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Abstract

System architects face the formidable task of purposefully shaping an evolving
space of complex designs. Their task is further complicated when they lack
full control of the design process, and therefore must anticipate the behavior of
other stakeholders, including the designers of component products and competing
systems. This paper presents a conceptual tool called a design structure network
(DSN) to help architects and design scientists reason effectively about these
situations. A DSN is a graphical representation of a system’s design space. DSNs
improve on existing representation schemes by providing a compact and intuitive
way to express design options—the ability to replace all or part of one design
with another. Design options, in turn, are the building blocks of architectural
strategy—the practice of designing systems with an awareness that the fortunes
of other designers are intertwined with one’s own. I illustrate the informal use of
design structure networks with an example based on Apple’s decision to adopt
the Intel processor architecture. I also show how DSNs can serve as a formal
foundation for economic models of architectural strategy, which I call system
design games.

∗Presented at the Second International Conference on Design Science Research in Information
Systems and Technology (DESRIST 2007) in Pasadena CA, 13–15 May 2007. This paper is based
on the second chapter of my dissertation. It has benefited greatly from the input of my committee,
especially Carliss Baldwin and David Parkes, and from the feedback of an anonymous referee. All
errors are my own.



1 Introduction
System architects have a hard job. They are expected to meet the demanding, conflict-
ing, and often unstated requirements of numerous stakeholders. They are frequently
accused of meddling in implementation details, but held responsible when components
fail to work together. They become entangled in organizational politics because the
structure of a system is entangled with the division of labor needed to build it. With
all this to worry about, it is easy to forget that other architects may be conspiring
against them.

A healthy dose of paranoia (cf. Grove 1996) is warranted by the fact that most
large systems have many designers, each of whom controls a different part of the design
and pursues a distinct set of objectives. This can be true even in projects sponsored by
a single firm, such as the IBM System/360 family of mainframe computers, where the
goal of compatibility across the family put designers of the high-end machines at odds
with their colleagues at the low end of the range (Pugh et al. 1991; Baldwin and Clark
2000, ch. 7). It is emphatically the case in systems whose components are supplied
by competing firms, where contention over the control of architectural standards is
pervasive and intense (Langlois and Robertson 1992; Morris and Ferguson 1993; Katz
and Shapiro 1994). As advances in software engineering make possible “ultra-large-
scale” systems with over a billion lines of code (Northrop et al. 2006), the dispersion
of managerial control and consequent rise of incentive conflicts can only be expected
to increase.

Architectural strategy is the practice of designing systems with an awareness that
the fortunes of other designers are intertwined with one’s own. The design process
takes place in an evolving space of possible and actual designs for the system and
its components. This space may be large, complex, and difficult to observe, posing
a challenge to understanding the interrelated choices available to designers. In this
paper, I present a conceptual tool called a design structure network (DSN) to help
architects and design scientists reason effectively about these situations.

A DSN is a graphical representation of a system’s design space. DSNs improve
on existing representation schemes by providing a compact and intuitive way to express
design options—the ability to replace all or part of one design with another. Design
options, in turn, are the building blocks of architectural strategy. For designers who
“see and seek value” (Baldwin and Clark 2000), the design problem boils down to
evaluating the costs and benefits of each available option—taking into account its likely
effects on other stakeholders and their anticipated responses, as well as its foreseeable
impact on future decisions—and exercising the options that are expected to yield the
greatest net value for the designer.

1.1 Related work
Techniques for representing system architectures have been developed in a variety of
domains. Software-intensive systems have attracted particular attention because of
the difficulty in visualizing the complex interactions among their many parts. Software
engineers broadly concur that no single representation can capture all of the important



entities and relationships in a software system, so it is generally useful to create several
different graphical “views” of the system (Krutchen 1995; Bass et al. 1998; Clements
et al. 2002). An active research community has provided increasingly rigorous under-
pinnings for these views, taking software architecture from an “emerging discipline”
(Garlan and Shaw 1996) to its “golden age” (Shaw and Clements 2006) in the short
span of a decade.

The design structure matrix (DSM) technique builds on a complementary base
of research that spans engineering disciplines (Steward 1981; Eppinger et al. 1994;
Sharman and Yassine 2004). In a DSM, matrix elements represent tasks or decisions,
and a nonzero entry in cell (i, j) indicates that i depends on j. A DSM thus contains the
same information as a directed graph with an arrow to each task or decision from each of
its dependents. As with software architecture diagrams, DSMs can be used at different
levels of analysis (e.g., for components, systems, or even systems of systems) to describe
different kinds of dependencies (e.g., in design, production, or use). DSMs have been
used to study designs in settings as diverse as building construction, semiconductor
manufacturing, and the automotive and aerospace industries (Browning 2001).

