hch Humans CHanging preferences
Bch Both humans and agents CHanging preferences
EHch Enhanced Hch where zero valued preferences

are considered as valid.
EBch Enhanced Bch where zero valued

preferences are considered as valid.
TABLE I

DESCRIPTION OF THE PREFERENCE APPROXIMATIONS

A. Preference Approximations and Algorithms

We considered four different types of preference approxi-
mations in our experiments, described briefly in Table I: Hch
represents the problem where humans change their preferences
using biases 1 and 2 (explained earlier) and Bch represents the
case where both humans and agents change their preferences
using biases 1 and 2. The third approximation, EHch enhances
Hch, where zero valued preferences (agent gets a reward
of zero for that preference) are considered valid and would
account for cases where preferences for a resource/time/event
were decreased to zero from a positive value. Similarly, the
fourth approximation, EBch enhances Bch.

With respect to algorithms, we provide comparisons be-
tween the Global optimal algorithm (represented using G)
and the DSA algorithm (represented using DSA) on the
various categories of preference approximations. For ease
of explanation, we will henceforth represent the preference
approximation as a subscript of the algorithm. For instance,
solving the Hch preference approximation using G (global
optimal algorithm) is represented as GHch.

B. Simulation setup

We now describe the experimental setup for our problem
domains. We borrowed problem settings from the literature
1 and extended them to larger problems of upto 500 agents
and hundreds of resources (meetings). It should be noted that
it is not possible to provide results over the entire domain
space of the generic problems presented earlier. Therefore,
we experimented with many different randomly sampled team
sizes along with many different constraints. Furthermore, to
eliminate the dependence of results on the DCOP constraint
values, we averaged over 500 randomly generated problems
(using Uniform and Gaussian distributions). Although our
results may not be guaranteed to hold over the entire domain
space of problems, they identify a very interesting pattern
observed in many commonly used problems.

Table II summarizes the simulation setup for the discrete
resource allocation domain. The first column in the table lists
the variables involved: (a) Number of agents (|E|); (b) Number
of resources (R); (c) Number of top choices reported by the
human (corresponds to Bias 1, expressed as maxK); and (d)

1We borrowed the examples from the DCOP repository at http :
//teamcore.usc.edu/dcop/.

Exaggeration factor (corresponds to Bias 2, expressed using
S, A and X).

For each setting of the number of agents, the number of
resources range from a low value to a high value (ex: resource
range <4,20>). Bias 1 is represented by the number of top
choices reported by the human and is varied from 0 to 3. Bias
2 is expressed using the exaggeration factors {S,A,X}. S
was one of 1, 5 or 10, A was set to 0 in all our experiments
while X was set to 0 or 25%. We bound the effect of the
exaggeration factor by setting a threshold on the amount of
utility an agent can claim for each resource. The total number
of settings for this simulation is 96 and each setting was tested
on 500 randomly generated examples leading to a total of
48000 example problems for each combination of algorithm
and preference approximation type (total 10 combinations, 2
algorithms and 5 approximation types). In both this and the
next domain, the percentage of humans in the team is 50%.

Similarly, Table III summarizes the simulation setup details
for the distributed event scheduling domain. The variables
involved in this domain are the domain size (Number of
agents/humans E, meetings M , maximum number of agents
per meeting Em, number of meetings per agent Me and time
slots t), the number of top choices reported (Bias 1 captured
using maxK) and the exaggeration factor (Bias 2 expressed
using the terms S, A and X). In total, there were 60 different
settings with 500 randomly generated examples tested for
each setting leading to a total of 30000 tested examples for
each combination of algorithm and preference approximation.
Computer simulation time of nearly 90 hours was involved in
running all the experiments.

