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PredictingBottleneckBandwidthSharingby
GeneralizedTCPFlows

ArchanMisra TeunisOtt JohnBaras
archan@us.ibm.com ott@oak.njit.edu baras@isr.umd.edu

Abstract—The paper presentsa techniquefor computing the individual
thr oughputsand the averagequeueoccupancywhenmultiple TCP connec-
tions share a single bottleneck buffer. The bottleneck buffer is assumed
to perform congestionfeedbackvia randomized packet marking or drops.
We first presenta fixed point-based analytical technique to compute the
meancongestionwindow sizes,the meanqueueoccupancyand the individ-
ual thr oughputs when the TCP flows perform idealized congestionavoid-
ance.Wesubsequentlyextendthe techniqueto analyzethe casewhereTCP
flowsperform generalizedcongestionavoidanceand demonstratethe useof
this techniqueunder the AssuredServicemodel,whereeachflow is assured
a minimum traffic rate. Simulations are usedto demonstratethe accuracy
of this technique for relatively low valuesof packet dropping probability
and a much wider rangeof packet marking probability.

Keywords—TCP, thr oughput, RED, ECN, congestionavoidance,queues.

I . INTRODUCTION

In this paper, we presenta mathematicaltechniquefor com-
puting how competingTCP flows sharethe link capacityand
buffer spaceof a bottleneckqueue.In particular, we first con-
sidertheinteractionof multiple persistentTCPflows,eachper-
forming idealizedcongestionavoidance[1], with a buffer per-
forming congestioncontrol via randompacket drops/marking.
Wedevelopananalyticaltechnique,resultingin afixed-pointit-
erationscheme,to obtain the ‘center’ of the queueoccupancy
and the individual TCP windows and usesuch valuesto de-
terminethe individual throughputof eachTCP flow. Sucha
techniqueis usedto numericallypredict the mannerin which
TCPflowsshareresourcesin thepresenceof aqueueusingalgo-
rithmssuchasRandomEarly Detection(RED) [2] andExplicit
CongestionNotification(ECN) [3].

We subsequentlyextendthe analysisto considerthe caseof
TCP flows performinggeneralizedcongestionavoidance. Un-
der this generalizationof TCP’s currentwindow adjustmental-
gorithm,aTCPflow incrementsits congestionwindow, ��������� ,
from its currentvalue 	 by � � 	�
 in theabsenceof congestion
anddecreasesthewindow by �
� 	�� in thepresenceof conges-
tion (where ������� � � and �
� areconstantsthatparametrizethe
window adjustmentalgorithm). This modelof window adjust-
mentcorrespondsto the family of binomial congestioncontrol
algorithmsstudiedin [4]. Wepresenttheextensionsto ourfixed-
point techniquenecessaryfor this generalizedcase.To further
demonstratethe flexibility of this fixed-pointmechanism,we
considerthe casewheresuchgeneralizedTCP flows areregu-
latedby theAssuredService[5] model.Underthis model,each
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flow is guaranteedaminimumassuredtraffic rate;packetsfrom
aflow shouldideallyexperiencenocongestionaslongasits of-
feredtraffic doesnot exceedthis rate. A suitablemodification
of thefixed-pointanalysistechniqueleadsto a reasonablyaccu-
ratemethodfor predictingtheindividualTCPwindow sizesand
throughputsunderthis modelaswell.

Mathematicallyspeaking,we treat the evolution of the con-
gestionwindow of a TCP flow asan idealizedstochasticpro-
cess. In particular, we considerthe TCP Renoversion[6] of
window adaptation,wheredetectionof congestion(throughdu-
plicateacknowledgmentsor via explicit settingof a congestion
indicator bit) resultsin an halving of the congestionwindow.
Of course,mostTCP versionsdo not respondto multiple con-
gestionindicators(packet markingsor drops)within a single
window, but ratherassumethattheindicatorscollectively signal
a singlecongestionepisodeand thushalve their window only
once.Weshalllaterexplainwhy ourmodelprovidesreasonably
accurateapproximationof suchbehavior as long as the notifi-
cationprobability is moderatelylow. By disregardingtransient
phenomenasuchasfastrecovery[1] andtimeouts,wecanmodel
thewindow evolutionof thegeneralizedTCPflow asa Markov
processwith thefollowing state-transitionprobabilities:��� 	���� ��� ��� � � � 
"! 	�� � �$# ��%�&('*) �,+ � (1.1)��� 	 �-� � � � & �
�.� � ! 	 � � �/# �0'*) �,+ � (1.2)

where '*) �1+ is the (state-dependent)congestionnotification
probability. Theclassicalcongestionavoidancealgorithmis ob-
tainedby setting � �2&/% , � �43 , � �0�2%65 3 and � � �7385 9 .
The valueof the TCP window that correspondsto ‘zero-drift’,
wherebytheprobabilityof window increaseequalstheprobabil-
ity of window decrease,is assumedto representthe ‘center’ of
theflow’s window distribution. It shouldbenotedthat,strictly
speaking,whenmultipleTCPflowsinteractwith asinglequeue,
theprobabilityfor congestionnotificationfor aspecificflow de-
pendsnot juston its window, but alsoon theinstantaneouswin-
dow sizesof all theotherconnections

�
.:

While ;=<">@? in actualTCP implementationsis expressedin bytesand is
consequentlyinteger-valued,we assumethat, in equations(1.1) and(1.2), A
is real-valuedand is expressedin Maximum SegmentSize(MSS) units. The
congestionwindow in the restof this paperis assumedto be real-valued. We
will explicitly mentionthesituationswherethecongestionwindow is expressed
in bytes.B

An accuratemodelof thewindow evolution processfor C TCPconnections
would requirean CEDF?�GIH,JK>@LMGONP>RQ.S Markov model, wherethe statespace
would bea N-dimensionalvectorconsistingof the window sizesof eachindi-
vidual connection.Thetransitionprobabilitiesbetweenstateswould dependon
the stateof the entiresystem(the instantaneouswindows of eachconnection),
makingusefulanalysisimpossible.
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Congestionnotification is an abstractevent in our analysis;
packetdropsandpacket markingarethusfundamentallyequiv-
alentevents.Our fixed-pointanalysistechniquethusappliesir-
respectiveof whetherthebuffer’scongestioncontrolusespacket
dropsor ECN-basedpacket marking.To illustratetheaccuracy
of ouranalysisfor conventionalTCPflows,weshallfirst present
simulationstudiesbasedon feedbackvia randomizeddropping.
For numericalstudiesof the generalizedcongestionavoidance
algorithm, we shall however usea buffer that performscon-
gestioncontrol via packet marking. The useof suchexamples
seemjustified,sincemodificationsto TCPcongestionavoidance
arebeingadvocatedonly whenexplicit congestionnotification
mechanisms,suchas ECN, are available in the Internet. We
shallseethat,while our genericfixed-pointformulationapplies
to bothpacket markinganddropping-basedcongestioncontrol,
our specificuseof the “square-rootformula” is moreaccurate
overa muchwider rangeof packetmarkingprobabilities.

Our analytical techniquecomputesonly the ‘center’ of the
queueoccupancy (andnothigherorderstatistics).As anindirect
fallout of our simulations,we shall however alsodemonstrate
how suchrandomizedcongestionfeedbacktypically causesthe
TCP windows to be negatively correlated. Negative correla-
tion implies that theTCPwindows tendto vary ‘out-of-phase’;
suchbehavior causesthevarianceof thequeueoccupancy to be
smallerthatthesumof thevariancesof theindividual flows.

The rest of the paper is organizedas follows. SectionII
describesour mathematicalmodel for the interactionbetween
multiple TCPflows anda RED-like buffer. SectionIII presents
theanalyticaltechniquefor multipleflowsperformingidealized
congestionavoidanceandprovidessimulationresultsto demon-
stratethe accuracy of our analysis. This sectionalso reveals
how our useof the“square-rootformula” leadsto higheraccu-
racy whennotificationis primarilyachievedthroughECN-based
feedback.SectionIV considerstheextensionof theanalysisfor
thecaseof multiplegeneralizedTCPsundertheAssuredService
modelandpresentscomparisonswith simulatedresults.Finally,
sectionV concludesthepaper.

