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Chapter 9 

A GENERIC OBJECT-ORIENTED TABU 
SEARCH FRAMEWORK 

Hoong C. Lau,  Xiaomin Jia  and  Wee C. Wan      
 
School of Computing, National University of Singapore 
3 Science Drive 2, Singapore 117543 

{lauhc, jxiaomin, jwan}@comp.nus.edu.sg 

Abstract: Presently, most tabu search designers devise their applications without 
considering the potential of design and code reuse, which consequently prolong the 
development of subsequent applications. In this paper, we propose a software solution known 
as Tabu Search Framework (TSF), which is a generic C++ software framework for tabu 
search implementation. The framework excels in code recycling through the use of a well-
designed set of generic abstract classes that clearly define their collaborative roles in the 
algorithm. Additionally, the framework incorporates a centralized process and control 
mechanism that enhances the search with intelligence. This results in a generic framework 
that is capable of solving a wide range of combinatorial optimization problems using various 
tabu search techniques and adaptive strategies. The applications of TSF are demonstrated on 
the implementation of two NP-hard problems, the Vehicle Routing Problem with Time 
Windows (VRPTW) and Quadratic Assignment Problem (QAP). We show that TSF is able to 
obtain quality solutions within reasonable implementation as well as computation time.  

Key words: Tabu Search, software framework, reusability, combinatorial optimization. 

9.1 INTRODUCTION 

Recent studies have reported many successful applications of tabu search 
[Glover and Laguna, 1997] in solving real-world optimization problems. In 
most cases, tabu search applications are designed specifically for their 
intended problems, with little or no consideration for design and codes reuse. 
Consequently, this leads to difficulties in recycling the developed work for 
subsequent applications. Conceivably, the software development cost could 
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be drastically reduced if a well-designed programming framework is 
available that allows the reuse of both designs and codes. The challenge of 
developing such a framework lies in the tension between its simplicity of use 
versus the sophistication involved in supporting user-preferred search 
strategies. To date, there is a lack of a widely accepted tabu search 
framework and only few research prototypes have gained limited popularity.  
 
Another strong motivation for a tabu search programming framework is the 
demand for an unbiased platform that could ensure fairness in comparing 
different tabu search strategies. Typically, it is not unusual for a talented 
programmer to write better codes than his peers and thus could paint an 
unrealistic picture of a more efficient algorithm. However, when different 
algorithms for a given problem are implemented on a common framework, it 
implies that they have been implemented using common software 
components (such as using the same tabu search engine) and even 
underlying data structures, which indirectly enforces fairness when 
algorithms are compared, especially in terms of run-time performance. In 
addition, an optimized framework lowers the technical expertise of an 
algorithm designer by providing him with efficient components.    
 
Perhaps an implicit third incentive for a framework can be seen from the 
software engineering point of view. By enforcing an object-oriented design 
(OOD), the framework imposes a development discipline on the algorithm 
designer. Consequently this paves a way for ease of code integration and 
maintenance, and for future extension. In addition, OOD also provides 
clarity in design, which allows algorithm designers to quickly grasp the 
conceptual flow of the framework. This results in more efficient use of the 
framework as well as less prone to programming errors.    
 
In this paper, we propose a generic object-oriented framework that performs 
the standard routine of the tabu search and yet offers the robustness for 
algorithms designers and developers to incorporate their desired search 
strategies. Tabu Search Framework (TSF) is a C++ object-oriented software 
framework that uses a set of interfaces to epitomize the routine tabu search 
procedures. It has a centralized control mechanism to adaptively guide the 
search in accordance to events encountered dynamically. TSF also provides a 
set of supporting software tools, called the Strategy Software Library, which 
aids developers in their strategies development. In summary, TSF allows 
users to focus on designing, testing and comparing algorithms by minimizing 
efforts in programming. 
 
This paper proceeds as follows. Section 9.2 gives a literature review of some 
existing local search frameworks. Section 9.3 presents the architecture of 
TSF. Section 9.4 gives 3 illustrations on using TSF to formulate user-defined 
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strategies. Section 9.5 presents experimental results. Section 9.6 presents the 
conclusion and future works.  

9.2 LITERATURE REVIEW 

In this section, we present a review of four existing frameworks, OpenTS, 
Localizer++, EasyLocal++ and HotFrame. 

9.2.1 OPENTS 

OpenTS [Harder, 2003] is one of the project initialized by Computational 
Infrastructure for Operations Research (COIN-OR) to spur the development 
of open-source software for the operations research community. It is a java-
based tabu search framework that has a well-defined, object-oriented design. 
The generic aspect of the framework is achieved through inheritance, using 
well-structured interfaces, which includes Solution, Move, Move Manager, 
Objective Function, Tabu List and Aspiration Criteria. This unambiguous 
decomposition defined clearly the collaborative role of each interface in the 
algorithm. In addition, the author presumes that most TS applications adopt 
the “tabu-ing the move” strategy and hence provides “helper” classes such as 
SimpleTabuList, ComplexMove and ComplexTabuList classes to assist the 
implementation.  
 