A design structure network goes beyond the description of a single design to
represent a set of possible designs—that is, the design space of an artifact or system. To
enumerate these designs exhaustively is generally a hopeless task, since their number
may be vast. However, it is often fruitful to examine the relationships among related
subsets of designs. Consider the design of a typical information system, in which
several key components (e.g., database software, web application server, and messaging
middleware) are supplied by commercial vendors. The choice of these components may
profoundly affect the system’s future evolution as a result of vendor “lock-in” (Arthur
1989; Farrell and Saloner 1992; Shapiro and Varian 1999). Examining the regions of
the design space that differ in the component products chosen may be both feasible and
valuable for the system architect. Of course, the same applies to the vendors, whose
interest lies in creating products that come out favorably in this kind of analysis.

DSMs lack a natural way to represent choices among component designs, which
Baldwin and Clark (2000) call design options.1 To analyze systems with design options,
we need to be able to represent component designs that “overlap” in the sense that
they are at least partially interchangeable. Design structure networks provide this
capability. While this is true of some architectural specification languages in principle—
for example, the Unified Modeling Language (Fowler 2003) is expressive enough to
define DSNs using its extension mechanism—option-based views are not yet part of
the standard toolkit of practicing software architects. The only comparable approach
of which I am aware is that of Cai and Sullivan (2005a,b) who develop a complementary
formalism based on augmented constraint networks (ACNs). Their approach yields a
set of logical relationships that can be analyzed using automated constraint solvers like
Alloy (Jackson 2002), whereas DSNs are designed to highlight the most economically
significant relationships among components for the purposes of managerial decision-
making and economic modeling.

1Baldwin and Clark, in turn, build on the vast literature concerning financial and real options
(Merton 1998; Amram and Kulatilaka 1999).



1.2 Contributions to design science
This paper contributes to the growing body of research on the science of design by
proposing a new way to represent system design spaces, with a focus on modular designs
such as those typical of information systems and other IT artifacts. As noted by Hevner
et al. (2004), Herbert Simon stressed the importance of appropriate representations in
his well-known characterization of problem solving: “Solving a problem simply means
representing it so as to make the solution transparent” (1996, p. 132).

While I have not yet evaluated the utility of DSN representations in solving real-
world problems of strategic system design, section 2 provides an example of the kind of
problems they are designed to shed light on. Section 3 lays out the DSN formalism in
mathematical notation to aid verification of its internal consistency. Section 4 shows
that DSNs capture familiar properties of systems, such as information hiding and
compatibility, in an intuitive way. Sections 5 and 6 discuss the application of DSNs
to analytical and computational modeling, respectively, using the principles of game
theory and complex adaptive systems. Section 7 concludes.

2 Architectural strategy at Apple
Apple Computer was famous for its proprietary Macintosh computer design and dog-
matic rejection of technologies that would put its products into more direct competition
with makers of “IBM-compatible” personal computers (PCs). In June 2005, however,
the company announced that it would switch from the PowerPC processor architecture
it had championed with IBM and Motorola to the Intel architecture favored by the rest
of the PC industry.2 In April 2006, the company committed the even greater heresy
(in the eyes of Mac loyalists) by releasing a piece of software called Boot Camp that
enabled Intel-based Macs to run Microsoft Windows.3

In this section I want to illustrate these “design moves” using design structure
networks. The purpose of this exercise is not to probe deeply into the rationale behind
Apple’s decisions or their consequences for the PC industry—this would ask too much
of a toy example and take us too far afield—but simply to show that DSNs provide
a way to start discussing these issues with greater precision than one might achieve
through verbal descriptions or ad hoc diagrams alone. Consider the two diagrams in
figures 1 and 2. Sections 3 and 4 provide a formal basis for them, but with a few hints
we can interpret them informally using language familiar to industry observers.

Figure 1 illustrates the situation of Apple and its competitors before the Apple–
Intel announcement. The figure shows two “stacks,” each consisting of a processor
architecture, a family of computer systems, and an operating system (OS). The ar-
rows indicate technological dependencies: each OS depends on a computer system to
operate correctly, and each computer system in turn depends on a processor. The
fact that the arrow emanating from the oval labeled “Microsoft Windows” attaches to

2Apple Computer, “Apple to Use Intel Microprocessors Beginning in 2006,” June 6, 2005,
http://www.apple.com/pr/library/2005/jun/06intel.html.

