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PredictingBottleneckBandwidthSharingby
Generalized CP Flows

ArchanMisra TeunisOtt

archan@us.ibm.com

Abstract—The paper presentsa technique for computing the individual
throughputsand the averagequeueoccupancywhen multiple TCP connec-
tions share a single bottleneck buffer. The bottleneck buffer is assumed
to perform congestionfeedbackvia randomized packet marking or drops.
We first presenta fixed point-based analytical technique to compute the
meancongestionwindow sizes the meanqueueoccupancyand the individ-
ual throughputs when the TCP flows perform idealized congestionavoid-
ance.We subsequentlyextendthe techniqueto analyzethe casewhere TCP
flows perform generalizedcongestionavoidanceand demonstratethe useof
this techniqueunder the Assured Sewvice model, where eachflow is assured
a minimum traffic rate. Simulations are usedto demonstratethe accuracy
of this technique for relatively low valuesof packet dropping probability
and a much wider range of packet marking probability.

Keywords—TCP, thr oughput, RED, ECN, congestionavoidance,queues.

|. INTRODUCTION

In this paper we presenia mathematicatechniquefor com-
puting how competingTCP flows sharethe link capacityand
buffer spaceof a bottleneckqueue. In particular we first con-
sidertheinteractionof multiple persistentTCP flows, eachper
forming idealizedcongestionavoidance[1], with a buffer per
forming congestiorcontrol via randompaclet drops/marking.
We developananalyticaltechniqueresultingin afixed-pointit-
erationschemeto obtainthe ‘center’ of the queueoccupanyg
and the individual TCP windows and use suchvaluesto de-
terminethe individual throughputof eachTCP flow. Sucha
techniqueis usedto numerically predictthe mannerin which
TCPflowsshareesource# thepresencef aqueueausingalgo-
rithms suchasRandomEarly Detection(RED) [2] andExplicit
CongestiorNotification (ECN) [3].

We subsequenthextendthe analysisto considerthe caseof
TCP flows performinggenemrlized congestionavoidance Un-
derthis generalizatiorof TCP’s currentwindow adjustmenal-
gorithm,a TCP flow incrementsts congestiorwindow, cwnd?,
fromits currentvalueW by ¢; W in theabsencef congestion
anddecreasethe window by ¢, W7 in the presencef conges-
tion (wherea, S, ¢; andcs areconstantghat parametrizehe
window adjustmentlgorithm). This model of window adjust-
mentcorrespondso the family of binomial congestiorcontrol
algorithmsstudiedn [4]. We presentheextensiongo ourfixed-
point techniquenecessaryor this generalizeccase. To further
demonstratehe flexibility of this fixed-pointmechanismwe
considerthe casewheresuchgeneralizedr CP flows are regu-
latedby the AssuredService[5] model. Underthis model,each
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flow is guaranteed minimumassuedtraffic rate;packetsfrom
aflow shouldideally experienceno congestioraslong asits of-
feredtraffic doesnot exceedthis rate. A suitablemodification
of thefixed-pointanalysigechniqudeadsto areasonablyccu-
ratemethodfor predictingtheindividual TCPwindow sizesand
throughputsuinderthis modelaswell.
Mathematicallyspeakingwe treatthe evolution of the con-
gestionwindow of a TCP flow asan idealizedstochastigro-
cess. In particular we considerthe TCP Renoversion[6] of
window adaptationywheredetectionof congestior{throughdu-
plicateacknavledgmentr via explicit settingof a congestion
indicator bit) resultsin an halving of the congestionwindow.
Of course,mostTCP versionsdo not respondto multiple con-
gestionindicators(packet markingsor drops)within a single
window, but ratherassumehattheindicatorscollectively signal
a single congestiorepisodeand thus halve their window only
once.We shalllaterexplain why our modelprovidesreasonably
accurateapproximationof suchbehaior aslong asthe notifi-
cationprobability is moderatelylow. By disregardingtransient
phenomenauchasfastrecovery[1] andtimeouts we canmodel
thewindow evolution of the generalized’ CP flow asa Markov
processwith thefollowing state-transitioprobabilities:

P{Wpi1 = w+ qw*|W, =w} =1-pw), (1.1)

P{Wpi1 = w — couP|W,, = w} = p(w),

where p(w) is the (state-dependentfongestionnotification
probability. Theclassicakongestioravoidancealgorithmis ob-
tainedby settinga = =1, 8 = 0, ¢; = 1.0 ande; = 0.5.

The value of the TCP window that correspondso ‘zero-drift’,

wherebytheprobabilityof window increaseequalghe probabil-
ity of window decreaseis assumedo representhe ‘center’ of

the flow’s window distribution. It shouldbe notedthat, strictly

speakingwhenmultiple TCPflowsinteractwith asinglequeue,
the probabilityfor congestiomotificationfor a specificflow de-
pendsnotjustonits window, but alsoon theinstantaneousin-

dow sizesof all the otherconnections.

(1.2)

LWhile cwnd in actual TCP implementationss expressedn bytesand is
consequentlyntegervalued, we assumehat, in equationg1.1) and(1.2), W
is real-\aluedandis expressedn Maximum SegmentSize (MSS) units. The
congestiorwindow in the restof this paperis assumedo be real-\alued. We
will explicitly mentionthesituationswherethecongestiorwindow is expressed
in bytes.

2 An accuratemodelof thewindow evolution procesgor N TCP connections
would requirean N — dimensional Markov model, wherethe statespace
would be a N-dimensionalvector consistingof the window sizesof eachindi-
vidual connection.Thetransitionprobabilitiesbetweerstatesvould dependon
the stateof the entire system(the instantaneousiindows of eachconnection),
makingusefulanalysismpossible.



Congestiomotificationis an abstracteventin our analysis;
pacletdropsandpaclket markingarethusfundamentallyequiv-
alentevents. Our fixed-pointanalysistechniquethusappliesir-
respectie of whethertthebuffer'scongestiorcontrolusegaclet
dropsor ECN-basegaclet marking. To illustratethe accurag
of ouranalysisfor corventionalTCPflows,we shallfirst present
simulationstudieshasedn feedbackvia randomizediropping
For numericalstudiesof the generalizeccongestioravoidance
algorithm, we shall however use a buffer that performscon-
gestioncontrol via padket marking The useof suchexamples
seemustified,sincemodificationsto TCPcongestioravoidance
arebeingadwcatedonly whenexplicit congestiomotification
mechanismssuchas ECN, are available in the Internet. We
shallseethat, while our genericfixed-pointformulationapplies
to both paclet markinganddropping-basedongestiorcontrol,
our specificuseof the “square-rootformula” is more accurate
overamuchwider rangeof packetmarkingprobabilities.

Our analyticaltechniquecomputesonly the ‘center’ of the
gueueoccupang (andnothigherorderstatistics) As anindirect
fallout of our simulations,we shall however also demonstrate
how suchrandomizectongestiorfeedbacktypically causeshe
TCP windows to be negatively correlated Negative correla-
tion impliesthatthe TCP windows tendto vary ‘out-of-phase’;
suchbehaior causeghevarianceof the queueoccupang to be
smallerthatthe sumof the variancef theindividual flows.