For both these problem domains, we experimented with both
Uniform and Gaussian distributions to generate preference
values for each agent across various resources or meetings.
In the following sections, we present graphs obtained using
the Gaussian distribution for resource allocation and Uniform
distribution for event scheduling (avoided others due to space
constraints). To avoid any bias in problem generation, each
agent had different distribution parameters for its preference
values. We performed the following experiments:
• In section V, we study the effect of bias 1 on the solution

quality.
• In section VI, we study the effect of bias 2 on the solution

quality.
• In section VII, we study the effect of problem size on the

solution quality.
• In section VIII, we show experimentally that it may not

be easy to exploit DCOPs through a detailed study of
the resource assignments and analysis of the agent/human
subgroups.

• Finally, in section IX, we perform experiments that show
that large problems are in general insensitive and hence
may be a good explanation for the results we observed
in our previous experiments.

V. EFFECT OF BIAS 1 ON SOLUTION QUALITY

Our first set of experiments investigate the effect of Bias 1,
i.e., varying maxK. Figure 1 shows two graphs corresponding
to the DSA algorithm (similar results were observed with
Global algorithm). Graph (a) shows results for the resource



Parameter Variable Brief description Possible values
Number of agents |E| Four possible values {5, 20, 100, 300}

Number of resources R <Low, High> resource settings < 4, 20 >,< 12, 50 >,< 70, 500 >,< 100, 600 >
Bias 1 maxK Four possible settings {0, 1, 2, 3}
Bias 2 {S,A,X} S and X varied. A set to zero S ∈ {1, 5, 10}, X is 0 unless specified.

TABLE II
SIMULATION SETUP DETAILS FOR DISCRETE RESOURCE ALLOCATION

Parameter Variable Brief description Possible values
Domain size {E,M,Em,Me, t} Five possible settings {5, 8, 4, 4, 6}, {20, 50, 7, 5, 12},

{100, 80, 8, 4, 12}, {250, 350, 8, 9, 20}, {500, 650, 15, 6, 20}
Bias 1 maxK Four possible settings {0, 1, 2, 3}
Bias 2 {S,A,X} S and X are varied. A is set to zero S ∈ {1, 5, 10}, X is 0 unless specified

TABLE III
SIMULATION SETUP DETAILS FOR DISTRIBUTED EVENT SCHEDULING

allocation domain while graph (b) shows the same results
for event scheduling. Figure 1-a compares the performance
of DSA, over the four preference approximations (of Table 1)
and the original preferences. X-axis for the graph represents
the number of top choices (varied from 0 to 3) with 100
agents, 70 resources and S = 1. Y-axis for the graph shows
the averaged utility loss over 500 examples with respect to the
DSA solution. The following conclusions can be drawn from
Graph (a):

1) In the case where only humans report zero choices (Hch)
the algorithm has a significant performance decrease
with a utility loss of 32%.

2) When both agents and humans report zero choices (Bch)
the utility loss becomes 100% since no resource is
deemed as useful by the algorithm.

3) On the other hand, the enhanced versions perform better
with utility losses of 12% when only humans report zero
choices and 40% when both report 0 choices.

4) The scenario quickly changes when maxK = 2. In
this case, the loss is 4% for Hch and 14% for BHch.
The enhanced approximations (EHch and EBch) perform
much better with utility losses of less than 3% when
maxK >= 2.

Graph (b) of Figure 1 shows a similar experiment for
the distributed event scheduling domain with similar conclu-
sions. Thus, on both these generic domains, we are able to
definitively show that humans need to report only their top
few choices (>= 2) without worrying about the result. To
measure the statistical significance of our results, we calculated
the standard error. Given that we are plotting the mean
percentage of utility loss, the standard error is the appropriate
measurement to calculate the error bars. For clarity purposes,
we avoided showing error bars in our graphs. Unless specified
otherwise, in the rest of our experiments the standard error
was less than 2% of the mean value i.e. if the mean is shown
to be 100, the standard error is ±2.

VI. EFFECT OF BIAS 2 ON SOLUTION QUALITY

While the above experiments support the fact that team
performance does not get affected as long as humans can get
their top few preferences correctly, the question arises as to
what happens if these preferences get exaggerated. Firstly, we

(a) Resource Allocation (b) Event scheduling

Fig. 1. Utility loss % as a function of top choices reported

consider the effect of scaling factor and then we consider the
effect of a random noise added to the preferences.