3Apple Computer, “Apple Introduces Boot Camp,” April 5, 2006, http://www.apple.com/pr/li-
brary/2006/apr/05bootcamp.html.
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the one labeled “IBM-compatible PC” indicates that Windows depends on an abstract
design, of which both IBM (now Lenovo) ThinkPads and Dell-branded computers are
instances.4 ThinkPads and Dell PCs are thus “clones” of each other with respect to
Windows. Moreover, there is a dependency arrow from each brand of PC back to Win-
dows. These indicate that each vendor’s products include features, such as hardware
drivers and accessory software, that are specially designed to be used with Windows.5
The Macintosh family follows a similar pattern, yielding a circular chain of dependence
between the hardware and the Mac OS.

Figure 2 shows the situation after the Apple–Intel announcement, with the
subsequent release of the Boot Camp software indicated using dashed lines. The Intel-
based Macintosh is now a sibling of the IBM and Dell computers within the product
category labeled “Intel-compatible PC.” However, the Mac and its OS remain oblivious
to Windows, and vice versa. Boot Camp provides the missing links: a set of drivers
that allow Windows to recognize the Mac’s unique hardware components, an update
for the Mac’s firmware to emulate the PC BIOS on which Windows relies for low-level
system tasks, and a small utility program called a boot loader to allow the user to
select OS X or Windows when the system is started.

The two DSNs thus convey important information about personal computer
designs, including which components we would expect to be economic complements
(e.g., PCs, processors, and operating systems) and which should be substitutes (e.g.,
ThinkPads and Dell laptops). The DSNs also convey information about designs that
are not shown explicitly in either figure; this is the sense in which a DSN represents
not merely a design but a design space. For example, consider adding a dot labeled
“AMD Athlon” to the “Intel IA-32” oval. We can infer that the product represented
by this dot—which was, in fact, released in 1999—would work with IBM-compatible
(a.k.a. “Wintel”) PCs and compete with Intel’s 32-bit processors. We can also imagine
alternative component designs with different dependencies, such as an IBM ThinkPad
that runs on the PowerPC processor (which also existed at one time). This would be
the result of a design move that changes the design space, which Baldwin and Clark
(2000) call the application of a modular operator.

While these two simple DSNs do not provide enough information to predict how
the Apple–Intel–Microsoft story will unfold, they suggest several possibilities:

• Apple could make it possible to run the Mac OS on other vendors’ hardware.
This would entail a similar set of technologies to Boot Camp, with different device
drivers and a way of adapting the OS to use the standard PC BIOS instead of
adapting Windows to use the Mac firmware.

4Historically, this abstract design was the de facto standard established by IBM. With the rise
of Windows in the 1990s, Microsoft and Intel displaced IBM from its position of power to set the
design rules for personal computers. Increasingly, PC vendors worked to ensure compatibility with
the Windows operating system and Intel chipsets rather than the other way around. (See, e.g.,
http://en.wikipedia.org/wiki/IBM_PC_compatible.)

5The fact that these vendors make use of design information specific to Windows is made
evident by their participation in Microsoft’s “Designed for Windows” certification program
(http://www.microsoft.com/winlogo/).



• Microsoft could “embrace and extend” the Macintosh hardware platform in an
attempt to marginalize OS X. Of course, doing this successfully would require
some degree of cooperation (or at least the absence of opposition) from Apple,
which controls the Mac hardware specifications.

• Intel could provide new opportunities for differentiation in the PC market, by
Apple or others, by creating a “premium” processor architecture that is incom-
patible with IA-32. (The result of this actual decision was the less-than-successful
Itanium product line.)

The DSN diagrams thus serve to bring into focus not just the existing positions of
the various firms in Apple’s competitive landscape, but also some of the design moves
available to them.

Analyzing these moves requires us to consider the way each would affect the
economic value created by the PC industry and the relative ability of each firm to
capture a share of this value. This kind of analysis is facilitated by the economic
modeling techniques introduced in sections 5 and 6. The main goal of the remainder of
the paper, however, is narrower in scope—namely to solidify the formal and conceptual
foundations of the DSN representation scheme.

3 Formal definitions
A design structure network is a mathematical description of a system. A system is
a collection of components: technologically and economically discrete parts that are
designed to work together.6 Each component is associated with a design space defined
by a set of design variables. If i is a component with di design variables, let X i =
X i1 × · · · ×X idi denote its design space, where X ik is a set of possible values called the
domain of variable k. Let M be the set of components in the system of interest, and
X = ×i∈MX i denote the system design space.7

A design is associated with a region in a design space called a type. Designs can
be complete or incomplete. A product is a complete design for a component, represented
as a point in the component’s design space. We can write a typical product xi ∈ X i as
a tuple

(
xi1, . . . , x

i
di

)
indicating the chosen value of each variable. For the special case

in which all variables take on binary values, we can write xi as a sequence of 1s and 0s,
commonly known as a “bit string.” In fact, any design can be represented as a bit string
by converting each of its values from its natural domain into a binary equivalent (e.g.,
5→ 0101) and concatenating the results. This idea is familiar to software engineers; a
similar process takes place every time a program saves a file to disk.

