
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2004

Toolglasses, marking menus, and hotkeys: a
comparison of one and two-handed command
selection techniques
Daniel L. ODELL
University of California, Berkeley

Richard C. DAVIS
University of California, Berkeley, rcdavis@smu.edu.sg

Andrew Smith
University of California, Berkeley

Paul K. Wright
University of California, Berkeley

DOI: https://doi.org/9781568812274

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ODELL, Daniel L.; DAVIS, Richard C.; Smith, Andrew; and Wright, Paul K.. Toolglasses, marking menus, and hotkeys: a comparison
of one and two-handed command selection techniques. (2004). GI '04 Proceedings of Graphics Interface 2004. 17-24. Research
Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13239842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/9781568812274
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F815&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Toolglasses, Marking Menus, and Hotkeys: A Comparison of One and
Two-Handed Command Selection Techniques

Daniel L. Odell1 Richard C. Davis2 Andrew Smith1 Paul K. Wright1

1Berkeley Manufacturing Institute, UC Berkeley

Department of Mechanical Engineering
Berkeley, CA 94720-1740, USA
dano@kingkong.me.berkeley.edu

2Group for User Interface Research, UC Berkeley
Computer Science Division

Berkeley, CA 94720-1776, USA
rcdavis@cs.berkeley.edu

Abstract

This paper introduces a new input technique, bimanual
marking menus, and compares its performance with
five other techniques: static toolbars, hotkeys, grouped
hotkeys, marking menus, and toolglasses. The study
builds on previous work by setting the comparison in a
commonly encountered task, shape drawing. In this
context, grouped hotkeys and bimanual marking menus
were found to be the fastest. Subjectively, the most pre-
ferred input method was bimanual marking menus.
Toolglass performance was unexpectedly slow, which
hints at the importance of low-level toolglass imple-
mentation choices.

Key words: Bimanual interfaces, two-handed inter-
faces, toolglass, bimanual marking menus, command
selection.

1 Introduction
People naturally use two hands when performing physi-
cal operations, but standard computer interfaces make
use of only one pointing device. Research in bimanual
(or, two-handed) interfaces has shown that the presence
of pointing devices in both hands can lead to more natu-
ral interaction.
Bimanual interfaces can improve intuitiveness by:
• Enabling more input methods – allowing the body

to make virtual manipulations that more closely
match physical manipulations.

• Enabling more sensory feedback – such as utilizing
body awareness (proprioception).

Bimanual interfaces can improve efficiency by:
• Facilitating parallel input – enabling multiple si-

multaneous input streams, thereby reducing overall
input time.

Bimanual interfaces can improve comfort by:
• Splitting workloads between two limbs – reducing

the load on a single limb.
• Providing new body positions and motions – poten-

tially providing more comfortable input.

 Taking advantage of these potential benefits re-
quires careful interface design. Previous studies have
shown that poorly designed bimanual interfaces can be
inferior to standard one-handed interfaces [9, 14]. This
study builds on previous work by comparing traditional
and new techniques not previously compared together .
• One-handed techniques

 Standard Toolbars and Marking Menus
• Keyboard/Pointer bimanual techniques

 Mapped Hotkeys and Grouped Hotkeys
• Dual pointing device bimanual techniques

Toolglasses and Bimanual Marking Menus
 Bimanual marking menus are a new technique that
allows users to manipulate objects with one hand while
issuing commands in parallel with the other. The study
compares the six techniques above in the context of a
simple shape drawing task. This task was chosen for its
similarity to commonly encountered tasks. For all
methods, completion time and error rates were re-
corded, and qualitative feedback was collected.
 The following section reviews previous work in
bimanual interface metaphors and related quantitative
studies. Then, the experimental method is described in
depth. After a brief look at the participants and envi-
ronment, results are presented and discussed. The pa-
per closes with conclusions and future work.

2 Previous Work
Buxton and Myers [5] were among the first to demon-
strate the potential of bimanual interfaces. They found
that experts of their system performed a naviga-
tion/selection task 15% faster than experts using a simi-
lar one-handed system. Further, they found that as the
percentage of parallel activity (i.e., the time that both
hands were moving simultaneously) increased, input
speed also increased. Recent research has explored bi-
manual interfaces in other contexts.

