
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2005

A generic object-oriented Tabu Search Framework
Hoong Chuin LAU
Singapore Management University, hclau@smu.edu.sg

Xiaomin JIA
National University of Singapore

Wee Chong WAN
National University of Singapore

DOI: https://doi.org/10.1007/0-387-25383-1_9

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

This Book Chapter is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LAU, Hoong Chuin; JIA, Xiaomin; and WAN, Wee Chong. A generic object-oriented Tabu Search Framework. (2005). Metaheuristics:
Progress as real problem solvers. 32, 203-226. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/843

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13239849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/0-387-25383-1_9
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F843&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F843&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F843&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F843&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Chapter 9

A GENERIC OBJECT-ORIENTED TABU
SEARCH FRAMEWORK

Hoong C. Lau, Xiaomin Jia and Wee C. Wan

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

{lauhc, jxiaomin, jwan}@comp.nus.edu.sg

Abstract: Presently, most tabu search designers devise their applications without
considering the potential of design and code reuse, which consequently prolong the
development of subsequent applications. In this paper, we propose a software solution known
as Tabu Search Framework (TSF), which is a generic C++ software framework for tabu
search implementation. The framework excels in code recycling through the use of a well-
designed set of generic abstract classes that clearly define their collaborative roles in the
algorithm. Additionally, the framework incorporates a centralized process and control
mechanism that enhances the search with intelligence. This results in a generic framework
that is capable of solving a wide range of combinatorial optimization problems using various
tabu search techniques and adaptive strategies. The applications of TSF are demonstrated on
the implementation of two NP-hard problems, the Vehicle Routing Problem with Time
Windows (VRPTW) and Quadratic Assignment Problem (QAP). We show that TSF is able to
obtain quality solutions within reasonable implementation as well as computation time.

Key words: Tabu Search, software framework, reusability, combinatorial optimization.

9.1 INTRODUCTION

Recent studies have reported many successful applications of tabu search
[Glover and Laguna, 1997] in solving real-world optimization problems. In
most cases, tabu search applications are designed specifically for their
intended problems, with little or no consideration for design and codes reuse.
Consequently, this leads to difficulties in recycling the developed work for
subsequent applications. Conceivably, the software development cost could

204 Metaheuristics: Progress as Real Problem Solvers

be drastically reduced if a well-designed programming framework is
available that allows the reuse of both designs and codes. The challenge of
developing such a framework lies in the tension between its simplicity of use
versus the sophistication involved in supporting user-preferred search
strategies. To date, there is a lack of a widely accepted tabu search
framework and only few research prototypes have gained limited popularity.

Another strong motivation for a tabu search programming framework is the
demand for an unbiased platform that could ensure fairness in comparing
different tabu search strategies. Typically, it is not unusual for a talented
programmer to write better codes than his peers and thus could paint an
unrealistic picture of a more efficient algorithm. However, when different
algorithms for a given problem are implemented on a common framework, it
implies that they have been implemented using common software
components (such as using the same tabu search engine) and even
underlying data structures, which indirectly enforces fairness when
algorithms are compared, especially in terms of run-time performance. In
addition, an optimized framework lowers the technical expertise of an
algorithm designer by providing him with efficient components.

Perhaps an implicit third incentive for a framework can be seen from the
software engineering point of view. By enforcing an object-oriented design
(OOD), the framework imposes a development discipline on the algorithm
designer. Consequently this paves a way for ease of code integration and
maintenance, and for future extension. In addition, OOD also provides
clarity in design, which allows algorithm designers to quickly grasp the
conceptual flow of the framework. This results in more efficient use of the
framework as well as less prone to programming errors.

In this paper, we propose a generic object-oriented framework that performs
the standard routine of the tabu search and yet offers the robustness for
algorithms designers and developers to incorporate their desired search
strategies. Tabu Search Framework (TSF) is a C++ object-oriented software
framework that uses a set of interfaces to epitomize the routine tabu search
procedures. It has a centralized control mechanism to adaptively guide the
search in accordance to events encountered dynamically. TSF also provides a
set of supporting software tools, called the Strategy Software Library, which
aids developers in their strategies development. In summary, TSF allows
users to focus on designing, testing and comparing algorithms by minimizing
efforts in programming.

This paper proceeds as follows. Section 9.2 gives a literature review of some
existing local search frameworks. Section 9.3 presents the architecture of
TSF. Section 9.4 gives 3 illustrations on using TSF to formulate user-defined

A Generic Object-Oriented Tabu Search Framework 205

strategies. Section 9.5 presents experimental results. Section 9.6 presents the
conclusion and future works.

9.2 LITERATURE REVIEW

In this section, we present a review of four existing frameworks, OpenTS,
Localizer++, EasyLocal++ and HotFrame.

9.2.1 OPENTS

OpenTS [Harder, 2003] is one of the project initialized by Computational
Infrastructure for Operations Research (COIN-OR) to spur the development
of open-source software for the operations research community. It is a java-
based tabu search framework that has a well-defined, object-oriented design.
The generic aspect of the framework is achieved through inheritance, using
well-structured interfaces, which includes Solution, Move, Move Manager,
Objective Function, Tabu List and Aspiration Criteria. This unambiguous
decomposition defined clearly the collaborative role of each interface in the
algorithm. In addition, the author presumes that most TS applications adopt
the “tabu-ing the move” strategy and hence provides “helper” classes such as
SimpleTabuList, ComplexMove and ComplexTabuList classes to assist the
implementation.

