
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2-2010

Efficient Valid Scope for Location-Dependent
Spatial Queries in Mobile Environments
Ken C. K. LEE
Pennsylvania State University - Main Campus

Wang-Chien LEE
Pennsylvania State University - Main Campus

Hong Va LEONG
Hong Kong Polytechnic University

Brandon UNGER
Pennsylvania State University - Main Campus

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

DOI: https://doi.org/10.4304/jsw.5.2.133-145

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Numerical Analysis and

Scientific Computing Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LEE, Ken C. K.; LEE, Wang-Chien; LEONG, Hong Va; UNGER, Brandon; and ZHENG, Baihua. Efficient Valid Scope for Location-
Dependent Spatial Queries in Mobile Environments. (2010). Journal of Software. 5, (2), 133-145. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/803

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13239838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4304/jsw.5.2.133-145
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Efficient Valid Scope for Location-Dependent
Spatial Queries in Mobile Environments
Ken C. K. Lee†‡ Wang-Chien Lee† Hong Va Leong‡ Brandon Unger† Baihua Zheng§

†Department of Computer Science and Engineering, Pennsylvania State University, USA
‡Department of Computing, The Hong Kong Polytechnic University, Hong Kong
§School of Information Systems, Singapore Management University, Singapore

†{cklee,wlee,bunger}@cse.psu.edu
‡{cscklee,cshleong}@comp.polyu.edu.hk

§bhzheng@smu.edu.sg

Abstract— In mobile environments, mobile clients can access
information with respect to their locations by submitting
Location-Dependent Spatial Queries (LDSQs) to Location-
Based Service (LBS) servers. Owing to scarce wireless
channel bandwidth and limited client battery life, frequent
LDSQ submission from clients must be avoided. Observing
that LDSQs issued from a client located at nearby positions
would likely return the same query results, we explore the
idea of valid scope, which represents a spatial area in which
a set of LDSQs will retrieve exactly the same set of query
results. With a valid scope derived and an LDSQ result
cached, a client can assert whether the new LDSQs can be
answered with the maintained LDSQ result, thus eliminating
the need of sending LDSQs to the server. Contention on
the wireless channel and client energy consumed for data
transmission can be considerably reduced. In this paper,
we design efficient algorithms to compute the valid scope
for common types of LDSQs, including nearest neighbor
queries, range queries and window queries. Through an
extensive set of experiments, our proposed valid scope
computation algorithms are shown to outperform existing
approaches.

I. INTRODUCTION

With rapid technological advancement of portable de-
vices, positioning equipment and wireless communica-
tion, the vision of mobile computing has moved closer to
reality. Among many applications developed for mobile
environments, Location-Based Services (LBS) belong to a
major category of those killer applications. LBS provides
useful information to the users at the right time in the right
place. Typically, location-related information and requests
for this information are expressed as spatial objects, or
simply objects, and Location-Dependent Spatial Queries

This paper is based on “Efficient Valid Scope Computation for
Location-Dependent Spatial Queries in Mobile and Wireless Environ-
ments,” by K.C.K. Lee, W.C. Lee, H.V. Leong, B. Unger, and B. Zheng,
which appeared in the Proceedings of Third International Conference on
Ubiquitous Information Management and Communication, Seoul, Korea,
January 2009.

Wang-Chien Lee and Ken C. K. Lee are supported in part by the
National Science Foundation under Grant numbers IIS-0534343 and
CNS-0626709. Hong Va Leong and Ken C. K. Lee are supported in
part by the Hong Kong Research Grant Council under Grant number
HKBU 1/05C.

(LDSQs), respectively. Example LDSQs issued by mobile
clients include “where are those ATMs within 1 mile
from my current position?” and “where is the nearest gas
station with respect to my current position?”. Figure 1
depicts a client-server system model in which LBS is
commonly deployed. Here, mobile clients send LDSQs
via a base station to the LBS server querying for spatial
objects. Typical types of LDSQs include nearest neighbor
(NN) queries, range queries and window queries. An NN
query finds an object within a set of spatial objects which
is closest to the current user position; a kNN (k > 1)
query extends NN query to search for k nearest objects.
A range query retrieves objects within a specified distance
from the current user position. A window query searches
for objects within a spatial window centered at the current
user position.

LBS serverMobile clients
Base station

LDSQ

LDSQ result

Figure 1. Client-server based LBS system model
Unlike conventional spatial queries, LDSQs are param-

eterized with a query point that represents the current user
location. As such, the result of an LDSQ is dependent on
the client location where the query is issued. A client who
is interested in keeping track of updated LDSQ results
while moving will need to repeatedly evaluate the query to
ensure the correctness of LDSQ results. However, staying
proactive to reevaluate LDSQs certainly consumes a lot
of precious wireless bandwidth and client energy and
imposes extra load on the server. In fact, the results of
LDSQs with respect to similar positions are most likely
to remain the same. For instance, as shown in Figure 2(a),
a range query issued at two query points q and q ′ cover
exactly the same result set (i.e., objects c and d). Suppose
that the result of the LDSQ issued at q is maintained by a
client, reevaluating the query issued at q ′ can be avoided if
the client can assert that the query results are the same. As

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 133

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.2.133-145

a result, expensive query execution costs could be saved.
We call this the self answerability property of the revised
query at the client [6].

h

a

b c

d e

f

g

q
q'

query points

objects
result objects

(a) Range queries q and q′

q

valid scope

result objects

complementary
object

h

a

b c

d e

f
g

q'

(b) Valid scope
Figure 2. Illustration of valid scope

To avoid unnecessary LDSQ reevaluation, a valid scope
that represents a spatial area can be derived and associated
with a query result. Inside the valid scope, the associated
result is guaranteed to be identical for the corresponding
query. Thus, a client inside a valid scope can simply reuse
the result for the query, and perform query reevaluation
only when it moves out of the valid scope. To represent a
valid scope, it is straightforward to retrieve and label all
objects as result objects and non-result objects. However,
retrieval of all objects from the LBS server is very time
and energy consuming. Instead, we determine a small
and representative subset of non-result objects, called
“complementary objects”, together with result objects to
represent a valid scope. Referring to our example, the
valid scope of an LDSQ result is formed as shown in
Figure 2(b) by two result objects, i.e., c and d and one
complementary objects, a. Now, the client with the LDSQ
result and a few complementary objects can determine if
the result can be reused. By reducing the number of LDSQ
reevaluations, contention on wireless bandwidth and client
energy consumption can be alleviated. The server load can
be relieved as well.

Although algorithms to determine valid scope have
been recently proposed, as to be discussed shortly, they
are inefficient and cannot support various types of LDSQs.
Motivated by the importance of valid scopes to LDSQs
and the need of highly efficient valid scope algorithms, we
develop in this paper a suite of efficient online valid scope
computation algorithms for various LDSQs. As opposed
to existing works, our algorithms can determine an LDSQ
result and its valid scope together with only a single
index lookup, thus shortening the valid scope computation
and I/O access time. Besides, our algorithms are generic
to support more types of LDSQs while existing ones
cannot. We conduct an extensive set of experiments to
validate the effectiveness of valid scopes in reducing the
evaluation cost of LDSQs and to measure the efficiency
of our algorithms in comparison with existing works. In
summary, we make the following important contributions.

1) We investigate the valid scope determination prob-
lem and transform it into an issue of identifying
complementary objects with respect to LDSQ result
objects, based on which efficient online valid scope
computation algorithms can be developed.

2) We devise valid scope determination algorithms
for common types of LDSQs, that include nearest
neighbor, k nearest neighbor, range and window
queries and explore some corresponding optimiza-
tion techniques.

3) We implement our proposed algorithms and conduct
experiments with both synthetic and real data sets
to test their scalability and practicality. The results
well demonstrate the effectiveness of valid scope
and the efficiency of our online valid scope compu-
tation algorithms.

The remainder of the paper is organized as follows.
Section II provides some background of this research and
reviews important related works. Section III, Section IV,
and Section V present the valid scope determination
algorithms for NN (including kNN) queries, range queries
and window queries, respectively. Section VI describes
the experiment settings and studies the simulation results.
Section VII concludes this paper, with an outline of our
future research directions.