6This definition is intended to mirror the use of the terms “system” and “component” in ordinary
language, where they can refer to abstract designs (e.g., “the global transportation system”) as well as
concrete artifacts (e.g., “my new stereo system”). Some ambiguity is inevitable as a result, although
as in ordinary language the exact meaning is usually clear from context.

7Many design theorists have employed the idea of a design space defined by a set of orthogonal
design variables. My setup is similar to that of Cai and Sullivan (2005a,b). I believe the connection
between DSNs and their constraint networks can be made precise, but have not yet verified this.



In an incomplete design, one or more design variables are not completely spec-
ified. A type thus refers to an ensemble of related designs. This usage is consistent
with both standard English and computer science. According to the Merriam-Webster
Online Dictionary, a type is “a particular kind, class, or group” (def. 4d) as well as a
bundle of “qualities common to a number of individuals that distinguish them as an
identifiable class” (def. 4a). Computer scientists use the term in the latter sense, as
a range of values that a variable can assume during execution (Cardelli 1997; Pierce
2002). In the context of designs, a type defines a set of design options.

Any subset of a component’s design space is a valid type. Even in simple
systems, though, the number of valid types far exceeds the ability of a designer to
reason about them all. (For a component with eight binary design variables there are
228 ≈ 1077 distinct types, counting every possible subset of the 28 = 256 distinct 8-bit
component designs—comparable to the estimated number of atoms in the universe.)
We therefore restrict attention to a subset of types, T i ⊆ 2Xi , where 2Xi is the power
set of component i’s design space. This subset, called the focal types for component i,
is specified by the modeler according to the situation of interest.8 We can then write
j ∈ T i to denote a particular type, where j ⊆ X i. Let T = ⋃

i∈M T
i be the set of focal

types for the system.
As a set of possibly overlapping sets, T is akin to a collection of Venn diagrams.

Their boundaries are summarized compactly by the graph (T,E), where E ⊆ T × T
is a set of edges such that (j′, j) ∈ E if and only if j strictly covers j′, i.e., j′ ⊂ j and
there is no j′′ ∈ N such that j′ ⊂ j′′ ⊂ j. We call (T,E) the inheritance graph for the
system, and say that j′ extends j if (j′, j) ∈ E. For any pair of types j and j′, if j′ ⊆ j,
then j′ is a subtype of j and j is a supertype of j′.

As in a DSM, we need a way to record the dependencies among types. Unlike
inheritance relationships, dependencies generally cannot be inferred from the structure
of a system’s design space, so we treat them as inputs to the model, like the focal types.
Let D ⊆ T × T be a set of direct dependencies, and call (T,D) the dependence graph
for the system. Although it is perfectly valid for one type of component to depend
on another type of the same component (e.g., as left and right stereo speakers might
depend on each other), dependencies are more commonly used to express interactions
across components (e.g., between speakers and tuners).

From the direct dependencies and the inheritance graph we also define a set of
induced dependencies, D ⊆ T × T , where for all (i, j) ∈ D there is an edge (i′, j′) ∈ D
for each subtype of i and each supertype of j, denoted i′ and j′ respectively. D specifies
how dependencies propagate through the type hierarchy. If (i, j) ∈ D, we say that i
depends on j. If (i, j) /∈ D and (j, i) /∈ D, then i and j are independent.

Finally, we call GX = (T,D,E) a design structure network for the design space
X. Note that DSNs are strictly more expressive than design structure matrices: any
DSM can be represented as a DSN by assigning each design variable to a separate
component with a single type, thus letting E be empty and D = D.

8A component’s entire design space may be a focal type (in which case Xi ∈ T i), though it need
not be. A region containing a single product, e.g., xi ∈ Xi, may also be a focal type (in which case{
xi
}
∈ T i). These possibilities justify the idiom of treating components and products as types where

unambiguous.