OpenTS also supports the implementation of adaptive strategies through the
use of the EventListener objects. These listeners can be embedded into any
of the interface-inherited objects and used later to adjust objects’ parameters.
However, the listeners only respond to a static set of search events and does
not consider user-defined events such as recording the presence (or absence)
of certain solution structures. This results in difficulty in implementing
strategies that are based on the solution structures (such as recency and
frequency based strategies). The absence of a centralized control mechanism
also poses a limitation to the framework capability. For example, when two
listeners are triggered in the same iteration, their order of execution follows a
First-In-First-Out (FIFO) sequence, thus giving no control to the algorithm
designer. It is also probable for two conflicting EventListener objects (such
as intensification and diversification) to be performed together without
designer’s intention.

206 Metaheuristics: Progress as Real Problem Solvers

9.2.2 Localizer++

The literature presented another framework known as the Localizer++
[Michel and Van Hentenryck, 1999] that incorporates Constraint Local
Search (CLS) in C++. The framework is structured into a two-level
architecture, which composes of Declarative and Search components. The
Declarative components are the core of the architecture and are used to
maintain the complex data structure in local search. In addition, it also
incorporates a Constraint Library that provides a set of frequently used
constraints, such as the AllDiff constraint which verifies that every element
in the data structure has a different value. The Search component on the
other hand, operates around the Declarative component and is procedural in
nature. Generally, this component implements the general procedure of local
search and thus could be used to implement any meta-heuristics that follow
to this general behavior (i.e. such as iterative local search and tabu search).

Localizer++ requires designers to formulate their problem into its
mathematical equivalence form in order for the framework to recognize and
subsequently manage the variables (thus achieving the genericty aspect).
Algorithm designers are required to implement the routines of the local
search such as the local moves and the selection criteria, and together with
the Constraint Library, to construct the optimizer. Due to the numerous
possible types of constraint, it is improbable for the Constraint Library to
provide all forms of constraint and thus Localizer++ copes with this
limitation by supporting the extension to the library through the addition of
invariants. The framework also supports user-defined search strategies that
are triggered at static points of the search (such as at the start or the end of
the search) rather than dynamically in response to search events. New search
procedures can be extended from Localizer++ through inheritance.

9.2.3 EASYLOCAL++

EasyLocal++ [Gaspero and Schaerf, 2001] is another object-oriented
framework that can be used as a general tool for the development of local
search algorithms in C++. EasyLocal++ relies on programming techniques
such as the “Template Method” that specifies and implements the invariant
parts of various search algorithms, and the “Strategy Method” for the
communication between the main solver and its component classes, in order
to achieve the generic aspect. The classes in EasyLocal++ can be classified
into four categories, Basic Data, Helpers, Runners and Solvers. The Basic
Data is a group of data structure with their managers and is used to maintain
the states of the search space, the moves, and the input/output data. The

A Generic Object-Oriented Tabu Search Framework 207

Basic Data classes are supplied to the other classes of the framework by
means of template instantiation. The local search problem is embodied in the
Helpers classes, which perform actions that are related to some specific
aspects of the search, such as maintaining the states or exploring the
neighborhood of a solution. The Runners represent the algorithmic core of
the framework and are responsible for performing the routine of the meta-
heuristic. Currently, EasyLocal++ supports several common meta-heuristics
such as hill climbing heuristic, simulated annealing and tabu search.

EasyLocal++ can be easily deployed by first defining the data classes and
the derived helper classes, which encode the specific problem description.
These classes are then “linked” with the required Runners and Solvers and
the application is ready to run. EasyLocal++ also supports diversification
techniques through the Kickers classes. The Kickers objects are incorporated
into the Solver and triggered at specific iteration of the search. Hence, this
mechanism relies on the knowledge of the algorithm designer to determine
the best moment to trigger the diversification. While this may be achievable
for most experience designer, it may be demanding for unfamiliar
implementer coping with a new problem. In short, the framework provides
limited support for adaptive strategies and although it could be possible for
such strategies to be incorporated, the authors do not present a clear
mechanism to realize them.

9.2.4 HOTFRAME

HotFrame [Fink and Voß, 2002] is a more matured meta-heuristics
framework implemented in C++ when compared with Easy Local++. The
framework provides numerous adaptable components to incorporate a wide
range of meta-heuristics and common problem-specific components. The
supported meta-heuristics includes basic and iterated local search, SA and
their variations, different variants of tabu search, evolutionary methods,
variable depth neighborhood search, candidate list approaches and some
hybrid methods. As a means of reducing the programming efforts of
designers, HotFrame provides several reusable data structure classes to
incorporate common solution spaces such as binary vectors, permutations,
combined assignment and sequencing and also some standard neighborhood
operations like bit-flip, shift, or swap moves. These classes can be deployed
immediately or be used as base classes for subsequent customized derived
classes. This design encourages software reuse especially for problems that
can be formulated with the components that are already presence in the
framework.

208 Metaheuristics: Progress as Real Problem Solvers

Meta-heuristics strategies can be implemented in HotFrame through the use
of templates. The idea is to incorporate a set of type parameters that can be
extended to support both problem-specific and generic strategies. A benefit
of this design is that it gives HotFrame a concise and declarative system
specification, which would decrease the conceptual gap between program
codes and domain concepts. HotFrame also adopts a hierarchical
configuration for the formulation of the search techniques in order to
separate problem-specific with the generic meta-heuristic concepts. Generic
meta-heuristic components are pre-defined in the configuration as a higher-
level control while the problem-specific definitions are incorporated inside
these meta-heuristic components to form a two level architecture (i.e. each
problem-specific strategy will be embedded to a meta-heuristic scheme).
Additionally, inheritance can be applied on these components to overwrite
parts of the meta-heuristic routine with user preferred procedure.