II. PRELIMINARY

In this section, we first review the R-tree index and the
best-first search algorithm on the R-tree that are useful
to both LDSQ processing and valid scope computation.
Then, we review closely related works.

A. R-tree and Best-First Search Algorithm

In this paper, we assume that all the objects maintained
by an LBS server are indexed by an R-tree [3] on their
spatial coordinates. R-tree clusters spatially close objects,
represents them using minimum bounding boxes (MBBs)
and recursively groups MBBs until the root of the index
is formed. Figure 3(a) depicts an R-tree with a maximum
fanout of three. At the bottom, 8 objects labeled ‘a’
through ‘h’ are grouped into 3 MBBs, i.e., N1, N2 and
N3. Then, the three MBBs are grouped to form the root of
the index. The positions of objects and MBBs are shown
in Figure 3(b).

root

N1 N2 N3

N1

a c

N2

b d g

N3

e f h

(a) R-tree

h

a

b

c

d e

f
g

q

N1

N2

N3

(b) Object MBB
Figure 3. R-tree and search algorithm

To efficiently retrieve objects required by a spatial
query, many efficient search algorithms are developed
based on the notion of best-first traversal [4] upon R-tree.
Best-first search algorithm organizes unexplored index
nodes and objects to be accessed in a priority queue
according to their minimum distances with respect to a
query point (i.e., mindists [8]). The search initializes the
priority queue with the root node. It repeatedly dequeues
the head entry, which can be an index node or an object,
of the queue for evaluation until the queue becomes empty

134 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

or all the remaining objects in the queue do not satisfy
the query. The use of the priority guarantees that the
head entry is at a minimum distance to the query point
among all unexplored entries in the R-tree. The best-
first search algorithm is shown in Figure 4. It explores
the head entry ε in a priority queue (line 2-9). If ε is
a node, it is expanded into its child nodes (line 5-6).
Otherwise, it is checked against the query and collected
as a result object if it satisfies the query (line 8-9). We
simply use a termination condition to indicate when the
search completes, so that it could be easily generalized
for various queries. For kNN query, the search terminates
when the result set contains k result objects. For range
and window query, the termination condition is satisfied
when all the remaining objects in the queue are outside
the search area.

Algorithm BestFirstSearch(T ,q)
Input. an R-tree (T), a query point (q)
Local. a priority queue (P)
Output. a result set of objects (R)
Begin
1. P .enqueue(T .root, mindist(T .root, q));
2. while (P is not empty and the termination

condition is not satisfied) do
3. (ε, d) ← P .dequeue();
4. if (ε is a node) then
5. foreach child c of ε do
6. P .enqueue(c, mindist(c, q));
7. else
8. if (ε satisfies the query) then
9. R ← R ∪ {ε};

10. output R;
End

Figure 4. Algorithm BestFirstSearch

Entry (ε) Priority queue (in ascending mindist order)
root N2, N1, N3

N2 N1, d, N3, b, g
N1 d, c, a, N3, b, g
d c, a, N3, b, g
c a, N3, b, g

Figure 5. Trace based on a 2NN query with best-first search
To facilitate our discussion, we illustrate best-first

search algorithm using a running example. Suppose a
2NN query is issued at a point q, based on an R-tree
shown in Figure 3(a). The trace of the algorithm for each
iteration is outlined in Figure 5. First, the root node, the
initial entry in the priority queue, is fetched and examined.
All its child nodes N1, N2, and N3 are placed back to
the queue, sorted according to their mindists, in the order
N2, N1, N3. As N2 is the head entry, it is dequeued
and replaced by its children b, d and g in the queue,
sorted in mindists order. Next, N1 is the closest one and
is explored and expanded into a and c. At this moment,
d at the head of the queue is dequeued and collected
as part of the result. After that, c is also dequeued and
collected. Now, c and d form the 2NN query result and the
search completes. All the remaining entries in the queue,
which represent the non-result objects, are guaranteed to
be located farther away, in non-decreasing distance order,
from the query point.

As to be discussed, our approaches are based on best-
first search algorithm because of three reasons. First,
it can support various types of LDSQs that usually
access proximate objects around query points. Second,
upon termination, the remaining priority queue content
represents all the non-result objects, based on which a
valid scope for the query result can be derived. Third, as
those non-result objects that affect the determination of a
valid scope are expected to be close to the result objects
and the query point, the remaining priority queue already
has them sorted based on their distances to the query
point. By tracking both result and non-result objects in a
single priority queue, our valid scope computation incurs
only one index lookup. Since valid scope formulation
is dependent on the types of LDSQs, we shall discuss
in detail the algorithms for nearest neighbor, range and
window queries in subsequent sections.

B. Related Work

If mobile clients can be assured that the result of
a previous LDSQ remains valid for the new LDSQs,
unnecessary query reevaluation can be avoided. To equip
mobile clients with such a capability, a number of re-
lated research works in the literatures are studied and
reported. In [2], window query results are maintained as
semantic regions. Any window query fully covered by
existing semantic regions is guaranteed to be answerable
by the client locally. Specific for handling NN query, the
work [13] associates each NN result with a precalculated
Voronoi cell [1] as in Figure 6(a). The result is asserted
to be valid if the client (i.e., the query point) is inside
the corresponding cell. For kNN query, the search for m
(m > k) NN objects can be extended with respect to the
same query point q [9]. Due to triangular inequality, a
client can be assured that kNN is contained by the mNN
result if the distance it moved from q is less than half of
the distance difference between k-th NN and m-th NN
with respect to q. However, this is ineffective to reduce
query reevaluation. For example in Figure 6(b), based on
q, a 2NN is executed as a 4NN and δ is the distance
between the second NN and the fourth NN object. A
new query point q ′ located more than a distance of δ/2
away from q will thus induce reevaluation. In fact, the
4NN result still covers 2NN objects to q′, which implies
that this over-conservative estimation cannot effectively
eliminate unnecessary queries.

qc

e
i

g
ha

f

d
b

(a) Voronoi cell

|g,q|-|e,q|

q

2NN

4NN

q'

2

a

b

c

d

i

h
g

e

f

(b) mNN query
Figure 6. Voronoi cell and mNN query

The algorithms to determine the valid scopes in [12]
are similar to what we are investigating in this paper.
There are two steps in those algorithms. The first step

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 135

© 2010 ACADEMY PUBLISHER

determines the LDSQ result. The second step determines
the valid scope that is initialized as the entire object space
and keeps being refined until client movement inside
the region is certainly not violating the result validity.
More specifically, the second step executes a number
of time parameterized (TP) queries [10] to simulate all
possible client movement paths. Figure 7(a) shows the
valid scope refinement for an NN query result. TPNN
queries are issued towards all the vertices of the region
to probe non-result objects that influence the query result
(i.e., complementary objects, in our terminology). If non-
result objects are found before the TPNN reaches the
target vertices, the valid scope is trimmed along a bisector
formed between the NN result object and the closest non-
result object. Otherwise, the query result is considered to
be valid at the edge of the scope. Figure 7(b) illustrates
the valid scope determination for a window query result.
TPWINDOW queries are initiated from a query point q
towards all vertices of the region. Then, the valid scope
is refined by removing the portion that touches any non-
result object. Again, the issuance of TPWINDOW queries
is repeated until no non-result object can be probed. The
number of TP queries required is highly related to the
complexity of the valid scope. As reported in [12], this
valid scope algorithm has to repeatedly access an R-tree
index, resulting in a large number of disk accesses. These
algorithms are clearly inefficient, since they involve com-
plicated polygon manipulation. If the search range is very
complex or not of the shape of a polygon (e.g., circle as
in range query), the valid scope computation will be very
computationally and I/O expensive. To address this, we
introduce more efficient online valid scope computation
algorithms in this paper.

q
c

e i

g h
a

f

d
b

(a) NN query

q

a

b

c

d

i
hg

e

f

window
queryvalid

scope

(b) Window query
Figure 7. Valid scope refinement based on TP-based approach

Recently we have also studied the problem of valid
scope computation in mobile broadcast environments [7].
Although the basic idea of the server-based valid scope
computation algorithms presented in this paper bear some
similarity to the approach for broadcast environments, the
challenges faced by algorithm designs for the broadcast
and point-to-point communication environments are very
different. Thus, the focus are clearly not the same. In
broadcast environments, where the delivery order of ob-
jects are fixed in a broadcast channel, the emphasis of
valid scope computation algorithm is on how to determine
the search space for complementary objects, in order to
optimize the tuning and access time. In the point-to-
point communication environment in this paper, we focus
on how to integrate existing query processing algorithm
with valid scope computation so as to reduce bandwidth

consumption and the overall server processing cost.