The rest of the paperis organizedas follows. Sectionll
describesour mathematicamodel for the interactionbetween
multiple TCP flows anda RED-like buffer. Sectionlll presents
theanalyticaltechniqugor multiple flows performingidealized
congestioravoidanceandprovidessimulationresultsto demon-
stratethe accurag of our analysis. This sectionalso reveals
how our useof the “square-rooformula” leadsto higheraccu-
ragy whennotificationis primarily achiezedthroughECN-based
feedback SectionlV considerghe extensionof theanalysisfor
thecaseof multiplegeneralized CPsundertheAssuredService
modelandpresentgomparisonsvith simulatedresults.Finally,
sectionV concludeghe paper

A. RelatedWbrk and Model Applicability

While several papers(e.g., [2], [7]) have usedsimulations
andexperimentgo considerthe effect of RED-like randomized
feedbackalgorithmson TCP throughput,relatively little work
hasbeenpublishedon analyticaltechniquegor computingsuch
throughputsharing. The fixed-pointmethodfor analyzingthe
sharingof a bottleneckbuffer wasfirst presentedn [8]; [9] later
presentec similar analysisbasedon a control-theoretianodel.
The extensionof the fixed-pointtechniquefor generalizedr CP
flows wasinvestigatedn [10]. This papercombinegheresults
in [8], [10] into acommonframework. [8] alsoshovshow such
fixed-pointanalysigs exploitedto evaluatetwo alternative tech-
niguesfor computingthe windowdistribution of a TCP flow in
sucha multi-flow case.

Therole of negative correlationin stabilizingthe queueoccu-
pang wasexploredin [8], [11], whichalsoshavedhow theuse
of averagedvaluesof pastqueueoccupanciesanddrop-biasing
techniguesould quantitatvely modify suchcorrelationbeha-

ior. Our analyticaltechniqueonly computesthe meanqueue
occupang; we do not make ary claimson the dynamicbehas-
ior of thequeue [9] treatsthe queueasa dynamicalsystemand
shavs thatsucha queuecanexhibit instabilitiesandoscillatory
behaior; suchbehaior is mathematicallymotivatedin [12].

Our analyticaltechniqueappliesto queuesvherethe dropor
marking probability is basedonly on the queueoccupang and
isindependenof thenumberof active flows. Active queueman-
agementlgorithms suchasSRED[13] andBLUE [14] attempt
to stabilizethe bottleneckqueueoccupanyg by dynamicallyad-
justing the drop/markingthresholdshasedon the offeredload.
While suchalgorithmscould be incorporatednto our analysis
by appropriateadjustmentof the notification probabilities,we
have notexplicitly considereguchenhancements this paper

The ‘drift-basedcomputation’of a flow’s meanwindow size
was previously usedin several papers(e.g. [7], [16], [17]) to
computethe throughputof a TCP flow subjectto a constant
pacletdrop probability. SuchanapproacHeadsto the ‘square-
root formula’ for classicalcongestionavoidance,which states
thatthe meanwindow of a TCP connectioris inverselypropor
tional to the square-rootf the lossprobability. More detailed
modelsof TCP behaior, that considerthe effect of timeouts
and fast recovery, are analyzedin [18], [19], and essentially
shaw that the TCP throughputbecomesnverselyproportional
to the packetdrop probabilityat moderatelyhigh lossrates.Our
idealizedanalyticaltechniqueis demonstratedisingthe classi-
cal square-rooformulaandis thusapplicableonly whenpadket
lossratesare relativelylow and transmissiortimeoutsare rel-
ativelyrare events.The genericanalyticalframenork hashow-
ever beenalso usedin conjunctionwith other more accurate
modelsof TCP behaior to provide betterapproximationsfor
higherpacletlossrates.For example,[20] usedthe fixed point
framavork with the PFTK formula[19] formulafor TCPbehar-
ior to demonstratéetteragreementunderhigherratesof RED-
basedpaclet dropping. We focusprimarily on establishinghe
principlesof the fixed-pointformulation, ratherthan studying
specificmodelsof TCPresponseHowever, our simulationstud-
ieswill demonstrat¢hatthe useof thefixed-pointmethodwith
the square-rooformulais accuratefor a wide rangeof ECN-
basedcongestiorfeedback—iressencepur modelis accurateas
long asthe paclet lossratescanbe keptlow enoughto restrict
theoccurancef retransmissiotimeouts.

Il. MATHEMATICAL MODEL AND PROBLEM APPROACH

In this section, we first describethe TCP source model
for classicalcongestioravoidance,andthe randomdrop-based
buffer managemenalgorithm. The correspondingextensions
for generalizedongestioravoidanceandmarking-basedjueue
managemenare obviousandare presentedhereafter We also
presentheAssuredServicemodel,whichweshallanalyzdater.

A. TCPSouces

The TCP connectionsare persistent(sendinginfinite-sized
datafiles), with the congestiorwindow actingasthe only con-
strainton the injection of new paclets by the sender We as-
sumethattheconnectiomevertimesout, thatthe datais always



sentin equal-sizedegmentgalthoughsegmentsizescouldvary
betweerconnectionsandthatacknavledgmentsreneverlost.
For thepurpose®f presentationwe assumehatthereceverac-
knowledgeseveryrecevedpacletseparatelydelayedacknavl-
edgmentarenotenabled)delayedacknavledgmentsanbein-
corporatednto the modelusingtheapproximationn Appendix
C.

Let N be the numberof concurrenfTCP connectionsinder
consideration.The i** TCP flow, TC P;, hasa maximumseg-
mentsize (MSS) of M; bytes. Moreover, the roundtrip time
of the i** TCP connectionis assumedo consistof two com-
ponents: a fixed componentdenotedby RTT; (seconds)and
a variable queuingcomponent.Sinceour modelassumeghat
eachflow essentiallyfacesonly onebottleneckthedelayin the
restof thetraffic pathcanbeassumedb befixedanddetermined
largely by the propagatiorandtransmissiordelaysof the con-
stituentlinks (queuingdelaysin suchnon-bottleneclnodesare
assumedo be nggligible). The queuingdelayat the bottleneck
nodeis explicitly modeledandcontributesto the variablecom-
ponentof thedelay Let W; denotethe window size(in MSSs)
of thet* connectionNotethatwhile the processnodel(equa-
tions (1.1) and(1.2)) representshe window statein segments,
we shall alsooccasionallyrefer (explicitly) to the window size
in bytes.

B. QueueBehavior

For the analysisin sectionlll, we considera RED-like
gueuewhich subjectsall incoming pacletsto randompaclet
drops/markingwith a probability that dependson the instan-
taneousqueueoccupanyg. The specializedORED’ queuebe-
havior for the analysisof the AssuredServicemodel will be
presentedn sectionll.C.

The servicerate (bandwidth) of the queueis C bytes/sec.
In general, let @ be the buffer occupang of the random
drop/markingqueueand ); (in bytes)be the amountof traf-
fic from connection: that is buffered in the queue(so that
SN, Qi = Q). The drop/markingfunction is denotedby
f(Q). Forthesimulationresultswe usethelineardrop/marking
model,with f(Q) givenby:

f(Q =0 YV Q < ming,
=  Pmaz V Q > maxyy, (21)
=  DPmazx * Q — i Y ming, < Q < mazxgp

Maxy, — Mgy

where,asperstandardotation,maz;, andmin,, arethemax-
imum and minimum drop/markingthresholds(in bytes)and
Pmaz 1S the maximumpacket drop/markingprobability. (This
is in fact,anevengentlerversionof the ‘gentle’ modelof RED
behaior recommendeih [21].) Fromananalyticalviewpoint,
we merelyneedf (@) to benon-decreasinm Q; thisis truefor
all sensibledropfunctions.

Although our analysisis primarily focussedon algorithms
that do not maintainflow-specificstate(and do not distinguish
betweerflows), a slight generalizationywhich allows the actual
pacletcongestiomotificationprobabilityto be flow-dependent,

is possible.To thatextent,we supposé¢hatthecongestiomotifi-
cationprobabilityfor a pacletof flow 4, which arriveswhenthe
qgueueoccupanyg is @, is givenby thefunction f;(Q). f;(Q) is
relatedto our afore-mentionedirop/markingfunction f(Q) by
theexpression:

fi(Q) = i f(Q)

wherethe ¢; arearbitrary non-zeroconstants.Our modelthus
permitsthe notificationfunction for differentconnectiongo be
scalarmultiplesof oneanotherthescalarvaluesarerepresented
asc? insteadof ¢; for future notationalconvenience.