Figure 2 investigates the effect of increasing the exaggera-
tion factor for the distributed event scheduling domain when
there are 100 agents and maxK = 2. The X-axis of the
figure shows 9 options, 3 options each for the team, agents
and humans represented as T, A and H. Factor S was set to
one of the 3 choices: 1, 5 and 10. Therefore, 1-T represents
the effect of having an exaggeration factor of 1 on the team
utility across the 4 preference approximations while 1-A and
1-H investigate the same effect on agents and humans. From
the graph, we make the following key observations:

1) When S = 1, the average team utility loss is upto 2% for
the four preference approximations. When S = 5 (for
DSAHch and DSAEHch), there is a 4% team utility loss
which increases negligibly thereafter to a 5% loss when
S = 10.

2) The scenario is different for individual subgroups. The
agents subgroup has an average utility loss of 2% for
a factor of 1, which increases to 13% for a factor of 5
and 14% for a factor of 10. On the other hand, humans
gain upto 5% of utility on an average for exaggeration
factors of 5 and 10 and lose 2% for a factor of 1.

3) The scenario gets very interesting when agents also use
the same biases as humans (DSABch, DSAEBch). In
this case, the loss in team utility falls down to 1 and 2%
from 4 and 5% respectively. A greater effect is seen in
the utilities for agents and humans with agents cutting
their utility losses from 13 and 14% to 2% while humans



Fig. 2. Effect of increasing S in event scheduling domain

incur a loss of upto 2% in contrast to the gains made
earlier.

The overall conclusion from the graph is that exaggerating
the preferences has little effect on the team utility on average.
However, there are significant differences at the individual
level. The same experiment was performed for the discrete
resource allocation domain and it yielded similar results.

5 20 100 250 500
DSAEHch 3(2, 5) 3(2, 5) 4(2, 6) 3(2, 5) 3(2, 4)
DSAEBch 7(8, 6) 6(6, 6) 7(7, 7) 6(6, 7) 6(6, 6)

TABLE IV
EFFECT OF GAUSSIAN NOISE ON TEAM UTILITIES.

In Table IV, we show the effects of adding Gaussian random
noise (the second aspect of bias 2) on the event scheduling
problem. All the results for this experiment were generated
by setting X to 25% of the maximum preference value, S to
1 and maxK to 2. The table shows the impact of this bias on
the team utility as well as agent and human subteam utilities.
The rows of the table represent the two different possibilities
for the addition of Gaussian random noise while the columns
of the table represent the various team sizes. Each cell in the
table shows 3 utilities: Team utility (Agent subteam utility,
Human subteam utility).

The key result of this experiment is that the addition of
Gaussian random noise has a minor impact on the percentage
of utility loss. This number stays constant and is about 3-4%
across all the team sizes. The results also show that human
utilities (loss of upto 6%) are affected slightly more than the
agents (loss of 2%). While an intentional addition of Gaussian
random noise to agent’s preferences is not practical, we still
tested it for consistency purposes. Our results (row 2 of table
IV) indicate that the utility loss gets doubled i.e. 6% to 8%.
This number while significant represents the extreme case
where all the utilities reported are about 25% noisy. In essence,
this illustrates the robusness of the algorithm to random noise
in preference functions.

5 20 100 250 500
DSAEHch 2.526 23.748 52.996 201.913 363.565
DSAEBch 2.716 26.352 61.006 221.904 393.57

TABLE V
NUMBER OF CHANGES IN ASSIGNMENTS

VII. EFFECT OF PROBLEM SIZE ON SOLUTION QUALITY

Our first experiment investigates the effect on solution
quality as the number of agents and the resources available
to the team vary for the discrete resource allocation domain.
Figure 3 contains two graphs. The top graph shows the
average percentage of utility lost over the four preference
approximations and a random assignment when compared to
the optimal assignment of G with original preferences, as the
number of agents and resources increase. The bottom figure
illustrates the corresponding results with respect to DSA. The
x-axis for both these graphs shows the various combinations of
number of agents/humans and resources available while the y-
axis shows the percentage of utility loss. The parameter maxK
was fixed to 2 and S was set to 1. Following are our key
observations from the two graphs:

1) The top graph shows that the biased solutions GHch
and GBch are within 10% of the optimal solution and
reduces to within 7% for the enhanced versions while
the random assignment is at least 30% and up to 60%
away from the optimal.