III. NEAREST NEIGHBOR QUERY

In this section, we present online valid scope compu-
tation algorithms for NN and kNN query and discuss the
result validity check for new queries from the client.

A. Valid Scope for NN Query

Let the set of objects in our environment be O. For
an NN or kNN query p, let the set of result objects be
Rp and the remaining non-result objects be Np. Then
O = Rp ∪ Np and Rp ∩ Np = ∅. Assume that for an
NN query p, it has the nearest neighbor object o, then
the result set for the NN query is Rp = {o}. Let V (p)
be the valid scope for the NN query result Rp. It is
obvious that the Voronoi cell of o, denoted by ♦(o), is
the valid scope of the corresponding query result with
respect to p. Thus, V (p) = ♦(o). Object o is guaranteed
to be the nearest neighbor to any point inside ♦(o). The
formation of a Voronoi cell is based on half-planes. Given
two objects o and o′, two half-planes, HPo,o′(o) and
HPo,o′(o′) are formed sharing a bisector ⊥o,o′ between
o and o′. With a set of non-result objects denoted by
Np, ♦(o) = ∩o′∈NpHPo,o′(o), i.e., an intersection of all
the half-planes that cover o formed against all the non-
result objects. Obviously, examining all non-result objects
to determine their half-planes and to derive the Voronoi
cell of an NN object is totally impractical. In fact, only
those non-result objects that contribute the bisector as
the Voronoi cell perimeter are needed. We refer to those
objects as a set of complementary objects, denoted by
Cp (Cp ⊆ Np). Thus, the valid scope for an NN query
result Rp = {o} is formed as ∩o′∈CpHPo,o′(o) instead.
The search of Cp, which is very dependent on the object
distribution, becomes the main challenge of determining
the valid scope for NN query result efficiently.

To tackle this challenge, we exploit the largest empty
circle property, which is one of the most important
Voronoi cell properties, to identify Cp. The largest empty
circle for a set of objects O is a circle with the largest
radius, such that there is no object in O staying inside
the circle. Furthermore, the center of the circle is inside
the convex hull of the set of objects O and at least two
objects lie on the boundary of the circle. In ♦(o), each
vertex, v, is formed by an intersection of two bisectors,
⊥o,o′ and ⊥o,o′′ , of a Voronoi cell and it should be
equidistant to all o, o′ and o′′. Then v should have its
largest empty circle that covers the object, o, inside the
cell and at least two objects outside the cell. Formally,
let us denote |vi, vj | for the Euclidean distance between
two points vi and vj and i, j for the line joining them.
We also denote the largest empty circle centering at v by
�(v, |v, o|), where the radius is |v, o|. This is illustrated
in Figure 8(a). The shaded area represents a part of the
Voronoi cell of an object o, and point v is one of the
vertices of ♦(o). On the other hand, each object o ′ that
contributes one edge of ♦(o) must be touched by two

136 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

o

o'

o''
v

|v,o|

o,o''o,o'

(a) Largest empty circle

h

a

b
c

d
e

fg

q

v1

v2 v3

v4

|d,v4|

N3

largest empty circle centered at v4

(b) Initial search space

h

a

b
c

d
e

fg

q

v1

v2 v3

v4

|d,v5|

v5

v6

d,c

T

N3

|d,v6|

(c) Examining c

h

a

b
c

d
e

fg

q

v1

v2 v3

v4v5

v6

d,a

T

N3

v7

v8

(d) Examining a

h

a

b
c

d
e

fg

q

(e) Valid scope
Figure 8. Determination of valid scope for NN query result

largest empty circles, centered at the two endpoints of
the edge contributed by o′. If a vertex v is valid (i.e.,
belonging to ♦(o)), its corresponding circle �(v, |v, o|)
must be empty. Otherwise, there should exist another
object that stays inside the corresponding circle and is
close to o. As a whole, the union of all the largest empty
circles �(v, |v, o|) of existing vertices v forms the search
space of possible non-result objects needed in Cp. Since
only objects inside the circle �(v, |v, o|) will impact the
validity of v, objects outside all those largest empty circles
can be safely skipped.

In our approach, the determination of NN query result
and the valid scope for the result takes two steps and
shares one index lookup based on best-first search. In the
first step, it retrieves the nearest object. Based on it, a
tentative valid scope is formed as the entire service area.
Then the largest empty circles of all the corners of the
area form the search area for Cp. In the second step,
non-result objects are examined in the remaining priority
queue to refine the valid scope. Every time when an object
o′ is found inside the circle �(v, |v, o|) associated with a
vertex v, v becomes invalid. A bisector between the newly
detected object o′ and NN object o is formed, which will
intersect the original edges (that connect to vertex v) at
two new vertices. Then, both the valid scope and the set
of complementary objects are revised. Meanwhile, when
an index node is covered by any existing largest empty
circle, it is expanded and all its children are queued for
later examination. Those index nodes or objects that are
out of all the existing largest empty circles are skipped
from detail examination. The second step terminates when
the priority queue becomes empty, and the valid scope is
finalized.

For simplicity, we only show the second step, i.e., valid
scope refinement and depict it in Figure 9. We assume that
the result set R is already retrieved and the priority queue,
P , is retained. Based on the service area, a tentative valid
scope is formed. Then the search algorithm repeatedly
dequeues the head entry ε from P and examines it. We
check ε against all existing largest empty circles. If ε is an
index node, it is expanded and all its children are queued
for later examination. Otherwise (i.e., ε is an object),
for each of those empty circles where ε is covered, the
corresponding vertex is removed; the new vertices are
then introduced and the set of complementary objects C
is updated. Once the queue becomes empty, the search
terminates and C becomes the output.

We illustrate the valid scope computation in Figure 8(b)

through Figure 8(e). Suppose object d is the NN answer
object and the remaining objects, c, a, N3, b, g in the
priority queue are sorted according to their distance to q
as a result of the best-first-search. Initially the service area
is taken as the tentative valid scope (see Figure 8(b)). The
corners of the area, namely, v1, v2, v3 and v4, form four
largest empty circles. Then c, the second nearest object is
examined. The bisector ⊥c,d intersects the existing edges
v1, v4 and v3, v4 at v5 and v6 respectively. Then v4 is
replaced with the new vertices v5 and v6. The corre-
sponding largest empty circle �(v4, |v4, d|) is removed
and two new circles, �(v5, |v5, d|) and �(v6, |v6, d|) are
formed (see Figure 8(c)). Similarly after examining a, the
search space is refined based on bisector ⊥a,d, as shown
in Figure 8(d). The next step is the refinement based on
the next nearest object b, with the bisector ⊥b,d. Now
node N3 is expanded and f is examined with the bisector
⊥f,d. Finally, bisector ⊥g,d is used and the valid scope is
formed with all largest empty circles not covering other
objects as depicted in Figure 8(e). The objects a, b, c,
f , and g that help to define the largest empty circles are
collected as complementary objects.

Algorithm ValidScopeForNN(R,P ,p)
Input. An NN result set (R), a priority queue (P),

a query point (p)
Local. A set of largest empty circles (L)
Output. Complementary set (C)
Begin
1. initialize L with largest empty circles centered at

the corners of service area;
2. while (P is not empty) do
3. (ε, d) ← P .dequene();
4. if (∃l ∈ L, ε ∈ l) then
5. if (ε is an index node) then
6. forall children c of ε do
7. P .enqueue((c, |p, c|));
8. else /* ε is an object */
9. update L and C;

10. output C;
End.