Thisscalamodelpermitsus,for example to capturehebyte-
modeof operatiorof REDwheretheprobabilityof apadetdrop
is proportionalto the sizeof the paclet (by settinge? = M;)3.
Also, for corvenience,we shall use p;(W) to representthe
(asyetunknawn) relationshipbetweerthe pacletdrop/marking
probability of 7'C P; andits window size W. Thereadermay
notethatpacketdropsor markingin RED, unlike our reference
model,arenottruly conditionallyindependenta simplecorrec-
tion for our modelin sucha situationis discussedn Appendix
B.

(2.2)

C. AssuedServiceModelandBuffer Behavior

TheAssuredServicemodel[5] describesframework for dif-
ferentialbandwidthsharing,whereeachflow (user)is guaran-
teeda minimum or assued rateaspart of their serviceprofile.
Adequatecapacityprovisioningis assumedo ensurethatpack-
ets from a flow experienceminimal congestie losses/mark-
ing aslong asits transmissiorratelies within this assuredate.
Flows are allowed to inject additional (opportunistic)paclets
beyondthis assuredate; suchpacletsaretreatedasbest-efort
andhave lower priority. To enablenetwork buffersto differen-
tiate betweensuchpaclets, [5] proposesa taggingmechanism
atthe network edge.Packetswhich staywithin the profiledrate
aretaggedasin pacletswhile pacletsthat violate the profile
aretaggedasout paclets. Mechanismsuchasa leaky bucket
[22] or modificationsthereof[5] may be usedto implementthe
tagging operation. In paclets are provided preferentialtreat-
mentin network buffersvia the RIO (RED with In/Out) discard
algorithm; RIO is similar to RED exceptthatit usesdifferent
thresholddor in andout pacletsto ensurethatout (opportunis-
tic) pacletsaredroppedbeforein packets.For simulation-based
studiesinvolving the generalizedcongestionavoidancealgo-
rithm, we assumehatour bottleneckqueueuseshe ORED[10]
buffer managemenalgorithm; ORED s similar to RIO but dif-
fersin two respects:

« OREDmarksout pacletsinsteadof droppingthem.

« OREDdoesnot signalcongestiomatificationfor in pack-
ets, except when the buffer overflows and paclets are
dropped.

As in the classicalcongestionavoidancecase,the general-

ized TCPflow T'C P; hasanMSS of M; bytesandaround-trip

30ur ‘'scalarmultiple’ modelof flow-dependennotificationprobabilitiescan
capturea muchricher setof randomizedeedbacksettingsthanapparenat first
glance.For example, it canrepresent settingof WeightedRED wherethe dif-
ferentclassehiave thesamemin,;, andmazx;y, thresholdsut differentmaz,,.
We do not explorethevalidationof suchsettingsfurtherin this paper



time of RT'T; secs.Additionally, TC P; is assumedo have an
assuredateof R; bytes/se@ndcanconsequentlyxpectto re-
ceive no congestiorfeedbackaslong asits transmissiomate p;
is lessthan R;. Theflowsinteractwith anORED buffer serving
alink of capacityC' bytes/secOur analysisassumeshat*

N
C > ZR“
i=1

i.e.,thelink capacityis greatethanthesumof theassuedrates
of theindividual flows.

Themarkingfunctionof the ORED buffer (for out paclets)is
givenby thetraditionallinearmodelf(Q) presentedh equation
(2.2).

(2.3)

[11. ESTIMATING THE MEAN QUEUE OCCUPANCY FOR
CLAssICAL CONGESTION AVOIDANCE

In this section,we considertheinteractionof TCP flows per
forming classicakongestioravoidancewith abottleneckbuffer
performingfeedbackhroughrandompacket dropsor marking.
For theclassicakongestioralgorithm,the state-transitioprob-
abilities of theit* Markovian processaregivenby:

1
P{Wpi1=w+ E|Wn =w}=1-p;(w), (3.1)

P{Wns1 = 5 |W, = w} = pi(w), (3.2)

We first usea drift-basedargumentto determinethe center
of the queueoccupang, denotedby (*, andthe centersof the
cwnd-s of the individual connectionsdenotedby W, i =
{1,...,N}. To estimatethe centerof the queueoccupany,
we use a set of fixed point mappings. The basicideais to
find valuesfor the averagewindow sizes,suchthat the aver
agequeuesize given by thoseset of valuesis consistentwith
the averagenoatification probability thatis implied by the win-
dow sizes. The derivation of the ‘square-root’formulavia the
drift-basedtechniqueis borroved from [23]. As notedearlier,
let @* bethis meanor centervalueof the queueoccupanyg and
let W, ie {1,2,..., N} bethecenterof theit® TCPflow.

(2

A. Formulatingthe Fixed Point Equations

Definethedrift of thecongestiorwindow of aTCPflow (mo-
mentarilydroppingthe flow-specificsubscript)by the expected
change AW, in its window size. Since,for a window size of
w, thewindow size(in paclets)increasedy % with probability
1 — p(w) anddecreaseby ¥ with probabilityp(w), we have:

w

AW = (1~ p(w) - plu) ¥.

From the above equation,the centeror ‘0-drift’ value of W,
calledWW*, is seeno be

(3.3)

W* =~

2 (3.4)

Uf ¢ < Eivzl R;, thenECN markingwill occureventhoughat leastone
TCP flow obtainslessthanits assuredate. This is clearly a violation of the
AssuredServicemodel.

wherethe approximationis quite accurateasp is usually quite
smalP (for currentTCPversionsjf thedropprobabilityexceeds
0.05,timeoutsandslow startphenomenaegin to dominateT CP
behavior).

The notification probability for flow 4, p;(W), for a given
value, ) of the buffer occupany is given by the relationship
pi(W) = f:(Q). Accordingly, in the multi-TCP case thezero-
drift analysisgivesthefollowing expression(in paclets)for the
meanwindow sizefor flow i:

2

fi(@*)
By incorporatingexpression(2.2)in theabove equatiorandnot-

ing thateachpacletof flow i is M; bytesin size,we getthemean
window size(in bytes)as:

.M [ 2
= F@e

Now, let C; be the averagebandwidthobtainedby TCP i.
Assumingthatthereis no significantbuffer underflav andthat
thelink is fully utilized (afterall, thisis abottleneckgueue)we
gettherelation Eﬁil C; = C. C; canalsobe computedby a
differentmethod: by noting that a TCP connectionsendsone
window worth of datain one effective roundtrip time. Since
a queueof size @ will contribute a buffering delay of %, the
effective roundtrip time of connection is RTT; + %; thus,we
canrelatedC; to W; by the expression

RTT; + ¢

Wi (packets) ~= (3.5)

(3.6)

%

(3.7)

OnsummingtheC;sfromtheabove equatiorandequatinghem
to C, we get

N M;
cC=w ; m (3.8)
or, uponsimplification,
W= ;M (3.9)

i

ZN
i=1 Q+C.RIT;

_2

whereW =, /f(Q). For notationalconveniencelet theRHS of
equation(3.9) be denotedby the function g(Q) sothatg(Q) =

N = _

izt gromrr) . .
Thefixedpointsolutionsfor the ‘average TCPwindow sizes

andthe queueoccupany is thengivenby the setof valuesthat

provide a solutionto thefollowing simultaneougquations:

2
(&)

5 A moreaccurateanalysis[23] revealsthat the meanwindow occupany, in
acktime, is givenby W* ~ 15269 |t s this value that we usedin all our
experimentakesults; for notationalease however, we shall continueusingthe
v/2 approximatiorin our exposition.