2.1 Bimanual Interface Metaphors
Interface metaphors can guide the design of virtual in-
terfaces that more closely map to physical manipula-
tions. The pointer is so well established that few de-

signers pause to think of the interface metaphors it uses.
Metaphors for bimanual interfaces, however, are still
evolving. This section describes commonly used bi-
manual metaphors.

 Independent hands
A common metaphor treats the pointer as the user’s
hand, capable of pointing at and “touching” objects on
the screen. Thus, a simple bimanual interface metaphor
might treat a pair of pointers as two independent hands.
This approach fully enables parallel input, while main-
taining maximum versatility for each hand. However, a
study by Kabbash, et al. [9] demonstrated that two
completely independent cursors can lead to reduced
performance. They found that cognitive load of the
interface increased by splitting users’ attention between
two separate areas of the display.
 Nevertheless, independent manipulations show po-
tential in some applications [14]. For example, one
area that shows promise is shape editing [8]. With two-
handed “stretchable” shapes, users have much more
control of size, form, and position. This can be espe-
cially helpful for splines, which have multiple, non-
intuitive control handles. This approach has also been
extended to 3D volume manipulation using two ma-
nipulators with six degrees of freedom [12].

 The Kinematic Chain
In 1987, Yves Guiard presented the Kinematic Chain
Theory [8], a theoretical framework regarding the way
that humans use their two hands. If the right hand is
dominant, the basic tenets of the Kinematic Chain The-
ory are as follows:
Right-to-left spatial reference - the left hand sets the
frame of reference for the action of the right hand.
Left-hand precedence in action - the sequence of mo-
tion should be left followed by right.
Left-Right scale differentiation - the granularity of ac-
tion of the left hand is coarser than the right.
 For the general case, “left hand” and “right hand”
are changed to “non-dominant hand” (NDH) and
“dominant hand,” (DH). Guiard performed several
experiments to support his theory. For example, Guiard
observed that people tend to use their non-dominant
hand to position paper during handwriting. He found
that handwriting speed was reduced by 20% when users
were not allowed to use their non-dominant hand to re-
position the paper during writing. In the Kinematic
Chain Metaphor, then, the NDH sets the frame of refer-
ence for the dominant hand. Several studies since then
have supported the benefits of using this metaphor in
bimanual interfaces [2,9,10].

 Parameter and Command
Another bimanual interface metaphor that has received
less attention is that of Parameter/Command. The idea
behind this approach is that one hand is used to manipu-
late parameters, while the other is used for command
selection [3]. This is similar to how humans perform
many common physical manipulations. While stapling,
for example, one hand positions the paper stack, while
the other hand selects the “staple” operation.
 Many aspects of the Parameter/Command metaphor
are compatible with that of the Kinematic Chain. In
particular, the hand used for command selection can
provide a coarser motion, and set the frame of reference
(in this case, the mode of operation). These approaches
have been successfully coupled (e.g., in Toolglass [2]).
 Also the Parameter/Command metaphor is the basis
for the most widely used form of bimanual interfaces:
hotkeys. In a recent study by McLoone et al. [13] both
dedicated and chorded hotkeys were faster than the
pointer/toolbar interface. Since hotkeys provide in-
creased input parallelism and reduce the need for
pointer motions, this result is not surprising.
 While few studies have explicitly acknowledged the
Parameter/Command bimanual metaphor, several have
implemented it in command selection experiments
[1,6,9] and demonstrated its benefits. As it seems to be
one of the less explored avenues for bimanual computer
interfaces, this metaphor was selected for further study.

2.2 Previous Command Selection Studies
The study presented here roughly follows the pattern set
by two previous studies. Dillon et al. [6] compared
toolbar selection speed and error rates when using one
mouse and two mice. Users selected either a blue line
or a red line from a toolbar to perform a connect-the-
dots task. The results showed two-handed command
selection techniques to be slightly faster than the one-
handed technique.
 Kabbash et al. [9] conducted a similar study, but
used a trackball in the non-dominant hand and also
tested palette and toolglass techniques. The experimen-
tal task was very similar to Dillon’s, but included four
color choices. Two independent cursors were found to
be slightly slower than one cursor. The palette was no
faster than the standard, one-handed toolbar, but the
toolglass performed about 16% faster than the toolbar.