9.2.5 Discussion

It can be seen that the focus of the above reviewed frameworks is primarily
on relieving the mundane task of meta-heuristic routines from the algorithm
designers. TSF has a slightly different objective: TSF is designed with the
intention to support adaptive tabu search strategies. As such, in addition to
performing the basic routines of tabu search, TSF has a centralized control
mechanism to incorporate adaptive strategies. While it is true that most of
the reviewed frameworks could also support adaptive strategies, the
incorporation of such strategies may not be as straightforward (i.e. no
dedicated mechanism is built for it). For example, while HotFrame could
incorporate adaptive strategies by extending its procedures, such inheritance
often requires the designer to “re-code” some of the meta-heuristic
procedures. This may pose a problem to designers who are unfamiliar with
the internal design of the framework, i.e. the framework can no longer be
seen as a black box to the designer. TSF works differently from such
conventional design by incorporating a communication link between the
framework engine (which perform the tabu search routines) and the control
mechanism. As the search proceeds, the engine will record the current search
state and passes this information to the control mechanism. The control
mechanism then processes information to determine if actions such as
adjusting the search parameters or applying a diversification strategy are
necessary. Analogously, the control mechanism can be seen as a feedback
mechanism that adapts the framework engine to the search environment.
Such feedback control provides a centralized mechanism for designer to
collect information on the search spaces as well as to direct future search
trajectory.

A Generic Object-Oriented Tabu Search Framework 209

9.3 DESIGN AND ARCHITECTURE

9.3.1 Frameworks

Framework has a different concept from “Software Library”. In a software
library, implementers are required to design their program flow and then use
the components in the library to develop their applications. The ILOG
optimization suite [ILOG, 2003] (such as the CPLEX and Solver engines) is
an example of a well-known software library. In ILOG optimization software
library, the programmers formulate their problems as a specific
constraint/mathematical-programming model, and a predefined engine
operates on the formulated model to obtain solutions. A benefit of such
software architecture is that it does not require the programmer to specify the
algorithms to be performed on the problem. However, this can also be a
drawback, as the predefined engine offers little if no capacity for the
implementers to control of the search process.

On the other hand, in a framework, the reused code is the controller, which
provides an overall “frame” for an application. By means of inheritance, the
programmer can implement the child classes, which are subordinate to the
framework. In an informal sense, frameworks tell the programmer “Don’t
call us, we’ll call you.” In summary, while library allows sharing of low-
level codes, frameworks allow sharing of high-level concepts and control.

The essence of our proposed TSF framework revolves around four principal
considerations:

(a) Genericity
This means that the framework should allow the user to implement any
tabu search algorithm. Additionally the framework should not make any
assumption on problem type or its solution representation, thus allowing
flexibility to the formulation of applications.

(b) Reusability
The framework should adopt built-in tabu search routines that can be
easily recycled across applications. Furthermore, the algorithm procedure
should be disintegrated into distinctive interfaces so that the developed
components could be recycled easily across different applications.

(c) Extensibility
The framework should able to extend easily to support not only some
predefined tabu search strategies, but also user-defined procedures that

210 Metaheuristics: Progress as Real Problem Solvers

are specific to the problem domain. In addition, the possibility of
extending the framework to form hybrids should not be ignored.

(d) Usage Friendliness
The framework should be easy to learn and understand from an
algorithm designer and implementer perspective. It should have
unambiguous interfaces that give clarity in execution flow.

To cater for these design goals, the components of TSF are categorized into 4
components: interfaces, control mechanism, search engine, and strategies
software library (see Figure 9.1). The interfaces define the basic components
used by tabu search in an object-oriented architecture. The control
mechanism is for users to define strategies that guide the search adaptively in
response to events encountered. TSF eliminates the tedious routine task of
programming the search engine repeatedly. The search engine interacts with
the interfaces and collects information that is passed dynamically to the
control mechanism to influence future search trajectory. Finally, TSF
includes an optional Strategy Software Library consisting of a set of software
components to support various user-defined search strategies.

9.3.2 Interfaces

There are seven key interfaces that must be implemented, described as
follows.

1. The solution interface allows the user to encapsulate the data structure(s)
that represents the problem’s solution. The framework does not impose
any restriction on how the user defines the solution or the data structures
used since it never manipulates Solution objects directly.

2. The Objective Function interface evaluates the objective value of the
solution.

3. The Neighborhood Generator interface is an iterator that generates a
collection of neighbors based on the Move and Constraint interfaces.

4. The Move interface defines the move neighborhood, where it constructs
possible translations of Solution object. When the engine determines the
best move in an iteration, the Solution object is then translated to its new
state.

5. The Constraint interface computes the degree of violation for these
translations.

6. The Tabu List interface records the tabu-ed solutions or moves.
7. The Aspiration Criteria interface allows specification of aspiration

criteria for tabu-ed moves.

A Generic Object-Oriented Tabu Search Framework 211

Figure 9.1. TSF Architecture

9.3.3 Control Mechanism

Switch Box

Like many machines, a set of switches is required to operate the Search
Engine. A Switch Box is used in the framework to control the basic
operations of the search engine. The two commonly used switches are the
maximizing switch and the first-accept switch. The maximizing switch is
used to control the engine to solve a maximizing or a minimizing problem.
The First-Accept switch informs the tabu search engine to perform first
accept or best accept strategy. The best accept strategy searches through all
the feasible solutions in the neighborhood and select the best possible move.
When run time is comparatively more crucial than the solution quality, we
settle for the first neighbor with a better objective value, i.e. the first-accept
strategy. All switches are capable of changing values dynamically set by an
application.