W= (3.10)



M;

ZQ+CRTT

1 =9(Q) (3.11)
After solvingthesesimultaneougquationsye cangetthe ‘av-
erage’congestiorwindow for theit® TCPflow (in bytes)using
therelation:

(3.12)

We canthenobtainthe throughput,p;, of TCP; by usingthe
relation:

W
pi= ——t (3.13)
" RIT,+%

B. More GenericModelsfor TCP Behavior

It is well-known thatcurrentTCP versionsshov appreciable
deviation from the “square-root"formulaif the pacletlossrate
is largerthan~ 5%. (This deviation occursprimarily dueto the
overheadof retransmissioriimeoutsand slow start causedby
multiple pacletlosseswithin asinglewindow worth of paclets).
The above fixed point modelcan, however, be easily extended
to considemmore accurateor genericmodelsof TCP response.
For example by considetheeffectsof TCPfastretransmitsand
timeouts [19] shavedthatthewindow size(expressedn MSS)
of asingleTCP flow subjectto alossprobability f;(Q) is well
approximatedy:

27 fi(Q)
8

W; = RTT;/{RTT; =

+ To * min(1,

)

(3.14)

2% fi(Q)
3

«fi(Q)* (1432 % f2(Q)},

whereTy representshe baseretransmissiotimeoutinterval.
Sincethetotal RT'T of TCPF; is clearlya functionof @, it fol-
lows that equation(3.14) can also be representedn the form
W; = ¢g(Q), with anappropriatelydefinedg(.). Thisis funda-
mentallysimilar to theform of equation(3.10);accordinglythe
samefixed point techniquecanbe usedto solve for Q* evenin
this case. To maintainour focus on the fixed point technique
itself (ratherthanthe preciseform of g(@)), we do not consider
suchrefinementsry furtherin this paper

Our Markovian model for TCP window evolution assumes

thatthe TCP window halveson the receiptof every congestion
indicator, evenif they occurin fairly closesuccessionThis s,
of courseanidealizedbehavior, singlemostcurrentTCPimple-
mentationgreatmultiple packetdrops/markingsvithin a single
window asindicative of asinglecongestioreventandhalvetheir
window only once.We arguethatour modelis reasonablyaccu-
ratesincethe numberof randompacletdrops/markingsvithin a
singlewindow shouldbeeitherO or 1 in awell-behaedqueuing
system.To seethis, assumedhatthe routercongestiomotifica-
tion probability staysconstantat p. Then,the averagewindow
size of a TCP flow subjectto feedbackfrom sucha routeris

W*(p) ~= % (from equation(3.4)). Let X representheran-
dom variablerepresentinghe numberof notificationeventsin
suchawindow W*(p). Then,theprobability of multiple losses,

Prob{X > 2} underatruly independenfeedbackmodel is
givenby thebinomialmodel:

Prob{X > 2}

X

(3.15)

_p)W*(p)—l_

1 — Prob{X =0} — Prob{X =1}
1-a-p7 o - (V)

X

*px (1

Likelihood of Multiple Conegstion Events Within a Window
25

20

15
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Probability of 2 or More Events (%)

5 o
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Packet Notification Probability (p)
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Figurel: Probabilityof 2 or More
Loss/MarkingEventsin a CongestiolVindow

Figurel plotsthis probabilityasafunctionof p. It is easyto
seethattheprobabilityof multiple lossess fairly smallevenfor
moderatelylarge valuesof p (around10% for p = 0.2). This
low probability is easily explainedby observingthata largerp
alsoleadsto a smallervalueof the“average”window size,thus
reducingthe likelihood of multiple losseswithin a singlewin-
dow. Accordingly; our stochastianodelof TCPwindow evolu-
tion seemgo be a reasonablygoodapproximationto TCP be-
havior (sangtimeoutsof course).

C. Existenceand Solutionof Fixed Point

We now prove the existenceof a uniquesolutionto theabove
simultaneougquationdi.e., (3.10)and(3.11))andalsoprovide
anumericaltechniquédor its rapid computation.

The existence of a unique solution can be demonstrated
graphically(seefigure 2) by simultaneouslyplotting equations
(3.10)and(3.11)onthe (Q, W) axes. Since f(Q) is assumed
non-decreasini @, we have W in equation(3.10)to beanon-
increasingfunction of . On the otherhand,g(@) in equation
(3.11) canbe seento be anincreasingfunction of (). Thetwo
plotswill thereforantersecttasinglepoint,whichis our‘zero-
drift’ solutionfor W* and@*.

In AppendixA, we prove thatthe function g(@) is concave;
accordinglywe canseethatthe function f(Q), definedby the
differencebetweenthe RHS of equationg3.10)and(3.11), is
corvexin Q.

2 1

i (3.16)

N
Eizl Q+C.RTT;
Hence we usethe Newton gradienttechniquewhichis guaran-
teedto corvergeandprovide a solutionto the equationf (Q) =
0, to solvefor thefixedpoint. We startwith aninitial estimateof



Qo = ming, + ¢ (aninitial valueto theleft of Q*) andproceed
with repeatedteration. In this particularsetting,the derivative
f'(Q;) atthejt" iterationis givenby

r@) Y @70 R (3.17
V2p(Qj)®

N e
Xz Q,+C.RIT; )?

min

Figure2: Typical RelationshibetweerV andQ
for RandomDrop Queues

D. InsightsfromAbove Analysis

The drift analysistechniqueprovidessomeinsightsfor pre-
dicting or controlling the stationarybehaior of persistenifTCP
connectionsandfor understandinghe accurag of our approxi-
mationtechnique For example,our analysisshavs that:

« TCP connectionavith the sameroundtrip time but differ-

ent paclet sizeswill seethe same‘average’'window size
(in bytes)if ¢; = aM; Vi, whereq is an arbitrary con-
stant. In otherwords, to ensue fair sharing of through-
putamongTCP connectionsvith differentpadetsizesthe
padket dropping probability shouldbe proportionalto the
squae of the padet size Contrastthis with currentbyte-
modedrop schemesvherethe paclket drop probability is
normally proportionalto the pacletsize.

« TCP connectionswvhich areidentical, exceptfor different
round trip times, will obsere relative throughputthat is
inverselyproportionalto the roundtrip times. This unfair-
nesstowardsTCP connectionsvith largerround-triptimes
is well known.

« SinceW* (the *fixed point’ that satisfiesboth equations
(3.10) and (3.11)) is identical for all flows, it shouldbe
clearfrom equation(3.12) thatthe meanvalueof the win-
dow size (in paclkets)for all TCP flows, which have the
samedropfunction (samep;s), will bethe same jrrespec-
tive of their round-triptimesandsegmentsizes.The point
is moresubtlethanapparentt first glance:the meansare
identicalonly whenexpressedn M S Ssandwhenthedis-
tribution is taken with respectto ack time. When sam-
pledin clock time the meanwindow size of a TCP con-

nectionwill indeeddependon its round-tripdelay (which
influencegherateof progresof the connection) We can,
however, easilycomputethedistributionin clocktime from
thatin acktime, if the round-tripdelayfor a specificcon-
nectionis non-varying (throughthe relationdF, . (x) =

7fziF“U’l;f"(m) ). As the numberof flows increaseswe shall
YalciockY
0

later seethat the buffer occupang (and hence,the queu-
ing delay)shaws relatively smallervariation; estimateof
clock-timedistributionsfrom our ack-timecalculationsare
progressiely moreaccurate.