4 Key properties of DSN representations
DSNs capture familiar properties of systems in an intuitive way, as I show in this section
using an example of a system related to personal transportation. Figure 3 shows a DSN
for part of this system. Each oval denotes a type, including three corresponding to top-
level components (roads, cars, and fuel) and eight to nested ones, such as paved roads
and unleaded gasoline. Some types are unnamed; their meaning will become clear from
context. The solid dots show nine products. Nesting the ovals indicates inheritance:
if i’s oval is directly enclosed by j’s, then i extends j. An arrow from i’s oval to j’s
indicates that type i depends on j. Figure 4 shows the equivalent dependence and
inheritance graphs separately using traditional notation. The numbered nodes refer to
types labeled in the original figure.9

4.1 Dependence and inheritance
How should we interpret the relationships represented by this DSN? Consider inheri-
tance first. From figure 3, we can infer that a paved road shares all the features of a
generic road (e.g., it is long and narrow) with additional distinguishing characteristics
(e.g., a hard, smooth surface). Similarly, all fuels supply energy, but in different forms;
unleaded gasoline is a liquid at standard temperature and pressure, unlike compressed
natural gas (CNG). The nested ovals thus convey the “narrowing” of each component’s
design space. The product labeled Mobil unleaded gasoline reflects a specific set of de-
sign choices that determine its chemical composition and performance characteristics.
Shell’s product may differ in some of these choices (e.g., additives to reduce emissions
or engine deposits), but only insofar as it remains unleaded gasoline and not some
other type of fuel.10

Dependence relationships can also be read from the figure. The arrow to un-
leaded gasoline from the type labeled 7, which includes the Ford Explorer and the
Toyota Camry, indicates that in designing these cars, engineers anticipated the use of
unleaded gasoline as a fuel, but made their designs independent of the gasoline brand.
(If we wanted to name this type, we could call it “unleaded gasoline-burning car.”)
While the Honda Civic GX runs on compressed natural gas instead of gasoline, the
Civic and the Camry both require paved roads.11 The Ford Explorer, in contrast, is

9Using this numbering scheme, the complete DSN for the labeled types would
be given by T = {1, . . . , 11}, D = {(7, 4) , (8, 2) , (9, 1) , (11, 5)}, and E =
{(2, 1) , (4, 3) , (5, 3) , (7, 6) , (8, 6) , (9, 7) , (10, 7) , (10, 8) , (11, 8)}. Here natural numbers are used
as identifiers of types, which are defined as sets in section 3. This is simply a labeling convention;
we could just as easily use letters or any other symbols. Since the inheritance relationships for the
products are straightforward and they do not participate in any direct dependencies, I omit them
from figure 4 and the enumeration here.

10Gasoline is in fact a complex product, varying not only in octane rating—an obvious omission
from the figure—but along dozens of other dimensions as well. Even identically labeled products are
formulated differently by region and season to account for the effects of altitude and temperature on
combustion, and to comply with local regulations. See http://www.faqs.org/faqs/autos/gasoline-faq/.

11The Camry thus inherits attributes from types 7 and 8 through its parent type, labeled 10. This
kind of “multiple inheritance” results in an inheritance graph that is a directed acyclic graph (DAG),
rather than a tree, because some nodes have more than one parent.
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j

i

Figure 5: Induced dependence: subtypes of i depend on supertypes of j.

designed for a wider range of terrain including non-paved roads such as jeep tracks.
So what exactly is a dependency? The many answers given in the literature

are similar in spirit, though they vary in emphasis and implications. Pimmler and
Eppinger (1994) adopt the view that dependencies arise from interactions among design
elements. They classify these interactions into four kinds: spatial proximity, energy
exchange, information exchange, and materials exchange. Jackson (2003) characterizes
dependencies as assumptions, stipulating that “a module A depends on a module B
if the designer or implementer of A makes an assumption about the environment in
which A is to be inserted that is justified in the constructed system by the presence
of B.” MacCormack et al. (2006) and Sangal et al. (2005) take a pragmatic approach
suited to the analysis of large software projects, inferring dependencies from function
calls between source files and syntactic references between classes, respectively.

The DSN formalism does not attempt to define the concept precisely. DSNs
share this feature with DSMs, to the possible frustration of researchers who find that
dependence semantics are often poorly specified in the DSM literature (Cai and Sullivan
2005a).12 However, DSNs are semantically richer than DSMs because their dependen-
cies are defined with respect to types rather than individual design variables. If type
i depends on j, the concept of induced dependence tells us that every subtype of i
also depends on every supertype of j, as illustrated in figure 5. To see why this ad-
ditional structure is natural, we need to reexamine the formalism through the lens of
information hiding.

4.2 Interfaces and information
Hiding design information behind an interface is a common engineering practice. In a
modular system, information hiding can reduce the cost of design changes, facilitate

12I am guilty of the same ambiguity in describing the automotive example. Phrases like “antici-
pated the use of,” “runs on,” and “require” connote different kinds of dependence. Value functions,
introduced in section 5, provide a way to distinguish them.



independent development efforts, and make the system more comprehensible (Parnas
1972). These benefits are especially important in multi-product systems where com-
ponents produced by different firms must interoperate. Parnas observes that a good
modularization reduces the complexity of the interfaces exposed by each module, thus
reducing the amount of coordination required across module boundaries.

