
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2009

Computing Medoids in Large Spatial Datasets
Kyriakos MOURATIDIS
Singapore Management University, kyriakos@smu.edu.sg

Dimitris PAPADIAS
Hong Kong University of Science and Technology

Spiros PAPADIMITRIOU
IBM TJ Watson Research Center

DOI: https://doi.org/10.1201/9781420073980

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, Geography Commons, and the

Numerical Analysis and Scientific Computing Commons

This Book Chapter is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MOURATIDIS, Kyriakos; PAPADIAS, Dimitris; and PAPADIMITRIOU, Spiros. Computing Medoids in Large Spatial Datasets.
(2009). Geographic Data Mining and Knowledge Discovery. 189-226. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/247

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13239486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1201/9781420073980
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

189

8 Computing Medoids
in Large Spatial Datasets

Kyriakos Mouratidis

Dimitris Papadias

Spiros Papadimitriou

8.1 IntRoDUCtIon

In this chapter, we consider a class of queries that arise in spatial decision mak-
ing and resource allocation applications. Assume that a company wants to open a
number of warehouses in a city. Let P be the set of residential blocks in the city. P
represents customer locations to be potentially served by the company. At the same
time, P also comprises the candidate warehouse locations because the warehouses
themselves must be opened in some residential blocks. In this context, an analyst
may ask any of the following questions:

 Q1. k-Medoid query: If the number k of warehouses is known, in which resi-
dential blocks should they be opened, so that the average distance from
each location in P to its closest warehouse is minimized?

Contents

8.1 Introduction ... 189
8.2 Background .. 191

8.2.1 R-Trees and Nearest Neighbor Search.. 191
8.2.2 k-Medoids and Related Problems ... 193

8.3 Framework Overview and Basic Definitions ... 195
8.4 k-Medoid Queries .. 197
8.5 Medoid-Aggregate Queries ... 201
8.6 Medoid-Optimization Queries ..203
8.7 Experimental Evaluation ...207

8.7.1 k-Medoid Queries ...207
8.7.2 Medoid-Aggregate Queries .. 215
8.7.3 Medoid-Optimization Queries ... 218

8.8 Conclusion ...225
References ..225

C3974.indb 189 4/21/09 5:40:48 PM

Published in Geographic data mining and knowledge discovery. CRC Press, 2009, Pages 189-226
https://worldcat.org/isbn/9781420073980

190 Geographic Data Mining and Knowledge Discovery

 Q2. Medoid-aggregate query: If the average distance should be around a
given value, what is the smallest number of warehouses (and their loca-
tions) that best approximates this value?

 Q3. Medoid-optimization query: If the warehouse opening/maintenance
overhead and the transportation cost per mile are given, what is the num-
ber of warehouses (and their locations) that minimizes the total cost?

The warehouse locations correspond to the medoids. Since the k-medoid problem
(Q1) is NP-hard (Garey and Johnson, 1979), research has focused on approximate
algorithms, most of which are suitable only for datasets of small and moderate sizes.
On the contrary, this chapter focuses on very large databases. In addition to conven-
tional k-medoids, we introduce and solve the alternative queries Q2 and Q3, which
have practical relevance.

To formalize, given a set P of data points, we wish to find a set of medoids R ⊆ P,
subject to certain optimization criteria. The average (avg) Euclidean distance
||p – r(p)|| between each point p ∈ P and its closest medoid r(p) ∈ R is denoted by

C R
P

p r p
p P

()
| |

|| ()||.= -
∈

∑1

Letting |R| represent the cardinality of R, the k-medoid query can be formally
stated as: “Given dataset P and integer parameter k, find R ⊆ P, such that |R| = k and
C(R) is minimized.” Figure 8.1 shows an example, where the dots represent points
in P (e.g., residential blocks), k = 3 and R = {h, o, t}. The three medoids h, o, t are
candidate locations for service facilities (e.g., warehouses or distribution centers), so
that the average distance C(R) from each block to its closest facility is minimized.