OpenTS also supports the implementation of adaptive strategies through the 
use of the EventListener objects. These listeners can be embedded into any 
of the interface-inherited objects and used later to adjust objects’ parameters. 
However, the listeners only respond to a static set of search events and does 
not consider user-defined events such as recording the presence (or absence) 
of certain solution structures. This results in difficulty in implementing 
strategies that are based on the solution structures (such as recency and 
frequency based strategies). The absence of a centralized control mechanism 
also poses a limitation to the framework capability. For example, when two 
listeners are triggered in the same iteration, their order of execution follows a 
First-In-First-Out (FIFO) sequence, thus giving no control to the algorithm 
designer. It is also probable for two conflicting EventListener objects (such 
as intensification and diversification) to be performed together without 
designer’s intention.  
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9.2.2 Localizer++ 

The literature presented another framework known as the Localizer++ 
[Michel and Van Hentenryck, 1999] that incorporates Constraint Local 
Search (CLS) in C++. The framework is structured into a two-level 
architecture, which composes of Declarative and Search components. The 
Declarative components are the core of the architecture and are used to 
maintain the complex data structure in local search. In addition, it also 
incorporates a Constraint Library that provides a set of frequently used 
constraints, such as the AllDiff constraint which verifies that every element 
in the data structure has a different value. The Search component on the 
other hand, operates around the Declarative component and is procedural in 
nature. Generally, this component implements the general procedure of local 
search and thus could be used to implement any meta-heuristics that follow 
to this general behavior (i.e. such as iterative local search and tabu search). 
 
Localizer++ requires designers to formulate their problem into its 
mathematical equivalence form in order for the framework to recognize and 
subsequently manage the variables (thus achieving the genericty aspect). 
Algorithm designers are required to implement the routines of the local 
search such as the local moves and the selection criteria, and together with 
the Constraint Library, to construct the optimizer. Due to the numerous 
possible types of constraint, it is improbable for the Constraint Library to 
provide all forms of constraint and thus Localizer++ copes with this 
limitation by supporting the extension to the library through the addition of 
invariants. The framework also supports user-defined search strategies that 
are triggered at static points of the search (such as at the start or the end of 
the search) rather than dynamically in response to search events. New search 
procedures can be extended from Localizer++ through inheritance. 

 

9.2.3 EASYLOCAL++ 

EasyLocal++ [Gaspero and Schaerf, 2001] is another object-oriented 
framework that can be used as a general tool for the development of local 
search algorithms in C++. EasyLocal++ relies on programming techniques 
such as the “Template Method” that specifies and implements the invariant 
parts of various search algorithms, and the “Strategy Method” for the 
communication between the main solver and its component classes, in order 
to achieve the generic aspect. The classes in EasyLocal++ can be classified 
into four categories, Basic Data, Helpers, Runners and Solvers. The Basic 
Data is a group of data structure with their managers and is used to maintain 
the states of the search space, the moves, and the input/output data. The 
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Basic Data classes are supplied to the other classes of the framework by 
means of template instantiation. The local search problem is embodied in the 
Helpers classes, which perform actions that are related to some specific 
aspects of the search, such as maintaining the states or exploring the 
neighborhood of a solution. The Runners represent the algorithmic core of 
the framework and are responsible for performing the routine of the meta-
heuristic. Currently, EasyLocal++ supports several common meta-heuristics 
such as hill climbing heuristic, simulated annealing and tabu search. 
 
EasyLocal++ can be easily deployed by first defining the data classes and 
the derived helper classes, which encode the specific problem description. 
These classes are then “linked” with the required Runners and Solvers and 
the application is ready to run. EasyLocal++ also supports diversification 
techniques through the Kickers classes. The Kickers objects are incorporated 
into the Solver and triggered at specific iteration of the search. Hence, this 
mechanism relies on the knowledge of the algorithm designer to determine 
the best moment to trigger the diversification. While this may be achievable 
for most experience designer, it may be demanding for unfamiliar 
implementer coping with a new problem. In short, the framework provides 
limited support for adaptive strategies and although it could be possible for 
such strategies to be incorporated, the authors do not present a clear 
mechanism to realize them.     

 

9.2.4 HOTFRAME 

HotFrame [Fink and Voß, 2002] is a more matured meta-heuristics 
framework implemented in C++ when compared with Easy Local++. The 
framework provides numerous adaptable components to incorporate a wide 
range of meta-heuristics and common problem-specific components. The 
supported meta-heuristics includes basic and iterated local search, SA and 
their variations, different variants of tabu search, evolutionary methods, 
variable depth neighborhood search, candidate list approaches and some 
hybrid methods. As a means of reducing the programming efforts of 
designers, HotFrame provides several reusable data structure classes to 
incorporate common solution spaces such as binary vectors, permutations, 
combined assignment and sequencing and also some standard neighborhood 
operations like bit-flip, shift, or swap moves. These classes can be deployed 
immediately or be used as base classes for subsequent customized derived 
classes. This design encourages software reuse especially for problems that 
can be formulated with the components that are already presence in the 
framework.   
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Meta-heuristics strategies can be implemented in HotFrame through the use 
of templates. The idea is to incorporate a set of type parameters that can be 
extended to support both problem-specific and generic strategies. A benefit 
of this design is that it gives HotFrame a concise and declarative system 
specification, which would decrease the conceptual gap between program 
codes and domain concepts. HotFrame also adopts a hierarchical 
configuration for the formulation of the search techniques in order to 
separate problem-specific with the generic meta-heuristic concepts. Generic 
meta-heuristic components are pre-defined in the configuration as a higher-
level control while the problem-specific definitions are incorporated inside 
these meta-heuristic components to form a two level architecture (i.e. each 
problem-specific strategy will be embedded to a meta-heuristic scheme). 
Additionally, inheritance can be applied on these components to overwrite 
parts of the meta-heuristic routine with user preferred procedure.    
 