E. SimulationResultfor TheMeanWndowSizes

We useda wide variety of simulations,with variouscombi-
nationsof seggmentsizesandroundtrip times,to verify the ac-
curag of our fixed point-basegredictiontechnique All simu-
lationsare performedwith New RenoTCP sourcen the ns-2
[24] simulator;thefixed pointtechniquecorvergesin afew sec-
ondscomparedo the O(mins)durationnecessaryvith simula-
tions. To studythe accurag of our drift analysiswe simulated
bothRED (RandomEarly Detection)andERD (Early Random
Drop) [15] queues. The differencesbetweenthesealgorithms
andthe necessaryorrectionsto our model (for RED) are pre-
sentedn AppendixB.
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Figure3: MeanBehavior with 2 IdenticalConnections

A setof illustrative examplesare presentedn figures3 and



4. In both simulations,two TCP connectionswith 512 byte
paclets, interactwith a single bottleneckqueue. The random
dropqueuehasming, = 25 packets,mazx;, = 75 packetsand
buffer sizeequalto 150 paclets(similar to recommendationi

[25]); pmas Wasvariedbetweerthevaluesoutlinedin the plots.
Figure 3 considersdwo TCP connectionswith identical round-
trip times, while figure 4 shaws the resultswhen the nominal
RTT of the secondconnectionis doublethatof thefirst (called
the BaseR T in the figure). By varying p.,q., we changethe
slope of the drop function and hence the ‘zero-drift’ point of

the queueoccupanyg. Similar simulationshave alsobeenper

formedfor avariety of round-triptimesandMSSs. In general,
theaccurag of our predictionss slightly lowerfor larger RT'T

values,althoughin all caseghe agreementvaswithin 10% of

the predictedvalues.This is expectedbecausea largerRTT es-
sentiallyincreaseshe chanceof buffer underflav (whichinval-

idatesour model) by increasingthe feedbacktime of the TCP
control loop. Sinceour model doesnot accountfor phenom-
enalik efastrecovery (duringwhich thequeuesizereduces)we

tendto predictlargerqueueoccupanciethanthoseobtainedvia

simulation.
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Figure4: MeanBehavior with 2 Dissimilar Connections

To further illustrate the utility of our analytical technique
in determiningthe relative sharingof the bottleneckcapacity
amongthe TCP flows, we considerd TCP flows sharinga bot-
tleneckERD buffer. The round-triptimesof the 4 flows were
50ms, 70ms, 90ms and110msrespectrely. Tablel shavs the

simulatedand analytically predictedvaluesfor the throughput
of all the4 flows. We canagainseethatour analyticaltechnique
predictsthe true sharingof TCP bandwidthwith reasonablec-

curagy.
TCP | Throughput| Throughput

Flow Analytical | Simulated

Flow 1 | 0.451Mbps | 0.441Mbps

Flow 2 | 0.392Mbps | 0.370Mbps

Flow 3 | 0.346Mbps | 0.352Mbps

Flow 4 | 0.311Mbps | 0.315Mbps

Tablel: Resultsfor 4 TCPswith DifferentRTTs

Our simulationsalsovalidateour analysis,which statesthat
the meansof the TCP windows (in segments)shouldbeidenti-
cal (in acktime), eventhoughthe round-triptimes of the var
ious flows and the segmentsizesare different. It shouldalso
be notedthatthe negative correlationamongwindow sizes(dis-
cussechext) helpsto reducethe variationin paclet lossproba-
bility andimprovestheaccuray of our technique.

F. ModelAccumacyfor Varying N

While the abore examplesclearly validatethe fundamentals
behindthefixed-pointapproachit would beinterestingto study
the effect of our choiceof the “square-rooformula” on the ac-
curag of our model. To studythis behaior, we performedex-
tensve simulationsby varying V, thenumberof persistenTCP
flows. More importantly we usedsimulationsto obtainthe dif-
ferencebetweenthe simulatedaveragequeueoccupang when
the router performedcongestionfeedbackusing either paclet
dropsor packet marking (ECN). Figure 5 plots the simulated
gueueoccupang of both RED and ERD queues,as well as
the analytically predictedvalue using the fixed-pointmethod.
Sincethe fixed point methodis basedon an abstractconcept
of congestionnotification, the analytic predictionis identical
for both paclet droppingandmarkingbehaior. The plotspre-
sentedin figure 5 correspondo a bottleneckbuffer settingof
ming, = 25, maxy, = 75 andp,,.,; = 0.2 respectiely. The
TCPflows weregroupedn pairs,with the RTT of thefirst pair
setto 50 msec,andthe RTT of every successie pair setto 1.2
timesthatof the previouspair.

It is easyto seethat the analytic predictionsover-estimate
theactualoccupanyg (andconsequenthff CP throughputwhen
congestiomotificationis performedvia paclet drops. Therea-
son for this is not hard to find— the square-roofformulation
fails to considerthe effect of timeouts,which occurwhenTCP
flows encounterpaclet losses As N increasesthe average
gueuelength and the averagepaclet dropping rate increases,
leadingto greaterinaccurag in the square-rootasedfixed-
point model. Whennotificationis performedvia paclet mark-
ing, suchloss-relatedimeoutsare extremely rare events,and
congestioncontrol is achieved principally through congestion
avoidance.Accordingly, our analyticmodelprovesreasonably
accurate(within 10% in all cases)or ECN-basedbottleneck
gueuesevenwhenthefeedbackateis highandnumberof TCP



flows arefairly large. ECN-basednarkingis clearly the pre-
ferredmodeof congestiomotificationin the future; moreover,
adwancedmechanismsuchasTCP SACK have beenshavn to
furtherreducethelik elihoodof TCPtimeouts.Accordingly, the
resultsdemonstrat¢hatthe “square-rooformula” basedixed-
pointtechniquds likely to beincreasinglyusefulasa predictor
of networkperformancen thefuture.
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G. NgativeWindow-sizeCorrelationandits Consequences

On observingthe resultsof our simulations,we found that
the window sizesof the differentflows were negatively corre-
lated. Negative correlationessentiallyimpliesthatthe windows
tendto vary out of phase.whenthewindow sizeof oneflow is
large,the otherflows have smallerthanusualwindow sizesand
vice versa.The queueoccupanyg thusexhibits lower variability
andtendsto belessdependenbn variationsin thewindow size
of a singleflow. To demonstratehe presencef suchcorrela-
tion for anarbitrarynumberof flows, we samplethe queuesize
andtheindividual windows to obtainthe varianceof the sumof
the window sizesVar(Zf\;1 W;) andthe sumof the individ-

ual varianceszﬁi1 Var(W;). We know thatthe two shouldbe
equalif theflows areideally uncorrelatedFor negative correla-
tion, thesumshouldexhibit lowervariance Var(Zﬁi1 w;) <
SN Var(W;)), while for positive correlation the sumshould

exhibit Iargervariance(Var(Zﬁi1 W) > Zﬁil Var(W;)).
Thisfollows from the generalkelationship

N N
V‘”‘(; W;) = 21 Var(W;) + g Cov(W;,W;) (3.18)
= = 1#£]

Hence,if the covariancetermsare negative, thenthe LHS of
equation(3.18)is lessthanthe RHS.