The medoid-aggregate (MA) query is defined as: “Given P and a value T, find
R ⊆ P, such that |R| is minimized and C(R) ≈ T.” In other words, k is not specified in
advance. Instead, a target value T for the average distance is given, and we want to
select a minimal set R of medoids, such that C(R) best approximates T. Finally, the
medoid-optimization (MO) query is formalized as: “Given P and a cost function f
that is monotonically increasing with both the number of medoids |R| and with C(R),

fIGURe 8.1 Example of 3-medoids.

t

o

h

C3974.indb 190 4/21/09 5:40:49 PM

Computing Medoids in Large Spatial Datasets 191

find R ⊆ P such that f(C(R), |R|) is minimized.” For example, in Q3 above, function
f may be defined as f(C(R), |R|) = C(R) + Costpm × |R|, where Costpm is the opening/
maintenance cost per warehouse. The goal is to achieve the best tradeoff between the
number of warehouses and the average distance achieved.

Interesting variants of the above three query types arise when the quality of a
medoid set is determined by the maximum distance between the input points and
their closest medoid; i.e., when

 C(R) = maxp∈P ||p - r(p)|| .

For instance, the company in our example may want to minimize the maximum
distance (instead of the average one) between the residential blocks and their closest
warehouse, potentially achieving a desired C(R) with the minimal set of warehouses
(MA), or minimizing a cost function (MO).

In this chapter, we present Tree-based PArtition Querying (TPAQ) (Mouratidis,
Papadias, and Papadimitriou, 2008), a methodology that can efficiently process all
of the previously mentioned query types. TPAQ avoids reading the entire dataset
by exploiting the grouping properties of a data partition method on P. It initially
traverses the index top-down, stopping at an appropriate level and placing the cor-
responding entries into groups according to proximity. Finally, it returns the most
centrally located point within each group as the corresponding medoid. Compared
to previous approaches, TPAQ achieves solutions of comparable or better quality,
at a small fraction of the processing cost (seconds as opposed to hours). The rest of
the chapter is organized as follows. Section 2 reviews related work. Section 3 intro-
duces key concepts and outlines the general TPAQ framework. Section 4 considers
k-medoid queries, while Section 5 and Section 6 focus on MA and MO queries,
respectively. Section 7 presents experimental results and Section 8 concludes the
chapter.

8.2 bACKGRoUnD

Although TPAQ can be used with any data partition method, we assume R*-trees
(Beckmann, et al., 1990) due to their popularity. Section 8.2.1 overviews R*-trees
and their application to nearest neighbor queries. Section 8.2.2 presents existing
algorithms for k-medoids and related problems.

8.2.1 r-trees and nearest neighbor search

We illustrate our examples with the R*-tree of Figure 8.2 that contains the data
points of Figure 8.1, assuming a capacity of four entries per node. Points that are
nearby in space (e.g., a, b, c, d) are inserted into the same leaf node (N3). Leaf nodes
are recursively grouped in a bottom-up manner according to their proximity, up to
the top-most level that consists of a single root. Each node is represented as a mini-
mum bounding rectangle (MBR) enclosing all the points in its sub-tree. The nodes
of an R*-tree are meant to be compact, have small margin, and achieve minimal
overlap among nodes of the same level (Theodoridis, Stefanakis, and Sellis, 2000).
Additionally, in practice, nodes at the same level contain a similar number of data

C3974.indb 191 4/21/09 5:40:49 PM

192 Geographic Data Mining and Knowledge Discovery

points, due to a minimum utilization constraint (typically 40%). These properties
imply that the R*-tree (or any other data partition method based on similar concepts)
provides a natural way to partition P according to data proximity and group cardi-
nality criteria. Furthermore, the R*-tree is a standard index for spatial query pro-
cessing. Specialized structures may yield solutions of better quality for k-medoid
problems, but would have limited applicability in existing systems, where R-trees
are prevalent.