9.2.5 Discussion 

It can be seen that the focus of the above reviewed frameworks is primarily 
on relieving the mundane task of meta-heuristic routines from the algorithm 
designers. TSF has a slightly different objective: TSF is designed with the 
intention to support adaptive tabu search strategies. As such, in addition to 
performing the basic routines of tabu search, TSF has a centralized control 
mechanism to incorporate adaptive strategies. While it is true that most of 
the reviewed frameworks could also support adaptive strategies, the 
incorporation of such strategies may not be as straightforward (i.e. no 
dedicated mechanism is built for it). For example, while HotFrame could 
incorporate adaptive strategies by extending its procedures, such inheritance 
often requires the designer to “re-code” some of the meta-heuristic 
procedures. This may pose a problem to designers who are unfamiliar with 
the internal design of the framework, i.e. the framework can no longer be 
seen as a black box to the designer. TSF works differently from such 
conventional design by incorporating a communication link between the 
framework engine (which perform the tabu search routines) and the control 
mechanism. As the search proceeds, the engine will record the current search 
state and passes this information to the control mechanism. The control 
mechanism then processes information to determine if actions such as 
adjusting the search parameters or applying a diversification strategy are 
necessary. Analogously, the control mechanism can be seen as a feedback 
mechanism that adapts the framework engine to the search environment. 
Such feedback control provides a centralized mechanism for designer to 
collect information on the search spaces as well as to direct future search 
trajectory. 
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9.3 DESIGN AND ARCHITECTURE 

9.3.1 Frameworks 

Framework has a different concept from “Software Library”. In a software 
library, implementers are required to design their program flow and then use 
the components in the library to develop their applications.  The ILOG 
optimization suite [ILOG, 2003] (such as the CPLEX and Solver engines) is 
an example of a well-known software library. In ILOG optimization software 
library, the programmers formulate their problems as a specific 
constraint/mathematical-programming model, and a predefined engine 
operates on the formulated model to obtain solutions. A benefit of such 
software architecture is that it does not require the programmer to specify the 
algorithms to be performed on the problem. However, this can also be a 
drawback, as the predefined engine offers little if no capacity for the 
implementers to control of the search process.  
 
On the other hand, in a framework, the reused code is the controller, which 
provides an overall “frame” for an application. By means of inheritance, the 
programmer can implement the child classes, which are subordinate to the 
framework.  In an informal sense, frameworks tell the programmer “Don’t 
call us, we’ll call you.” In summary, while library allows sharing of low-
level codes, frameworks allow sharing of high-level concepts and control. 
 
The essence of our proposed TSF framework revolves around four principal 
considerations:  
 

(a) Genericity  
This means that the framework should allow the user to implement any 
tabu search algorithm. Additionally the framework should not make any 
assumption on problem type or its solution representation, thus allowing 
flexibility to the formulation of applications. 
   
(b) Reusability  
The framework should adopt built-in tabu search routines that can be 
easily recycled across applications. Furthermore, the algorithm procedure 
should be disintegrated into distinctive interfaces so that the developed 
components could be recycled easily across different applications. 
 
(c) Extensibility 
The framework should able to extend easily to support not only some 
predefined tabu search strategies, but also user-defined procedures that 
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are specific to the problem domain. In addition, the possibility of 
extending the framework to form hybrids should not be ignored. 
 
(d) Usage Friendliness 
The framework should be easy to learn and understand from an 
algorithm designer and implementer perspective. It should have 
unambiguous interfaces that give clarity in execution flow.  

 
To cater for these design goals, the components of TSF are categorized into 4 
components: interfaces, control mechanism, search engine, and strategies 
software library (see Figure 9.1). The interfaces define the basic components 
used by tabu search in an object-oriented architecture. The control 
mechanism is for users to define strategies that guide the search adaptively in 
response to events encountered. TSF eliminates the tedious routine task of 
programming the search engine repeatedly. The search engine interacts with 
the interfaces and collects information that is passed dynamically to the 
control mechanism to influence future search trajectory. Finally, TSF 
includes an optional Strategy Software Library consisting of a set of software 
components to support various user-defined search strategies.  
 

9.3.2 Interfaces 

There are seven key interfaces that must be implemented, described as 
follows.  

1. The solution interface allows the user to encapsulate the data structure(s) 
that represents the problem’s solution. The framework does not impose 
any restriction on how the user defines the solution or the data structures 
used since it never manipulates Solution objects directly.  

2. The Objective Function interface evaluates the objective value of the 
solution.  

3. The Neighborhood Generator interface is an iterator that generates a 
collection of neighbors based on the Move and Constraint interfaces.  

4. The Move interface defines the move neighborhood, where it constructs 
possible translations of Solution object. When the engine determines the 
best move in an iteration, the Solution object is then translated to its new 
state.      