A. RelatedWork andModelApplicability

While several papers(e.g., [2], [7]) have usedsimulations
andexperimentsto considertheeffect of RED-like randomized
feedbackalgorithmson TCP throughput,relatively little work
hasbeenpublishedonanalyticaltechniquesfor computingsuch
throughputsharing. The fixed-pointmethodfor analyzingthe
sharingof abottleneckbuffer wasfirst presentedin [8]; [9] later
presenteda similar analysisbasedon a control-theoreticmodel.
Theextensionof thefixed-pointtechniquefor generalizedTCP
flows wasinvestigatedin [10]. This papercombinestheresults
in [8], [10] into acommonframework. [8] alsoshowshow such
fixed-pointanalysisis exploitedto evaluatetwo alternativetech-
niquesfor computingthewindowdistribution of a TCPflow in
sucha multi-flow case.

Theroleof negativecorrelationin stabilizingthequeueoccu-
pancy wasexploredin [8], [11], whichalsoshowedhow theuse
of averagedvaluesof pastqueueoccupanciesanddrop-biasing
techniquescouldquantitatively modify suchcorrelationbehav-

ior. Our analytical techniqueonly computesthe meanqueue
occupancy; we do not make any claimson thedynamicbehav-
ior of thequeue.[9] treatsthequeueasadynamicalsystemand
shows thatsucha queuecanexhibit instabilitiesandoscillatory
behavior; suchbehavior is mathematicallymotivatedin [12].

Our analyticaltechniqueappliesto queueswherethedropor
markingprobability is basedonly on thequeueoccupancy and
is independentof thenumberof activeflows. Activequeueman-
agementalgorithms,suchasSRED[13] andBLUE [14] attempt
to stabilizethebottleneckqueueoccupancy by dynamicallyad-
justing the drop/markingthresholdsbasedon the offeredload.
While suchalgorithmscould be incorporatedinto our analysis
by appropriateadjustmentof the notificationprobabilities,we
havenotexplicitly consideredsuchenhancementsin this paper.

The ‘drift-basedcomputation’of a flow’s meanwindow size
waspreviously usedin several papers(e.g. [7], [16], [17]) to
computethe throughputof a TCP flow subjectto a constant
packet dropprobability. Suchanapproachleadsto the‘square-
root formula’ for classicalcongestionavoidance,which states
thatthemeanwindow of a TCPconnectionis inverselypropor-
tional to the square-rootof the lossprobability. More detailed
modelsof TCP behavior, that considerthe effect of timeouts
and fast recovery, are analyzedin [18], [19], and essentially
show that the TCP throughputbecomesinverselyproportional
to thepacketdropprobabilityatmoderatelyhigh lossrates.Our
idealizedanalyticaltechniqueis demonstratedusingtheclassi-
cal square-rootformulaandis thusapplicableonly whenpacket
lossratesare relativelylow and transmissiontimeoutsare rel-
ativelyrare events.Thegenericanalyticalframework hashow-
ever beenalso usedin conjunctionwith other more accurate
modelsof TCP behavior to provide betterapproximationsfor
higherpacket lossrates.For example,[20] usedthefixedpoint
framework with thePFTKformula[19] formulafor TCPbehav-
ior to demonstratebetteragreementunderhigherratesof RED-
basedpacket dropping. We focusprimarily on establishingthe
principlesof the fixed-pointformulation, ratherthan studying
specificmodelsof TCPresponse.However, oursimulationstud-
ieswill demonstratethattheuseof thefixed-pointmethodwith
the square-rootformula is accuratefor a wide rangeof ECN-
basedcongestionfeedback–inessence,our modelis accurateas
long asthepacket lossratescanbekept low enoughto restrict
theoccuranceof retransmissiontimeouts.

I I . MATHEMATICAL MODEL AND PROBLEM APPROACH

In this section, we first describethe TCP source model
for classicalcongestionavoidance,andtherandomdrop-based
buffer managementalgorithm. The correspondingextensions
for generalizedcongestionavoidanceandmarking-basedqueue
managementareobviousandarepresentedthereafter. We also
presenttheAssuredServicemodel,whichweshallanalyzelater.

A. TCPSources

The TCP connectionsare persistent(sendinginfinite-sized
datafiles), with thecongestionwindow actingastheonly con-
straint on the injection of new packetsby the sender. We as-
sumethattheconnectionnevertimesout, thatthedatais always
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sentin equal-sizedsegments(althoughsegmentsizescouldvary
betweenconnections)andthatacknowledgmentsarenever lost.
For thepurposesof presentation,weassumethatthereceiverac-
knowledgeseveryreceivedpacketseparately(delayedacknowl-
edgmentsarenotenabled);delayedacknowledgmentscanbein-
corporatedinto themodelusingtheapproximationin Appendix
C.

Let T be the numberof concurrentTCP connectionsunder
consideration.The UWVYX TCP flow, Z1[ �*\ , hasa maximumseg-
mentsize (MSS) of ] \ bytes. Moreover, the round trip time
of the UWVYX TCP connectionis assumedto consistof two com-
ponents: a fixed componentdenotedby ^1Z�Z \ (seconds)and
a variable queuingcomponent.Sinceour modelassumesthat
eachflow essentiallyfacesonly onebottleneck,thedelayin the
restof thetraffic pathcanbeassumedto befixedanddetermined
largely by the propagationandtransmissiondelaysof the con-
stituentlinks (queuingdelaysin suchnon-bottlenecknodesare
assumedto benegligible). Thequeuingdelayat thebottleneck
nodeis explicitly modeledandcontributesto thevariablecom-
ponentof thedelay. Let 	 \ denotethewindow size(in MSSs)
of the UWVYX connection.Notethatwhile theprocessmodel(equa-
tions (1.1) and(1.2)) representsthe window statein segments,
we shall alsooccasionallyrefer (explicitly) to the window size
in bytes.

B. QueueBehavior

For the analysis in section III, we consider a RED-like
queuewhich subjectsall incoming packets to randompacket
drops/marking,with a probability that dependson the instan-
taneousqueueoccupancy. The specialized‘ORED’ queuebe-
havior for the analysisof the AssuredServicemodel will be
presentedin sectionII.C.

The servicerate (bandwidth)of the queueis [ bytes/sec.
In general, let _ be the buffer occupancy of the random
drop/markingqueueand _ \ (in bytes)be the amountof traf-
fic from connection U that is buffered in the queue(so that`ba\dc � _ \ � _ ). The drop/markingfunction is denotedbye ) _ + . For thesimulationresults,weusethelineardrop/marking
model,with

e ) _ + givenby:e ) _ + � 3 f _hgji(U � VYX� 'lk�m�n f _poji(qRr VYX (2.1)� ' k�m�nts _ & i(U � VYXiuq6r VYX & ivU � VYX f i(U � VYXxw _ w i(qRr VYX
where,asperstandardnotation,iuqRr VYX and i(U � VYX arethemax-
imum and minimum drop/markingthresholds(in bytes) and'lk�m�n is the maximumpacket drop/markingprobability. (This
is in fact,anevengentlerversionof the‘gentle’ modelof RED
behavior recommendedin [21].) Fromananalyticalviewpoint,
wemerelyneed

e ) _ + to benon-decreasingin _ ; this is truefor
all sensibledropfunctions.

Although our analysisis primarily focussedon algorithms
thatdo not maintainflow-specificstate(anddo not distinguish
betweenflows),a slight generalization,which allows theactual
packetcongestionnotificationprobabilityto beflow-dependent,

is possible.To thatextent,wesupposethatthecongestionnotifi-
cationprobabilityfor apacketof flow U , whicharriveswhenthe
queueoccupancy is _ , is givenby thefunction

e \ ) _ + . e \ ) _ + is
relatedto our afore-mentioneddrop/markingfunction

e ) _ + by
theexpression: e \ ) _ + � � �\ e ) _ + (2.2)

wherethe � \ arearbitrarynon-zeroconstants.Our model thus
permitsthenotificationfunctionfor differentconnectionsto be
scalarmultiplesof oneanother;thescalarvaluesarerepresented
as � �\ insteadof � \ for futurenotationalconvenience.

Thisscalarmodelpermitsus,for example,to capturethebyte-
modeof operationof REDwheretheprobabilityof apacketdrop
is proportionalto thesizeof thepacket (by setting � �\ � ] \ ) y .
Also, for convenience,we shall use ' \ ) 	 + to representthe
(asyetunknown) relationshipbetweenthepacketdrop/marking
probability of Z,[ � \ andits window size 	 . The readermay
notethatpacket dropsor markingin RED,unlike our reference
model,arenot truly conditionallyindependent;asimplecorrec-
tion for our modelin sucha situationis discussedin Appendix
B.