The R-tree family of indexes has been used for spatial queries such as range
search, nearest neighbors, and spatial joins. A nearest neighbor (NN) query retrieves
the data point that is closest to an input point, q. R-tree algorithms for processing
NN queries utilize some metrics to prune the search space. The most common such
metric is mindist(N,q), which is defined as the minimum possible distance between q
and any point in the sub-tree rooted at node N. Figure 8.2 shows the mindist between
q and nodes N1 and N2. The algorithm of Roussopoulos, Kelly, and Vincent (1995),
shown in Figure 8.3, traverses the tree in a depth-first manner: starting from the root,
it first visits the node with the minimum mindist (i.e., N1 in our example). The pro-
cess is repeated recursively until a leaf node (N4) is reached, where the first potential
nearest neighbor (point e) is found. Let bestNN be the best NN found thus far (e.g.,
bestNN =e) and bestDist be its distance from q (e.g., bestDist = ||e - q||). Subsequently,
the algorithm only visits entries whose minimum distance is less than bestDist. In

(a)

q

p

l

f

m s

r x

t

u

v

w
k

i

j

h

d

c

a

O

N2N7

N8

N3

N9

n

e

b

g

N6

N1 N4

N5

Mindist (N2, q)

Mindist (N1, q)

(b)

fIGURe 8.2 R-tree example.

N1

N1 N2

N3

N3
a b c d e f g h i j k l m n o p x r s t u v w

N4

N4

N5

N5

N6

N6

N7

N7

N8

N8

N9

N9

N2

Nroot

level 2
level 1

level 0

C3974.indb 192 4/21/09 5:40:51 PM

Computing Medoids in Large Spatial Datasets 193

the example, N3 and N5 are pruned since their mindist from q is greater than ||e - q||.
Similarly, when backtracking to the upper level, node N2 is also excluded and the
process terminates with e as the result. The extension to k (>1) NNs is straight-
forward. Hjaltason and Samet (1999) propose a best-first NN algorithm that is I/O
optimal (i.e., it only visits nodes that may contain NNs) and incremental (the number
k of NNs does not need to be known in advance).

8.2.2 k-medoids and related Problems

A number of approximation schemes for k-medoids and related problems appear in
the literature (Arora, Raghavan, and Rao, 1998). Most of them, however, are largely
theoretical in nature. Kaufmann and Rousseeuw (1990) propose partitioning around
medoids (PAM), a practical algorithm based on the hill climbing paradigm. PAM
(illustrated in Figure 8.4) starts with a random set of k medoids R0 ⊆ P. At each
iteration i, it updates the current set Ri of medoids by exhaustively considering all
neighbor sets Ri’ that result from Ri by exchanging one of its elements with another
data point. For each of these k∙(|P| - k) alternatives, it computes the function C(Ri’)
and chooses as Ri+1 the one that achieves the lowest value. It stops when no further
improvement is possible. Since computing C(Ri’) requires O(|P|) distance calcula-
tions, PAM is prohibitively expensive for large |P|. Clustering large applications
(CLARA) (Kaufmann and Rousseeuw, 1990) alleviates the problem by generating
random samples from P and executing PAM on them. Ng and Han (1994) propose
clustering large applications based on randomized search (CLARANS) as an exten-
sion to PAM. CLARANS draws a random sample of size maxneighbors from all the
k∙(|P| - k) possible neighbor sets Ri’ of Ri. It performs numlocal restarts and selects
the best local minimum as the final answer.

Although CLARANS is more scalable than PAM, it is inefficient for disk-resident
datasets because each computation of C(Ri’) requires a scan of the entire database.

Algorithm NN (q,N)

1. If N is a leaf node

2. For each point p N

3. If ||p-q||<bestDist

4. best NN = p; bestDist =||p-q||

5. Else // N is an internal node

6. For each child Ni of N do

7. If mindist(q, Ni) < bestDist

8. NN(q, Ni)

fIGURe 8.3 The NN algorithm. (From Roussopoulos, N., Kelly, S., and Vincent, F. Nearest
neighbor queries. SIGMOD, 1995.)

C3974.indb 193 4/21/09 5:40:52 PM

194 Geographic Data Mining and Knowledge Discovery

Assuming that P is indexed with an R-tree, Ester, Kriegel, and Xu (1995a,b) devel-
oped focusing on representatives (FOR). FOR takes the most centrally located point
of each leaf node and forms a sample set, which is considered as representative of
the entire set P. Then, it applies CLARANS on this sample to find the k medoids.
FOR is more efficient than CLARANS, but it still has to read the entire dataset in
order to extract the representatives. Furthermore, in very large databases, the leaf
level population may still be too high for the efficient application of CLARANS (the
experiments of Ester, Kriegel, and Xu use R-trees with only 50,559 points and 1,027
leaf nodes).