It is worth noting that many of the benefits of bi-
manual interfaces come from higher level activities,
such as “chunking” command and parameter selection
[4]. The benefits of chunking have been well docu-
mented [14,10] and should be considered in any real-
world implementation. As in the studies above, this
study excludes chunking in order to focus on command

selection in particular. Still, both command and pa-
rameter selections are used to simulate real-world tasks.

3 Method
The study presented here used two mice and re-tested
the two fastest methods from Kabbash’s study: toolbars
and toolglasses. The present study also compared
marking menus, hotkeys, and bimanual marking menus.
The experimental task was a shape drawing task, rather
than a connect-the-dots task. This task was selected to
imitate common graphics tasks.

3.1 Shape Drawing Task
Command selection techniques were compared by lead-
ing subjects through a series of shape drawing trials for
each technique. Each trial had the following steps:
1. Pause Screen: Gives a clear break between trials. A

mouse click moves to the next screen.
2. Homing Screen: The dominant cursor automatically

homes to screen center, and subjects click to con-
tinue. This gives experimental control over shape
position relative to initial cursor position.

3. Draw: Subjects select a command (line, rectangle, or
oval) and draw a matching shape on top of a dis-
played target shape.

4. Repeat: Selecting the wrong command or “missing”
the target shape records an error. Subjects must re-
peat until successful, but only one error is recorded.

 All shapes were drawn by clicking on the initial
control point, stretching the shape (with the mouse but-
ton depressed) to the second control point, and releas-
ing the mouse button. As shown in Figure 1, drawing
an oval is analogous to drawing a rectangle, but with
fewer visual cues for alignment (the bounding box is
not displayed). A shape control point target tolerance
of 2.4% of screen size was used for error calculations.
 This task simulated disconnected drawing opera-
tions similar to those encountered when modifying a
diagram with modern graphics software. Unlike the
connect-the-dots task, this task does not exploit spatial
or temporal locality between operations. Time was
measured from the disappearance of the homing screen
to the mouse release on the second control point. If the
first attempt to draw a target shape failed then the trial
was recorded as an error, and excluded from timing
analysis. No distinction was made between command

selection errors and parameter specification errors.

 Static Toolbars (TB)
The first input method was the standard mouse and
static toolbar interface where a single pointer provides
all input commands. Using this method, a user moved
the pointer from the center of the screen to the static
toolbar in the upper-left hand corner of the screen. The
user then clicked on the desired shape to draw, and pro-
ceeded to draw the shape by clicking on one of the
shape’s control points, dragging over the shape, and
releasing the button to specify the second control point.
Since this method is the current standard, it was used as
the reference input method.

 Hotkeys – Mapped (HKM) and Grouped (HKG)
The second and third methods implemented two flavors
of hotkeys: mapped hotkeys and grouped hotkeys.
Mapped hotkeys have a cognitive mapping between the
key letter and the name of the command that they repre-
sent. This mapping may require the user to reposition
hands to reach the keys. Key ‘R’ was used to issue the
‘rectangle’ command, ‘O’ for ‘oval’, and ‘L’ for ‘line.’
 Grouped hotkeys have no cognitive mapping be-
tween the name of the command and the key letter, but
are instead grouped so that they can all be reached
without the need to reposition the hand. The number
keys ‘1’, ‘2’, and ‘3’ were used for lines, rectangles,
and ovals respectively. Both hotkey methods required
the user to select the command hotkey, while (in paral-
lel) moving the pointer from the homing position to
begin drawing.

 Toolglass (TG)
The fourth command method was a toolglass like that
presented by Bier, et al [2]. Using this method, the
non-dominant hand controlled the position of a tool-
glass (essentially a see-through movable toolbar) in the
workspace. The user then clicked through the toolglass
(with the dominant hand’s pointer), simultaneously
specifying the command on the toolglass as well as the
first control point. The second control point was then
specified as usual.

 Standard Marking Menus (MM)
The fifth and sixth modes of input both implemented
marking menus. Marking menus are a form of pie
menus, which pop up in a radial pattern around the cur-
sor when a button is clicked. With marking menus, the
menu does not pop up immediately, allowing com-
mands to be issued quickly from memory without the
command menu covering the workspace. After 333 ms,
the menu pops up to assist users who have not yet

 a) L

ine b) Rectangle c) Oval

Figure 1: Two control points specify shape, size, and
position for all three shapes.