Variance Behavior Plots
200

180

160

140

120 Lo

100

80 stileneck BAV=1.5Mbbs. RTT=25
ottieneck B/W=-15Mbps;RT1=20ms;
g 5

PktSize= 512 byte

60

Variance (in packets/MSSs)

40

/indows —+—

20 Variance of Sum of Wi
Sum of Variance of Windows ---¢---
Var‘iance of Queue Oqcupancy oK

0 .
2 3 4 5 6 7 8 9 10
Number of TCP Flows

Figure6: VariancePlotsfor TCPflows overanERD Queue

Coefficient of Variation Plots

0.3
- 3 Bottleneck B/W= 1.5Mbps,RTT=25ms,
S 0.25 PktSize= 512 bytes
Q
=
>

0.2 ¢
3 [~
& T —
e e T e S
k] — .
ks — ]
S
> 01
k]
=
g
8 005

Coeff. of Variation of Sum of TCP Windows —+—
0 ) ) Cogff. of Var[ation of Queue chupancy e

2 3 4 5 6 7 8 9 10
Number of TCP Flows

Figure7: Coeficientof VariationBehavior

Figure 6 shows the behaior of thesestatisticalmetricsfor
differentvaluesof NV, the numberof simultaneoudlows shar
ing a bottleneckbuffer. The figure shaws that Var(ZﬁL W)
is always lessthan Z?;l Var(W;) (and,in fact, Var(Q) is
even lower than VC"’(Z?; W;)). This indicatesthe presence
of ‘negative correlation’amongthe TCP flows. [8] shavs how
sucha negative correlationcanbe exploited to obtainmoreac-
curateestimate®f the stationarydistribution of the congestion
windows, while [10] discusse$iow suchnegative correlationis
exploited by intelligent ‘drop-biasing’ strat@iesto reducethe
variability of the queueoccupang. Figure7, onthe otherhand,
shaws that the coeficient of variation of the queueoccupanyg
decreasewith anincreasdn the numberof simultaneous CP
flows. Accordingly, we canexpectour analyticalpredictionsto
be more accuraten the presenceof a larger numberof flows,



aslong asthe presencef alargernumberof flows doesnotin-
creasethe drop probability andthe incidenceof retransmission
timeouts.

IV. ANALYSIS EXTENSION FOR GENERALIZED
CONGESTION AVOIDANCE

We now extend the fixed-point techniqueto computethe
meanwindow sizesand throughputsfor TCP flows perform-
ing generalizedcongestionavoidance. In general,a process
that performswindow-basedcongestiorcontrolunderthe TCP
paradigmcanbe thoughtof asincreasingts window by afunc-
tion incr(W) on receving an acknavledgmentin the absence
of congestioranddecreasingts window by decr(W') onrecev-
ing anacknavledgmenindicatingcongestionAs statedearlier,
we considera specialcaseof window adjustmentvhere:

iner(W)
decr(W)

c1Wa
CQWB,

whereq, 8, ¢; andes arearbitraryconstantsThe classof algo-
rithms having = 0 and$ = 1, arecalled additive-increase,
multiplicative-decreas€AIMD) algorithmsin literature. We
shall also refer to the classof algorithms having « -1
and 8 = 0 assub-additve increase,multiplicative-decrease
(SAIMD) algorithmsin theremainderof this paper

To demonstratehe utility of our fixed-pointanalysisto ava-
riety of problemswe tailor our analysisto the AssuredService
modelandconsidetheinteractionwith anOREDbuffer. Aswe
shallseeshortly, thisis arelatively hardercase sincethe mark-
ing probabilityfor pacletsfrom aflow is not simply dependent
onthe queueoccupany, but on the flow’s window sizeaswell.
(The caseof generalizedl CP flows interactingwith a random
notificationbuffer without any minimum assuredateis a sim-
pler versionof this problemandfollows almostimmediately).
Also, the ORED buffer marks(setsthe ECN bit) on only out
paclets. Sincein pacletsare never marked, the only possible
form of congestiorindicationexperienceddy in packetsoccurs
dueto losseduringbuffer overflov. Themodelthusessentially
assumeshat markingout packetswith a sufficiently aggressie
probabilityis adequatéo ensurehata congestiorwindow does
not grow without limit. Mathematicallyspeaking this will be
trueaslong aslim w 1 oo % — 0. i.e.,while ¢ < 8,
whichis truein all practicalcasef interest.

A. Formulatingthe Fixed Point Equations

As before we definethedrift in thecongestiorwindow of the
it" flow by the expectedchange AW, in its window sizeasa
function of its window size W;. Thewindow sizeincreasedy
¢ W with aprobabilityl—p; (W) anddecreaseby c, Wf with
aprobabilityp; (W), wherep; (W) is the probability of a paclet
beingmarked (ECN bit set). Thus,thedrift is 0 ( corresponding
to the ‘mean’ or centerof the window) when W; satisfiesthe
condition:

C1 Wia

Xx (]. - pz(Wz)) = CzWiB *pz(Wz) (419)

Accordingly, given a specificfunction p;(.), we canobtainthe
meanvalueof the congestiorwindow by solving:

_ 1—p;(W;)
C2pyp-a - 2 TPV 4.20
c ! pi(W;) (4.20)
Clearly, relation (4.20) definesa setof N equationsfor ¢ =

1,...,N.

If the meanORED huffer occupang is ) (bytes),we can
determinethe correspondingunction p;(.). In this case,the
marking probability for out pacletsis giverf by f(Q). Now,
if afraction~; of the pacletsfrom flow i aremarkedasout, the
unconditionalmarking probability for pacletsof flow i is v; *
f(Q). Unfortunatelywhenmorethan1 TCPflow is present;y;
isitselfa functionof bothW; and@. To seethis, notethat,when
thequeueoccupany is @), thetotal round-triptime for flow i is
givenby RTT; + %. Sincetheflow controlalgorithmtransmits
W; x M; byteseveryround-triptime, theachievedthroughputp;
is givenby

Wi * Mz
RTT; + ¢

Theprobability of apacletbeingtaggedasoutis assumedo be
equalto the fraction by which the achieved throughputexceeds

pi= (4.21)

the assuredate R;. +; is thusgivenby ; = 2% Ei o, upon
usingequation(4.21):
Ri* (RTT; + £
yo1- Rt (BITi+ ) (4.22)

W,’*Mi

Accordingly, the marking probability p;(W;) is given by

pi(W;) = (1 — %) x f(Q), which on substituting

into equatlon(4 20) y|elds the following relationship(one for
eachi = (1,...,N))

R; % (RTT; + )

*f(Q)™' =1 (4.23)

C2rr7B—a _

o W =(1
We denotethesolutionfor W; of theabove equatiorash; (Q) to
explicitly indicatethatthe above equationis really afunction of
the queueoccupanyg Q. We shall elaborateon a techniquefor
solvingtheabove equation(to obtainh;(Q)) in thenext subsec-
tion.

Givenavaluefor @), we canthen(atleastin principle) solve
thesetof V equationgequation(4.23)fori =1, ..., N) to ob-
tainthe N values,h; (@), 7 = 1,..., N. However, our solution
mustsatisfyanotherconstraint:in the absencef buffer under
flow, the sumof the throughputof the NV flows mustequalthe
link capacityC, i.e., >~ | p; = C. For aspecificvalueof Q,

we notethat p; % and hence after trivial algebraic

manipulationsarrive atthe otherconstramt.

Z Q m RTT mrole (4.24)

6 As statedearlier our formulationcanalsobe usedwhendifferentflows have
marking probabilitiesthat are scalarmultiples of eachother i.e., f*(Q) =
ki f(Q) wherek; arearbitraryconstants.