To the best of our knowledge, no existing method for the max case is suitable
for disk-resident data. For in-memory processing, the k-centers algorithm (CTR) of
Gonzales (1985) answers max k-medoid queries in O(k×|P|) time with an approxima-
tion factor of 2; i.e., the returned medoid set is guaranteed to achieve a maximum dis-
tance C(R) that is no more than two times larger than the optimal one. The algorithm
is shown in Figure 8.5. The first medoid is randomly selected from P and forms set
R1. The second medoid is the point in P that lies furthest from the point in R1. These
two medoids form R2. In general, the i-th medoid is the one that has the maximum
distance from any point in Ri-1. Finally, set Rk is returned as the result. The algorithm
is simple and works well in practice. However, its adaptation to large datasets would
be very expensive in terms of both CPU and I/O cost, since in order to find the i-th
medoid it has to scan the entire dataset and compute the distance between every data
point and all elements of Ri-1.

A problem related to k-medoids is min-dist optimal-location (MDOL) computa-
tion. Given a set of data points P, a set of existing facilities, and a user-specified

fIGURe 8.4 The PAM algorithm. (From Kaufman, L. and Rousseeuw, P. Finding Groups in
Data. Wiley-Interscience, 1990.)

Algorithm PAM (P, k)

1. Initialize R0 = {r1, r2, ..., rk} to a random subset of P with k elements, and set i = 0

2. Repeat

3. bestNeighbor = Ri

4. For each position j = 1 to k do

5. For each point p P do

6. Ri' = Ri – {rj} {p}

7. If C(Ri') < C(bestNeighbor)

8. bestNeighbor = Ri'

9. Ri+1 = bestNeighbor; i = i + 1

10. Until Ri = Ri–1 // no improvement was made

11. Return R

C3974.indb 194 4/21/09 5:40:53 PM

Computing Medoids in Large Spatial Datasets 195

spatial region Q (i.e., range for a new facility), an MDOL query computes the
location in Q which, if a new facility is built there, minimizes the average distance
between each data point and its closest facility. The main difference with respect
to k-medoids is that the output of an MDOL query is a single point (as opposed to
k) that does not necessarily belong to P, but it can be anywhere in Q. Zhang et al.
(2006) propose an exact method for this problem. This technique is complemen-
tary to the proposed algorithms because it can be used to increase the cardinality
of an existing medoid set when there is a need for incremental processing (e.g., the
company of our example may decide to open an additional warehouse in a given
area).

The k-medoid problem is related to clustering. Clustering methods designed
for large databases include DBSCAN (Ester et al., 1996), BIRCH (Zhang,
Ramakrishnan, and Livny, 1996), CURE (Guha, Rastogi, and Shim, 1998), and
OPTICS (Ankerst et al., 1999). However, the objective of clustering in general and
of these techniques in particular is inherently different. Extensive work on medoids
and clustering has been carried out in the areas of statistics (Hartigan, 1975;
Kaufman and Rousseeuw, 1990; Hastie, Tibshirani, and Friedman, 2001), machine
learning (Pelleg and Moore, 1999, 2000; Hamerly and Elkan, 2003), and data min-
ing (Ester et al., 1996; Fayyad et al., 1996). However, the focus there is on assessing
the statistical quality of a given clustering, usually based on assumptions about the
data distribution (Hastie et al., 2001; Kaufman and Rousseeuw, 1990; Pelleg and
Moore, 2000). Only few approaches aim at dynamically discovering the number
of clusters (Pelleg and Moore, 2000; Hamerly and Elkan, 2003). Besides tackling
problems of a different nature, these algorithms are computationally intensive and
unsuitable for disk-resident datasets.

8.3 fRAMeWoRK oVeRVIeW AnD bAsIC DefInItIons

The TPAQ framework traverses the R-tree in a top-down manner, stopping at the
topmost level that provides enough information for answering the given query. In
the case of k-medoids, this decision depends on the number of entries at the level.

fIGURe 8.5 The CTR algorithm for max k-medoids. (From Gonzalez, T. Clustering to mini-
mize the maximum intercluster distance. Theoretical Computer Science, 38: 293–306, 1985.)