Event Controller

It is often desirable for the search engine to respond to encountered events.

212 Metaheuristics: Progress as Real Problem Solvers

For example, a reactive tabu list would need to readjust its tenure in response
to the success or failure in obtaining a better solution during the search.
Hence we need a means of controlling the tabu search to make dynamic
readjustments. TSF uses a centralized control mechanism. It has an Event
Controller, which provides interaction between the search engine and its
interfaces. When the tabu search engine detects the occurrence of pre-
determined events, it conveys them to the Event Controller. The Event
Controller then responds to these events in accordance to strategies defined
by the user. Typically, these strategies will affect one or more of the elements
in the interfaces, which in turn, re-adjust the search strategy adopted by the
engine. For the reactive tabu list example, the number of non-improving
moves encountered can be a “triggering-event”, which causes the Event
Controller to readjust the tabu tenure based on parameters. Some default
events in TSF are as follows:

1. Tabu Search Start is triggered at the start of tabu search. Used to start a
timer to record the total time spent in doing the search.

2. Tabu Search Stop is triggered at the end of tabu search. Used to stop the
timer or to call an output program to display the results.

3. New Best Solution Found is triggered when a new best solution is found.
Used for intensification strategies.

4. Non-improving Move Made is triggered when the tabu search engine
executes a new non-improving move. Used for diversification strategies.

5. End of Iteration is triggered at the end of the iteration. This is extremely
useful for collection of search information (such as similarity of
solutions) or strategies that executed every iteration.

6. No move generated is triggered when the Neighborhood Generator
could not generate any moves.

7. No Solution Found event is triggered when the search engine could not
find a feasible solution. Used for implementing oscillating strategies.

TSF also allows users to define their own events by providing a generic
Event interface. Users need to define the triggering event and implement the
response to it. For example, suppose we want to apply Random Restart
strategy at every n number of completed iterations. To do this, we simply
need to implement an Event that is triggered at the every nth iteration. The
response to this event is to restart the tabu search with a new starting
solution. Figure 9.2 gives a fragment of code segment for such
implementation.

A Generic Object-Oriented Tabu Search Framework 213

 // Base class for the Event interface

Class Event{
 ……
 virtual void IterationEvent (TabuSearch* TS){}; }

Class RandomRestart : Event // user-implemented class
{
int max_limit = n; // User defined n iteration
int count_NonImprovingMoves;

virtual void IterationEvent (TabuSearch* TS){
if (TS->isBadMove())
int count_NonImprovingMoves++;

 if (count_NonImprovingMoves > max_limit)
 ApplyRandomRestart (TS);
}

}

Some strategies may require history information to be collected during
search. In TSF, the Event interface can be used to collect such useful
information. For instance, implementing a Frequency and Recency strategy
may require the tabu search to record the number of occurrences a sub-
structure/configuration in the solution has appeared during the search. As an
example, in the Traveling Salesman Problem, if we discover that the solution
that visits customer 4 before customer 3 occurs very frequently in local
optima, this may imply that the global optimal may contain the same sub-
route with the structure X–4–3–Y, where X and Y refer to some arbitrary
customers. In this case, the user may like to implement a soft constraint
based on this observation, which in turn will reduce the size of the
neighborhood generated. By collecting more information during the search
and consequently adaptively modifying the search strategy, we can derive a
more effective search.

9.3.4 Tabu Search Engine

The Tabu Search Engine component implements the control flow as follows:

1. Set initial solution as current and best found solution
2. Neighborhood Generator generates a list of feasible moves

Figure 9.2. Code Implementation of a User-Defined Event

214 Metaheuristics: Progress as Real Problem Solvers

3. Objective Function evaluates each move
4. Choose best non-tabu move using Tabu List and Aspiration Criteria
5. Apply Move on the current solution
6. Update Tabu List and trigger related events
7. Go to step 1 until terminating condition(s) is reached

9.3.5 Strategy Software Library (SSL)

Strategy Software Library (SSL) provides optional components for designer
to facilitate them in adding generalized strategies. By making assumptions
on the solution representation (such as permutation of integers or array of
bits), these components can be incorporated to build strategies such as
intensification among elite solutions, probabilistic diversification, candidate
lists, and very large-scale neighborhood (VLSN). Although not as powerful
as specific strategies tailored for a single problem type, these generic
components provide a quick and easy means for developers to apply them in
their search. In the following, we describe some of the components in SSL.

Probabilistic Diversification

Probabilistic diversification refers to diversifying the search when it is
caught in a local optimum. If the designer adopts a permutation or bits array
solution representation, SSL can readily supports this strategy by providing a
Random Generator that determines the parts of the solution that will be
removed in according to a preset probability distribution (such as uniformly
random distribution). These randomly chosen portions are then reconstructed
by random swapping (permutation representation) or flipping (bits array) and
later recombined.

Intensification search on Elite solutions

SSL supports this strategy by storing a list of elite solutions during tabu
search in the Elite Recorder. As solution objects inherited Solution interface,
different solution representations can be easily stored as their base class.
Each of these elite solutions is then used as a new initial solution for future
tabu search. The rationale behind this strategy is to search the elite solutions
more thoroughly and hence is classified as an intensification strategy.
Developers simply need to declare the number of elite solutions to be
collected in the preliminary search and TSF would search each of these
points more thoroughly.