Baldwin and Clark, following Parnas, characterize interfaces as “visible infor-
mation” used in design (2000, p. 73). More concretely, they view an interface as a
“treaty” among designers that partitions a module’s design variables into visible and
hidden subsets. An interface specification fixes the values of the visible variables or
restricts them to a certain range; a valid implementation of the interface must respect
these choices. Hidden variables remain free to be chosen by implementers; modules
that rely on an interface should function correctly under any values in these variables’
domains.

It is useful to interpret a type as a bundle of design information that defines
an interface. Recall that a type specifies a set of possible designs for a component.
In many cases (arguably the most interesting ones), the set corresponds to a partial
design, which fixes or restricts some variables while leaving others free to be determined
by subtypes.13 The information associated with such a type can be expressed concisely
as a schema (Holland 1992), using Holland’s modified bit-string notation with a “don’t
care” symbol to indicate the free variables. For example, 01�11� denotes a six-bit
type whose third and sixth variables are free. This string represents the four-element
subset {010110, 010111, 011110, 011111}.

As the set of possible designs for a given component shrinks with each nested
subtype, the information content of each interface grows. Intuitively this is true because
each subtype requires a more specific description than its supertype. For example, a
generic car can be described in a few words (four wheels, internal combustion engine,
etc.), while describing a Toyota Camry LE takes enough information to distinguish it
from all other makes and models. The dual relationship between types and interfaces
can be made precise using Shannon’s (1948) conception of information as entropy
(Woodard 2006, ch. 2); space constraints preclude illustrating this here.

4.3 Congruence and compatibility
Returning to the graphical notation of figure 3, we can now say more about what it
means for each oval to denote a type. An oval delimits both a boundary and an interior.
The boundary represents the visible information associated with a type (its interface),
while the interior represents the set of designs that conform to it. A dependency arrow
thus indicates that one set of designs depends on information exposed by another. We
can interpret the induced dependence rule as a simple consequence of the way design
information propagates through type inheritance. Since subtypes inherit information
from their parents, they need to know everything their parents do—so if i depends on
j, any subtype of i will also depend on j. Conversely, information that needs to be

13As an example of a type that does not, in general, correspond to a partial design, consider one
that consists of products chosen uniformly at random from a design space.
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Figure 6: Induced dependencies for the automotive DSN.
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Figure 7: Congruence: subtypes of j are congruent with respect to subtypes of i.

known may have been inherited from a supertype—so we say that i and its subtypes
also depend on the supertypes of j.

Figure 6 shows the full set of induced dependencies for the automotive DSN. We
can see explicitly that any product of type 7, including those of types 9 and 10, depends
on properties of both fuel in general (type 3) and unleaded gasoline in particular (type
4). Similarly, products of type 8, and by extension those of types 10 and 11, depend
on roads in general (type 1) and paved roads in particular (type 2). These are exactly
the relationships we inferred from the original figure; figure 6 contains no additional
information. However, the new figure makes it easier to see which types do not depend
on each other. We can use these independence relationships to draw inferences about
a certain kind of compatibility between components.

Consider again the two brands of unleaded gasoline. The fact that the two
gasoline-burning cars are independent of the two brands of gasoline means that either
brand can be used with either car. In other words, since neither car incorporates
brand-specific information into its design, the cars are oblivious to substitution among
gasoline brands. More generally, we will say that types j′ and j′′ are congruent with
respect to i and its subtypes if i depends on a common supertype of j′ and j′′ but is
independent of both. Figure 7 illustrates this relationship graphically.

A value function, introduced in 5, may be needed to support more subtle infer-
ences about compatibility as it affects product performance or economic value. Suppose
the Mobil gasoline in the example has an octane rating of 93, while Shell’s has a rating



of 87. Both cars might run with either brand, but they might run better with premium
fuel. In other words, the fuels might be perfectly interchangeable in a technical sense,
but not perfect economic substitutes. It should not be surprising that we need more
than a structural description of the system to capture this distinction. More surprising,
perhaps, is that we can get so far using only the DSN formalism.

4.4 Abstraction to reduced form
Although I did not specify a design space for the automotive system example, its in-
heritance graph presumes the existence of one with the nesting structure illustrated in
figure 3. Similarly, the discussion of the information content of types and interfaces
appealed to the existence of a bit-string representation of product designs. However,
actually enumerating the design variables and their domains may be a laborious un-
dertaking, even for simple systems like the coffee cup example of Baldwin and Clark
(2000, pp. 39–42). Fortunately, this exercise is unnecessary to work with a DSN rep-
resentation.