The basisof our fixed-pointtheoryshouldnow be clear As
we vary @@ and solwve for the h;(Q)) accordingto expression
(4.23), therewill be onevaluefor which the constraint(4.24)
is satisfied. This value of the queueoccupanyg is denotedby
Q*. The correspondingsolutionsfor h;(Q*) providesthe the-
oreticalmeanwindow sizesW;*; the correspondinghroughput

L W, *M;
for connection is thencomputedy RTT+ 9T

B. Existenceand Solutionof Fixed Point

The existenceof a uniquesolutioncanbe verifiedby varying
Q from ming, to co. At valuescloseto min,, f(Q) ~ 0
and hence,from equation(4.23), we seethat h;(Q)) will be
very large. Accordingly, the LHS of equation(4.24) will be
muchlargerthan1. On the otherhand,as@ 1 oo, the value
of h;(Q) alsoincreasegsinceit is clearly always larger than
R; « (RTT; + %) ). In that case,if we neglect the constant
termof 1 in theRHSof equation(4.23),we caneasilysee after
elementarymanipulationthatthe expression4.23)reducego

Q

coMi | yyb-a _ C—Q*Ri*(RTT,-+5)Wf_a_1+Mi (4.25)

Ci &1
which, for largevaluesof Q andW;, yields

Q

By pluggingexpression(4.26)into theLHS of constraini4.24),

N
we canseethattheLHS turnsoutto beequalto Z=T1R Butby
our assumptior(2.3), thisis clearlylessthan1. We canfurther
shav thatas@ increasegrom ming, to oo, the LHS of (4.24)
decreasesnonotonicallyand crossesl at somepoint. Sucha
valueof ) accordinglydefinesthe uniquesolutionof thefixed
point.

Our algorithmfor solvingthefixed point essentiallyconsists
of varying ) andsolvingfor h;(Q) until thecondition(4.24)is
satisfied.

An iterative gradientschemgbasedon the Newton method)
canbeusedo solvefor h;(Q). A valueof W; thatsatisfiesequa-
tion (4.23)is essentiallythe uniquezero of the function g(W)
definedby

% Fruark (Q)) ™ —1—j—jwf*“ (4.27)

_Rix(RTTi + &)

1
( W; M;

Defineg, (W;) = (1 — 2BIT42) , ¢ (@)~! — 1 and
g (W) = g—fo’“. By taking derivatives, we can seethat
91(W;) is corvex anddecreasingn W; while g (W;) isincreas-
ing in W; (since > «). Furthermorejf § — a < 1, then
g2(W;) is alsoconcae. Accordingly, we startwith a value of

W; slightly IargerthanRi*(RTTi—k%) andrepeatheiterations
until we corverge. In particular if 8 — a < 1, g(W;) is con-
vex andhencewe canguarantee€orvergencewithoutary over-

shoot. Whens — a > 1, we have the possibility of overshoot
andhence needto take specialcarein our numericalprocedure.

10

However, in all our numericalcalculationswe wereableto at-
tain corvergenceusing the Newton iterative methodusing the
iteration )
U,
g(W)
Here,g’(Wij), the derivative of g(TW), is given by the expres-
sion:

Wittt = wi +

2 2

(4.28)

—R; + (RTT; + £)

!
gWw;) = . 1 Q
FQ)+ W2 % M (1 — %)2
_& * (B — a)Wfﬁa*l.
C1

The appropriatevaluefor @) i.e., @*, on the otherhand,can

be obtainedby a binary searchprocedure,sincewe have es-
. N hi(Q)*M; : . .
tablishedthat ) ~,” % is monotonicallydecreasingnd
smallerthanC when@ > @Q* andlargerthanC when@ < Q*.
Thus,the entirealgorithmconsistsof two loops: an outerloop
varying @ via a binary searchmethodandaninnerloop evalu-

atingh;(Q) via the Newton gradientmethod.

C. Simulationsaand Compaative Results

We performedfairly extensie testsusingns — 2 to compare
the accurayg of our analytical/numericatesultswith thoseob-
tainedvia simulations. Our modificationsto ns — 2 included
incorporationof the generalizedncr(W) anddecr(W) func-
tions in the TCP code and augmentatiorof the RED codeto
implementthe ORED mechanism.

For easeof illustration, we principally presentplots for the
caseof only 2 generalizedlows. (We have however usedbe-
tween2 — 20 TCPflows in additionalsimulationsto verify the
accurag of our technique.) Both flows hadthe sameseggment
sizeof 512 bytes. To provide illustrative results,we usefour
parametesets.

1. ParameteiSetl: (a« = =1, =1,¢1 = 1,¢2 = 0.5), i.e,,

thecurrentTCPwindow adaptatiorprocedure.

2. ParameteiSet2: (¢ = 0,8 = —1,¢; = 0.2, ¢ = 0.1),
i.e.,aninterestingchoiceof AIMD parameters.

3. ParameteiSet3: (a = —1,8 =1,¢; = 0.5, ¢c2 = 0.1),
i.e., SAIMD with areductionin thecoeficientsfor window
increaseanddecrease.

4. ParameteiSet4: (a = 0,8 = 1,i ¢ = 0.4 ande, = 0.2),
i.e.,AIMD with largercoeficientsfor window increaseand
decreas¢hanparameteset?.

Thelink capacitywas varied betweerd.5 — 12 Mbps. While
ming, andmax, wasmaintainedat 20 and 100 respectiely
for bothparametesets p,, ., waskeptat0.01 for parameteset
1 and3, andat 0.1 for parametesets2 and4. This wasdone
to ensurereasonableneanwindow sizes:for identicalmarking
probabilities,parameteisets2 and 4 would have much larger
meanwindow sizesthan parametersetsl and3. We present
heretheresultsof two differentexperiments.

In the first setof experiments,which we shall call Exper-
iment A, we keptthe round-triptimesidenticalfor both flows
but providedthemdifferentprofiledrates. TCPflow 1 hadapro-
file of 1.5 MbpsandTCP 2 hada profile of 3 Mbps. Both flows



weretaggedby aleaky bucket-basedonditionerwith amoder
atebucketsizeof 20 paclets.Figure8 shovsthetheoreticabnd
simulatedTCP meanwindow sizes/throughputsor parameter
setl asthelink capacityC is varied. Figure9 shaws the corre-
spondingplots for parameteset2 (we do not provide plots for
the otherparametesetsdueto spacelimitations). The figures
shav close agreemenbetweenour analytical predictionsand
the simulatedresults.We conductedsimilar experimentsvhere
N variedfrom 2 — 20; our predictionswerealwayswithin 5%
of thevaluesobtainedvia simulations.
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In the secondsetof experimentswhich we shall call Exper-
iment B, the two TCP flows had identical profiled rates(1.5
Mbps)but differentround-triptimes. Flow 1 hadan RT'T of 20
msecwhile flow 2 hadan RTT of 100 msec. Figure 10 showvs
thetheoreticandsimulatedTCPmeanwindow sizesthrough-
putsfor parametesetl asthelink capacityC' is varied;we see
the closeagreemenbetweenthe analyticalpredictionsandthe
simulatedvalues. Similar agreemenis obtainedwith the other
parametesets;we omit thefiguresdueto spaceconstraints.
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C.1 Accurag of Techniquefor Larger NV

We have also studiedthe accurag of our model for larger
valuesof N undera variety of settings.Tablell shovsthepre-
dictedandsimulatedvaluesof thegoodputfor N = 10 flows. In
this particularstudy eachodd flow hasa guaranteedassured)
rateof 400 Kbpsandeachevenflow hasanassuredateof 800
Kbps,while the channebandwidthis setto 9 Mbps. Moreover,
flows weregroupedin pairs, with the first pair having an RTT
of 25 msecsandthe RTT of eachsubsequenpair beingsetto
1.6timesthe RTT of the previous pair. We takulatethe results
for two of the parametesetsenumerate@arlier: for parameter
setl (TCP), the ORED buffer parametersvere ming, = 25,
mazg, = 75 and prae = 0.1, while for parameterset 2,
the buffer parametersvere ming, = 20, mazy, = 100 and

Pmaz = 0.1.