Figure 9. Algorithm ValidScopeForNN
Compared with the TP-based approach, our approach

to compute a valid scope is more efficient. First, it does
not need to access the R-tree multiple times. Second, it
does not need to validate all vertices. Instead it examines
the objects in distance order until no largest empty circle
is violated. All those operations are performed within
one single index lookup. Finally, we devise Algorithm
ValidityTestForNN, depicted in Figure 10, for clients to
detect if an existing NN query result remains valid for

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 137

© 2010 ACADEMY PUBLISHER

a new query point. The basic idea is to check if any
complementary object is found to be closer than the NN
object to q. Whenever the algorithm is invoked, it sorts
the NN object and all complementary objects. If the first
object is no longer the NN result object, it reports invalid
for a reevaluation.

Algorithm ValidityTestForNN(R,C,p)
Input. An NN result set (R), a set of complementary

objects (C), a query point (p)
Output. valid (if same NN result) or invalid (otherwise)
Begin
1. add R and C to a sorted list;
2. if (the first object of the list is NN result) then
3. output valid;
4. else
5. output invalid;
End.

Figure 10. Algorithm ValidityTestForNN

B. Valid Scope for kNN Query

kNN query is an extension of NN query. It can be
classified into order-sensitive and order-insensitive NN
queries. The former is concerned with the distance order
of result kNN objects. The objects in the result set are
sorted based on their distance to the query point, and the
result set 〈a, b〉 is considered to be different from the set
〈b, a〉. The latter does not care about the distance order. As
long as the same set of objects are included in the result
set, the result is considered to be identical. Our discussion
starts with valid scope determination for order-insensitive
kNN query followed by the discussion of the necessary
extension for order-sensitive kNN query.

a

b

c
d

e

f

g

q

(a) Order-insensitive kNN

a

b

a,b

c
d

e

f

g

q

(b) Order-sensitive kNN
Figure 11. Valid scope for kNN query

Order-Insensitive kNN Query. The valid scope for
an order-insensitive kNN query is an order-k Voronoi
cell [1]. Suppose k objects o1, · · · ok form the result set,
Rp, of a kNN query evaluated at a query point p and
the rest belong to non-result objects, Np = O − Rp.
Each NN object oi has its own valid scope formed as
♦(oi) = ∩o∈CiHPoi,o′(oi), where the set of comple-
mentary objects Ci ⊆ Np. The order-k Voronoi cell,
i.e., V (p), is formed as the intersection of all ♦(oi), i.e.,
∩oi∈Rp♦(oi). Figure 11(a) shows a scenario in which a
2NN query is issued at query point, q, and objects a and
b form the result set. The shaded area represents the valid
scope of the result set, constituted by a’s and b’s own
Voronoi cells. To determine the valid scope for kNN query
result, we simply extend our algorithm ValidScopeForNN

supporting NN query. Initially, kNN objects need to be
identified as the result set. Next, for each individual
NN object, oi, we maintain Li and Ci (1 ≤ i ≤ k)
to keep track of the largest empty circles and set of
complementary objects for every oi. The rest of the logic
is similar to that already discussed. The final valid scope is
the intersection of individual NN valid scopes. Similar to
NN query, the validity check for kNN query is to check if
any complementary object appears closer to a query point
than any existing result object.
Order-Sensitive kNN Query. To facilitate the checking
of order, we partition the valid scope of kNN query
result by adding bisectors between the kNN objects. As
shown in Figure 11(b), the bisector ⊥a,b is introduced
and it partitions the valid scope into two smaller portions.
Within the valid scope, when the client moves from
one divided portion to another, the result is considered
to become invalid due to the change of distance order.
However, the client needs only to reorder the result
objects, since the set of objects still remains the same,
as the client is still staying within the combined valid
scope of the unordered result set. The query is still self-
answerable and no complementary query to the server is
needed.

IV. RANGE QUERY

Range queries search for objects within specified query
ranges. In the following, we discuss valid scope deter-
mination algorithm for answering range queries, with
circular query regions.

A. Valid Scope for Range Query

The query region for a range query Qp with range r is
a circle, i.e., �(p, r), where p and r represent the query
point (i.e., the current user position) and the query range,
respectively. To answer a range query, objects located
inside �(p, r) are collected as the result set Rp and
all remaining objects form the non-result set Np. Every
object in Rp is covered by �(p, r), whereas all objects
in Np are not.

Given a query range r, let us define the Minkowski
region, M̃(S), for a space S as M̃(S) = {m|∃s ∈
S, |m, s| ≤ r}. For a single object o, it is obvious that
M̃(o) = �(o, r) and we call it a Minkowski circle.
Corresponding to the query region �(p, r), all objects in
Rp should have their Minkowski regions M̃(o) (o ∈ Rp)
covering p, i.e., ∀o ∈ Rp, p ∈ M̃(o). On the other
hand, no non-result object o ′ in Np has its Minkowski
region, M̃(o′), enclosing p, i.e., ∀o′ ∈ Np, p �∈ M̃(o′).
As shown in Figure 12(a), a circular search space �(q, r)
is generated for a range query issued at q with a radius
of r. The result objects are c and d. Other objects like a
lying outside �(q, r) are non-result objects. On the other
hand, Figure 12(b) shows the Minkowski circles of all
objects. Clearly, only �(c, r) and �(d, r) cover q while
others, e.g., �(a, r), do not.

Specifically, the valid scope for p, denoted by V (p),
which represents an area in which Rp remains valid, can

138 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

h

a

b c

d e

f
g

q

r

cir(q,r)

(a) �(q, r) (or cir(q, r))

r

h

a

b c

d e

f
g

valid scope

{c}

{d}

cir(a,r)

q

(b) Minkowski circles

Figure 12. Circular search range and Minkowski circles

be computed as an area equal to the intersection of the
Minkowski regions of all the result objects minus those
Minkowski regions of the non-result objects, as expressed
in Equation (1).

V (p) =
⋂

o∈Rp

M̃(o) −
⋃

o′∈Np

M̃(o′) (1)

Continuing with our example, a valid scope for a result
set {c, d} is shown in Figure 12(b). However, making use
of Np and its Minkowski region to derive a valid scope for
the query is totally impractical, due to the need of a large
number of object examination operations. To address this,
we propose a different approach in this paper. Observing
that A − B ≡ A − A ∩ B, where A and B are two
sets, those non-result objects o′ with the property that
M̃(o′) ∩ ⋃

o∈Rp
M̃(o) = ∅ can be safely discarded as

their Minkowski regions do not have any impact on the
formation of the valid scope. Thus, we introduce a set of
complementary objects Cp, i.e., a small and representative
subset of non-result objects (Cp ⊆ Np) in place of Np to
derive the valid scope. The formulation of a valid scope
can then be revised and stated in Equation (2).

V (p) =
⋂

o∈Rp

M̃(o) −
⋃

o′∈Cp

M̃(o′) (2)

In Equation (2), the set of complementary objects Cp

refer to those objects whose Minkowski regions overlap
with those of the result objects, i.e.,

{
o′|o′ ∈ Np ∧

M̃(o′) ∩ ⋃
o∈Rp

M̃(o) �= ∅}. With Rp and Cp available
at the client side, the client can determine whether a new
query point p′ is within the current valid scope V (p)
of query p by checking whether p ′ stays inside all the
Minkowski regions of all the result objects and outside
those of the complementary objects. Consequently, it
simplifies the validation process and also avoids the need
of using complicated polygon representation for the valid
scope. In effect, we represent the valid scope on the fly
and on demand in the form of an algorithm. Algorithm
ValidityTest, as outlined in Figure 13, is devised to
perform validity test on the valid scope (i.e., whether
p′ ∈ V (p)).