Algorithm CTR (P, k)

1. Choose a point p P randomly, and set R1 = {p}

2. For i = 2 to k do

3. Let p be the point in P – Ri–1 that is furthest from any medoid in Ri–1

4. Ri = Ri–1 {p}

5. Return Rk

C3974.indb 195 4/21/09 5:40:54 PM

196 Geographic Data Mining and Knowledge Discovery

On the other hand, for MA and MO queries, the selection of the partitioning level is
also based on the spatial extents and (in the avg case) on the expected cardinality of
its entries. Next, TPAQ groups the entries of the partitioning level into slots. For a
given k, this procedure is performed by a fast slotting algorithm. For MA and MO,
multiple calls of the slotting algorithm might be required. The last step returns the
NN of each slot center as the medoid of the corresponding partition. We first provide
some basic definitions, which are used throughout the chapter.

Definition 1 [Extended entry]: An extended entry e consists of an R-tree entry
N, augmented with information about the underlying data points, i.e., e = 〈c, w, N〉,
where the weight w is the expected number of points in the sub-tree rooted at N. The
center c is a vector of coordinates that corresponds to the geometric centroid of N,
assuming that the points in the sub-tree of N are uniformly distributed.

Definition 2 [Slot]: A slot s consists of a set E of extended entries, along with
aggregate information about them. Formally, a slot s is defined as s = 〈c, w, E〉, where
w is the expected number of points represented by s,

w e w
e E

= . .
∈

∑

In the avg case, vector c is the weighted center of s,

c
w

e w e c
e E

= ⋅
∈
∑1

. . .

In the max case, vector c is the center of the minimum enclosing circle of all the
entry centers e.c in s; i.e., c is the center of the circle enclosing e.c ∀e∈E that has the
minimum possible radius.

A fundamental operation is the insertion of an extended entry e into a slot s. The
pseudo-code for this function in the avg case is shown in Figure 8.6. The insertion
computes the new center, taking into account the relative positions and weights of
the slot s and the entry e, e.g., if s and e have the same weights, the new center is at
the midpoint of the line segment connecting s.c and e.c. In the max case, the new slot
center is computed as the center of the minimum circle enclosing e.c and all the entry
centers currently in s. We use the incremental algorithm of Welzl (1991), which finds
the new slot center in expected constant time.

Function InsertEntry (extended entry e, slot s)

1. s.c = (e.w·e.c + s.w·s.c)/(e.w + s.w)

2. s.w = e.w + s.w

3. s.E = s.E {e}

fIGURe 8.6 The InsertEntry function for avg.

C3974.indb 196 4/21/09 5:40:55 PM

Computing Medoids in Large Spatial Datasets 197

In the subsequent sections, we describe the algorithmic details for each query
type. For every considered medoid problem, we first present the avg case, followed
by max. Note that, similar to PAM, CLARA, CLARANS, and FOR, TPAQ aims at
efficient processing without theoretical guarantees on the quality of the medoid set.
Meaningful quality bounds are impossible because TPAQ is based on the underlying
R-trees, which are heuristic-based structures. Nevertheless, as we show in the experi-
mental evaluation, TPAQ computes medoid sets that are better than those of the exist-
ing methods at a small fraction of the cost (usually several orders of magnitude faster).
Furthermore, it is more general in terms of the problem variants it can process.

8.4 k-MeDoID QUeRIes

Given an avg k-medoid query, TPAQ finds the top-most level with k’ ≥ k entries. For
example, if k = 3 in the tree of Figure 8.2, TPAQ descends to level 1, which contains
k’ = 7 entries, N3 through N9. The weights of these entries are computed as follows.
Since |P| = 23, the weight of the root node Nroot is wroot = 23. Assuming that the entries
of Nroot are equally distributed between the two children N1 and N2, w1 = w2 = N/2 =
11.5 (the true cardinalities are 11 and 12, respectively). The process is repeated for
the children of N1 (w3 = w4 = w5 = w1/3 = 3.83) and N2 (w6 = w7 = w8 = w9 = w2/4 =
2.87). Figure 8.7 illustrates the algorithm for computing the initial set of entries.
Note that InitEntries assumes that k does not exceed the number of leaf nodes. This
is not restrictive because the lowest level typically contains several thousand nodes
(e.g., in our datasets, between 3,000 and 60,000), which is sufficient for all ranges of
k that are of practical interest. If needed, larger values of k can be accommodated by
conceptually splitting leaf level nodes.

fIGURe 8.7 The InitEntries function.