5. The Constraint interface computes the degree of violation for these 
translations.   

6. The Tabu List interface records the tabu-ed solutions or moves.  
7. The Aspiration Criteria interface allows specification of aspiration 

criteria for tabu-ed moves. 
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Figure 9.1.  TSF Architecture 

 

9.3.3 Control Mechanism 

Switch Box 
 
Like many machines, a set of switches is required to operate the Search 
Engine. A Switch Box is used in the framework to control the basic 
operations of the search engine. The two commonly used switches are the 
maximizing switch and the first-accept switch. The maximizing switch is 
used to control the engine to solve a maximizing or a minimizing problem. 
The First-Accept switch informs the tabu search engine to perform first 
accept or best accept strategy. The best accept strategy searches through all 
the feasible solutions in the neighborhood and select the best possible move. 
When run time is comparatively more crucial than the solution quality, we 
settle for the first neighbor with a better objective value, i.e. the first-accept 
strategy. All switches are capable of changing values dynamically set by an 
application. 

Event Controller 

It is often desirable for the search engine to respond to encountered events. 
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For example, a reactive tabu list would need to readjust its tenure in response 
to the success or failure in obtaining a better solution during the search. 
Hence we need a means of controlling the tabu search to make dynamic 
readjustments. TSF uses a centralized control mechanism. It has an Event 
Controller, which provides interaction between the search engine and its 
interfaces. When the tabu search engine detects the occurrence of pre-
determined events, it conveys them to the Event Controller. The Event 
Controller then responds to these events in accordance to strategies defined 
by the user. Typically, these strategies will affect one or more of the elements 
in the interfaces, which in turn, re-adjust the search strategy adopted by the 
engine. For the reactive tabu list example, the number of non-improving 
moves encountered can be a “triggering-event”, which causes the Event 
Controller to readjust the tabu tenure based on parameters. Some default 
events in TSF are as follows: 
 

1. Tabu Search Start is triggered at the start of tabu search. Used to start a 
timer to record the total time spent in doing the search. 

2. Tabu Search Stop is triggered at the end of tabu search. Used to stop the 
timer or to call an output program to display the results. 

3. New Best Solution Found is triggered when a new best solution is found. 
Used for intensification strategies. 

4. Non-improving Move Made is triggered when the tabu search engine 
executes a new non-improving move. Used for diversification strategies. 

5. End of Iteration is triggered at the end of the iteration. This is extremely 
useful for collection of search information (such as similarity of 
solutions) or strategies that executed every iteration. 

6. No move generated is triggered when the Neighborhood Generator 
could not generate any moves. 

7. No Solution Found event is triggered when the search engine could not 
find a feasible solution. Used for implementing oscillating strategies. 

 
TSF also allows users to define their own events by providing a generic 
Event interface. Users need to define the triggering event and implement the 
response to it. For example, suppose we want to apply Random Restart 
strategy at every n number of completed iterations. To do this, we simply 
need to implement an Event that is triggered at the every nth iteration. The 
response to this event is to restart the tabu search with a new starting 
solution. Figure 9.2 gives a fragment of code segment for such 
implementation. 
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      // Base class for the Event interface 

Class Event{  
    …… 
  virtual void IterationEvent (TabuSearch* TS){}; } 

 
Class RandomRestart : Event // user-implemented class 
{  
int max_limit = n; // User defined n iteration 
int count_NonImprovingMoves; 

 
virtual void IterationEvent (TabuSearch* TS){  
if (TS->isBadMove())   
int count_NonImprovingMoves++; 

   if (count_NonImprovingMoves > max_limit) 
    ApplyRandomRestart (TS);  
}   

}  

 

Some strategies may require history information to be collected during 
search. In TSF, the Event interface can be used to collect such useful 
information. For instance, implementing a Frequency and Recency strategy 
may require the tabu search to record the number of occurrences a sub-
structure/configuration in the solution has appeared during the search. As an 
example, in the Traveling Salesman Problem, if we discover that the solution 
that visits customer 4 before customer 3 occurs very frequently in local 
optima, this may imply that the global optimal may contain the same sub-
route with the structure X–4–3–Y, where X and Y refer to some arbitrary 
customers. In this case, the user may like to implement a soft constraint 
based on this observation, which in turn will reduce the size of the 
neighborhood generated. By collecting more information during the search 
and consequently adaptively modifying the search strategy, we can derive a 
more effective search. 

 

9.3.4 Tabu Search Engine 

The Tabu Search Engine component implements the control flow as follows: 
 

1. Set initial solution as current and best found solution  
2.  Neighborhood Generator generates a list of feasible moves 

Figure 9.2.  Code Implementation of a User-Defined Event 
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3. Objective Function evaluates each move 
4. Choose best non-tabu move using Tabu List and Aspiration Criteria 
5. Apply Move on the current solution 
6. Update Tabu List and trigger related events 
7. Go to step 1 until terminating condition(s) is reached  

 

9.3.5 Strategy Software Library (SSL) 

Strategy Software Library (SSL) provides optional components for designer 
to facilitate them in adding generalized strategies. By making assumptions 
on the solution representation (such as permutation of integers or array of 
bits), these components can be incorporated to build strategies such as 
intensification among elite solutions, probabilistic diversification, candidate 
lists, and very large-scale neighborhood (VLSN). Although not as powerful 
as specific strategies tailored for a single problem type, these generic 
components provide a quick and easy means for developers to apply them in 
their search. In the following, we describe some of the components in SSL. 
 