Now, the only remaining problem is to compute ef-
ficiently for the set of complementary objects, Cp. The
derivation of Cp depends on the availability of the result
set Rp. Recall that when we compute for Rp, we adopt the
best-first search approach. In the process of maintaining
the priority queue, all the remaining elements in the
queue represent all non-result objects, be it in the form

Algorithm ValidityTest(R,C,p)
Input. NN result set (R), a set of complementary

objects (C), a query point (p)
Output. valid (if same NN result) or invalid (otherwise)
Begin
1. if (∃o ∈ R, p �∈ M̃(o)) then
2. output invalid;
3. else if (∃o′ ∈ C, p ∈ M̃(o′)) then
4. output invalid;
5. else
6. output valid;
End.

Figure 13. Algorithm ValidityTest

of an actual object, or a minimum bounding box for a
collection of objects. As a side effect, Np is available
and ordered in a useful way. Since only those non-result
objects whose Minkowski circles overlap with those of all
the result objects are taken as complementary objects, the
valid scope computation algorithm for range query then
becomes quite straightforward. By computing for the two
sets, Rp and Cp, in such a way, only one single expensive
index lookup is required. Note that we have assumed that
the valid scope for the range query is formed when the
result set is non-empty. If the result set is empty, a nearest
surrounder query [5] can be evaluated to identify all the
nearest neighbor objects in all directions with respect to
the query point p. Then the area bounded by all those
nearest surrounders can be adopted as the valid scope for
the empty result set.

Algorithm ValidScopeForRange(R,P ,p,r)
Input. NN result set (R), a priority queue (P),

a query point (p), a query range (r)
Output. Complementary set (C)
Begin
1. while (P is not empty) do
2. (ε, d) ← P .dequene();
3. if (∀o ∈ R, |o, ε| ≤ 2r) then /* Lemma 1 */
4. if (ε is an index node) then
5. forall children c of ε do
6. P .enqueue((c, |p, c|));
7. else
8. C ← C ∪ {ε}; /* ε is an object */
9. output C;
End.

Figure 14. Algorithm ValidScopeForRange
Figure 14 outlines the algorithm that determines the

valid scope for range query. The result set is assumed
to be determined in prior by best-first search algorithm
and the priority queue is retained in order to identify
the complementary objects. The algorithm iteratively ex-
amines the head entry ε from the priority queue P . For
each examination, if the Minkowski circle for ε overlaps
all Minkowski circles of the result objects (line 3), we
examine it in greater details (line 4-8); we will ignore
it otherwise. Since ε can be an MBB, for computational
efficiency, we measure the distance bound between ε and
the result objects, o, instead based on Lemma 1. Then, if
ε is an index node, it is expanded and all its children are
enqueued for future examination (line 4-6). Otherwise,
it is incorporated to the current set of complementary

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 139

© 2010 ACADEMY PUBLISHER

objects, C (line 7). The algorithm terminates when P
becomes empty.

Lemma 1: Given a result object, o, the maximum dis-
tance of complementary objects from o is bounded by 2r
for a query with radius r.
Proof. Those complementary objects o ′ that can affect
the valid scope of the result object o should have
their Minkowski circles intersecting that of o, i.e.,
�(o, r) ∩�(o′, r) �= ∅. In other words, o′ should be at a
distance of no more than 2r away from o. �

To illustrate how the algorithm works, let us consider
a range query at q with radius r, based on a collection
of objects in a running example as shown in Figure 3(a).
Right after best-first search is completed, the result set
Rq includes objects c and d and the priority queue P
contains a, N3, b and g in that order. The object positions
are shown in Figure 15(a). First, a, the head entry in P is
examined and its Minkowski circle is found to be covered
by those of b and c, as in Figure 15(b). Thus, a is collected
into the set of complementary objects, C. Next, N3 whose
distances to both c and d are less than 2r is expanded
into e, f and h. After that, all objects are examined but
none of them has their Minkowski circles covered by
those of the result objects as shown in Figure 15(c). The
search finally terminates. The valid scope is formed by
the intersection of the Minkowski circles of two result
objects, c and d, and one complementary object, a, as
depicted in Figure 15(d).

r

h

a

b c

d e

f
g

q

N3

result

objects

non-answer objects
in the priority queue

(a) Result objects c, d

h

a

b c

d e

f
g

q

N3

r

complementary
object

Minkowski
region

cir(c,r)

cir(d,r)

(b) Examining a, N3

h

a

b c

d e

f
g

q

(c) Remaining objects

h

a

b c

d e

f
g

q

valid scope

complementary
object

result objects

(d) Valid scope
Figure 15. Determination of valid scope for range query

B. Optimizing the Search Space

We have discussed the process in searching for com-
plementary objects that are used to represent a valid
scope purely based on result objects. In fact, we can
further prune the search space if the complementary
objects are also taken into consideration. Let us consider
an example as shown in Figure 16 where the range

query is �(q, r) and o is the only result object. Based
on o, o′ and o′′ are considered to be complementary
objects since their Minkowski circles overlap with �(o, r)
(also denoted as cir(o, r)). However, the area repre-
sented by

⋂
o∈Rq

M̃(o) − M̃(o′) is exactly the same as

[
⋂

o∈Rq
M̃(o) − M̃(o′)] − M̃(o′′), implying that o′′ has

no impact on the valid scope. Including o ′′ to represent
a valid scope and for result validity check is therefore
redundant. We call objects like o′′ in this case false
complementary objects. In what follows, we discuss an
additional filter to identify false complementary objects
for removal.

r
q

o

o'
o''

cir(o,r)

r

r

r

(a) False complementary object o′′

o

o'

cir(o,2r)

o''

HIDE(o,o')

p0
p1

p0'
p1'

2r

r

(b) Hiding area
Figure 16. Hiding area for range query

We first outline how a false complementary object can
be identified for a range query, based on the example
shown in Figure 16(a). Based on observation, we can
conclude that any object falling inside the white area
in Figure 16(b) is a false complementary object as its
impact on the valid scope is preempted by that of o ′. In
our approach, we call this white area the hiding area and
formalize it as follows. Given a result object, o, and a
complementary object, o′, a hiding area HIDE(o, o′) can
be formulated as in Equation (3).

HIDE(o, o′) = �(�(o, 2r), � p0′op1′)−
[�(�(p0, r), � op0p0′)

⋃

�(�(p1, r), � op1p1′)]
(3)

The first term represents a sector (�) of a circle
�(o, 2r) with angle at o between p′

0 and p′1; the second
and third terms stand for sectors (actually semicircles)
centering at p0 and p1 with radius r. Finally, all non-
result objects that fall inside the hiding areas belonging
to the same complementary object for all result objects
can be safely ignored.

It is noteworthy that identifying and ignoring false
complementary objects can reduce the number of comple-
mentary objects to be delivered to the client, thus reducing
bandwidth consumption, client storage for representing
a valid scope and the computational overhead for result
validity. However, the complicated logic of formulating
hiding area, especially for range query, would incur sig-
nificant server processing cost. In the evaluation section,
we will study the performance due to optimization.

V. WINDOW QUERY

Window queries search for objects within a rectangular
window centered at the current query point. Riding on

140 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

their similarity to range queries, we will discuss the valid
scope algorithm applicable to window queries.

A. Valid Scope for Window Query

The query region for a window query Qp is a rectangu-
lar window specified as ��(p, 2l, 2h), where l and h are
extents from the query point, p, in x- and y-dimensions,
respectively. As a result, the size of the querying region
for a window query is 4lh, as compared to the size of
πr2 in a range query. Since the same concepts for range
queries are applicable to window queries, we discuss the
algorithm to compute the valid scope for window queries,
where the associated Minkowski region is defined in the
form of rectangles, which we call Minkowski rectangles.