Function InitEntries (P, k)

1. Load the root of the R-tree of P

2. Initialize list = {e}, where e = (Nroot.c, |P|, Nroot)

3. While list contains fewer than k extended entries do

4. Initialize an empty list next_level_entries

5. For each e = (c, w, N) in list do

6. Let num be the number of child entries in node N

7. For each entry Ni in node N do

8. wi = w/num // the expected cardinality of Ni

9. Insert extended entry (Ni.c, wi, Ni) into next_level_entries

10. Set list = next_level_entries

11. Return list

C3974.indb 197 4/21/09 5:40:57 PM

198 Geographic Data Mining and Knowledge Discovery

The next step merges the k’ initial entries in order to obtain exactly k groups.
First, k out of the k’ entries are selected as slot seeds, i.e., each of the chosen
entries forms a singleton slot. Clearly, the seed locations play an important role
in the quality of the final answer. The seeds should capture the distribution of
points in P, i.e., dense areas should contain many seeds. Our approach for seed
selection is based on space-filling curves, which map a multidimensional space
into a linear order. Among several alternatives, Hilbert curves best preserve the
locality of points (Korn, Pagel, and Faloutsos, 2001; Moon et al., 2001). Therefore,
we first Hilbert-sort the k’ entries and select every m-th entry as a seed, where
m = k’/k. This procedure is fast and produces well-spaced seeds that follow the data
distribution. Returning to our example, Figure 8.8a shows the level 1 MBRs (for
the R-tree of Figure 8.2) and the output seeds s1 = N4, s2 = N9, and s3 = N7 according
to their Hilbert order. Recall that each slot is represented by its weight (e.g., s1.w
= w4= 3.83), its center (e.g., s1.c is the centroid of N4), and its MBR. Then, each of
the remaining (k’ – k) entries is inserted into the k slots, based on proximity. More
specifically, for each entry e, we choose the slot s whose weighted center s.c is
closest to the entry’s center e.c. In the running example, assuming that N3 is con-
sidered first, it is inserted into slot s1 using the InsertEntry function of Figure 8.6.
The center of s1 is updated to the midpoint of N3 and N4’s centers, as illustrated
in Figure 8.8b. TPAQ proceeds in this manner, until the final slots and weighted
centers are computed as shown in Figure 8.8c.

After grouping all entries into exactly k slots, we find one medoid per slot by
performing an NN query. The query point is the slot’s weighted center s.c, and the
search space is the set of entries s.e. Since all the levels of the R-tree down to the par-
tition level have already been loaded in memory, the NN queries incur very few node
accesses and negligible CPU cost. Observe that an actual medoid (i.e., a point in P
that minimizes the average distance) is more likely to be closer to s.c than simply to
the center of the MBR of s. The intuition is that s.c captures information about the
point distribution within s. The NN queries on these points return the final medoids
R = {h, o, t}.

Figure 8.9 shows the complete TPAQ k-medoid computation algorithm. The prob-
lem of seeding the slot table is similar to that encountered in spatial hash joins,
where the number of buckets is bounded by the available main memory (Lo and
Ravishankar, 1995, 1998; Mamoulis and Papadias, 2003). However, our ultimate
goals are different. First, in the case of hash joins, the table capacity is an upper
bound. Reaching it is desirable in order to exploit available memory as much as pos-
sible, but falling slightly short is not a problem. In contrast, we want exactly k slots.
Second, in our case, slots should minimize the average distance C(R) on one dataset,
whereas slot selection in spatial joins attempts to minimize the number of intersec-
tion tests that must be performed between points that belong to different datasets.