Probabilistic Diversification 
 
Probabilistic diversification refers to diversifying the search when it is 
caught in a local optimum. If the designer adopts a permutation or bits array 
solution representation, SSL can readily supports this strategy by providing a 
Random Generator that determines the parts of the solution that will be 
removed in according to a preset probability distribution (such as uniformly 
random distribution). These randomly chosen portions are then reconstructed 
by random swapping (permutation representation) or flipping (bits array) and 
later recombined.  
 
Intensification search on Elite solutions    
 
SSL supports this strategy by storing a list of elite solutions during tabu 
search in the Elite Recorder. As solution objects inherited Solution interface, 
different solution representations can be easily stored as their base class. 
Each of these elite solutions is then used as a new initial solution for future 
tabu search. The rationale behind this strategy is to search the elite solutions 
more thoroughly and hence is classified as an intensification strategy. 
Developers simply need to declare the number of elite solutions to be 
collected in the preliminary search and TSF would search each of these 
points more thoroughly. 
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Very Large-Scale Neighborhood (VLSN) 
 
VLSN [e.g. Ahuja et al., 2002] works on the principle that by generating a 
larger neighborhood, the hope is to increase the probability of obtaining 
better solution in a single iteration. Under the assumption that the solution 
representation is a permutation of integers, this strategy usually requires 
some permutation function to generate the large neighborhood. SSL provides 
two functions to support this strategy: PermutationGenerator and 
NeighborhoodBooster. PermutationGenerator provides the ease of 
permuting a solution to construct its neighborhood. NeighborhoodBooster, is 
used to increase the neighborhood size by combining multiple 2-opt moves 
into k-opt moves. User can also combine this strategy with the candidate list 
to keep the size of the neighborhood reasonable. 
 
Candidate Lists 
 
Candidates are often used to narrow the neighborhood size especially when 
VLSN is involved. A possible technique is to select neighbors that meet 
some certain criteria or constraint. SSL provides a Filter function that 
inherits from the Constraint Interface. It receives a solution, a move and a 
selection function, and “filters” unfavorable moves that do not meet the 
constraint.  

9.4 ILLUSTRATION 

In this section, we illustrate how TSF can deploy some common user-defined 
search strategies, namely Diversification, Intensification and Reactive Tabu 
Search1. These simplistic examples demonstrate how events can interact and 
incorporate the necessary actions to execute user-defined strategies.     

9.4.1  Diversification 

Diversification refers to strategies that transform one solution to a radically 
different solution. Usually, this transformation involves alternating part or 
the whole solution structure. When some forms of probability are involved in 

 
＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿ 
1  Note that although TSF can support adaptive strategies such as diversification, it is 
accomplished in a rather rudimentary fashion. Since the publication of the conference version 
of this work, the authors have developed an enhanced version of TSF known as Meta-
heuristic Development Framework (MDF), in which TSF is a component of a bigger 
framework (please see [Lau et al., 2004]. In MDF, strategies such as adaptive methods and 
hybridization can be incorporated in a more elegant approach via the use of event handlers.   
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the transformation, it is known commonly as probabilistic diversification. 
The greatest difficulty in executing this strategy is to decide when to apply 
diversification, for if diversification is applied too often, this may result in 
accidentally missing out good local optima; otherwise if diversification is 
performed infrequently, the search may waste too much time exploring 
potentially useless solutions. The easiest approach to decide when to perform 
diversification is to execute a fixed number of iteration and then applied the 
strategy. TSF easily support this strategy by implementing an event that 
counts the number of iteration performed. This event performs like a 
hardware counter. When the counter-event reaches zero, it will execute the 
desired diversifying actions. A code fragment is shown on Figure 9.3. 

Typically, this simplistic guiding rule is not very effective. An improved 
strategy is then to apply diversification when the search is caught in local 
optimal or experiences solution cycling. Unfortunately, both of these 
situations are extremely difficult to detect accurately. There exist many 
heuristics that help to predict their occurrences, and one such heuristic is to 
observe the number of non-improving moves made since the last local 
optimum found. This heuristic again can be easily implemented with TSF 
using the event controller. Here, we implement an adaptive counter that 
decrements when the search makes a non-improving move and resets itself 
when a new best solution is found. A code fragment for this adaptive counter 
is shown in Figure 9.4. 

9.4.2 Intensification 

Intensification refers to strategies that examine thoroughly on some specific 
solutions. As oppose to diversification, intensifying strategies improve on the 
solution quality by searching around the region close to the solution. As such, 
intensification is usually performed on elite solutions. Hence, intensification 
often requires two phases - the initial phase is used to identify “good” 
solutions while the next phase attempts to locate new local optimum around 
these identified solutions. TSF can implement this strategy using the event 
controller that track two events for each phase of search respectively. An 
elite solution recorder is essential to record on the elite solutions and user 
can use either the provide tool in SSL or to implement their own.  