Target Shape

Proto Shape

Command Pie Menu

Command
Selection Mark

memorized the command locations. The name “mark-
ing menus” refers to commands leaving a marked trail
on the screen, giving the user visual feedback.
 The test software issues commands when the com-
mand cursor crosses the inner boundary of the pie
menu, whether the menu has appeared or not. Since no
button click is required, this implementation of marking
menus also resembles ‘control menus’ [15]. A single
button on the dominant mouse was used both for menu
selection and shape drawing.
 The fifth input mode implemented standard one-
handed marking menus. Using this method, the user
performed command and drawing operations sequen-
tially. First, the user would click anywhere on the
screen and select the desired command as described
above. Once the desired command was selected, the
shape was drawn.

Figure 2: Drawing and selecting the oval command
with the bimanual marking menu.

 Bimanual Marking Menus (BMM)
The sixth mode was an experimental mode following
the Parameter/Command metaphor. Bimanual marking
menus extend traditional marking menus by allowing
the left (or non-dominant) hand to select a command
while the right specifies shape control points (not unlike
the “marking keys” method [1]). To draw a shape, the
user first clicks on a shape control point (the first pa-
rameter) with the right-handed cursor, which causes a
pie menu to become active for command selection with
the left hand. Additionally, the pie menu becomes visi-
ble after 333 ms. Once the menu is active, the right
hand moves toward the second control point while the
left selects the command in parallel, as shown in Figure
2. There were two motivations for taking this design
approach over standard marking menus:
1. Issuing commands and selecting control points could

be performed in parallel, rather than sequentially.
This was expected to improve overall speed.

2. Following the object-command metaphor, one hand
controlled only command selection, while the other
specified only control points. Since hands were not
required to shift between these operations, it was ex-
pected that the interface would be more intuitive.

3.2 Experimental Design
The independent variables for this experiment include:

Mode: Static Toolbar (TB), Grouped Hot Keys (HKG),
Mapped Hot Keys (HKM), Toolglass (TG), Marking
Menu (MM), Bimanual Marking Menu (BMM)

Shape: Line, Rectangle, Oval

Size: 220 pixels on diagonal, vs. 440 pixels on diagonal

Position: 128 pixels vs. 256 pixels from screen center

 There were 16 repetitions for each condition, broken
into eight sequential blocks (of 24 shapes) used to track
learning effects as users became more familiar with the
input methods. The measured variables were shape
completion time, and number of mouse clicks per
shape. Using a within-subjects design, the null hy-
potheses that were tested included:

H01: There was no difference in average completion
time between input methods.

H02: There was no difference in learning rate between
input methods. Learning rate was calculated by meas-
uring the improvement in average completion time over
the course of the experiment.

H03: There was no difference in error rate between
input methods. If a shape was not drawn in the mini-
mum number of mouse clicks, an error was recorded,
and the error trial’s time was excluded from the com-
pletion time analysis.

 Testing followed a prescribed order. For each input
method, eight blocks of trials were given, in which the
shape, size, repetition, and position were randomized.
Input methods were presented in randomized order,
with the constraint that marking menus and bimanual
marking menus were separated by three or more input
methods (to reduce cross-learning, as both methods use
the same menu). In addition, mapped and grouped hot-
keys were separated by two or more input methods to
reduce boredom. Note that it was assumed that shape
direction from the homing point had no effect on com-
pletion time. This assumption was based on the original
formulation of Fitts’ Law [7], which accurately predicts
that pointing time is solely a function of target distance
and size, and ignores direction.

0

1000

2000

3000

4000

5000

6000

TB HKM HKG MM BMM TG

Input Method

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
(m

s)

Block 1-2 Block 7-8

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

Input Method

N
or

m
al

iz
ed

 C
om

pl
et

io
n

Ti
m

e
(%

 o
f T

B
)