Consider the design space of a coffee cup that is defined by a set of variables
describing the cup’s shape, size, construction, and decoration. To refer to the set of
orange ceramic coffee cups, we could write down a string with �’s (free variables) in
all positions except those that correspond to color and material. But if we are only
interested in the fact that certain mugs sold at Princeton are members of the set while
those sold at Harvard are not, we can record this information without reference to the
variables or their domains.

Many problems related to strategic system design are most naturally framed at
a similar level of abstraction. To accommodate this, DSNs can be specified without an
explicit design space. In this reduced form, a DSN is a tuple G = (T,D,E) in which
the set of types T contains primitive elements rather than sets, and the inheritance
graph E, like the dependence graph D, is given by the modeler rather than derived
from the structure of the type space. A reduced-form DSN is sufficient to represent
a design space in the notation of figure 3, and vice versa.14 By freeing ourselves from
the microstructure of design spaces, we can focus on the structural changes that occur
when modular designs are reconfigured, along with the strategic implications of those
changes.

14We have already seen an example of a mapping from a diagram to set notation: the enumeration
given in footnote 9 is, in fact, a reduced form for the automotive DSN. Now the numbers are purely
identifiers of types; we no longer need to think of them as sets of designs.



5 Beyond snapshots: System design games
Design structure networks provide graphical snapshots that may reveal opportunities
or tensions among designers, shedding light on past events or yielding insight into
future decisions. Unlike other representation schemes used in engineering design, DSNs
illustrate economic relationships like complementarity and substitutability among a set
of products or system components. A typical next step in analyzing these relationships
is to study the incentives of the designers, which are not necessarily aligned with each
other or those of their stakeholders. In particular, we often want to examine the forces
for and against the various design moves available to system designers. These forces
are naturally described using the language of game theory.

In an expanded version of this paper (Woodard 2006, ch. 2), I introduce the
concept of a system design game (SDG) as an organizing framework for modeling the
evolution of designs through the strategic decisions of designers. An SDG consists of
three parts, corresponding to the core evolutionary processes of variation and selection
plus a fitness or value function that serves as a proxy for the environment. The engine of
variation is the use of modular operators by value-seeking designers. Baldwin and Clark,
following John Holland’s (1992) seminal work on complex adaptive systems, identify
six operators on modular designs—splitting, substitution, augmentation, exclusion,
inversion, and porting—to which they attribute the historical explosion in the diversity
and complexity of computer systems. I formalize a modular operator as a template for
actions that change the structure of a design space represented as a DSN. Designs are
selected at multiple levels: designers choose operators with which to create new designs,
firms choose designs to realize as products, customers choose products to adopt, and
investors choose firms to support with additional capital for growth. Although this
stylized approach abstracts away from much of the richness of real-world innovation and
product development processes, it can be used to build both simple and sophisticated
models of architectural strategy in evolving complex systems.

Value plays a role in the theory of design evolution analogous to that of fitness
in biological evolution: it is, by definition, the basis upon which selection occurs.15 I
follow the literature on network games, surveyed by Jackson (2004), in modeling the
value realized by a designer in a given period as a function of the state of a network
in that period—in this case, a design structure network. Value functions encode the
modeler’s assumptions about how the observable features of a system design, including
its inheritance and dependence relationships, affect the value of its constituent products
to consumers, and how this value flows back to product owners in the form of profit.
If there is only one designer, the problem of maximizing its next-period profit reduces
to a standard dynamic programming problem. In the presence of multiple designers,
the problem can be expressed as a noncooperative game (cf. Osborne and Rubinstein
1994, ch. 1).

15This formulation has been criticized as tautological, but it is not. Biological fitness may not
be directly observable, but it refers to “the existence of certain survival-favoring attributes” that are
conceptually distinct from the probability of survival in a given environment (Mayr 2001, p. 118). It
is similarly difficult to observe economic value as perceived by consumers, but in the context of firms
we can usefully equate it with profit or shareholder returns (Nelson and Winter 1982).



6 Beyond game theory: A case for computation
A model of strategic system design need not be fully realized in mathematical form, let
alone rigorously validated, to be useful as an interpretive lens for real-world phenomena.
Consider the Apple–Intel example again. Section 2 suggested moves that could be made
by Apple, Microsoft, and Intel based on visual inspection of the DSNs in figures 1 and
2, and some elementary reasoning about economic forces in the PC industry.