TCPFlow | ParameterSetl (¢« = —1) | ParameterSet2 (a = 0)

Analytical | Simulated || Analytical | Simulated
(Mbps) (Mbps) (Mbps) (Mbps)
1 1.095 1.108 0.759 0.763
2 1.362 1.392 1.165 1.160
3 0.873 0.889 0.736 0.744
4 1.160 1.149 1.142 1.1.32
5 0.696 0.682 0.705 0.712
6 1.006 0.998 1.110 1.114
7 0.567 0.554 0.667 0.660
8 0.905 0.887 1.071 1.066
9 0.485 0.481 0.622 0.616
10 0.849 0.806 1.025 1.004

Tablell: MeanTCP Goodputdor N = 10

Thecloseagreemenbetweerthesimulatedandpredictedval-
uesvalidatesthe applicability of our techniqueacrossa wide
variety of operatingparameters.[10] also usesthis approach
to considerhow changesto the adaptationparametersaffect
the bandwidthsharingparadigmbetweenmultiple TCP flows.
Suchstudiesareusefulin evaluatingthe possibleeffectsof sug-
gestedchangego TCP’s currentcongestioncontrol algorithm.
Of course,as statedearlier, this ‘square-root’basedapproach
worksonly whenretransmissiotimeoutsarerareevents.When
pacletlossesarethe solemeansof congestiomatification, this
techniqueis accurateonly aslong asthe loss probabilitiesare
relatively small (belowv ~ 5%). However, whenpacket marking
mechanismssuchasECN, areused pacletlossesrerelatively
infrequentevents;accordingly our analysisholds over a much
wider rangeof markingprobabilities.

V. CONCLUSIONS

In this paperwe have demonstratednanalyticalandnumeri-
caltechniqueo obtainthe centersof the TCPwindow sizesand
the associatedjueueoccupang whenmultiple persistenfTCP
flows sharea bottleneckbuffer performingrandomizedtonges-
tion feedback Thetechniqueessentiallyusesadrift-basedargu-
mentto relatethe centerof a TCP window performingconges-
tion avoidanceto the averagepacket marking/droppingproba-
bility. We usea set of fixed-pointconditions,which seekan
operatingpoint for the buffer wherethe drop/markingprobabil-
ity is consistenwith the sizesof the individual TCP windows.
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While we usethe“square-rootformulaasaspecificinstanceof
our fixed-pointformulation, the mechanismis generalenough
to incorporateother, moregeneric,modelsfor TCPresponséo
congestiomotification. For simple caseswherean individual
flow is not subjectto ary rate-constraintsye prove how the
useof aNewton gradient-basetechniqueresultsin fastcorver
gence.

We subsequentlgxtendthetechniqueto considerTCP flows
performinggeneralizedcongestionavoidance,wherethe flow
increasesand decreasedts congestiorwindow by ¢; W and
coWP8 respectiely. As an example of a more complicated
model,we considerthe caseof an AssuredServiceframenork
andderive the meanwindow sizesand throughputsunderthis
model. The solutiontechniquenow combinesbinary searchin
an outer loop with gradient-basedterative searchin an inner
loop. Simulationresultsattestto the accurag of our analysis
technique.

While performing our simulations, we had obsenred the
presenceof negative correlation among the TCP windows.
Mechanismghat indirectly exploit this negative correlationto
smootherthe buffer occupanyg have beensuggesteih [11] and
shouldbe exploredin greaterdetail. Our analysisdoesnot con-
sidertheeffectsof transientsuchasfastrecoveryandtimeouts.
Accordingly, our fixed point approximationtechniquewvasseen
to provide very accurateresults,over a wide variety of loads
and operatingconditions,when ECN-basednarkingwas used
to provide congestiorfeedback. When congestiomotification
is achievedvia randomizedpaclet dropping our techniquesuf-
fers from a degradationin accurag whenthe averagepaclet
lossrateexceeds~ 5%.

The numerical technique presentedhere appearsto be a
promisingway to develop hierarchicalfixed point algorithms
that provide reasonablyaccurateestimatef network behavior
at a fraction of the costof detailedsimulations. In the future,
we hopeto explore the useof suchtechniquedor determining
theoperationapointof paclet-basedhetworks,especiallyin the
presencef multiple bottlenecks.

APPENDICES
I. PROOF THAT F(Q) IS CONVEX

We prove herethat the function f(Q) definedin equation
(3.16) is corvex. First, somenotation: let Af be denotedby
b; andC * RT'T; be denotedby d;. Thefunction g(Q) is then
givenby g(Q) = (>, Q_b;di)*l. On differentiatingthis func-
tion we obtain

b;

gl(Q) = g(Q)z Z (Q + d;)?

%

(A.1)

Sincefrom above, ¢'(Q) > 0VYQ, g(Q) is anincreasingunc-
tion of (). Differentiatingagain,we have the secondderivative
givenby



or onrearranging
(@ =20 QU G

Q.1 @y zQ+d (A.2)
We now prove that the term in the curly bracesin equation
(A.2) is negative. To seethis, let 3 = . b; andleta; =
(Q +di)Vie{l,2,...,N} (notethata; is always positive).
Considerarandomvariable A which takesonthevaluea; with
probability =; = % Then, the secondderivative can also be
written (with E[ ] denotingthe expectationoperation)as

9"(Q) = 28%(9(Q))*{E*[4%] - E[A")E[A]}  (A3)
Now, we know if A is a randomvariablethat has Prob(A >
0) = 1, thenlog E[A™] is corvex in m Vm > 0. Thus,we have
log E[A?] < 128 EAIHog BIAY soihat 2[A2] — E[A%]E[A] <

0. Applying thisresultto expression(A.3), we seethatg” (Q) is
negative and henceg(Q) is aconcaveunctionof @.

As the term (Q) is easily seento be corvex (its second
derivative is positive), we canconcludethat f (@) is a corvex
functionof Q.

Il. MODELING RED BEHAVIOR

In this appendixwe discusshe applicability of our modeto
Early RandomDrop (ERD) and the RandomEarly Detection
(RED) queues. The importantdifferencesbetweenRED and
ERD are:

« RED operateson the average(and not the instantaneous)

gueuelength. The drop probability, p,is thusa function of
the weightedaverageQ) ., of the queueoccupang i.e.,p
is a function notjust of Q,, butof (@, Qn_1,Qn_2,---)
with anexponentialdecay
« To avoid unboundednter-drop gaps,RED increaseghe
drop probability for every acceptedpacket. (This prop-
erty, which we call drop-biasing is achieved by usinga
variable,ent, which incrementswith every successie ac-
ceptedpaclet; the true droppingprobability is thengiven
2(Q) This resultsin a inter-drop periodthatis

by T=ent.p(0)
uniformly distributedbetween(1, ... ., Lp(l—Q)J) asopposed
to the geometricallydistributed inter-drop gap causedoy
anindependenpaclket dropmodel.

« SomeRED implementshave f(Q) = 1 whenQ,., ex-
ceedsnax,y; thiscontrastsvith ourassumptiorof random
drop throughoutthe entire rangeof the buffer occupany.
Our RED queueshowever have f(Q) = pPmas fOr Qaug
largerthanmaxyy, .

To capturethe effectsof drop-biasingn RED, we changethe
function f(Q) suchthatthe averageinter-drop gapis the same
for both RED (5,) andERD (). We achieve this by setting
the pmqee Valuein RED simulationsto half that usedfor ERD
simulationsandin our analyticaltechnique.
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Delayed acknavledgmentsessentiallyimply that the TCP
processincrementsits window only oncefor every K ( K is
usually 2) acknavledgments.A simpleway to capturethis ef-
fectis to alterequation(3.1)to

CORRECTION FOR DELAYED ACKNOWLEDGMENTS

P{Win—H =w+ CIW

Wi =w}=1-p;j(w) (C1)
i.e.,approximatevindow evolution by aprocesshatincrements
its window by <%= for every congestion-freeacknavledg-
ment. Accordingly, the zero-drift conditionin equation(4.19)
becomes:

cr * W (1 —pi(W;)) = K xcy % Wiﬁ * pi(W;).
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