TPAQ follows similar steps for the max case. The function InitEntries proceeds
as before, but without computing the expected cardinality for entries and slots; in
the max version of the problem, we use only the geometric centroids of the R-tree
entries. Let E be the set of entries in the partitioning level. We apply the CTR algo-
rithm (described in Section 8.2.2) to select k slot seeds among the entry centers e.c
in E. Then, we insert the remaining entries in E one by one into the slot with the

C3974.indb 198 4/21/09 5:40:57 PM

Computing Medoids in Large Spatial Datasets 199

fIGURe 8.8 Insertion of entries into slots.

s2

s3

N3

N4

N5

N6 N7

N8

N9

s1

(c) Final slot contents

s1

s3

s2

N3

N4
N5

N6

N7 N8

N9

(a) Hilbert seeds

s1

s3

s2

N3

N4

N5

N6

N7 N8

N9

new MBR of s1

(b) Insertion of N3

C3974.indb 199 4/21/09 5:40:59 PM

200 Geographic Data Mining and Knowledge Discovery

closest center. Finally, we perform an NN search at the center of each slot to retrieve
the actual corresponding medoid. Recall that the center of each slot is the center of
the minimum circle enclosing its entries’ centers. Returning to our running example,
if a 3-medoid query is given in the tree of Figure 8.2, level 1 is chosen as the parti-
tioning level. Among the entries of level 1, assume that CTR returns the centers of
N4, N6, and N9 as the seeds. The insertion of the remaining entries into the created
slots (s1, s2, and s3) results in the partitioning shown in Figure 8.10. The three circles

fIGURe 8.9 The TPAQ algorithm.

Algorithm TPAQ (P, k)

1. Initialize a set S = Ø, and an empty list

2. Set E = the set of entries returned by InitEntries (P, k)

3. Hilbert-sort the centers of the entries in E and store them in a sorted list sorted_list

4. For i = 1 to k do // compute the slot seeds

5. Form a slot containing the (i.|E|/k)-th entry of sorted_list and insert it into S

6. For each entry e in E (apart from the ones selected as seeds) do

7. Find the slot s in S with the minimum distance ||e.c – s.c||

8. InsertEntry (e, s)

9. For each s S do

10. Perform a NN search at s.c on the points under s.E

11. Append the retrieved point to list

12. Return list

s1

d

s2

s3

s1.c

r1

r3

r2

N3

N4

N5

N8
N9

N6

n

N9

v

fIGURe 8.10 3-medoids in the max case.

C3974.indb 200 4/21/09 5:41:00 PM

Computing Medoids in Large Spatial Datasets 201

correspond to the minimum circles enclosing the centers of nodes in each slot. The
final step of the TPAQ algorithm retrieves the NNs of s1.c, s2.c, and s3.c, which are
points d, v, and n, respectively. The returned medoid set is R = {d, v, n}.

8.5 MeDoID-AGGReGAte QUeRIes

A medoid-aggregate (MA) query specifies the desired distance T (between points
and medoids), and asks for the minimal medoid set R that achieves C(R) = T. The
proposed algorithm, TPAQ-MA, is based on the fact that as the number of medoids
|R| increases, the corresponding C(R) decreases, in both the avg and the max case.
TPAQ-MA first descends the R-tree of P down to an appropriate partitioning level.
Next, it estimates the value of |R| that achieves the average distance C(R) closest to T
and returns the corresponding medoid set R. Consider first the avg case. The initial
step of TPAQ-MA is to determine the partitioning level. The algorithm selects for
partitioning the top-most level whose minimum possible distance (MPD) does not
exceed T. The MPD of a level is the smallest C(R) that can be achieved if partitioning
takes place in this level. According to the methodology of Section 8.4, MPD is equal
to the C(R) resulting if we extract one medoid from each entry in the level. Since
computing the exact C(R) requires scanning the entire dataset P, we use an estimate
of C(R) as the MPD. In particular, for each entry e of the level, we assume that the
underlying points are distributed uniformly* in its MBR, and that the corresponding
medoid is at e.c. The average distance C

_
(e)between e.c and the points in e is given

by the following lemma.
Lemma 8.1: If the points in e are uniformly distributed in its MBR, then their

average distance from e.c is

C e
D B

A
D A
D A

A
B

D B
D B

() ln ln= + +
-

+ +
-

1
3 2 8 8

2 2

,

where A and B are the side lengths of the MBR of e, and D is its diagonal length.
Proof: If we translate the MBR of e so that its center e.c falls at the origin (0,0),