C. AssuredServiceModelandBuffer Behavior

TheAssuredServicemodel[5] describesaframework for dif-
ferentialbandwidthsharing,whereeachflow (user)is guaran-
teeda minimumor assured rateaspartof their serviceprofile.
Adequatecapacityprovisioningis assumedto ensurethatpack-
ets from a flow experienceminimal congestive losses/mark-
ing aslong asits transmissionratelies within this assuredrate.
Flows are allowed to inject additional (opportunistic)packets
beyondthis assuredrate;suchpacketsaretreatedasbest-effort
andhave lower priority. To enablenetwork buffers to differen-
tiate betweensuchpackets,[5] proposesa taggingmechanism
at thenetwork edge.Packetswhich staywithin theprofiledrate
are taggedas in packetswhile packets that violate the profile
aretaggedasout packets. Mechanismssuchasa leaky bucket
[22] or modificationsthereof[5] maybeusedto implementthe
taggingoperation. In packets are provided preferentialtreat-
mentin network buffersvia theRIO (RED with In/Out)discard
algorithm; RIO is similar to RED except that it usesdifferent
thresholdsfor in andout packetsto ensurethatout (opportunis-
tic) packetsaredroppedbeforein packets.For simulation-based
studiesinvolving the generalizedcongestionavoidancealgo-
rithm, weassumethatourbottleneckqueueusestheORED[10]
buffer managementalgorithm;OREDis similar to RIO but dif-
fersin two respects:z OREDmarksout packetsinsteadof droppingthem.z OREDdoesnot signalcongestionnotificationfor in pack-

ets, except when the buffer overflows and packets are
dropped.

As in the classicalcongestionavoidancecase,the general-
izedTCPflow Z,[ �*\ hasanMSSof ] \ bytesanda round-trip{

Our ‘scalar-multiple’ modelof flow-dependentnotificationprobabilitiescan
captureamuchrichersetof randomizedfeedbacksettingsthanapparentat first
glance.For example,it canrepresenta settingof WeightedRED wherethedif-
ferentclasseshavethesameHtGI>@|O} and H,Q�~�|I} thresholdsbut different H1Q
~�� .
Wedo notexplorethevalidationof suchsettingsfurtherin thispaper.
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time of ^1Z�Z \ secs.Additionally, Z1[ �*\ is assumedto have an
assuredrateof ^ \ bytes/secandcanconsequentlyexpectto re-
ceive no congestionfeedbackaslong asits transmissionrate � \
is lessthan ^ \ . Theflows interactwith anOREDbuffer serving
a link of capacity[ bytes/sec.Our analysisassumesthat �[po a� \�c � ^ \ � (2.3)

i.e., thelink capacityis greaterthanthesumof theassuredrates
of theindividual flows.

Themarkingfunctionof theOREDbuffer (for outpackets)is
givenby thetraditionallinearmodel

e ) _ + presentedin equation
(2.2).

I I I . ESTIMATING THE MEAN QUEUE OCCUPANCY FOR

CLASSICAL CONGESTION AVOIDANCE

In this section,we considertheinteractionof TCPflows per-
formingclassicalcongestionavoidancewith abottleneckbuffer
performingfeedbackthroughrandompacket dropsor marking.
For theclassicalcongestionalgorithm,thestate-transitionprob-
abilitiesof the U VYX Markovianprocessaregivenby:��� 	 ��� � � ��� %� ! 	 � � �/# ��%�&(' \ ) �,+ � (3.1)��� 	 ��� � � � � ! 	 � � �$# ��' \ ) �1+ � (3.2)

We first usea drift-basedargumentto determinethe center
of the queueoccupancy, denotedby _�� , andthecentersof the������� -s of the individual connections,denotedby 	h�\ ��U �� % � 5.5�5 �PT # . To estimatethe centerof the queueoccupancy,
we use a set of fixed point mappings. The basic idea is to
find valuesfor the averagewindow sizes,suchthat the aver-
agequeuesizegiven by thosesetof valuesis consistentwith
the averagenotificationprobability that is implied by the win-
dow sizes. The derivationof the ‘square-root’formula via the
drift-basedtechniqueis borrowed from [23]. As notedearlier,
let _�� bethis meanor centervalueof thequeueoccupancy and
let 	h�\ �"U=� � % � � � 5�5�5 �PT # bethecenterof the UWVYX TCPflow.

A. FormulatingtheFixedPoint Equations

Definethedrift of thecongestionwindow of aTCPflow (mo-
mentarilydroppingtheflow-specificsubscript)by theexpected
change,�x	 , in its window size. Since,for a window sizeof� , thewindow size(in packets)increasesby �� with probability%�&('*) �1+ anddecreasesby

� � with probability '*) �,+ , we have:�x	 ��)M%�&v'") �,+K+ %� &('*) �,+ � � 5 (3.3)

From the above equation,the centeror ‘ 3 -drift’ value of 	 ,
called 	 � , is seento be	 ���h� � %'") 	 � + (3.4)�

If ��� `b��d� :R� � , thenECN markingwill occureven thoughat leastone
TCP flow obtainslessthan its assuredrate. This is clearly a violation of the
AssuredServicemodel.

wherethe approximationis quiteaccurateas ' is usuallyquite
small� (for currentTCPversions,if thedropprobabilityexceeds
0.05,timeoutsandslow startphenomenabegin to dominateTCP
behavior).

The notification probability for flow U , ' \ ) 	 + , for a given
value, _ of the buffer occupancy is given by the relationship' \ ) 	 + � e \ ) _ + . Accordingly, in themulti-TCPcase,thezero-
drift analysisgivesthefollowing expression(in packets)for the
meanwindow sizefor flow U :	E�\ )�' q �������M��+ � � � �e \ ) _ � + (3.5)

By incorporatingexpression(2.2)in theaboveequationandnot-
ing thateachpacketof flow U is ] \ bytesin size,wegetthemean
window size(in bytes)as:

	 �\ � � ] \� \ � �e ) _ � + (3.6)

Now, let [ \ be the averagebandwidthobtainedby TCP U .
Assumingthat thereis no significantbuffer underflow andthat
thelink is fully utilized (afterall, this is abottleneckqueue),we
get the relation

` a\dc � [ \ � [ . [ \ canalsobe computedby a
differentmethod: by noting that a TCP connectionsendsone
window worth of datain oneeffective round trip time. Since
a queueof size _ will contribute a buffering delayof ¡¢ , the
effectiveroundtrip timeof connectionU is ^1Z�Z \ � ¡¢ ; thus,we
canrelated[ \ to 	 \ by theexpression[ \ � 	 \ s ] \^1Z�Z \ � ¡¢ (3.7)

Onsummingthe [ \ sfrom theaboveequationandequatingthem
to [ , we get [ � 	 a� \dc � £t¤¥ ¤^1Z�Z \ � ¡¢ (3.8)

or, uponsimplification,	 � %`¦a\�c � § ¤¨ ¤¡ � ¢�© ª¬«­« ¤
(3.9)

where	 ��® �¯-° ¡²± . For notationalconvenience,let theRHSof

equation(3.9)bedenotedby thefunction ³ ) _ + sothat ³ ) _ + �) ` a\�c � § ¤¨ ¤¡ � ¢�© ª¬«­« ¤
+µ´�� .