A Generic Object-Oriented Tabu Search Framework 215

Very Large-Scale Neighborhood (VLSN)

VLSN [e.g. Ahuja et al., 2002] works on the principle that by generating a
larger neighborhood, the hope is to increase the probability of obtaining
better solution in a single iteration. Under the assumption that the solution
representation is a permutation of integers, this strategy usually requires
some permutation function to generate the large neighborhood. SSL provides
two functions to support this strategy: PermutationGenerator and
NeighborhoodBooster. PermutationGenerator provides the ease of
permuting a solution to construct its neighborhood. NeighborhoodBooster, is
used to increase the neighborhood size by combining multiple 2-opt moves
into k-opt moves. User can also combine this strategy with the candidate list
to keep the size of the neighborhood reasonable.

Candidate Lists

Candidates are often used to narrow the neighborhood size especially when
VLSN is involved. A possible technique is to select neighbors that meet
some certain criteria or constraint. SSL provides a Filter function that
inherits from the Constraint Interface. It receives a solution, a move and a
selection function, and “filters” unfavorable moves that do not meet the
constraint.

9.4 ILLUSTRATION

In this section, we illustrate how TSF can deploy some common user-defined
search strategies, namely Diversification, Intensification and Reactive Tabu
Search1. These simplistic examples demonstrate how events can interact and
incorporate the necessary actions to execute user-defined strategies.

9.4.1 Diversification

Diversification refers to strategies that transform one solution to a radically
different solution. Usually, this transformation involves alternating part or
the whole solution structure. When some forms of probability are involved in

＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿
1 Note that although TSF can support adaptive strategies such as diversification, it is
accomplished in a rather rudimentary fashion. Since the publication of the conference version
of this work, the authors have developed an enhanced version of TSF known as Meta-
heuristic Development Framework (MDF), in which TSF is a component of a bigger
framework (please see [Lau et al., 2004]. In MDF, strategies such as adaptive methods and
hybridization can be incorporated in a more elegant approach via the use of event handlers.

216 Metaheuristics: Progress as Real Problem Solvers

the transformation, it is known commonly as probabilistic diversification.
The greatest difficulty in executing this strategy is to decide when to apply
diversification, for if diversification is applied too often, this may result in
accidentally missing out good local optima; otherwise if diversification is
performed infrequently, the search may waste too much time exploring
potentially useless solutions. The easiest approach to decide when to perform
diversification is to execute a fixed number of iteration and then applied the
strategy. TSF easily support this strategy by implementing an event that
counts the number of iteration performed. This event performs like a
hardware counter. When the counter-event reaches zero, it will execute the
desired diversifying actions. A code fragment is shown on Figure 9.3.

Typically, this simplistic guiding rule is not very effective. An improved
strategy is then to apply diversification when the search is caught in local
optimal or experiences solution cycling. Unfortunately, both of these
situations are extremely difficult to detect accurately. There exist many
heuristics that help to predict their occurrences, and one such heuristic is to
observe the number of non-improving moves made since the last local
optimum found. This heuristic again can be easily implemented with TSF
using the event controller. Here, we implement an adaptive counter that
decrements when the search makes a non-improving move and resets itself
when a new best solution is found. A code fragment for this adaptive counter
is shown in Figure 9.4.

9.4.2 Intensification

Intensification refers to strategies that examine thoroughly on some specific
solutions. As oppose to diversification, intensifying strategies improve on the
solution quality by searching around the region close to the solution. As such,
intensification is usually performed on elite solutions. Hence, intensification
often requires two phases - the initial phase is used to identify “good”
solutions while the next phase attempts to locate new local optimum around
these identified solutions. TSF can implement this strategy using the event
controller that track two events for each phase of search respectively. An
elite solution recorder is essential to record on the elite solutions and user
can use either the provide tool in SSL or to implement their own.

In the first phase, the First-Phase event first preset a number of
iteration to collect the elite solutions. This is very similar to the counter-
event discussed in section 9.4.1. In addition, the First-Phase event
also records the solution whenever it encounters a new best-found solution.
When the counter reaches zero, the First-Phase event will notify the
event controller that it has completed its task and the event controller will
proceed to replace the First-Phase event with the Second-Phase
event.

A Generic Object-Oriented Tabu Search Framework 217

The Second-Phase event is used to performed intensification on
solution collected. One strategy in which intensification can be performed is
to use a strategy that is analogous to backtracking. In this strategy, we
conduct search on an elite solution for a fix number of iterations. If no better
solution can be within these iterations, we would backtrack to our original
solution and conduct a new search. To prevent conducting similar search,
one approach is to preserve the tabu list. However, this may require a fair
amount of memory depending on the number of iteration conducted. We
proposed another approach, which is to interchange the tabu list each time
we backtrack. The rationale behind this is that tabu list is used to guide the
search and hence by using different tabu lists and interchanging them, we
expect the search to move in different direction each time we revert to the
original elite solution. A pseudo code for the events in both phases is
presented in Figure 9.5.