2) A similar trend as above is repeated in the bottom
figure where three of the four biased DSA algorithms
are within 5% of the DSA solution while the random
assignment is atleast 20% and upto 50% away from the
DSA solution.

3) The biased algorithm DSABch is sometimes upto 13%
away from optimal, while the enhanced version (DSAE-
Bch) brings down the loss to within 3%.

These observations clearly illustrate that for the discrete
resource allocation problems, the modeled biases do not criti-
cally impact average team utility irrespective of the number of
agents/humans and the number of resources. Note that across
all the experiments, DSA had a maximum utility loss of upto
25% wrt the global optimum for the low resource setting, while
the loss was less than 1% for the high resource setting.

VIII. INEXPLOITABILITY OF DCOPS

In this section we show that large biases at an individual
agent or sub-group level may not translate to large changes in
the average team utility. While Figure 2 illustrated this to some
extent, we will establish this fact further. Our first experiment
in this regard is to investigate the number of changes in
assignments (of humans and agents) due to a biased version
of the preference function for the event scheduling domain.

Table V shows the number of changes in assignments that
happen across the various team sizes when maxK = 2 for
DSAEHch and DSAEBch. Note that we did not present the
results for DSAHch and DSABch since both compute the same
policies as DSAEHch and DSAEBch (only the zero valued
timeslots are not assigned). As the problem size increases the
number of changes in the assignments increases substantially.
From our previous experiments we already noted that there
are no significant changes in team utilities (less than 5%) for
both these preference approximations. Thus, it becomes harder
to manipulate DCOPs with simple changes in assignments.
Similar trends hold for the resource allocation domain as well.

In our next experiment, we analyze the effect of biases on
the two subgroups i.e. agents and humans for the resource
allocation domain. In particular, we investigate how the trends



Fig. 3. Utility loss % as the number of (Agents, Resources) increase.

vary as the team sizes increase from 5 to 300 agents when
maxK = 2 and S = 1. Figure 4 shows two graphs –
the top graph shows the utility losses with respect to the
DSA algorithm for the agents subgroup while the bottom
one shows the same graph for the humans subgroup. The
top graph shows that the un-enhanced versions have large
variations for the agent subgroup. While the results imply
that agents have better utilities by reporting all their true
preferences, this may not be a general trend. The evidence
for this comes from Figure 2 where agents lose by reporting
all their preferences. The bottom graph shows that humans
as a subgroup can sometimes perform badly if they are the
only ones reporting their top choices. A similar analysis for
the event scheduling domain revealed that humans may have
small gains for the same scenario. This leads us to conclude
that there may not be simple general techniques that can
ensure guaranteed advantages in utility. Note that the standard
error for this experiment was less than 4% across all the
settings. While we do not present the graphs here due to space
constraints, similar trends hold for the global versions too.

IX. INSENSITIVITY OF LARGE PROBLEMS

In this section we establish empirically that large problems
are relatively insensitive to changes in assignments and could
be a reason for the minor impact of the biases. To verify this
claim we study the effect of making random swaps (i.e. switch-
ing allocation of one agent with another randomly chosen
agent) in the DSA assignment on the team utility. Figure 5(a)
shows the impact of performing random swaps on the DSA
assignment in the resource allocation domain while Figure 5(b)
shows a similar graph for the event scheduling domain. Both
these figures show the effect on a small, medium and large

Fig. 4. Utility loss % for agents and humans.