In the first phase, the First-Phase event first preset a number of 
iteration to collect the elite solutions. This is very similar to the counter-
event discussed in section 9.4.1. In addition, the First-Phase event 
also records the solution whenever it encounters a new best-found solution. 
When the counter reaches zero, the First-Phase event will notify the 
event controller that it has completed its task and the event controller will 
proceed to replace the First-Phase event with the Second-Phase 
event.  
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The Second-Phase event is used to performed intensification on 
solution collected. One strategy in which intensification can be performed is 
to use a strategy that is analogous to backtracking. In this strategy, we 
conduct search on an elite solution for a fix number of iterations. If no better 
solution can be within these iterations, we would backtrack to our original 
solution and conduct a new search. To prevent conducting similar search, 
one approach is to preserve the tabu list. However, this may require a fair 
amount of memory depending on the number of iteration conducted. We 
proposed another approach, which is to interchange the tabu list each time 
we backtrack. The rationale behind this is that tabu list is used to guide the 
search and hence by using different tabu lists and interchanging them, we 
expect the search to move in different direction each time we revert to the 
original elite solution. A pseudo code for the events in both phases is 
presented in Figure 9.5. 

9.4.3 Reactive Tabu Search 

Our last illustration is on reactive tabu search, where we explain how two 
strategies can be incorporated into a single event. Reactive tabu search refers 
to strategies that adaptively adjusting tabu search parameters according to 
the search trajectory. Many complex heuristics have been proposed with this 
strategy, each with its own assumptions on the solution space. In fact a 
popular analogy is to visualize the solution space as a multi-dimensional 
terrain. The factors include objective value, similarity in the solution 
structure and time. Based on these factors, the reactive tabu search attempts 
to navigate along the terrain toward new local optima. In order to simplify 
our illustration, we only consider two factors, time and objective value and 
the parameter adjusted is limited to the tabu tenure. Time simply refers to 
number of iterations performed. Our simplified strategy works as follows. 
When we encounter a series of non-improving we lengthen our tabu tenure 
so as to prevent solution cycling. On the other hand, when we encounter a 
new best solution, we shorten our tenure in order to perform intensification. 
Hence we use TSF to implement an event called Reactive-Event to 
handle the two scenarios. First, when we encounter a series of non-
improving moves, we will increase the tabu tenure by some x amount. On 
the other hand, when a new best solution is encountered, we will revert the 
tenure, discarding any move that have been kept for more than n iterations. 
The pseudo code for this implementation can be found in Figure 9.6. 
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Class CounterEvent : Event // user-implemented class 
{  
int startValue = n; // User defined n iteration 
virtual void IterationEvent (TabuSearch* TS){  

  startValue = startValue - 1; 
if (startValue <= 0){ 
ApplyDiversification(TS->getCurrentSolution()) 
StartValue = n; // reset counter 

}   
}   

}  
 
 

 
 
Class AdaptiveCounterEvent : Event  
{  
int startValue = n; // User defined n moves 
virtual void NewBestSolutionFound (TabuSearch* TS){ 
 StartValue = n; // reset counter 
} 
virtual void NonImprovingMoveMade (TabuSearch* TS){  

  startValue = startValue - 1; 
if (startValue <= 0){ 
// Diversification is a user implemented method    

//   in class AdaptiveCounterEvent 

ApplyDiversification(TS->getCurrentSolution()) 
StartValue = n; // reset counter 

}   
}   

}  
 
 Figure 9.4: Code fragment implementing an adaptive counter event. 

Figure 9.3: Code fragment implementing a counter event. 
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Class FirstPhaseEvent : Event  
{  
int maxIter = n; // Maximum number of iteration 
virtual void NewBestSolutionFound (TabuSearch* TS){ 
 EliteRecorder.record(TS->getCurrentSolution());  
} 
virtual void IterationEvent (TabuSearch* TS){  

  maxIter = startValue - 1; 
  if (maxIter <= 0)  
   TS->getEventController().NextEvent(); 
}   

} 
Class SecondPhaseEvent : Event  
{  
int allowedIter = x;   
virtual void NewBestSolutionFound (TabuSearch* TS){ 
 allowedIter = x;  
} 
virtual void IterationEvent (TabuSearch* TS){  

  allowedIter = startValue - 1; 
  if (allowedIter <= 0) BackTrack(TS); 
}   

} 
 
 
Class FirstPhaseEvent : Event  
{  
int badMoveLimit = n; // Maximum allowed bad moves 
int increment = x; // Maximum allowed bad moves 
int defaultTenure = t; // Maximum allowed bad moves 
virtual void NewBestSolutionFound (TabuSearch* TS){ 
 TS->getTabuList().setTabuTenure(t);  
 BadMoveLimit = n;   // reset limit 
} 
virtual void NonImprovingMovesMade (TabuSearch* TS){

   badMoveLimit = badMoveLimit - 1; 
  if (badMoveLimit <= 0) {  
   int tenure = TS->getTabuList().getTabuTenure(); 
    TS->getTabuList().setTabuTenure(tenure+x); 
 } 
}   

} 
 

Figure 9.5: Code fragment implementing intensification strategy. 

Figure 9.6: Code fragment implementing simplified reactive tabu search. 
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9.5 EXPERIMENTATION 

In this section, we report on experimental results on VRPTW and QAP.  It is 
interesting to first observe that a senior undergraduate computer science 
student proficient at C++ programming took 1 week to learn TSF by 
studying the documentation and interacting with the TSF developers. He 
took another 1 week to first implement an application (QAP), and 3 days to 
implement a second application (VRPTW).    