Algorithm ValidScopeForWindow to determine the
valid scope for range queries is outlined in Figure 17.
It repeatedly examines entries from the priority queue, P
and checks them against result objects in R (line 1-8).
Different from the processing logic for range queries, the
search area is expressed as a rectangle. Here, we identify
a set of false victim objects that are discarded from the
search for the initial result set as the set of objects that are
not located inside the search window, even though they
are at a smaller Euclidean distance to the query point
p. Before the algorithm is invoked, those false victim
objects are reinserted to the priority queue, since they
could still contribute to the result, owing to the rectangular
shape of the search region. Whenever the Minkowski
rectangles of an entry ε touch those of the result objects,
detailed examination takes place (line 3-8). In place of
complicated intersection determination between rectan-
gles, Lemma 2 suggests an efficient way of determination
by comparing the distance between two objects along x-
and y-dimensions. If ε is an index node, all its children are
enqueued for later investigation (line 4-6). Otherwise, it is
collected into a set of complementary objects, C (line 8).
Once P becomes empty, the computation of valid scope
is completed, and the set of complementary objects is
returned (line 9).

Algorithm ValidScopeForWindow(R,P ,p,W ,H)
Input. NN result set (R), priority queue (P),

a query point (p), window width (W = 2l),
window height (H = 2h)

Output. Complementary set (C)
Begin
1. while (P is not empty) do
2. (ε, d) ← P .dequeue();
3. if (∀o ∈ R, |o, ε|x ≤ 2l ∧ |o, ε|y ≤ 2h) then

/* Lemma 2 */
4. if (ε is an index node) then
5. forall children c of ε do
6. P .enqueue((c, |p, c|));
7. else /* ε is an object */
8. C ← C ∪ {ε};
9. output C;
End.

Figure 17. Algorithm ValidScopeForWindow

Lemma 2: Given a result object, o, the maximum
distances of complementary objects along x- and y-
dimensions are bounded by 2l and 2h, respectively.

Proof. Those complementary objects o ′ that can
affect the valid scope should have Minkowski
rectangles intersecting that of the result object o,
i.e., ��(o, 2l, 2h)∩��(o′, 2l, 2h) �= ∅. In other words, o′

should be no more than a distance of 2l and 2h away
from o along the x- and y-dimensions, respectively. �

h

a

b c

d e

f
g

q

h

l

non-answer objects
in the priority queue

N3

result objects

(a) Result objects c, d

h

a

b c

d
e

f
g

h

l

N3

q

(b) Examining a, N3, b

h

a

b c

d e

f
g

q

h

l

(c) Remaining objects

h

a

b c

d e

f
g

valid scope

result objects

(d) Valid scope
Figure 18. Determination of valid scope for window query

We illustrate the algorithm with an example as shown
from Figure 18(a) though Figure 18(d). The window
query is issued at q and its width and height are W = 2l
and H = 2h, respectively. At the beginning, the result
set include c and d while the priority queue maintains a,
N3, b and g in sorted distance order from q, as depicted
in Figure 18(a). First, as shown in Figure 18(b), a is
examined. Its Minkowski rectangle is covered by that
of d and it is discarded. Next, N3 whose Minkowski
rectangle is covered by those of c and d is expanded into
e, f and h. Similarly, b is examined and it is discarded.
Later, as shown in Figure 18(c), all the remaining objects
that are not close to the result objects are examined and
discarded. Finally, no complementary objects are found
for the formation of valid scope as shown in Figure 18(d).

B. Search Space Optimization

As with range queries, we could exploit the concept
of the hiding area to prune the search space for false
complementary objects to improve the efficiency. We
illustrate the formulation of the hiding area for window
query in Figure 19. When a complementary object o ′ is
considered, a hiding area is defined as the region behind
the complementary object o′, i.e., a white area in the
figure with respect to a result object. Any object (e.g.
o′′) staying inside the hiding area that belongs to the
complementary object can be safely ignored.

The hiding area for a window query could be formu-
lated in a similar way to that of a range query. Here,
HIDE(o, o′) can be formulated as in Equation (4), where
p0 and p1 are the intersection points of the perimeters of
��(o, 2l, 2h) and ��(o′, 2l, 2h). Here ��1/4(o, 2l, 2h, o′)

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 141

© 2010 ACADEMY PUBLISHER

q
o

o'
o''

rect(o,4l,4h)

rect(o,2l,2h)valid scope

(a) False complementary object o′′

p
0

p
1

o

o'
o''

rect(o,4l,4h)
rect(o,2l,2h)

HIDE(o,o’)

(b) Hiding area
Figure 19. Hiding area for window query

represents a quadrant of rectangle centered at o where o ′

resides.

HIDE(o, o′) = ��1/4 (o, 2l, 2h, o′)−
[�� (p0, 2l, 2h)∪ �� (p1, 2l, 2h)] (4)

Again, identifying and ignoring false complementary
objects can reduce complementary object transmission to
the client, thus reducing bandwidth consumption, client
storage and computational overhead. We study the per-
formance due to optimization in next section.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of our proposed
geometric valid scope computation and compare it with
state-of-art approach, namely, TP query-based approach
as discussed in Section II. Our evaluation mainly fo-
cuses on overall system performance improvement by
adopting valid scope for LDSQs, which is the motivation
of our work and extra overhead incurred by comput-
ing/transmitting the valid scope.

To measure the performance for different aspects, we
use five metrics, namely, query submission rate, band-
width consumption, server execution time, server I/O cost
and area of valid scope. Query submission rate measures
the ratio of queries submitted to the server for processing.
Bandwidth consumption counts the amount of data in unit
of kilobytes downloaded to the clients, including query
result and valid scope if needed. Logically, low query
submission rate and low bandwidth consumption indicate
the effectiveness of approaches in allowing queries to
be answered locally. Server execution time measures the
time when the query is received by the server to the
time when the query is processed and the valid scope
is computed, if any. Meanwhile, I/O cost counts the
number of pages accessed. Both server execution time
and I/O cost measure the overhead incurred by valid
scope computation algorithms. Finally, the area of valid
scope estimates the coverage in a space that LDSQ results
remain identical to the cached LDSQ result. The larger a
valid scope is, the more likely new LDSQs are found to
be the same as the cached LDSQ result, thus the smaller
the query submission rate.

In our evaluation, we implement baseline bare query
processing and TP query-based approach in addition to
our proposed approach that determines the valid scope
based on result objects and complementary objects, ac-
cording to the geometric relationship. Our implementation
is in GNU C++ and the algorithms are labeled as Bare,

Parameters Values
Approach Bare: bare query processing

Valid Scope (TPQ): TP query-based approach
Valid Scope (Geo): our geometric approach

Object set Uni : synthetic (uniform, 10000)
Gau : synthetic (Gaussian, 10000)
Real: real (shopping malls, 11000)

Service area 1000 × 1000 units
Query kNN query (k: 1, 4, 16, 64)

range query (r: 5, 10, 15, 20)
window query (l = h: 5, 10, 15, 20)

Server cache 5% of the R-tree size

TABLE I.
EXPERIMENT PARAMETERS

Valid Scope (TPQ) and Valid Scope (Geo), respectively
for presentation convenience. Bare does not maintain any
LDSQ result and submits all queries to the server for
processing. We use both synthetic and real object sets in
our experiments. Two synthetic object sets, namely, Uni
and Gau, are generated based on uniform and Gaussian
distributions, respectively. Both object sets consist of 10K
objects. More specifically, we set the mean and standard
deviation of Gaussian distribution to 500 and 100, re-
spectively for the synthetic object set. The real object
set, obtained from U.S. Census Bureau TIGER/Line [11],
contains 11K shopping malls across the country. The
locations of the objects in these object sets are normalized
to a service area of 1000 × 1000 units. We also fix the
size of an object (that includes object location) and object
location at 256 bytes and 16 bytes, respectively.

Corresponding to the object distributions, we generate
client locations where queries are issued and processed.
All the four discussed types of queries, namely, NN
query, kNN query, range query and window query are
evaluated. The value of k in kNN is ranged between 1
(subsuming NN query) and 64 and the radii for range
query is varied from 5 up to 20 units. We assume that all
window queries are square-shaped and their side lengths
are ranged between 5 to 20 units. We run our experiments
on Solaris Blade 1000 Workstations equipped with 1GB
RAM and SunOS 5.10 operating system. Furthermore,
all the experimented object sets are indexed by R-tree
with a disk page size of 4KB. In addition, a cache with
size equal to 5% of R-tree index size managed by LRU
replacement policy is used to alleviate some server I/O
cost for query processing and valid scope computation
if needed. While we have conducted the experiments on
different possible settings, we select a representative set
of experiment results to report due to space constraints.
Finally, Table I summarizes all the experiment parameters.
Unless specified otherwise, the underlined values are used
as the default values in our experiments.