9.4.3 Reactive Tabu Search

Our last illustration is on reactive tabu search, where we explain how two
strategies can be incorporated into a single event. Reactive tabu search refers
to strategies that adaptively adjusting tabu search parameters according to
the search trajectory. Many complex heuristics have been proposed with this
strategy, each with its own assumptions on the solution space. In fact a
popular analogy is to visualize the solution space as a multi-dimensional
terrain. The factors include objective value, similarity in the solution
structure and time. Based on these factors, the reactive tabu search attempts
to navigate along the terrain toward new local optima. In order to simplify
our illustration, we only consider two factors, time and objective value and
the parameter adjusted is limited to the tabu tenure. Time simply refers to
number of iterations performed. Our simplified strategy works as follows.
When we encounter a series of non-improving we lengthen our tabu tenure
so as to prevent solution cycling. On the other hand, when we encounter a
new best solution, we shorten our tenure in order to perform intensification.
Hence we use TSF to implement an event called Reactive-Event to
handle the two scenarios. First, when we encounter a series of non-
improving moves, we will increase the tabu tenure by some x amount. On
the other hand, when a new best solution is encountered, we will revert the
tenure, discarding any move that have been kept for more than n iterations.
The pseudo code for this implementation can be found in Figure 9.6.

218 Metaheuristics: Progress as Real Problem Solvers

Class CounterEvent : Event // user-implemented class
{
int startValue = n; // User defined n iteration
virtual void IterationEvent (TabuSearch* TS){

 startValue = startValue - 1;
if (startValue <= 0){
ApplyDiversification(TS->getCurrentSolution())
StartValue = n; // reset counter

}
}

}

Class AdaptiveCounterEvent : Event
{
int startValue = n; // User defined n moves
virtual void NewBestSolutionFound (TabuSearch* TS){
 StartValue = n; // reset counter
}
virtual void NonImprovingMoveMade (TabuSearch* TS){

 startValue = startValue - 1;
if (startValue <= 0){
// Diversification is a user implemented method

// in class AdaptiveCounterEvent

ApplyDiversification(TS->getCurrentSolution())
StartValue = n; // reset counter

}
}

}

 Figure 9.4: Code fragment implementing an adaptive counter event.

Figure 9.3: Code fragment implementing a counter event.

A Generic Object-Oriented Tabu Search Framework 219

Class FirstPhaseEvent : Event
{
int maxIter = n; // Maximum number of iteration
virtual void NewBestSolutionFound (TabuSearch* TS){
 EliteRecorder.record(TS->getCurrentSolution());
}
virtual void IterationEvent (TabuSearch* TS){

 maxIter = startValue - 1;
 if (maxIter <= 0)
 TS->getEventController().NextEvent();
}

}
Class SecondPhaseEvent : Event
{
int allowedIter = x;
virtual void NewBestSolutionFound (TabuSearch* TS){
 allowedIter = x;
}
virtual void IterationEvent (TabuSearch* TS){

 allowedIter = startValue - 1;
 if (allowedIter <= 0) BackTrack(TS);
}

}

Class FirstPhaseEvent : Event
{
int badMoveLimit = n; // Maximum allowed bad moves
int increment = x; // Maximum allowed bad moves
int defaultTenure = t; // Maximum allowed bad moves
virtual void NewBestSolutionFound (TabuSearch* TS){
 TS->getTabuList().setTabuTenure(t);
 BadMoveLimit = n; // reset limit
}
virtual void NonImprovingMovesMade (TabuSearch* TS){

 badMoveLimit = badMoveLimit - 1;
 if (badMoveLimit <= 0) {
 int tenure = TS->getTabuList().getTabuTenure();
 TS->getTabuList().setTabuTenure(tenure+x);
 }
}

}

Figure 9.5: Code fragment implementing intensification strategy.

Figure 9.6: Code fragment implementing simplified reactive tabu search.

220 Metaheuristics: Progress as Real Problem Solvers

9.5 EXPERIMENTATION

In this section, we report on experimental results on VRPTW and QAP. It is
interesting to first observe that a senior undergraduate computer science
student proficient at C++ programming took 1 week to learn TSF by
studying the documentation and interacting with the TSF developers. He
took another 1 week to first implement an application (QAP), and 3 days to
implement a second application (VRPTW).

9.5.1 Vehicle Routing with Time Windows (VRPTW)

We benchmark with Solomon’s instances [Solomon, 1987]. 5 different
moves were implemented: Relocate, Exchange, Reverse, Cross and
Distribute. Reverse is used to reverse the sequence of customers within a
same route and is useful when the time window is loose. Cross is an
extended Exchange where a sub-section of a route is swapped with another.
Distribute attempts to reduce a vehicle by distributing the vehicle’s
customers to other vehicles. The design of these moves exploits the
advantage of minimizing the distance without minimizing vehicles. With the
exception of Relocate and Distribute, the other moves are designed to
minimize the total distance traveled. The tabu list records on the previously
accepted moves and a different tenure is set for each type of moves. The
values of the tenure are Relocate: 1000, Exchange: 1000, Reverse: 300,
Cross: 500 and Distribute: 400 for a problem size of 100 customers. We also
adaptively apply intensification or diversification strategies based on the
quality of the solutions found. Based on the default events, each solution is
classified into two categories: improving solutions and non-improving
solutions. An improving solution has an objective value that is better than all
previously found solutions. Non-improving solution refers to solutions
whose objective value is the same or poorer than the best-found solution.
TSF adaptively alternates between intensification and diversification by
observing the frequency of non-improving solutions. Diversification will be
applied using a greedy heuristic when the frequency of non-improving
solution exceeds a certain threshold. Appendix A summarizes our
experimental results. TSF Results are results obtained by TSF; Best Results
are the best-published results.