Armed with the concepts of a system design game and the modular operators
of Baldwin and Clark, we could go further in identifying general patterns of design
evolution traced out by the observed design moves. For example, Apple’s switch from
PowerPC to Intel processors was a straightforward act of porting.16 The Boot Camp
software, in contrast, involved at least three distinct architectural changes. Two of
its components, the Windows device drivers and the BIOS emulation support, were
created through porting, while the new boot loader was a result of substitution and
inversion. The Boot Camp loader replaced the existing OS X boot loader (which is
normally invisible to users) with one that provides a choice of operating systems, then
invokes a normally hidden “hook” to continue the boot process.

To go still further requires a more formal approach that attempts to specify
a particular game in quantitative or algebraic terms. There is nothing mysterious
about this process—system design games are strictly a special case of the noncooper-
ative games studied by game theorists and industrial economists. And indeed, simple
SDGs can be studied using conventional analytic techniques. However, these tech-
niques quickly reach their limits as one tries to extend the models to address more
intricate questions of architectural strategy.

The limiting factor is neither the expressive power of the DSN formalism nor the
ability to represent designers’ actions and incentives as modular operators and value
functions, but rather the challenge of modeling the reasoning process of the designers in
the absence of computable equilibria. Game-theoretic solution concepts like the Nash
equilibrium help modelers by focusing attention on a narrow subset of decision rules
that are consistent with the rational expectations of the players. Once we abandon the
assumption of rational behavior, as we are forced to do by the complexity of real-world
design problems, we are set adrift in a sea of possible decision rules that vary widely
in their plausibility and appropriateness for a given model.

A sturdy life raft is provided by agent-based computational modeling tech-
niques (Axtell 2000; Miller and Page 2007). Instantiating a system design game as an
agent-based model transforms the modeler’s problem from a deductive one (i.e., what
outcomes are predicted by a solution concept) to a constructive one (i.e., what outcomes
are observed when computational agents are endowed with a decision rule). Compu-
tational experiments can efficiently explore a large space of decision rules and other
model features, aided by modern distributed computing environments (e.g., clusters
and grids) and active nonlinear exploration of the parameter space (Miller 1998).

16In fact, the core of OS X, called Darwin, was heavily based on the open-source FreeBSD operating
system, which was originally designed for the Intel architecture and ported to the PowerPC by Apple.
To avoid complicating the story, I have suppressed the fact that OS X continues to support the
PowerPC architecture through its Universal binaries and Rosetta translation engine.



7 Conclusion
Traditional engineering representations such as software architecture diagrams and
design structure matrices capture important features of complex system designs, par-
ticularly the structure of interdependencies among their components. Architectural
strategy, however, requires thinking about the range of designs that are possible, not
merely those that exist. A rigorous approach to architectural strategy therefore re-
quires a richer formalism than ordinary networks of nodes and links. In this paper
I proposed a new representation called a design structure network that graphically
summarizes a system’s design space.

DSNs express interdependencies among families of components that are related
to each other by a type hierarchy. The primitive elements of a DSN include design
spaces, components, types, and relationships of dependence and inheritance. I showed
that DSNs capture familiar properties of systems in a natural way. For example,
the information defining a type can be interpreted as an interface, yielding a dual
relationship between types (sets of designs) and interfaces (visible information exposed
by the members of such sets). This relationship, in turn, enables us to formalize
a certain kind of compatibility between components: two components are congruent
with respect to a third if they are interchangeable from its perspective, i.e., if the third
is oblivious to the visible differences between the designs of the other two.

The DSN formalism, while parsimonious, is highly expressive. It includes DSMs
as a special case, as well as the design hierarchies defined informally by Clark (1985) and
Baldwin and Clark (2000). It even allows overlapping types (what software engineers
would call “multiple inheritance”), enabling it to represent systems with the semilattice
structure described by Christopher Alexander in his classic essay, “A City Is Not a
Tree” (1965). The only practical requirement is for the design of interest to have some
kind of modular structure, or else its DSN representation would be a single monolithic
component.

This work contributes to the science of design by incorporating economic con-
cepts like complementarity and substitutability into the representation of system archi-
tectures, thereby enabling architectural representations to be used directly in economic
models of strategic behavior by value-seeking designers. Such models may be employed
by system architects to anticipate the effects of their design moves on the competitive
landscape in their industries, helping them “use architecture to win technology wars,”
to paraphrase Morris and Ferguson (1993). Models of strategic system design can
also contribute to our knowledge of technological innovation, industrial organization,
and industry evolution. This kind of research can thus serve as a bridge between the
design-science and behavioral-science paradigms identified by Hevner et al. (2004).
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