 HKM HKG MM BMM

TG
Faster

is
better

Figure 4: Completion time normalized to Toolbars

4 Participants and Environment
All testing was performed with two standard ball mice
(one for each hand), and a standard 101-key keyboard.
These choices were felt to best represent the standard
workstation setup, easily and inexpensively upgraded to
enable bimanual capabilities. Right mouse speed was
set to 5 out of 11, with ‘low’ acceleration in Win2K.
Left mouse speed was controlled by the testing soft-
ware, and set to a C:D gain of about 1:6, roughly
matching the speed of the right mouse. The testing
system used a 19” monitor set to 1024x768 resolution.
 Twelve volunteer engineering graduate and under-
graduate students participated in this study. All had
extensive previous computer experience, and used the
mouse primarily with their right hand. Eleven partici-
pants were male; one was female. Student ages ranged
from 21 to 31. A thirteenth participant’s data was dis-
carded due to an extremely high error rate (30% for
Toolbar, about 3 times higher than average), and the
fact that he completed only 7 of 8 blocks for one of the
input modes.

5 Results
The average completion times for blocks 1 and 2 c (nov-
ice performance) and blocks 7 and 8 (practiced per-

formance) are shown in Figure 3. Error bars for all
graphs represent standard deviations. As the focus of
this study is practiced performance, completion time
results are presented for only blocks 7-8 in Table 1.
Data were analyzed with one-way ANOVA and follow-
up Bonferroni t-tests (α=.05) to test the three hypothe-
ses. H01: For completion time, the data strongly refute
the null hypothesis (F5,3161=188.98, p<.0001). H02:
For learning rate, the data refute the null hypothesis
(F5,66=2.76, p<.05). H03: For error rate, the data does
not refute the null hypothesis (F3,380=2.51, p>.05).
Measured completion times were normalized to the
Toolbar completion time (the reference method); the
normalized values are plotted in Figure 4.

Figure 3: Completion time by block

 Error rate was calculated as the percentage of trials
for which target shapes were not correctly drawn on the
first attempt. Error rates for the hotkey techniques do
not appear because they were not captured by the test
software. Oval trials accounted for roughly 70% of all
errors. This is not surprising, since ovals display fewer
cues for alignment, making them more difficult to draw.
 Learning rate was calculated as the percent reduc-
tion in average completion time between the first two
blocks and the final two blocks of the method trial.
Figure 5 shows how learning improved average com-
pletion time for each device from block 1 to block 8.
 At the conclusion of the experiment, participants

Input Method Toolbar (TB) Toolglass (TG) Marking
Menu (MM)

Bimanual
Marking

Menu (BMM)

Hotkeys
Mapped
(HKM)

Hotkeys
Grouped
(HKG)

Completion Time (ms) 3616 a 4067 3206 2887 b 3529 a 2846 b

Standard Deviation 731 1052 620 726 849 642

Total Error Rate (%) 9.98% 8.29% 10.07% 10.98% N/A N/A

Standard Deviation 6.93% 6.06% 7.76% 6.92% N/A N/A

Learning Rate (%) 5.53%* 14.11% 19.29%* 15.64% 10.21% 13.51%

Standard Deviation 5.82% 7.33% 14.24% 7.22% 8.62% 12.89%

Table 1: Experimental results. All completion time differences are significant (p<.05) except pairs a and b,
* denotes significant learning difference (p<.05)

were asked to rank the six input methods and respond to
short-answer questions. Ranking results are shown in
Table 2, and differences are significant (Kendall’s W =
.549, Χ^2 (5) = 32.95, p<.05). Other user comments
appear in the following discussion.

6 Discussion
Of all the tested input methods, Grouped Hotkeys and
Bimanual Marking Menus were found to be the fastest.
Both were significantly faster than Toolbars, and nei-
ther was significantly faster than the other. Toolglasses
were found to be the slowest overall. It is interesting to
note that the subjective rankings closely follow the
quantitative speed rankings.
 The performance of Static Toolbars was slightly
below average, in terms of completion time, error rate
and qualitative ranking. Static Toolbars also demon-
strated the smallest learning improvement, due most
likely to their ubiquity in today’s interfaces. Overall,
these results support our intuition that newer command
selection should be considered. The implications of this
study for other promising methods are explored further
in the following sections.

6.1 Toolglass slower than Static Toolbars?
This implementation of Toolglasses was found to be
significantly slower than Static Toolbars. This contra-
dicts the findings of Kabbash et. al. [9], whose study
also compared toolbars and toolglasses. The cause of
this discrepancy has not been identified conclusively,
but there are several possible explanations.