9.5.1 Vehicle Routing with Time Windows (VRPTW) 

We benchmark with Solomon’s instances [Solomon, 1987]. 5 different 
moves were implemented: Relocate, Exchange, Reverse, Cross and 
Distribute. Reverse is used to reverse the sequence of customers within a 
same route and is useful when the time window is loose. Cross is an 
extended Exchange where a sub-section of a route is swapped with another. 
Distribute attempts to reduce a vehicle by distributing the vehicle’s 
customers to other vehicles. The design of these moves exploits the 
advantage of minimizing the distance without minimizing vehicles. With the 
exception of Relocate and Distribute, the other moves are designed to 
minimize the total distance traveled. The tabu list records on the previously 
accepted moves and a different tenure is set for each type of moves. The 
values of the tenure are Relocate: 1000, Exchange: 1000, Reverse: 300, 
Cross: 500 and Distribute: 400 for a problem size of 100 customers. We also 
adaptively apply intensification or diversification strategies based on the 
quality of the solutions found. Based on the default events, each solution is 
classified into two categories: improving solutions and non-improving 
solutions. An improving solution has an objective value that is better than all 
previously found solutions. Non-improving solution refers to solutions 
whose objective value is the same or poorer than the best-found solution. 
TSF adaptively alternates between intensification and diversification by 
observing the frequency of non-improving solutions. Diversification will be 
applied using a greedy heuristic when the frequency of non-improving 
solution exceeds a certain threshold. Appendix A summarizes our 
experimental results. TSF Results are results obtained by TSF; Best Results 
are the best-published results. 

9.5.2 Quadratic Assignment Problem (QAP) 

In QAP, the Solution can be represented as a permutation on a set of n 
facilities. A typical move often involves swapping two elements in the 
solution. [Ahuja et al., 2002] proposed a VLSN strategy for QAP, which 
implements complex moves involving multiple swaps. Generally, VLSN 
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produces better solutions than typically swap move. Following the authors’ 
proposal, we demonstrate that TSF is capable supporting this strategy 
through the use of two software components: PermutatorGenerator and 
NeighborhoodBooster. The PermutatorGenerator is used to construct the 
neighborhood from a solution by generating all the possible permutations. 
The NeighborhoodBooster then performs two further steps to generate a 
larger neighborhood. First, a selection criterion is used to accept only elite 
neighbors. These elite neighbors are then further permutated to result in 
more neighbors. The two steps are repeated for k times (and thus known as 
k-opt). The tabu list in this case, records the previously visited solution and 
has a tenure of 0.6n, where n is the number of facilities. 
 
We conducted our experiments on a set of test cases taken from the QAPLib 
[Burkard et al., 1991], and the results are summarized in Appendix B. Gap 
is calculated as Gap = (Best Result – TSF Result)/Best Result *100%. From 
the table, we can see that TSF performs well for most of test cases. In Chr 
test cases, except for Chr20a and Chr25a, the results obtained are optimal; 
the results for other test cases are within a small gap from optimality.  

9.6 CONCLUSION 

In this paper, we presented TSF, a C++ object-oriented framework for tabu 
search. TSF imposes no restriction on the domain representation and yet 
provides a well-defined programming scheme for customizing the search 
process. TSF differs from other frameworks in that it offers users the 
flexibility of incorporating various tabu search strategies through the Event 
Controller as the centralized control mechanism without compromising too 
much on the run-time efficiency and solution quality. The Strategies 
Software Library further supports the development of enhancing solution 
quality. Through the implementations of TSF on VRPTW and QAP, we 
illustrate that good results can be obtained with the framework within 
reasonable implementation time as well as good run-time. 

 
TSF is one component within the Meta-Heuristics Development Framework 
(MDF) [Lau et al., 2004] that is work-in-progress. MDF encompasses other 
meta-heuristics such as the Simulated Annealing, Genetic Algorithms, and 
Ants Colony Framework. MDF aims to provide a generic, robust and user-
friendly programming framework for promoting the development and 
integration of meta-heuristics algorithms. It also provides a platform for 
researchers to equitably compare and contrast meta-heuristics algorithms.  
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APPENDIX A:  
Experimental results on VRPTW test cases 