Thefixedpointsolutionsfor the‘average’TCPwindow sizes
andthequeueoccupancy is thengivenby thesetof valuesthat
providea solutionto thefollowing simultaneousequations:

	 � � �e ) _ + (3.10)¶
A moreaccurateanalysis[23] revealsthat the meanwindow occupancy, in

ack time, is given by A�·�¸ :=¹ ¶=BWº=»¼ � . It is this value that we usedin all our

experimentalresults; for notationalease,however, we shallcontinueusingthe½ ¾
approximationin ourexposition.
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	 ��) a� \dc � £t¤¥ ¤_ � [ 5 ^1Z�Z \ + ´¬� � ³ ) _ + (3.11)

After solvingthesesimultaneousequations,we cangetthe‘av-
erage’congestionwindow for the UWVYX TCPflow (in bytes)using
therelation: 	 �\ � ] \� \�	 � (3.12)

We canthenobtain the throughput,� \ , of Z,[ �"\ by using the
relation: � \ � 	h�\^,ZtZ \ � ¡"¿¢ (3.13)

B. More GenericModelsfor TCPBehavior

It is well-known thatcurrentTCPversionsshow appreciable
deviation from the“square-root”formula if thepacket lossrate
is largerthan � 96À . (Thisdeviationoccursprimarily dueto the
overheadof retransmissiontimeoutsand slow start causedby
multiplepacketlosseswithin asinglewindow worthof packets).
The above fixed point modelcan,however, be easilyextended
to considermoreaccurateor genericmodelsof TCP response.
For example,by considertheeffectsof TCPfastretransmitsand
timeouts,[19] showedthatthewindow size(expressedin MSS)
of a singleTCPflow subjectto a lossprobability

e \ ) _ + is well
approximatedby:

A �ÂÁ ��Ã�Ã �ÅÄ
Æ ��Ã�Ã �@ÇÉÈ ¾ Ç�ÊP�WËOÌ ÍÎ Ï Ã6Ð Ç HtGI> ËYÑ�Ò�È ¾
Ó Ç�ÊP�WËIÌ ÍÔ ÍÇ�ÊP�=ËOÌ Í6ÇÕËYÑ Ï Î ¾ Ç�Ê B� ËIÌ�ÍYÍÅÖ�Ò (3.14)

where ZØ× representsthe baseretransmissiontimeout interval.
Sincethetotal ^1Z�Z of Z,[ �*\ is clearlya functionof _ , it fol-
lows that equation(3.14) can also be representedin the form	 \ � ³ ) _ + , with anappropriatelydefined³ )M5 + . This is funda-
mentallysimilar to theform of equation(3.10);accordingly, the
samefixedpoint techniquecanbeusedto solve for _�� evenin
this case. To maintainour focus on the fixed point technique
itself (ratherthanthepreciseform of ³ ) _ + ), wedo not consider
suchrefinementsany furtherin thispaper.

Our Markovian model for TCP window evolution assumes
that theTCPwindow halveson thereceiptof everycongestion
indicator, even if they occurin fairly closesuccession.This is,
of course,anidealizedbehavior, singlemostcurrentTCPimple-
mentationstreatmultiple packetdrops/markingswithin a single
window asindicativeof asinglecongestioneventandhalvetheir
window only once.Wearguethatourmodelis reasonablyaccu-
ratesincethenumberof randompacketdrops/markingswithin a
singlewindow shouldbeeither0 or 1 in awell-behavedqueuing
system.To seethis, assumethat theroutercongestionnotifica-
tion probability staysconstantat ' . Then,theaveragewindow
size of a TCP flow subjectto feedbackfrom sucha router is	h� )Ù' +�� � ® �Ú (from equation(3.4)). Let Û representtheran-

dom variablerepresentingthe numberof notificationeventsin
suchawindow 	h� )�' + . Then,theprobabilityof multiple losses,�ÝÜßÞ�à�� Ûâá � # undera truly independentfeedbackmodel is
givenby thebinomialmodel:
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Figure1: Probabilityof 2 or More
Loss/MarkingEventsin aCongestionWindow

Figure1 plotsthis probabilityasa functionof ' . It is easyto
seethattheprobabilityof multiple lossesis fairly smallevenfor
moderatelylarge valuesof ' (around %.3RÀ for '¦�ò3ó5 � ). This
low probability is easilyexplainedby observingthata larger '
alsoleadsto a smallervalueof the“average”window size,thus
reducingthe likelihoodof multiple losseswithin a singlewin-
dow. Accordingly, our stochasticmodelof TCPwindow evolu-
tion seemsto be a reasonablygoodapproximationto TCP be-
havior (sanstimeoutsof course).

C. ExistenceandSolutionof FixedPoint

We now provetheexistenceof auniquesolutionto theabove
simultaneousequations(i.e.,(3.10)and(3.11))andalsoprovide
a numericaltechniquefor its rapidcomputation.

The existenceof a unique solution can be demonstrated
graphically(seefigure2) by simultaneouslyplotting equations
(3.10)and(3.11)on the ) _x�P	 + axes. Since

e ) _ + is assumed
non-decreasingin _ , wehave 	 in equation(3.10)to beanon-
increasingfunctionof _ . On theotherhand, ³ ) _ + in equation
(3.11)canbe seento be an increasingfunction of _ . The two
plotswill thereforeintersectatasinglepoint,whichis our‘zero-
drift’ solutionfor 	h� and _ô� .

In AppendixA, we prove that the function ³ ) _ + is concave;
accordinglywe canseethat the function

e ) _ + , definedby the
differencebetweenthe RHS of equations(3.10)and(3.11), is
convex in _ .e ) _ + � � �e ) _ + & %` a\�c � £ ¤Yõ ¥ ¤¡ � ¢²© ª¬«l« ¤

(3.16)

Hence,weusetheNewtongradienttechnique,which is guaran-
teedto convergeandprovidea solutionto theequation

e ) _ + �3 , to solvefor thefixedpoint. Westartwith aninitial estimateof



6_Ý× � ivU � VYX ��ö (aninitial valueto theleft of _�� ) andproceed
with repeatediteration. In this particularsetting,the derivativee � ) _,÷ + at the ø6VYX iterationis givenby

' � ) _ ÷ +ù � '") _ ÷ +-úû & ` a\dc � § ¤¨ ¤° ¡�ü � ¢�© ª¬«­« ¤ ± û) `ýa\�c � § ¤¨ ¤¡²ü � ¢²© ª¬«­« ¤
+ � (3.17)

min
th max

th

Q
*

*

Q

W

W g(Q): concave function

p(Q)

2

Figure2: TypicalRelationshipbetweenW andQ
for RandomDrop Queues

D. InsightsfromAboveAnalysis

The drift analysistechniqueprovidessomeinsightsfor pre-
dicting or controlling thestationarybehavior of persistentTCP
connectionsandfor understandingtheaccuracy of our approxi-
mationtechnique.For example,our analysisshows that:z TCPconnectionswith thesameroundtrip time but differ-

ent packet sizeswill seethe same‘average’window size
(in bytes) if � \ � �Õ] \ f U , where � is an arbitrary con-
stant. In other words, to ensure fair sharing of through-
putamongTCPconnectionswith differentpacketsizes,the
packet droppingprobability shouldbe proportional to the
square of the packet size. Contrastthis with currentbyte-
modedrop schemeswherethe packet drop probability is
normallyproportionalto thepacketsize.z TCP connectionswhich are identical,except for different
round trip times, will observe relative throughputthat is
inverselyproportionalto theroundtrip times.This unfair-
nesstowardsTCPconnectionswith largerround-triptimes
is well known.z Since 	h� (the ‘fix ed point’ that satisfiesboth equations
(3.10) and (3.11)) is identical for all flows, it shouldbe
clearfrom equation(3.12)that themeanvalueof thewin-
dow size (in packets) for all TCP flows, which have the
samedropfunction(same' \ s), will bethesame,irrespec-
tive of their round-triptimesandsegmentsizes.Thepoint
is moresubtlethanapparentat first glance:themeansare
identicalonly whenexpressedin ]�þ�þ sandwhenthedis-
tribution is taken with respectto ack time. When sam-
pled in clock time, the meanwindow sizeof a TCP con-

nectionwill indeeddependon its round-tripdelay(which
influencestherateof progressof theconnection).We can,
however, easilycomputethedistributionin clocktimefrom
that in ack time, if the round-tripdelayfor a specificcon-
nectionis non-varying (throughthe relation �Rÿ m ¥�� ) r + �n���� ¨��	�W¨�
 ° n ±��
��� ��� ¨��	� ¨�
 � ). As thenumberof flows increases,we shall

later seethat the buffer occupancy (andhence,the queu-
ing delay)shows relatively smallervariation;estimatesof
clock-timedistributionsfrom ourack-timecalculationsare
progressively moreaccurate.