9.5.2 Quadratic Assignment Problem (QAP)

In QAP, the Solution can be represented as a permutation on a set of n
facilities. A typical move often involves swapping two elements in the
solution. [Ahuja et al., 2002] proposed a VLSN strategy for QAP, which
implements complex moves involving multiple swaps. Generally, VLSN

A Generic Object-Oriented Tabu Search Framework 221

produces better solutions than typically swap move. Following the authors’
proposal, we demonstrate that TSF is capable supporting this strategy
through the use of two software components: PermutatorGenerator and
NeighborhoodBooster. The PermutatorGenerator is used to construct the
neighborhood from a solution by generating all the possible permutations.
The NeighborhoodBooster then performs two further steps to generate a
larger neighborhood. First, a selection criterion is used to accept only elite
neighbors. These elite neighbors are then further permutated to result in
more neighbors. The two steps are repeated for k times (and thus known as
k-opt). The tabu list in this case, records the previously visited solution and
has a tenure of 0.6n, where n is the number of facilities.

We conducted our experiments on a set of test cases taken from the QAPLib
[Burkard et al., 1991], and the results are summarized in Appendix B. Gap
is calculated as Gap = (Best Result – TSF Result)/Best Result *100%. From
the table, we can see that TSF performs well for most of test cases. In Chr
test cases, except for Chr20a and Chr25a, the results obtained are optimal;
the results for other test cases are within a small gap from optimality.

9.6 CONCLUSION

In this paper, we presented TSF, a C++ object-oriented framework for tabu
search. TSF imposes no restriction on the domain representation and yet
provides a well-defined programming scheme for customizing the search
process. TSF differs from other frameworks in that it offers users the
flexibility of incorporating various tabu search strategies through the Event
Controller as the centralized control mechanism without compromising too
much on the run-time efficiency and solution quality. The Strategies
Software Library further supports the development of enhancing solution
quality. Through the implementations of TSF on VRPTW and QAP, we
illustrate that good results can be obtained with the framework within
reasonable implementation time as well as good run-time.

TSF is one component within the Meta-Heuristics Development Framework
(MDF) [Lau et al., 2004] that is work-in-progress. MDF encompasses other
meta-heuristics such as the Simulated Annealing, Genetic Algorithms, and
Ants Colony Framework. MDF aims to provide a generic, robust and user-
friendly programming framework for promoting the development and
integration of meta-heuristics algorithms. It also provides a platform for
researchers to equitably compare and contrast meta-heuristics algorithms.

222 Metaheuristics: Progress as Real Problem Solvers

ACKNOWLEDGEMENT

The authors would like to thank the referees of the 5th Meta-Heuristic
International Conference, and the referees of this journal version.

APPENDIX A:
Experimental results on VRPTW test cases

Test Cases Best
Results

Published
by

TSF Results

R101 19/1650.80 RT 19/1686.24
R102 17/1486.12 RT 18/1493.31
R103 3/1292.85 HG 14/1301.64
R104 10/ 982.01 RT 10/1025.38
R105 14/1377.11 RT 14/1458.60
R106 12/1252.03 RT 12/1314.69
R107 10/1113.69 CLM 10/1140.27
R108 9/ 964.38 CLM 10/ 994.66
R109 11/1194.73 HG 12/1207.58
R110 10/1124.40 RGP 11/1166.65
R111 10/1096.72 RGP 11/1172.66
R112 9/1003.73 HG 10/1041.36
R201 4/1252.37 HG 4/1366.34
R202 3/1191.70 RGP 3/1239.22
R203 3/ 942.64 HG 3/1000.29
R204 2/ 849.62 CLM 3/ 781.86
R205 3/ 994.42 RGP 3/1063.29
R206 3/ 912.97 RT 3/ 955.34
R207 2/ 914.39 CR2 3 /866.35
R208 2/ 731.23 HG 2/1016.07
R209 3/ 909.86 RGP 3/ 979.30
R210 3/ 955.39 HG 3/ 968.32
R211 2/ 910.09 HG 3/ 865.51
RC101 14/1694.94 TBGGP 15/1698.50
RC102 12/1554.75 TBGGP 13/1551.32
RC103 11/1262.02 RT 11/1371.40
RC104 10/1135.48 CLM 10/1187.97
RC105 13/1633.72 RGP 14/1618.01
RC106 11/1427.13 CLM 12/1434.33
RC107 11/1230.54 TBGGP 11/1266.92
RC108 10/1139.82 TBGGP 10/1273.12
RC201 4/1406.94 CLM 4/1445.00
RC202 3/1389.57 HG 4/1204.45
RC203 3/1060.45 HG 3/1091.71
RC204 3/ 799.12 HG 3/ 826.27
RC205 4/1302.42 HG 4/1469.25
RC206 3/1153.93 RGP 3/1259.12
RC207 3/1062.05 CLM 3/1127.19
RC208 3/ 829.69 RGP 3/ 937.78

A Generic Object-Oriented Tabu Search Framework 223

Legend:
CR2 W. Chiang and R. A. Russell, A Reactive Tabu Search Metaheuristic for

Vehicle Routing Problem with Time Windows, INFORMS Journal on
Computing, 8:4, 1997

CLM J. F. Cordeau, G. Laporte, and A. Mercier, "A Unified Tabu Search
Heuristic for Vehicle Routing Problems with Time Windows," Journal of
the Operational Research Society 52, 928-936, 2001

HG J. Homberger and H. Gehring, "Two Evolutionary Metaheuristics for the
Vehicle Routing Problem with Time Windows," INFOR, 37, 297-318,
1999

RT Rochat, Y. and E. Taillard, Probabilistic Diversification and Intensification
in Local Search for Vehicle Routing, Journal of Heuristics, 1, 147-167,
1995