In the following, we first examine the overall system
performance improvement by adopting the valid scope.
Then we study the overhead incurred by the valid scope
computation. As to be discussed, valid scope is shown to
be useful in avoiding unnecessary LDSQs being submitted
to the server. Meanwhile, our approach is shown to out-

142 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

perform TP query-based approaches as it can considerably
reduce computational and I/O costs.

A. Experiment 1: Effectiveness of Valid Scope

We examine the effectiveness of valid scope to enable
a client to answer LDSQs that effectively return the
same results, based on the cached LDSQ result. In this
experiment, we simulate mobile clients moving in the
service area based on a random walk model. Initially 10
mobile clients are randomly allocated in the service area
and then they proceed for 100 steps in their movement.
Whenever a client completes one step movement, it makes
a turn in a random direction and proceeds to the next
stop in a distance randomly drawn from 0 to D from
the current position, where D is the maximum distance
moved and it is a perimeter in this experiment. For smaller
values of maximum distance moved, it is more likely
that the new LDSQs are issued within the valid scope
associated with a cached LDSQ result. In this case, the
valid scope should be very effective. Also in each stop,
every client issues one LDSQ. As such, each client issues
100 queries during its movement cycle. The value of k in
kNN query, the radius of range query, and the side length
of window query are set to 4, 15, 15, respectively. The
results presented in Figure 20 are obtained by averaging
all the experiment results from all 100 queries issued by
the 10 clients.

First, Figure 20(a) shows the performance of valid
scope for kNN query. In the figure, we can see that the
query submission rate of Valid Scope (Geo) is lower
than that Bare. Here, Valid Scope (TPQ) is not included
for brevity, since it provides the same valid scope as
Valid Scope (Geo). Also, we can observe that the query
submission rate increases with maximum distance moved
for all the evaluated object sets. This is because more new
LDSQs are issued out of the valid scope of the current
LDSQ result. Next, we study the bandwidth consumption,
server execution time and I/O cost averaged by all issued
queries. Since some queries can be answered by the
clients when they adopt valid scopes, on average, the
bandwidth consumed for Valid Scope (Geo) and Valid
Scope (TPQ) are the same and lower than that for Bare,
as shown in Figure 20(b).

In terms of query submission rate and bandwidth con-
sumption, Valid Scope (Geo) and Valid Scope (TPQ)
are equally effective as they generate identical valid
scopes. However, as shown in Figure 20(c), Valid Scope
(TPQ) incurs a very high execution time. This is at-
tributed to its exhaustive number of TP queries required
to refine the valid scope. With the same reasons, a large
number of accesses on the R-tree results in high I/O costs,
as shown in Figure 20(d). Thus we can observe that Valid
Scope (Geo) can save the bandwidth consumption at the
expense of server execution time. This is well justified
since wireless bandwidth is very scarce and cannot be
expanded easily, while server computation power can be
increased if more resources are available. Also, we can
observe Valid Scope (Geo) demands similar I/O cost

as Bare, thereby indicating the I/O efficiency of our
approach in processing LDSQ and computing valid scope
with a single index lookup.

Next, we examine the overall system performance
improved for range query. Since Valid Scope (TPQ)
does not support range query, it is not included in the
evaluation. In general, the similar observation as that for
kNN query can be made here, that Valid Scope (Geo)
can save LDSQ submission and bandwidth consumption
as shown in Figure 21(a) and Figure 21(b). In particular,
we examine the improvement induced by search space
optimization as discussed in Section IV-B. We include
an additional approach, i.e., our valid scope computation
approach with no search space optimization and label
it as Valid Scope (Geo) - NO-OPT. As shown in
Figure 21(c), Valid Scope (Geo) - NO-OPT saves some
processing overhead. Meanwhile, since no false comple-
mentary object is removed, slightly higher bandwidth and
I/O costs, as shown in Figure 21(d), are resulted.

Finally, we examine the performance for window query
that Valid Scope (TPQ) can support. The results are
depicted in Figure 22. Again, valid scope is effective
to save LDSQs from being submitted to the server and
hence the bandwidth. Valid Scope (Geo) outperforms
Valid Scope (TPQ) in terms of execution time and I/O
costs. Besides, we can see that Valid Scope (Geo) - NO-
OPT reduces execution time by inducing fewer I/O cost
and bandwidth.

Based on the evaluations on various queries, valid scope
is proven to be effective in mobile environments for
reducing the scarce bandwidth consumption. Meanwhile,
our proposed valid scope computation that exploits the
geometric relationship between result objects and com-
plementary objects and index lookup sharing with query
processing clearly outperform more standard TP query-
based approach. Besides, our approach following the same
principle can also support range queries, but the TP query-
based approach cannot.

B. Experiment 2: Overhead of Valid Scope Computation

In the second set of experiments, we focus on the
overhead incurred by valid scope computation. We issue
100 LDSQs which are independent to one another. The
results presented in this section are obtained by averaging
those from the 100 queries. First of all, we investigate
the area of the valid scope as shown in Figure 23, which
explains why the application of valid scope can improve
the system performance. In general, for kNN query, the
area of valid scope shrinks with increase in the value of k.
This is because the valid scope for kNN query is formed
by intersecting Voronoi cells of result objects. When
more result objects are obtained, the area of intersection
among those result objects becomes smaller. However,
for range and window query, we made two observations.
For Uni, when the search area increases, the area of
valid scope shrinks, but it expands for Gau and Real.
Recall that a valid scope for range or window query is
formed by intersecting Minkowski regions. If the result

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 143

© 2010 ACADEMY PUBLISHER

0%

20%

40%

60%

80%

100%

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare Valid Scope (Geo)

Query submission rate (kNN query)

Object set / maximum distance moved

%

(a) Query submission rate

0

0.2

0.4

0.6

0.8

1

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare Valid Scope (TPQ) Valid Scope (Geo)

Bandwidth consumption (kNN query)

Object set / maximum distance moved

k
il

o
b

y
te

s

(b) Bandwidth consumption

0.0

5.0

10.0

15.0

20.0

25.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Average server processing time (kNN query)

Object set / maximum distance moved

m
il

li
se

co
n

d
s

(c) Server execution time

0.0

5.0

10.0

15.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Average I/O server (kNN query)

Object set / maximum distance moved

n
o

.
o

f
p

a
g

e
s

a
cc

e
ss

e
d

(d) Server I/O cost
Figure 20. kNN query

0%

20%

40%

60%

80%

100%

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare Valid Scope (Geo)

Query submission rate (range query)

Object set / maximum distance moved

%

(a) Query submission rate

0

2

4

6

8

10

12

14

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Bandwidth consumption (range query)

Object set / maximum distance moved

k
il

o
b

y
te

s

(b) Bandwidth consumption

0.0

0.5

1.0

1.5

2.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Average server processing time (range query)

Object set / maximum distance moved

m
il

li
se

co
n

d
s

(c) Server execution time

0.0

0.5

1.0

1.5

2.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Average I/O server (range query)

Object set / maximum distance moved

n
o

.
o

f
p

a
g

e
s

a
cc

e
ss

e
d

(d) Server I/O cost
Figure 21. Range query

0%

20%

40%

60%

80%

100%

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare Valid Scope (Geo)

Query submission rate (window query)

Object set / maximum distance moved

%

(a) Query submission rate

0

2

4

6

8

10

12

14

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Bandwidth consumption (window query)

Object set / maximum distance moved

k
il

o
b

y
te

s

(b) Bandwidth consumption

0.0

5.0

10.0

15.0

20.0

25.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Average server processing time (window query)

Object set / maximum distance moved

m
il

li
se

co
n

d
s

(c) Server execution time

0.0

1.0

2.0

3.0

1 5 10 1 5 10 1 5 10

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Average I/O server (window query)

Object set / maximum distance moved

n
o

.
o

f
p

a
g

e
s

a
cc

e
ss

e
d

(d) Server I/O cost
Figure 22. Window query

objects are far apart and are distributed evenly in the
space, as is the case of Uni, the overlapping area of their
Minkowski regions becomes very small. On the contrary,
when the result objects are closely located, especially for
very skewed object sets, the overlapping area of their
Minkowski regions would be much larger.