E. SimulationResultsfor TheMeanWindowSizes

We useda wide variety of simulations,with variouscombi-
nationsof segmentsizesandroundtrip times,to verify the ac-
curacy of our fixedpoint-basedpredictiontechnique.All simu-
lationsareperformedwith New RenoTCPsourceson thens-2
[24] simulator;thefixedpoint techniqueconvergesin a few sec-
ondscomparedto theO(mins)durationnecessarywith simula-
tions. To studytheaccuracy of our drift analysis,we simulated
bothRED (RandomEarly Detection)andERD (Early Random
Drop) [15] queues.The differencesbetweenthesealgorithms
andthe necessarycorrectionsto our model(for RED) arepre-
sentedin AppendixB.
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A setof illustrative examplesarepresentedin figures3 and
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4. In both simulations,two TCP connections,with 9�% � byte
packets, interactwith a single bottleneckqueue. The random
dropqueuehas i(U � VYX � � 9 packets, iuqRr VYX ���-9 packetsand
buffer sizeequalto %�9�3 packets(similar to recommendationsin
[25]); ' k�m�n wasvariedbetweenthevaluesoutlinedin theplots.
Figure3 considerstwo TCP connectionswith identicalround-
trip times, while figure 4 shows the resultswhen the nominal
RTT of thesecondconnectionis doublethatof thefirst (called
the BaseRTT in the figure). By varying ' k�m�n , we changethe
slopeof the drop function andhence,the ‘zero-drift’ point of
the queueoccupancy. Similar simulationshave alsobeenper-
formedfor a varietyof round-triptimesandMSSs. In general,
theaccuracy of ourpredictionsis slightly lower for larger ^1Z�Z
values,althoughin all casesthe agreementwaswithin %�3RÀ of
thepredictedvalues.This is expectedbecausea largerRTT es-
sentiallyincreasesthechanceof buffer underflow (which inval-
idatesour model)by increasingthe feedbacktime of the TCP
control loop. Sinceour model doesnot accountfor phenom-
enalikefastrecovery(duringwhich thequeuesizereduces),we
tendto predictlargerqueueoccupanciesthanthoseobtainedvia
simulation.
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To further illustrate the utility of our analytical technique
in determiningthe relative sharingof the bottleneckcapacity
amongtheTCPflows, we consider� TCPflows sharinga bot-
tleneckERD buffer. The round-triptimesof the � flows were9�3 ms, �ß3 ms, � 3 ms and %6%.3 msrespectively. TableI shows the

simulatedandanalyticallypredictedvaluesfor the throughput
of all the � flows. Wecanagainseethatouranalyticaltechnique
predictsthetruesharingof TCPbandwidthwith reasonableac-
curacy.

TCP Throughput Throughput
Flow Analytical Simulated

Flow 1 0.451Mbps 0.441Mbps
Flow 2 0.392Mbps 0.370Mbps
Flow 3 0.346Mbps 0.352Mbps
Flow 4 0.311Mbps 0.315Mbps

TableI: Resultsfor 4 TCPswith DifferentRTTs

Our simulationsalsovalidateour analysis,which statesthat
themeansof theTCPwindows (in segments)shouldbe identi-
cal (in ack time), even thoughthe round-triptimesof the var-
ious flows and the segmentsizesare different. It shouldalso
benotedthatthenegativecorrelationamongwindow sizes(dis-
cussednext) helpsto reducethevariationin packet lossproba-
bility andimprovestheaccuracy of our technique.

F. ModelAccuracyfor Varying T
While the above examplesclearlyvalidatethe fundamentals

behindthefixed-pointapproach,it wouldbeinterestingto study
theeffect of our choiceof the“square-rootformula” on theac-
curacy of our model. To studythis behavior, we performedex-
tensivesimulationsby varying T , thenumberof persistentTCP
flows. More importantly, we usedsimulationsto obtainthedif-
ferencebetweenthe simulatedaveragequeueoccupancy when
the router performedcongestionfeedbackusing either packet
dropsor packet marking (ECN). Figure 5 plots the simulated
queueoccupancy of both RED and ERD queues,as well as
the analytically predictedvalue using the fixed-pointmethod.
Sincethe fixed point methodis basedon an abstractconcept
of congestionnotification, the analytic prediction is identical
for bothpacket droppingandmarkingbehavior. Theplotspre-
sentedin figure 5 correspondto a bottleneckbuffer settingofi(U � VYX � � 9 , i(qRr VYX ����9 and ' k�m�n � 3ó5 � respectively. The
TCPflows weregroupedin pairs,with theRTT of thefirst pair
setto 9-3 msec,andtheRTT of every successive pair setto 1.2
timesthatof thepreviouspair.

It is easyto seethat the analytic predictionsover-estimate
theactualoccupancy (andconsequentlyTCPthroughput)when
congestionnotificationis performedvia packet drops.Therea-
son for this is not hard to find– the square-rootformulation
fails to considertheeffect of timeouts,which occurwhenTCP
flows encounterpacket losses. As T increases,the average
queuelength and the averagepacket droppingrate increases,
leading to greaterinaccuracy in the square-rootbasedfixed-
point model. Whennotificationis performedvia packet mark-
ing, suchloss-relatedtimeoutsare extremely rare events,and
congestioncontrol is achieved principally throughcongestion
avoidance.Accordingly, our analyticmodelprovesreasonably
accurate(within %.3@À in all cases)for ECN-basedbottleneck
queues,evenwhenthefeedbackrateis highandnumberof TCP
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flows are fairly large. ECN-basedmarking is clearly the pre-
ferredmodeof congestionnotificationin the future; moreover,
advancedmechanismssuchasTCPSACK have beenshown to
furtherreducethelikelihoodof TCPtimeouts.Accordingly, the
resultsdemonstratethat the “square-rootformula” basedfixed-
point techniqueis likely to be increasinglyusefulasa predictor
of networkperformancein thefuture.
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Figure5: QueueOccupancy Variationfor RouterDrop/Marking

G. NegativeWindow-sizeCorrelationandits Consequences

On observingthe resultsof our simulations,we found that
the window sizesof the differentflows werenegativelycorre-
lated.Negativecorrelationessentiallyimpliesthatthewindows
tendto vary out of phase:whenthewindow sizeof oneflow is
large,theotherflowshavesmallerthanusualwindow sizes,and
viceversa.Thequeueoccupancy thusexhibits lowervariability
andtendsto belessdependenton variationsin thewindow size
of a singleflow. To demonstratethe presenceof suchcorrela-
tion for anarbitrarynumberof flows,we samplethequeuesize
andtheindividualwindows to obtainthevarianceof thesumof
the window sizes �$q Ü ) ` a\�c � 	 \ + and the sumof the individ-
ual variances̀

a\dc � �$q Ü ) 	 \ + . We know thatthetwo shouldbe
equalif theflowsareideally uncorrelated.For negativecorrela-
tion, thesumshouldexhibit lowervariance( �$q Ü ) ` a\dc � 	 \ + g`ba\dc � �$q Ü ) 	 \ + ), while for positivecorrelation,thesumshould

exhibit larger variance( �$q Ü ) `ba\dc � 	 \ + o `ba\dc � �$q Ü ) 	 \ + ).
This follows from thegeneralrelationship

�/q Ü ) a� \�c � 	 \ + � a� \�c � �$q Ü ) 	 \ +�� � \��c ÷ [ Þ�� ) 	 \ �µ	u÷ + (3.18)

Hence,if the covariancetermsare negative, then the LHS of
equation(3.18)is lessthantheRHS.
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Figure 6 shows the behavior of thesestatisticalmetricsfor
differentvaluesof T , the numberof simultaneousflows shar-
ing a bottleneckbuffer. Thefigure shows that �$q Ü ) ` a\dc � 	 \ +
is always less than

` a\�c � ��q Ü ) 	 \ + (and, in fact, �$q Ü ) _ + is
even lower than ��q Ü ) `ba\�c � 	 \ + ). This indicatesthe presence
of ‘negative correlation’amongtheTCPflows. [8] shows how
sucha negative correlationcanbeexploited to obtainmoreac-
curateestimatesof thestationarydistribution of thecongestion
windows,while [10] discusseshow suchnegativecorrelationis
exploited by intelligent ‘drop-biasing’ strategies to reducethe
variability of thequeueoccupancy. Figure7, on theotherhand,
shows that the coefficient of variationof the queueoccupancy
decreaseswith an increasein thenumberof simultaneousTCP
flows. Accordingly, we canexpectour analyticalpredictionsto
be moreaccuratein the presenceof a larger numberof flows,
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aslong asthepresenceof a largernumberof flows doesnot in-
creasethedrop probabilityandthe incidenceof retransmission
timeouts.