Test Cases Best  
Results 

Published 
by 

TSF Results 

R101 19/1650.80 RT 19/1686.24 
R102 17/1486.12 RT 18/1493.31 
R103 3/1292.85 HG 14/1301.64 
R104 10/ 982.01 RT 10/1025.38 
R105 14/1377.11 RT 14/1458.60 
R106 12/1252.03 RT 12/1314.69 
R107 10/1113.69 CLM 10/1140.27 
R108  9/ 964.38 CLM 10/ 994.66 
R109 11/1194.73 HG 12/1207.58 
R110 10/1124.40 RGP 11/1166.65 
R111 10/1096.72 RGP 11/1172.66 
R112   9/1003.73 HG 10/1041.36 
R201  4/1252.37 HG  4/1366.34 
R202  3/1191.70 RGP  3/1239.22 
R203  3/ 942.64 HG  3/1000.29 
R204  2/ 849.62 CLM  3/ 781.86 
R205  3/ 994.42 RGP  3/1063.29 
R206  3/ 912.97 RT  3/ 955.34 
R207  2/ 914.39 CR2  3 /866.35 
R208  2/ 731.23 HG  2/1016.07 
R209  3/ 909.86 RGP  3/ 979.30 
R210  3/ 955.39 HG  3/ 968.32 
R211  2/ 910.09 HG  3/ 865.51 
RC101 14/1694.94 TBGGP 15/1698.50 
RC102 12/1554.75 TBGGP 13/1551.32 
RC103 11/1262.02 RT 11/1371.40 
RC104 10/1135.48 CLM 10/1187.97 
RC105 13/1633.72 RGP 14/1618.01 
RC106 11/1427.13 CLM 12/1434.33 
RC107 11/1230.54 TBGGP 11/1266.92 
RC108 10/1139.82 TBGGP 10/1273.12 
RC201  4/1406.94 CLM  4/1445.00 
RC202  3/1389.57 HG  4/1204.45 
RC203  3/1060.45 HG  3/1091.71 
RC204  3/ 799.12 HG  3/ 826.27 
RC205  4/1302.42 HG  4/1469.25 
RC206  3/1153.93 RGP  3/1259.12 
RC207  3/1062.05 CLM  3/1127.19 
RC208  3/ 829.69 RGP  3/ 937.78 
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Legend:   
CR2 W. Chiang and R. A. Russell, A Reactive Tabu Search Metaheuristic for 

Vehicle Routing Problem with Time Windows, INFORMS Journal on 
Computing, 8:4, 1997            

CLM J. F. Cordeau, G. Laporte, and A. Mercier, "A Unified Tabu Search 
Heuristic for Vehicle Routing Problems with Time Windows," Journal of 
the Operational Research Society 52, 928-936, 2001           

HG J. Homberger and H. Gehring, "Two Evolutionary Metaheuristics for the 
Vehicle Routing Problem with Time Windows," INFOR, 37, 297-318, 
1999  

RT Rochat, Y. and E. Taillard, Probabilistic Diversification and Intensification 
in Local Search for Vehicle Routing, Journal of Heuristics, 1, 147-167, 
1995 

RGP L.M. Rousseau, M. Gendreau and G. Pesant, "Using Constraint-Based 
Operators to Solve the Vehicle Routing Problem with Time Windows," 
Journal of Heuristics, 8, 43-58, 1999 

TBGGP  E. Taillard, P. Badeau, M. Gendreau, F. Geurtin, and J.Y. Potvin, "A Tabu 
Search Heuristic for the Vehicle Routing Problem with Time Windows," 
Transportation Science, 31, 170-186, 1997 
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APPENDIX B:  
Experimental results on QAP test cases 

Test cases Best results TSF results Gap 
Chr12a 9552 9552 0.0 
Chr12b 9742 9742 0.0 
Chr12c 11156 11156 0.0 
Chr15a 9896 9896 0.0 
Chr15b 7990 7990 0.0 
Chr15c 9504 9504 0.0 
Chr18a 11098 11098 0.0 
Chr18b 1534 1534 0.0 
Chr20a 2192 2222 1.5 
Chr20b 2298 2298 0.0 
Chr20c 14142 14142 0.0 
Chr22a 6165 6165 0.0 
Chr22b 6194 6194 0.0 
Chr25a 3796 3920 4.0 
Bur26a 5426670 5432488 0.1 
Bur26b 3817852 3824458 0.1 
Bur26c 5426795 5427731 0.0 
Bur26d 3821225 3821275 0.0 
Bur26e 5386879 5387728 0.0 
Bur26f 3782044 3782246 0.0 
Bur26g 10117172 10118787 0.0 
Bur26h 7098658 7098658 0.0 
Nug12 578 578 0.0 
Nug14 1014 1016 0.2 
Nug15 1150 1152 0.2 
Nug16a 1610 1610 0.0 
Nug16b 1240 1240 0.0 
Nug17 1731 1742 0.6 
Nug18 1930 1930 0.0 
Nug20 2570 2570 0.0 
Nug21 2438 2456 0.7 
Nug22 3596 3596 0.0 
Nug24 3488 3500 0.3 
Nug25 3744 3744 0.0 
Nug27 5234 5348 2.2 
Nug30 6124 6128 0.0 
Sko42 15812 16020 1.3 
Sko49 23386 23486 0.4 
Sko56 34458 34664 0.6 
Sko64 48498 48838 0.7 
Sko72 66256 66702 0.7 
Sko90 115534 116168 0.5 
Sko100a 152002 153610 1.1 
Sko100b 153890 155318 0.9 
Sko100c 147862 149036 0.8 
Sko100d 149576 151756 1.5 
Sko100e 149150 150996 1.2 
Sko100f 149036 150906 1.3 
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Legend:  
Chr:   N. Christofides and E. Benavent. An exact algorithm for the quadratic 

assignment problem. Operations Research, 3:5, 760-768, 1989 
Bur:  R.E. Burkard and J. Offermann. Entwurf von Schreibmaschinentastaturen 

mittels quadratischer Zuordnungsprobleme. Zeitschrift für Operations 
Research, 21, B121-B132, 1977  

Nug:   C.E. Nugent, T.E. Vollman, and J. Ruml. An experimental comparison of 
techniques  for the assignment of facilities to locations. Operations 
Research, 16, 150-173, 1968 

Sko:   J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem. 
ORSA Journal  on Computing, 2:1, 33-45, 1990 
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