(a) Resource Allocation (b) Event scheduling

Fig. 5. Utility loss % as function of random swaps

team involving 5, 100 and 300 agents for the allocation domain
for the high resource setting and 5, 100 and 500 agents for the
scheduling domain. The x-axis of both these figures represent
the number of random swaps performed (from 1 to 50) while
the y-axis shows the percentage utility loss with respect to the
DSA assignment, averaged over 500 runs. Both these graphs
show that the solution space for larger problems is smooth
and hence small random perturbations have little effect on
overall utility (smaller slope). While the graphs presented show
upto 50 swaps for presentation purposes, we tested upto 250
swaps and noticed that the lines remain smooth and each line
stabilizes to a small interval.

In our next experiment, we study the utility loss patterns
of the individual runs (as opposed to averaged statistics in
all our previous experiments) for the two biases. The idea
here is to find the sensitivity of the individual runs across the
various problem sizes and maxK. Figure 6 shows the interval
percentage of average utility loss w.r.t. the DSA algorithm
on the x-axis. For example, a value of 1 on x-axis would



Fig. 6. Number of runs vs percentage of utility loss.

correspond to a utility loss between 0 to 1 percent while a
value of 2 would mean a utility loss between 1 to 2 percent
and so on. The y-axis shows the number of instances out of
500 runs that have the particular percentage of utility loss
for the resource allocation domain. Row 1 corresponds to
the smallest problem while row 2 corresponds to the largest
problem from our problem set. Column 1 corresponds to the
EHch algorithm while column 2 corresponds to EBch. The
4 bars in each figure correspond to the maxK values varying
from 0 to 3. The graph shows that for the larger problem as
maxK increases the peaks move more gradually to the left
implying that specification of a single additional choice may
not have as drastic effect in a large problem as opposed to a
small problem. Similar trends hold for the meeting scheduling
domain. Furthermore, the graph shows a neat classification of
the various maxK instances into certain percentage bins i.e.
most/all the runs for a given maxK have utility losses that fall
into a single interval (or two sometimes) especially for the
larger problem. This re-emphasizes the fact that the resource
allocation problems modeled here are in general insensitive
to realistic human biases and humans can safely specify their
top few (>= 2) choices while having a small effect on the
solution quality most of the times.

X. RELATED WORK

This paper is relevant to three research threads, namely
preference elicitation, human biases and distributed constraint
optimization (DCOP). In preference elicitation, the key rele-
vant point is that eliciting the correct preferences of humans
is difficult on both humans and systems [2]. Due to this
elicitation burden on humans, biases creep into the preference
values specified by humans [4]. There has been a plethora
of work that provide algorithms to solve event scheduling
problems using DCOPs. In particular, optimal algorithms have
been developed for sensor scheduling, meeting scheduling and
task allocation problems [6], [7], [10]. We are interested in
modeling mid to large teams and the optimal algorithms cannot
scale to such problems and hence not applicable in our context.
[9] analyzed the solution space of local optimal algorithms
like Distributed Breakout Algorithm (DBA) and Distributed
Stochastic Algorithm (DSA) when the coordination levels are
changed. Although such an analysis is useful, we are unable
to use it in our context due to the biases involved.

XI. CONCLUSIONS AND FUTURE WORK

In this paper, a detailed empirical analysis of the impact
of two types of human biases on the outcome of two classes
of resource allocation problems using DCOPs was presented.
The results showed that for medium and large sized problems,
the impact on the overall team utility was relatively small.
Moreover, humans were neither advantaged nor disadvantaged
versus agents by their inability to precisely and completely
specify utilities for all resources. This is exciting for the ap-
plicability of DCOPs to real world problems, because it shows
that the algorithms will work without the high computational
burden of complete, accurate preference elicitation. While we
believe that the analysis may apply to a range of DCOP
algorithms, we were able to prove that DSA is particularly
convenient, since it only requires team members to locally
rank preferences correctly.

A key reason why human biases had so little impact on over-
all utility was that for the large problem instances of interest, it
turned out that there were many solutions with approximately
the same utility. It is not clear that such smoothness will
exist for a wider range of resource allocation problems. An
immediate direction for future work is to look at other resource
allocation problems and attempt to identify instances where
large problems have a small number of solutions that are
significantly better than other solutions.
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