IV. ANALYSIS EXTENSION FOR GENERALIZED

CONGESTION AVOIDANCE

We now extend the fixed-point techniqueto computethe
meanwindow sizesand throughputsfor TCP flows perform-
ing generalizedcongestionavoidance. In general,a process
thatperformswindow-basedcongestioncontrolundertheTCP
paradigmcanbethoughtof asincreasingits window by a func-
tion U ��� Ü ) 	 + on receiving an acknowledgmentin the absence
of congestionanddecreasingits window by �6��� Ü ) 	 + onreceiv-
ing anacknowledgmentindicatingcongestion.As statedearlier,
we consideraspecialcaseof window adjustmentwhere:U ��� Ü ) 	 + � � � 	 
�R��� Ü ) 	 + � �
� 	 � �
where ���K� � � � and � � arearbitraryconstants.Theclassof algo-
rithms having � � 3 and � � % , arecalledadditive-increase,
multiplicative-decrease(AIMD) algorithmsin literature. We
shall also refer to the classof algorithms having � � &/%
and � �ï3 as sub-additive increase,multiplicative-decrease
(SAIMD) algorithmsin theremainderof this paper.

To demonstratetheutility of our fixed-pointanalysisto a va-
riety of problems,we tailor our analysisto theAssuredService
modelandconsidertheinteractionwith anOREDbuffer. As we
shallseeshortly, this is a relatively hardercase,sincethemark-
ing probability for packetsfrom a flow is not simply dependent
on thequeueoccupancy, but on theflow’s window sizeaswell.
(The caseof generalizedTCP flows interactingwith a random
notificationbuffer without any minimumassuredrateis a sim-
pler versionof this problemandfollows almostimmediately).
Also, the ORED buffer marks(setsthe ECN bit) on only out
packets. Sincein packetsarenever marked, the only possible
form of congestionindicationexperiencedby in packetsoccurs
dueto lossesduringbuffer overflow. Themodelthusessentially
assumesthatmarkingout packetswith a sufficiently aggressive
probabilityis adequateto ensurethatacongestionwindow does
not grow without limit. Mathematicallyspeaking,this will be
true aslong as � UWi �! #" \ � ¥�$ °&% ±�(' ¥�$ °&% ±*) 3 . i.e., while �pg � ,
which is truein all practicalcasesof interest.

A. FormulatingtheFixedPoint Equations

As before,wedefinethedrift in thecongestionwindow of theUWVYX flow by theexpectedchange,�x	 \ , in its window sizeasa
functionof its window size 	 \ . Thewindow sizeincreasesby� � 	 
\ with aprobability %6&�' \ ) 	 + anddecreasesby � � 	 �\ with
aprobability ' \ ) 	 + , where' \ ) 	 + is theprobabilityof apacket
beingmarked(ECNbit set).Thus,thedrift is 3 ( corresponding
to the ‘mean’ or centerof the window) when 	 \ satisfiesthe
condition:� � 	 
\ s )M%�&v' \ ) 	 \ +M+ � � � 	 �\ s ' \ ) 	 \ + 5 (4.19)

Accordingly, givena specificfunction ' \ ) 5 + , we canobtainthe
meanvalueof thecongestionwindow by solving:���� � 	 � ´ 
\ � %�&(' \ ) 	 \ +' \ ) 	 \ + 5 (4.20)

Clearly, relation (4.20) definesa set of T equationsfor U �% � 5�5.5 �KT .
If the meanORED buffer occupancy is _ (bytes),we can

determinethe correspondingfunction ' \ )M5 + . In this case,the
markingprobability for out packetsis given+ by

e ) _ + . Now,
if a fraction , \ of thepacketsfrom flow U aremarkedasout, the
unconditionalmarkingprobability for packetsof flow U is , \ se ) _ + . Unfortunately, whenmorethan % TCPflow is present,, \
is itselfa functionof both 	 \ and _ . To seethis,notethat,when
thequeueoccupancy is _ , thetotal round-triptime for flow U is
givenby ^1Z�Z \ � ¡¢ . Sincetheflow controlalgorithmtransmits	 \ s ] \ byteseveryround-triptime,theachievedthroughput� \
is givenby � \ � 	 \ s ] \^1Z�Z \ � ¡¢ (4.21)

Theprobabilityof apacketbeingtaggedasout is assumedto be
equalto thefractionby which theachievedthroughputexceeds
the assuredrate ^ \ . , \ is thusgiven by , \ �.- ¤ ´ ª ¤- ¤ or, upon
usingequation(4.21):

, \ ��%�& ^ \ s ) ^1Z�Z \ � ¡¢ +	 \ s ] \ 5 (4.22)

Accordingly, the marking probability ' \ ) 	 \ + is given by' \ ) 	 \ + �4) %�& ª ¤ � ° ª¬«l« ¤ �0/1 ±% ¤ � £ ¤
+ s e ) _ + , which on substituting

into equation(4.20) yields the following relationship(one for
eachU ��)M% � 5�5�5 �KT + )���� � 	 � ´ 
\ ��) %t& ^ \ s ) ^1Z�Z \ � ¡¢ +	 \ s ] \ s e ) _ +M+ ´¬� &j% (4.23)

Wedenotethesolutionfor 	 \ of theaboveequationas 2 \ ) _ + to
explicitly indicatethattheaboveequationis really a functionof
thequeueoccupancy _ . We shall elaborateon a techniquefor
solvingtheaboveequation(to obtain 2 \ ) _ + ) in thenext subsec-
tion.

Givena valuefor _ , we canthen(at leastin principle)solve
thesetof T equations(equation(4.23)for U �h% � 5.5�5 �PT ) to ob-
tain the T values,2 \ ) _ + , U � % � 5�5�5 �KT . However, our solution
mustsatisfyanotherconstraint:in theabsenceof buffer under-
flow, thesumof thethroughputsof the T flows mustequalthe
link capacity [ , i.e.,

` a\dc � � \ � [ . For a specificvalueof _ ,

we note that � \ � X ¤ ° ¡*± � £ ¤ª¬«­« ¤ � /1 andhence,after trivial algebraic

manipulationsarriveat theotherconstraint:a� \dc � 2 \ ) _ + s ] \_ � ^1Z�Z \ s [ ��% (4.24)º
As statedearlier, our formulationcanalsobeusedwhendifferentflowshave

marking probabilitiesthat are scalarmultiples of eachother, i.e., Ê � ËOÌ Í�Á3 �YÊ@ËIÌ Í where 3 � arearbitraryconstants.
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The basisof our fixed-pointtheoryshouldnow beclear. As
we vary _ and solve for the 2 \ ) _ + accordingto expression
(4.23), therewill be onevaluefor which the constraint(4.24)
is satisfied. This valueof the queueoccupancy is denotedby_�� . The correspondingsolutionsfor 2 \ ) _ô� + providesthe the-
oreticalmeanwindow sizes	h�\ ; thecorrespondingthroughput

for connectionU is thencomputedby
% ¿¤ � £ ¤ª¬«l« ¤ � / ¿1 .

B. ExistenceandSolutionof FixedPoint

Theexistenceof a uniquesolutioncanbeverifiedby varying_ from i(U � VYX to " . At valuescloseto ivU � VYX , e ) _ + � 3
and hence,from equation(4.23), we seethat 2 \ ) _ + will be
very large. Accordingly, the LHS of equation(4.24) will be
much larger than % . On the otherhand,as _  4" , the value
of 2 \ ) _ + also increases(sinceit is clearly always larger than^ \ s ) ^1Z�Z \ � ¡¢ + ). In that case,if we neglect the constant
termof % in theRHSof equation(4.23),wecaneasilysee,after
elementarymanipulation,thattheexpression(4.23)reducesto��� ] \� \ s 	 � ´ 
\ � �
�� � s ^ \ s ) ^1Z�Z \ � _[ + 	 � ´ 
 ´¬�\ � ] \ (4.25)

which, for largevaluesof _ and 	 \ , yields	 \ s ] \ � 2 \ ) _ + s ] \ � ^ \ s ) ^1Z�Z \ � _[ + (4.26)

By pluggingexpression(4.26)into theLHS of constraint(4.24),

wecanseethattheLHSturnsoutto beequalto
`65

¤ 798 ª ¤¢ . Butby
our assumption(2.3), this is clearly lessthan % . We canfurther
show thatas _ increasesfrom i(U � VYX to " , theLHS of (4.24)
decreasesmonotonicallyandcrosses% at somepoint. Sucha
valueof _ accordinglydefinestheuniquesolutionof thefixed
point.