RGP L.M. Rousseau, M. Gendreau and G. Pesant, "Using Constraint-Based
Operators to Solve the Vehicle Routing Problem with Time Windows,"
Journal of Heuristics, 8, 43-58, 1999

TBGGP E. Taillard, P. Badeau, M. Gendreau, F. Geurtin, and J.Y. Potvin, "A Tabu
Search Heuristic for the Vehicle Routing Problem with Time Windows,"
Transportation Science, 31, 170-186, 1997

224 Metaheuristics: Progress as Real Problem Solvers

APPENDIX B:
Experimental results on QAP test cases

Test cases Best results TSF results Gap
Chr12a 9552 9552 0.0
Chr12b 9742 9742 0.0
Chr12c 11156 11156 0.0
Chr15a 9896 9896 0.0
Chr15b 7990 7990 0.0
Chr15c 9504 9504 0.0
Chr18a 11098 11098 0.0
Chr18b 1534 1534 0.0
Chr20a 2192 2222 1.5
Chr20b 2298 2298 0.0
Chr20c 14142 14142 0.0
Chr22a 6165 6165 0.0
Chr22b 6194 6194 0.0
Chr25a 3796 3920 4.0
Bur26a 5426670 5432488 0.1
Bur26b 3817852 3824458 0.1
Bur26c 5426795 5427731 0.0
Bur26d 3821225 3821275 0.0
Bur26e 5386879 5387728 0.0
Bur26f 3782044 3782246 0.0
Bur26g 10117172 10118787 0.0
Bur26h 7098658 7098658 0.0
Nug12 578 578 0.0
Nug14 1014 1016 0.2
Nug15 1150 1152 0.2
Nug16a 1610 1610 0.0
Nug16b 1240 1240 0.0
Nug17 1731 1742 0.6
Nug18 1930 1930 0.0
Nug20 2570 2570 0.0
Nug21 2438 2456 0.7
Nug22 3596 3596 0.0
Nug24 3488 3500 0.3
Nug25 3744 3744 0.0
Nug27 5234 5348 2.2
Nug30 6124 6128 0.0
Sko42 15812 16020 1.3
Sko49 23386 23486 0.4
Sko56 34458 34664 0.6
Sko64 48498 48838 0.7
Sko72 66256 66702 0.7
Sko90 115534 116168 0.5
Sko100a 152002 153610 1.1
Sko100b 153890 155318 0.9
Sko100c 147862 149036 0.8
Sko100d 149576 151756 1.5
Sko100e 149150 150996 1.2
Sko100f 149036 150906 1.3

A Generic Object-Oriented Tabu Search Framework 225

Legend:
Chr: N. Christofides and E. Benavent. An exact algorithm for the quadratic

assignment problem. Operations Research, 3:5, 760-768, 1989
Bur: R.E. Burkard and J. Offermann. Entwurf von Schreibmaschinentastaturen

mittels quadratischer Zuordnungsprobleme. Zeitschrift für Operations
Research, 21, B121-B132, 1977

Nug: C.E. Nugent, T.E. Vollman, and J. Ruml. An experimental comparison of
techniques for the assignment of facilities to locations. Operations
Research, 16, 150-173, 1968

Sko: J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem.
ORSA Journal on Computing, 2:1, 33-45, 1990

 REFERENCES

[Ahuja et al., 2002] R. K. Ahuja, J. B. Orlin, O. Ergun, and A. Punnen A
Survey of Very Large-Scale Neighborhood Search for the Quadratic
Assignment Problem, Discrete Applied Mathematics 23, 75-102, 2002.

[Burkard et al., 1991] R. E. Burkard, S.E. Karisch and F. Rendl. QAPLIB -
A Quadratic Assignment Problem Library, European Journal of Operational
Research, 55:99, 115-119, 1991.

[Fink and Voß, 2002] A. Fink, S. Voß: HotFrame: A Heuristic Optimization
Framework. In: S. Voß, D.L. Woodruff (Eds.), Optimization Software Class
Libraries, Kluwer, Boston, 81-154, 2002.

[Glover and Laguna, 1997] F. Glover and M. Laguna, Tabu Search, Reading,
Kluwer Academic Publishers, Boston/Dorderecht/London, 1997.

[Gaspero and Schaerf, 2001] L. Di Gaspero and A. Schaerf, EasyLocal++:
An object-oriented framework for flexible design of local search algorithms,
Reading, Kluwer Academic Publishers, 2001.

[Harder, 2003] R. Harder, IBM OpenTS Homepage, see
http://opents.iharder.net, 2003.

[ILOG, 2003] ILOG S.A. www.ilog.com, 2003.

[Lau et al., 2004] H. C. Lau, M. K. Lim, W. C. Wan and S. Halim. A
Development Framework for Rapid Meta-heuristics Hybridization, Proc.

226 Metaheuristics: Progress as Real Problem Solvers

28th Annual International Computer Software and Applications Conference
(COMPSAC), 362-367, Hong Kong, 2004.

[Michel and Hentenryck, 1999] L. Michel and P. Van Hentenryck.
Localizer++: A modeling language for local search. INFORMS Journal of
Computing, 11, 1-14, 1999.

[Solomon, 1987] M. M Solomon. Algorithms for Vehicle Routing and
Scheduling Problem with Time Window Constraints, Operations Research
35, 254 – 265, 1987.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2005

	A generic object-oriented Tabu Search Framework
	Hoong Chuin LAU
	Xiaomin JIA
	Wee Chong WAN
	Citation

	Microsoft Word - mic03-049.doc