 Task differences
This study required users to re-center the pointer and
toolglass after every completed shape, and did not dis-
play the toolglass until the homing screen disappeared.
This was intended to break users’ sense of continuity
from shape to shape, and focus the test on command

selection. Since the Toolglass required precise posi-
tioning of two onscreen objects, the need to re-acquire
these objects before each task may have impaired per-
formance.

MM

ToolGlass

ToolBar

HKM

BMM

HKG

2000

2500

3000

3500

4000

4500

5000

5500

0 2 4 6 8 1Block #

A
ve

. C
om

pl
et

io
n

Ti
m

e
(m

s)

 To explore this issue further, a smaller follow-up
study was performed using six of the same subjects
from the previous experiment (considered to be experts
with all input methods). This follow-up study used a
continuous sequence of 72 randomly located and sized
shapes (lines, rectangles and ovals) presented with no
homing screen. Only Toolglass and Toolbar input
methods were compared. The average completion
times were 4.36 seconds for Toolbar (SD = .73), and
4.84 seconds for Toolglass (SD = 1.00). Thus Tool-
glasses were still found to be 11% slower than Tool-
bars, indicating that the presence of the homing screen
had only a small effect, if any, on performance.

0

Toolbar Hotkeys Grouped Hotkeys Mapped
Marking Menus Bimanual Marking Menus Toolglass

Figure 5: Completion time by block

 However, other drawing task differences may also
have played a role. Possibilities include drawing col-
ored lines versus shapes, or large target endpoint pres-
entation versus no target endpoint presentation. Addi-
tionally, the transparency level of the toolglass may
have had an effect.

 Input device differences
The pointing device used in this study was the standard
ball mouse, the most widely used pointing device.
Kabbash’s study, however, used a trackball in the left
hand [9]. Also, certain implementation choices differ
from Kabbash’s and may affect Toolglass performance.

1. Acceleration - This study had low acceleration for
the right hand, while Kabbash had no acceleration.
This may have disrupted limb motion synchrony.

2. Control:Display Gains - The ratio of controller
movement to pointer movement may have affected
Toolglass performance.

 Toolbar/Toolglass size
For this study and the Kabbash study, the relative size
of the Toolbar and Toolglass were identical. However,

 6=Most
Favorite

Input Method Average
Score

Median
Score

Variance

Bimanual
Marking Menu

5.25 6 1.48

Hotkeys
Grouped

4.58 5 1.90

Marking Menus 3.67 4 1.70
Toolbar 3.17 3 1.97
Hotkeys
Mapped

3.08 3 1.17

ToolGlass 1.25 1 .39
1=Least
Favorite

Table 2: Subjective rankings

the absolute size of the Toolglass and Toolbar appears
to be bigger here than for the Kabbash study (154x115
pixels for both). This may have affected relative input
method speed, as, according to Fitts’ law, the effect of
target width on pointing speed is non-linear.

 Toolglass should disappear
Most implementations of toolglasses present the tool-
glass only when it is available for a valid command
selection. In our implementation, the toolglass was
always visible, even while shapes were being drawn.
This implementation decision may have been partially
responsible for user’s greatest complaint about the
Toolglass – that it was ‘distracting to use.’ Any tool-
glass motion while drawing a shape may have been
visually distracting. Distraction was cited by nine of
the twelve participants in the study as a reason for se-
lecting this input method as their least favorite. Other
minor differences between the studies (such as four
valid menu selections vs. three valid selections) might
also have had an effect. A follow-up study is in process
to pinpoint the cause for this difference.

6.2 Evaluation of Hotkeys
Despite the fact that both use keyboards, Mapped and
Grouped Hotkey performance was found to be signifi-
cantly different. Grouped Hotkeys were found to be the
fastest overall, and the second most preferred. Mapped
Hotkeys, on the other hand, were found to be the third
slowest (but still faster than Static Toolbars), and the
second least preferred. Grouped Hotkey findings rein-
force the findings of a recent study [13], which found
that both dedicated and chorded hotkeys performed
roughly 15% faster than static toolbars for cutting and
pasting operations.
 Of course, the present study represents a very sim-
ple case - where users had to select between only three
keys. Due to finger reach and user memory limita-
tions, it is unlikely that grouped hotkeys could success-
fully be scaled to more than approximately eight to ten
commands. In contrast, Mapped Hotkeys could likely
be successfully scaled to encompass very large com-
mand sets (albeit with inferior performance).
 As might be expected, Grouped Hotkeys (where
command keys must be memorized) showed a higher
learning rate than Mapped Hotkeys (where command
keys have a direct cognitive mapping to the command
name). In fact, the Mapped Hotkeys learning rate was
second only to the static toolbar method, with which
users were already expert before beginning the testing.
 The main cause for the slow performance of
Mapped Hotkeys seemed to be the time required to look
from the display to the keyboard in order to locate and
select the desired command, and then look back to the