Our algorithmfor solvingthefixedpoint essentiallyconsists
of varying _ andsolvingfor 2 \ ) _ + until thecondition(4.24)is
satisfied.

An iterative gradientscheme(basedon the Newton method)
canbeusedto solvefor 2 \ ) _ + . A valueof 	 \ thatsatisfiesequa-
tion (4.23) is essentiallythe uniquezeroof the function ³ ) 	 +
definedby

)M%�& ^ \ s ) ^,ZtZ \ � ¡¢ +	 \ ] \ s e k�m $�� ) _ +M+ ´¬� &u%�& � �� � 	 � ´ 
\ (4.27)

Define ³ � ) 	 \ + � ) %Ý& ª ¤ � ° ª¬«l« ¤ � /1 ±% ¤ £ ¤ s e k�m $�� ) _ +M+µ´�� &b% and³ � ) 	 + � ¥ û¥ 8 	 � ´ 
\ . By taking derivatives, we can seethat³ �ß) 	 \ + is convex anddecreasingin 	 \ while ³ � ) 	 \ + is increas-
ing in 	 \ (since � o � ). Furthermore,if � & �òg % , then³ � ) 	 \ + is alsoconcave. Accordingly, we startwith a valueof	 \ slightly largerthan ^ \ s ) ^,ZtZ \ � ¡¢ + andrepeattheiterations
until we converge. In particular, if � & � w % , ³ ) 	 \ + is con-
vex andhence,wecanguaranteeconvergencewithoutany over-
shoot. When � & �Eo % , we have the possibility of overshoot
andhence,needto takespecialcarein ournumericalprocedure.

However, in all our numericalcalculations,we wereableto at-
tain convergenceusing the Newton iterative methodusing the
iteration 	 ÷ � �\ � 	 ÷\ � ³ ) 	 ÷\ +³ � ) 	 ÷\ + 5 (4.28)

Here, ³ � ) 	 ÷\ + , the derivative of ³ ) 	 + , is given by the expres-
sion:³@� ) 	 \ + � & ^ \ s ) ^1Z�Z \ � ¡¢ +e ) _ + s 	 � s ] \ s )M%�& ª ¤ � ° ª¬«l« ¤ � /1 ±% ¤ � £ ¤

+ �& � �� � s ) � & � + 	 � ´ 
 ´¬�\ 5
The appropriatevaluefor _ i.e., _�� , on the otherhand,can

be obtainedby a binary searchprocedure,sincewe have es-
tablishedthat

` a\dc � X ¤ ° ¡²± � £ ¤ª¬«­« ¤ � / 1 is monotonicallydecreasingand

smallerthan [ when _ o¦_�� andlargerthan [ when _ g�_�� .
Thus,theentirealgorithmconsistsof two loops: anouterloop
varying _ via a binarysearchmethodandaninner loop evalu-
ating 2 \ ) _ + via theNewtongradientmethod.

C. SimulationsandComparativeResults

We performedfairly extensive testsusing �²� & � to compare
the accuracy of our analytical/numericalresultswith thoseob-
tainedvia simulations. Our modificationsto �²� & � included
incorporationof the generalizedU ��� Ü ) 	 + and �6��� Ü ) 	 + func-
tions in the TCP codeand augmentationof the RED codeto
implementtheOREDmechanism.

For easeof illustration, we principally presentplots for the
caseof only

�
generalizedflows. (We have however usedbe-

tween

� & � 3 TCPflows in additionalsimulationsto verify the
accuracy of our technique.)Both flows hadthe samesegment
sizeof 9ó% � bytes. To provide illustrative results,we usefour
parametersets.

1. ParameterSet1: ( � �p&/% , � �h% , � �,�p% , � � ��3ó5 9 ), i.e.,
thecurrentTCPwindow adaptationprocedure.

2. ParameterSet2: ( � � 3 , � � &/% , � �x� 3ó5 � , � � � 3ó5�% ),
i.e.,aninterestingchoiceof AIMD parameters.

3. ParameterSet3: ( � � &/% , � � % , � � � 3ó5 9 , �
� � 3ó5�% ),
i.e.,SAIMD with areductionin thecoefficientsfor window
increaseanddecrease.

4. ParameterSet4: ( � � 3 , � �p% ,i � � �b385 � and �
� � 3ó5 � ),
i.e.,AIMD with largercoefficientsfor window increaseand
decreasethanparameterset2.

The link capacitywasvariedbetween� 5 9�&E% � Mbps. Whilei(U � VYX and iuqRr VYX wasmaintainedat

� 3 and %�3-3 respectively
for bothparametersets,'lk�m�n waskeptat 385 38% for parameterset% and : , andat 3ó5�% for parametersets

�
and � . This wasdone

to ensurereasonablemeanwindow sizes:for identicalmarking
probabilities,parametersets

�
and � would have much larger

meanwindow sizesthanparametersets % and : . We present
heretheresultsof two differentexperiments.

In the first set of experiments,which we shall call Exper-
iment A, we kept the round-triptimesidenticalfor both flows
but providedthemdifferentprofiledrates.TCPflow % hadapro-
file of %65 9 MbpsandTCP

�
hada profileof : Mbps.Bothflows
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weretaggedby a leaky bucket-basedconditionerwith a moder-
atebucketsizeof

� 3 packets.Figure8 showsthetheoreticaland
simulatedTCP meanwindow sizes/throughputsfor parameter
set % asthelink capacity[ is varied.Figure9 shows thecorre-
spondingplots for parameterset2 (we do not provide plots for
the otherparametersetsdueto spacelimitations). The figures
show closeagreementbetweenour analyticalpredictionsand
thesimulatedresults.We conductedsimilar experimentswhereT variedfrom

� & � 3 ; our predictionswerealwayswithin 9RÀ
of thevaluesobtainedvia simulations.
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In thesecondsetof experiments,which we shallcall Exper-
iment B, the two TCP flows had identical profiled rates( %65 9
Mbps)but differentround-triptimes.Flow % hadan ^1Z�Z of

� 3
msecwhile flow

�
hadan RTT of %�3-3 msec. Figure10 shows

thetheoreticalandsimulatedTCPmeanwindow sizes/through-
putsfor parameterset % asthelink capacity[ is varied;we see
the closeagreementbetweenthe analyticalpredictionsandthe
simulatedvalues.Similar agreementis obtainedwith theother
parametersets;we omit thefiguresdueto spaceconstraints.
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C.1 Accuracy of Techniquefor Larger T
We have also studiedthe accuracy of our model for larger

valuesof T undera varietyof settings.TableII shows thepre-
dictedandsimulatedvaluesof thegoodputfor T �E%.3 flows. In
this particularstudy, eachodd flow hasa guaranteed(assured)
rateof 400Kbpsandeachevenflow hasanassuredrateof 800
Kbps,while thechannelbandwidthis setto 9 Mbps.Moreover,
flows weregroupedin pairs,with the first pair having an RTT
of 25 msecs,andtheRTT of eachsubsequentpair beingsetto
1.6 timestheRTT of the previouspair. We tabulatethe results
for two of theparametersetsenumeratedearlier: for parameter
set1 (TCP), the ORED buffer parameterswere ivU � VYX � � 9 ,iuq6r VYX �<��9 and ' k�m�n � 3ó5�% , while for parameterset 2,
the buffer parameterswere i(U � VYX � � 3 , iuqRr VYX � %.3-3 and'lk�m�n��ý3ó5�% .

TCPFlow ParameterSet1 ( = Á D Ñ ) ParameterSet2 ( = Áuè )
Analytical Simulated Analytical Simulated

(Mbps) (Mbps) (Mbps) (Mbps)
1 1.095 1.108 0.759 0.763
2 1.362 1.392 1.165 1.160
3 0.873 0.889 0.736 0.744
4 1.160 1.149 1.142 1.1.32
5 0.696 0.682 0.705 0.712
6 1.006 0.998 1.110 1.114
7 0.567 0.554 0.667 0.660
8 0.905 0.887 1.071 1.066
9 0.485 0.481 0.622 0.616
10 0.849 0.806 1.025 1.004

TableII: MeanTCPGoodputsfor C Á ÑMè
Thecloseagreementbetweenthesimulatedandpredictedval-

uesvalidatesthe applicability of our techniqueacrossa wide
variety of operatingparameters.[10] also usesthis approach
to considerhow changesto the adaptationparametersaffect
the bandwidthsharingparadigmbetweenmultiple TCP flows.
Suchstudiesareusefulin evaluatingthepossibleeffectsof sug-
gestedchangesto TCP’s currentcongestioncontrol algorithm.
Of course,asstatedearlier, this ‘square-root’basedapproach
worksonly whenretransmissiontimeoutsarerareevents.When
packet lossesarethesolemeansof congestionnotification,this
techniqueis accurateonly aslong asthe lossprobabilitiesare
relatively small(below � 9RÀ ). However, whenpacketmarking
mechanisms,suchasECN,areused,packet lossesarerelatively
infrequentevents;accordingly, our analysisholdsover a much
wider rangeof markingprobabilities.