Figure 24 and Figure 25 depict the server execution
time and I/O cost needed for query processing and valid
scope computation. Compared with Bare, which only
involves the execution of LDSQs, our approach Valid
Scope (Geo) actually incurs a certain degree of extra
overhead in computing for the valid scope. Clearly Valid
Scope (TPQ) is the worst among all. Furthermore, we
can see that Valid Scope (Geo) - NO-OPT leads to an
improvement of the server execution time of Valid Scope
(Geo), with only a slightly higher I/O cost (about one
more page accessed). That means Valid Scope (Geo)
- NO-OPT is an attractive alternative for Valid Scope
(Geo). Also due to the little extra bandwidth consumed,
as shown in Figure 26, as incurred by Valid Scope (Geo)
- NO-OPT, we would like to consider the incorporation
of false complementary object removal algorithm into the
client, as the next step of our work. This can make good
use of computation power of mobile clients in relieving
the server load.

VII. CONCLUSION

In this paper, we studied an important adaptation of
valid scope that contributes in avoiding redundant LDSQs
if their results would be identical to the previous LDSQ

results returned to mobile clients for usage. We propose
new valid scope computation algorithms that exploit the
geometric relationship between result objects and some
important non-result objects, namely, complementary ob-
jects, to derive and represent the valid scope. Algorithms
are defined to support NN queries, kNN queries, range
queries and window queries. Our approach is very I/O-
efficient since it can share the index access with LDSQ
processing, by only incurring a single index lookup. For
range queries, we considered search space optimization
approach in identifying false complementary objects and
ignoring them from the construction of a valid scope.
The approach is then also applied to window queries. We
conducted an extensive set of experiments to evaluate the
system performance gained by adopting valid scope and
compare our approach with state-of-art approach based on
time parameterized queries. As proven in our evaluation,
the concept of valid scope can effectively improve the
system performance and our proposed algorithms are
more efficient than existing ones. As future work of this
research, we are investigating into incorporating false
complementary object removal algorithm onto the client
side to offload the server burden.

REFERENCES

[1] F. Aurenhammer. Voronoi Diagrams - A Survey of a
Fundamental Geometric Data Structure. ACM Computing
Survey, 23(3):345–405, 1991.

[2] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic Data Caching and Replacement. In

144 JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010

© 2010 ACADEMY PUBLISHER

1

10

100

1000

10000

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare Valid Scope (Geo)

Valid scope area (kNN query)

Object set / k

sq
u

a
re

 u
n

it
s

(l
o

g
 s

ca
le

)

(a) kNN query

1

10

100

1000

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare

Valid Scope (Geo)

Valid scope area (range query)

Object set / radius

sq
u

a
re

 u
n

it
s

(l
o

g
 s

ca
le

)

(b) Range query

1

10

100

1000

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare

Valid Scope (Geo)

Valid scope area (window query)

Object set / side length

sq
u

a
re

u
n

it
s

(l
o

g
 s

ca
le

)

(c) Window query
Figure 23. Area of valid scope

1

10

100

1000

10000

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare Valid Scope (TPQ) Valid Scope (Geo)

Server processing time (kNN query)

Object set / k

m
il

li
se

co
n

d
s

(l
o

g
 s

ca
le

)

(a) kNN query

1

10

100

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Server processing time (range query)

Object set / radius

m
il

li
se

co
n

d
s

(l
o

g
 s

ca
le

)

(b) Range query

1

10

100

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Server processing time (window query)

Object set / side length

m
il

li
se

co
n

d
s

(l
o

g
 s

ca
le

)

(c) Window query
Figure 24. Server execution time

0

10

20

30

40

50

60

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

I/O cost (kNN query)

Object set / k

n
o

.
o

f
p

a
g

e
s

a
cc

e
ss

e
d

(a) kNN query

0

1

2

3

4

5

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

I/O cost (range query)

Object set / radius

n
o

.
o

f
p

a
g

e
s

a
cc

e
ss

e
d

(b) Range query

0

1

2

3

4

5

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

I/O cost (window query)

Object set / side length

n
o

.
o

f
p

a
g

e
s

a
cc

e
ss

e
d

(c) Window query
Figure 25. I/O cost

1

10

100

1000

10000

1 4 16 64 1 4 16 64 1 4 16 64

Uni Gau Real

Bare Valid Scope (TPQ) Valid Scope (Geo)

Bandwidth consumption (kNN query)

Object set / k

k
il

o
b

y
te

s
(l

o
g

 s
ca

le
)

(a) kNN query

0.1

1

10

100

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare Query

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Bandwidth consumption (range query)

Object set / radius

k
il

o
b

y
te

s
(l

o
g

 s
ca

le
)

(b) Range query

0

5

10

15

20

25

30

35

5 10 15 20 5 10 15 20 5 10 15 20

Uni Gau Real

Bare

Valid Scope (TPQ)

Valid Scope (Geo)

Valid Scope (Geo) - NO-OPT

Bandwidth consumption (window query)

Object set / side length

k
il

o
b

y
te

s
(l

o
g

 s
ca

le
)

(c) Window query
Figure 26. Bandwidth consumption

Proceedings of International Conference on Very Large
Data Bases, pages 330–341, 1996.

[3] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages
47–57, 1984.

[4] G. R. Hjaltason and H. Samet. Distance Browsing in Spa-
tial Databases. ACM Transactions on Database Systems,
24(2):265–318, 1999.

[5] K. C. K. Lee, W.-C. Lee, and H. V. Leong. Nearest
Surrounder Queries. In Proceedings of International Con-
ference on Data Engineering, pages 85–94, 2006.

[6] K. C. K. Lee, H. V. Leong, and A. Si. Semantic Data
Broadcast for a Mobile Environment based on Dynamic
and Adaptive Chunking. IEEE Transactions on Computer,
51(10):1253–1268, 2002.

[7] K. C. K. Lee, J. Schiffman, B. Zheng, and W.-C. Lee.
Valid Scope Computation for Location-Dependent Spatial
Query in Mobile Broadcast Environments. In Proceedings
of ACM International Conference on Information and
Knowledge Management, pages 1231–1240, 2008.

[8] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
Neighbor Queries. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages
71–79, 1995.

[9] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search

for Moving Query Point. In Proceedings of Interna-
tional Symposium on Advances in Spatial and Temporal
Databases, pages 79–96, 2001.

[10] Y. Tao and D. Papadias. Time-Parameterized Queries
in Spatio-Temporal Databases. In Proceedings of ACM
SIGMOD International Conference on Management of
Data, pages 334–345, 2002.

[11] U.S. Census Bureau. Topologically Integrated Geographic
Encoding and Referencing System. U.S. Census Bureau -
TIGER/Line.

[12] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based Spatial Queries. In Proceedings of ACM
SIGMOD International Conference on Management of
Data, pages 443–454, 2003.

[13] B. Zheng and D. L. Lee. Semantic Caching in Location-
Dependent Query Processing. In Proceedings of Interna-
tional Symposium on Advances in Spatial and Temporal
Databases, pages 97–116, 2001.

JOURNAL OF SOFTWARE, VOL. 5, NO. 2, FEBRUARY 2010 145

© 2010 ACADEMY PUBLISHER

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2-2010

	Efficient Valid Scope for Location-Dependent Spatial Queries in Mobile Environments
	Ken C. K. LEE
	Wang-Chien LEE
	Hong Va LEONG
	Brandon UNGER
	Baihua ZHENG
	Citation

	jsw0502133145.pdf