display. This re-homing time was not present for the
Grouped Hotkeys method, where memorized key loca-
tions were manipulated by feel.
 In the Mapped Hotkey trials, several users were
observed to contort their hands in an uncomfortable
manner to simultaneously reach the ‘r’, ‘l’, and ‘o’ keys
– thus turning Mapped Hotkeys into Grouped Hotkeys.
In order to maintain the integrity of the comparison
when this problem arose, testers quickly reminded sub-
jects to hold their left hand in the home position (index
finger over ‘f’). This observation demonstrates user
preference for grouped hotkeys. This also serves as a
reminder that poorly designed interfaces can lead to
physical discomfort for users, potentially leading to
Repetitive Strain Injuries.

6.3 Evaluation of Bimanual Marking Menus
The experimental input method of Bimanual Marking
Menus showed several advantages relative to the other
tested input methods. It was subjectively ranked as the
favorite input method overall by the test subjects, and
was quantitatively found to be the second fastest overall
input method. Also, the learning rate of bimanual
marking menus was the second highest overall. It of-
fers several benefits derived from bimanual interfaces,
including:
• reduced workload on the dominant arm by splitting

the input between two arms
• extra degrees of freedom available for other uses,

such as magic lenses, , stretchable shapes, etc.

 In addition, it combines these benefits with the
benefits available from standard Marking Menus:
• more available workspace due to the elimination of

static toolbars
• novice/expert transition path helps users memorize

menu locations [11]
• no visual split as the command menu is coupled to

the pointer position
• nested menus allow scaling to larger command sets
• no dedicated keys required in hardware

 BMMs operate under the Parameter/Command the-
ory. Their implementation diverges from the Kinematic
Chain theory, which states that the left hand should
precede the right in the series of actions. Instead, Bi-
manual Marking Menus begin with a right hand motion
first. Consistent with KC theory, however, Bimanual
Marking Menus use the left hand only for coarse posi-
tioning (a ballistic motion is used for command selec-
tion). The left hand also sets the frame-of-reference,
albeit in a difference context. In this case, the frame of
reference is the commanded mode of operation.

 Bimanual Marking Menus also require no state
switching of the dominant hand, as do many of the
other tested input methods. Since the right hand always
specifies positions, and the left always specifies com-
mands, there is no thought required to keep track of the
current state of the dominant cursor.
 In the test software, a new command selection had
to be made for every operation. This would need to be
changed for practical implementation so that command
selection would persist, rather than requiring a new
selection for every operation. Additionally, a method
for recovering from incorrect command selection would
need to be provided, since, in the current implementa-
tion, command selection is only available after the first
shape control point is specified.

7 Conclusions and Future Directions
This study has quantified the performance of several
new and traditional input methods for a simple drawing
task. In addition, qualitative feedback comparing these
methods was collected from study participants. The
most significant findings were as follows:
1. Grouped hotkeys were found to be the fastest over-

all input method.

2. Bimanual Marking Menus were found to be the
second fastest and most preferred input method,
and seem to provide other potential benefits that
warrant further study.

3. The performance of the Toolglass input method
seems to be sensitive to low-level design decisions.
The particular implementation of Toolglass in this
study demonstrated an inferior performance rela-
tive to previous implementations [9].

 Toolglass’s reduced performance in this study must
be investigated more completely. This paper has of-
fered several ideas as to the cause of this result, and
future studies will be aimed at testing these ideas.
 Bimanual Marking Menus have shown potential.
Future work will apply this technique in other contexts.
Additionally, the Bimanual Marking Menu method will
be integrated with higher-level bimanual concepts to
further expand its capabilities.