V. CONCLUSIONS

In thispaper, wehavedemonstratedananalyticalandnumeri-
cal techniqueto obtainthecentersof theTCPwindow sizesand
the associatedqueueoccupancy whenmultiple persistentTCP
flows sharea bottleneckbuffer performingrandomizedconges-
tion feedback.Thetechniqueessentiallyusesadrift-basedargu-
mentto relatethecenterof a TCPwindow performingconges-
tion avoidanceto the averagepacket marking/droppingproba-
bility. We usea set of fixed-pointconditions,which seekan
operatingpoint for thebuffer wherethedrop/markingprobabil-
ity is consistentwith the sizesof the individual TCP windows.

While weusethe“square-root”formulaasaspecificinstanceof
our fixed-pointformulation, the mechanismis generalenough
to incorporateother, moregeneric,modelsfor TCPresponseto
congestionnotification. For simplecases,wherean individual
flow is not subjectto any rate-constraints,we prove how the
useof aNewtongradient-basedtechniqueresultsin fastconver-
gence.

We subsequentlyextendthetechniqueto considerTCPflows
performinggeneralizedcongestionavoidance,wherethe flow
increasesand decreasesits congestionwindow by � � 	�
 and� � 	 � respectively. As an example of a more complicated
model,we considerthe caseof an AssuredServiceframework
andderive the meanwindow sizesand throughputsunderthis
model. Thesolutiontechniquenow combinesbinary searchin
an outer loop with gradient-basediterative searchin an inner
loop. Simulationresultsattestto the accuracy of our analysis
technique.

While performing our simulations, we had observed the
presenceof negative correlation among the TCP windows.
Mechanismsthat indirectly exploit this negative correlationto
smoothenthebuffer occupancy havebeensuggestedin [11] and
shouldbeexploredin greaterdetail.Our analysisdoesnot con-
sidertheeffectsof transientssuchasfastrecoveryandtimeouts.
Accordingly, our fixedpoint approximationtechniquewasseen
to provide very accurateresults,over a wide variety of loads
andoperatingconditions,whenECN-basedmarkingwasused
to provide congestionfeedback.Whencongestionnotification
is achievedvia randomizedpacketdropping, our techniquesuf-
fers from a degradationin accuracy when the averagepacket
lossrateexceeds� 96À .

The numerical techniquepresentedhere appearsto be a
promisingway to develop hierarchicalfixed point algorithms
thatprovide reasonablyaccurateestimatesof network behavior
at a fraction of the costof detailedsimulations. In the future,
we hopeto explore the useof suchtechniquesfor determining
theoperationalpointof packet-basednetworks,especiallyin the
presenceof multiple bottlenecks.

APPENDICES

I . PROOF THAT F(Q) IS CONVEX

We prove here that the function
e ) _ + definedin equation

(3.16) is convex. First, somenotation: let £ ¤¥ ¤ be denotedbyà�\
and [ s ^,ZtZ \ bedenotedby � \ . The function ³ ) _ + is then

givenby ³ ) _ + � ) ` \?> ¤¡ � � ¤
+�´¬� . On differentiatingthis func-

tion weobtain ³ � ) _ + � ³ ) _ + � � \ à
\) _ � � \ + � (A.1)

Sincefrom above, ³ � ) _ + o 3,f _ , ³ ) _ + is an increasingfunc-
tion of _ . Dif ferentiatingagain,we have thesecondderivative
givenby ³ � � ) _ + � � ³ ) _ + ³ � ) _ + � \ à \) _ � � \ + �
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& � ) ³ ) _ +K+ � � \ à�\) _ � � \ + y
or on rearranging³�� � ) _ + � � ) ³ ) _ +M+ y � ) � \ à�\) _ � � \ + � + �&$) � \ à�\) _ � � \ + y + ) � \ à�\_ � � \ +µ# (A.2)

We now prove that the term in the curly bracesin equation
(A.2) is negative. To seethis, let � � ` \ à \ and let q \ �) _ �b� \ + f U�� � % � � � 5�5.5 �KT # (notethat q \ is alwayspositive).
Considera randomvariable @ which takeson thevalue q \ with
probability A \ � > ¤� . Then, the secondderivative canalsobe
written (with B*CED denotingtheexpectationoperation)as³ � � ) _ + � � � � ) ³ ) _ +K+ y � B � C @ � D & BFC @ y D&B*C @GD # (A.3)

Now, we know if @ is a randomvariablethat has
�ÝÜßÞ�à ) @ o3 + �h% , then HJILKMB*C @ k D is convex in i f i á 3 . Thus,wehave

HJILKMBFC @ � D w N OQPSR�T UWV � N OXPSRYT U ú V� , sothat B � C @ � D & BFC @tyED&BFC @ZD w3 . Applying this resultto expression(A.3), weseethat ³ � � ) _ + is
negativeandhence,³ ) _ + is aconcavefunctionof _ .

As the term ® �Ú ° ¡²± is easily seento be convex (its second

derivative is positive), we canconcludethat
e ) _ + is a convex

functionof _ .

I I . MODELING RED BEHAVIOR

In this appendix,we discusstheapplicabilityof our modeto
Early RandomDrop (ERD) and the RandomEarly Detection
(RED) queues. The importantdifferencesbetweenRED and
ERD are:z RED operateson the average(and not the instantaneous)

queuelength. Thedropprobability, ' ,is thusa functionof
theweightedaverage_ m\[�] of thequeueoccupancy i.e., '
is a functionnot just of _ � but of ) _ � �µ_ � ´�� �P_ � ´ � � 5�5.5 +
with anexponentialdecay.z To avoid unboundedinter-drop gaps,RED increasesthe
drop probability for every acceptedpacket. (This prop-
erty, which we call drop-biasing, is achieved by using a
variable, ���¬� , which incrementswith every successive ac-
ceptedpacket; the true droppingprobability is thengiven
by

Ú ° ¡²±�µ´ ¥ � V © Ú ° ¡²± . This resultsin a inter-drop period that is

uniformlydistributedbetween) % � 5�5.5 �9^ �Ú ° ¡²± _ + asopposed
to the geometricallydistributed inter-drop gapcausedby
anindependentpacketdropmodel.z SomeRED implementshave

e ) _ + � % when _ m\[�] ex-
ceedsiuqRr VYX ; thiscontrastswith ourassumptionof random
drop throughoutthe entirerangeof the buffer occupancy.
Our RED queueshowever have

e ) _ + � ' k�m�n for _ m([�]
largerthan i(qRr VYX .

To capturetheeffectsof drop-biasingin RED,wechangethe
function

e ) _ + suchthat theaverageinter-dropgapis thesame
for both RED ( �� Ú ) andERD ( �Ú + . We achieve this by setting
the 'lk�m�n valuein RED simulationsto half that usedfor ERD
simulationsandin ouranalyticaltechnique.

I I I . CORRECTION FOR DELAYED ACKNOWLEDGMENTS

Delayedacknowledgmentsessentiallyimply that the TCP
processincrementsits window only oncefor every ` ( ` is
usually2) acknowledgments.A simpleway to capturethis ef-
fect is to alterequation(3.1)to��� 	 ��� �\ � ��� � � 	�
` ! 	 �\ � �/# ��%�&(' \ ) �,+ (C.1)

i.e.,approximatewindow evolutionby aprocessthatincrements
its window by

¥ 8 %bac for every congestion-freeacknowledg-
ment. Accordingly, the zero-drift conditionin equation(4.19)
becomes:� � s 	 
\ s ) %�&(' \ ) 	 \ +K+ � ` s �
� s 	 �\ s ' \ ) 	 \ + 5 (C.2)
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