Source code for software used in this study available at:
http://kingkong.me.berkeley.edu/html/~dano/index.htm

Acknowledgements
Special thanks to the Ford Motor Fund for supporting
campus research labs and enabling studies like these.
Thanks also to BWRC for their support. Thanks to our
colleagues in UC Berkeley’s BMI and GUIR groups for
providing valuable feedback, to everyone who partici-

pated in the testing, and to Paul Young for assistance
with the test software. Thanks also to Bill Buxton for
helping us to interpret our Toolglass findings. Other

References
[1] Balakrishnan, R. and Patel, P. The PadMouse: Fa-
cilitating selection and spatial positioning for the non-
dominant hand. CHI ‘98, 9-16.
[2] Bier, E.A., Stone, M., Pier, K., Buxton, W. and
DeRose, T. Toolglass and magic lenses: the see-through
interface. SIGGRAPH ’93, 73-80
[3] Brooks, F. The Mythical Man Month after 20
Years, The Mythical Man-Month, Addison-Wesley
Publishing, Chapter 19, 1995. 260-264
[4] Buxton, W. Chunking and Phrasing and the Design
of Human-Computer Dialogues, Proc. of the IFIP
World Computer Congress, 1986. 475-480.
[5] Buxton, W. and Myers, B. A study in two-handed
input. CHI '86, 321-326
[6] Dillon, R. F., Edey, J. D., and Tombaugh, J. W.
Measuring the true cost of command selection: Tech-
niques and results. CHI ’90, 19-25.
[7] Fitts, P.M. The information capacity of the human
motor system in controlling the amplitude of move-
ment, J. of Exp. Psychology, 47, 1954. 381-392
[8] Guiard, Y., Asymmetric Division of Labor in Hu-
man Skilled Bimanual Action: The Kinematic Chain as
a Model,J. of Motor Behavior, 19 (4), 1987, 486-517
[9] Kabbash, P., Buxton, W. and Sellen, A. Two-
Handed Input in a Compound Task. CHI '94, 417-423
[10] Kurtenbach, G., Fitzmaurice, G., Baudel, T., and
Buxton, W. The design and Evaluation of a GUI Para-
digm Based on Tablets, Two-hands, and Transparency.
CHI ’97, 35-42.
[11] Kurtenbach, G., Sellen, A. and Buxton, W. An
empirical evaluation of some articulatory and cognitive
aspects of "marking menus.” Human Computer Interac-
tion, 8(1), (1993). 1-23.
[12] Llamas, I., Kim, B., Gargus, J., Rossignac, J.,
Shaw, C. Twister: A Space-Warp Operator for the Two-
Handed Editing of 3D Shapes. SIGGRAPH ’03, 663-68
[13] McLoone, H., Hinckley, K., Cutrell, E., Bimanual
Interaction on the Microsoft Office Keyboard, INTER-
ACT, 2003.
[14] Owen, R., Kurtenbach, G., Fitzmaurice, G.,
Baudel, T. and Buxton, W. Bimanual Manipulation in
a Curve Editing Task. Alias|Wavefront document 1998.
[15] Pook, S., Lecolinet, E., Vaysseix, G., Barillot,
E., (2000) Control Menus: Execution and Control in a
Single Interactor, CHI 2000 ext. abstracts, pp. 263-4

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2004

	Toolglasses, marking menus, and hotkeys: a comparison of one and two-handed command selection techniques
	Daniel L. ODELL
	Richard C. DAVIS
	Andrew Smith
	Paul K. Wright
	Citation

	Introduction
	Previous Work
	Bimanual Interface Metaphors
	Independent hands
	The Kinematic Chain
	Parameter and Command

	Previous Command Selection Studies

	Method
	Shape Drawing Task
	Static Toolbars (TB)
	Hotkeys – Mapped (HKM) and Grouped (HKG)
	Toolglass (TG)
	Standard Marking Menus (MM)
	Bimanual Marking Menus (BMM)

	Experimental Design

	Participants and Environment
	Results
	Discussion
	Toolglass slower than Static Toolbars?
	Task differences
	Input device differences
	Toolbar/Toolglass size
	Toolglass should disappear

	Evaluation of Hotkeys
	Evaluation of Bimanual Marking Menus

	Conclusions and Future Directions
	Acknowledgements
	Special thanks to the Ford Motor Fund for supporting campus
	References