C
_

(e) is the average distance of points (x,y) ∈ [-A/2, A/2] × [-B/2, B/2] from (0,0).
Hence,

C e

AB
x y dxdy

B

B

A

A

() ,= +
--

∫∫1 2 2

2

2

2

2

which evaluates to the quantity of Lemma 8.1.
The MPD of each level is estimated by averaging C

_
(e) over all e ∈ E, where E is

the set of entries at the level:

MPD
1= ⋅

∈
∑| |

. ().
P

e w C e
e E

* This is a reasonable assumption for low-dimensional R-trees (Theodoridis et al., 2000).

C3974.indb 201 4/21/09 5:41:01 PM

202 Geographic Data Mining and Knowledge Discovery

TPAQ-MA applies the InitEntries function to select the top-most level that has
MPD ≤ T. The pseudo-code of InitEntries is the same as shown in Figure 8.7, after
replacing the while-condition of line 3 with the expression: “the estimated MPD is
more than T.” Returning to our running example, the root node Nroot of the R-tree of
P has MPD=C

_
(Nroot), which is higher than T. Therefore, InitEntries proceeds with

level 2 (containing entries N1 and N2), whose MPD is also higher than T. Next, it
loads the level 1 nodes and computes the MPD over entries N3 to N9. The MPD is less
than T, and level 1 is selected for partitioning. InitEntries returns a list containing
seven extended entries corresponding to N3 up to N9.

The next step of TPAQ-MA is to determine the number of medoids that best approxi-
mate value T. If E is the set of entries in the partitioning level, the candidate values for |R|
range between 1 and |E|. TPAQ-MA assumes that C(R) decreases as |R| increases, and
performs binary search in order to find the value of |R| that yields the average distance
closest to T. This procedure considers O(log|E|) different values for |R|, and creates
slots for each of them as discussed in Section 8.4. Since the exact evaluation of C(R) for
every examined |R| would be very expensive, we produce an estimate C

_
(S) of C(R) for

the corresponding set of slots S. Particularly, we assume that the medoid of each slot s is
located at s.c, and that the average distance from the points in every entry e ∈ s is equal
to distance ||e.c – s.c||. Hence, the estimated value for C(R) is given by the formula

C S
P

e w e c s c
e ss S

()
| |

. || . . ||,= ⋅ -
∈∈

∑∑1

where S is the set of slots produced by partitioning the entries in E into |R| groups.
Note that we could use a more accurate estimator assuming uniformity within each
entry e ∈ s, similar to Lemma 8.1. However, the derived expression would be more
complex and more expensive to evaluate, because now we need the average distance
from s.c (as opposed to the center e.c of the entry’s MBR). The TPAQ-MA algorithm
is shown in Figure 8.11.

In the example of Figure 8.2, the partitioning level contains entries E = {N3,
N4, N5, N6, N7, N8, N9}. The binary search considers values of |R| between 1 and 7.
Starting with |R| = (1 + 7)/2 = 4, the algorithm creates S with four slots, as shown
in Figure 8.12. It computes C

_
(S), which is lower than T. It recursively continues the

search for |R| ∈[1,4] in the same way, and decides that |R| = 4 yields a value of C
_

(S)
that best approximates T. Finally, similar to TPAQ, TPAQ-MA performs an NN
search at the center s.c of the slots corresponding to |R| = 4, and returns the retrieved
points (f, k, t, and o) as the result.

Consider now the max version of the MA problem. InitEntries chooses for parti-
tioning the top-most level with MPD less than or equal to T. The MPD of a level is
an estimated upper bound for the maximum distance C(R), assuming that we return a
medoid at the center of each of the level’s entries. Given an R-tree entry e and assum-
ing that we can find a medoid at e.c (i.e., the crossing point of its MBR diagonals), then
the maximum possible distance of any point in e from the medoid is half the MBR
diagonal length. Therefore, the MPD of a level is computed as the half of the maxi-
mum entry diagonal in the level. In other words, C

_
(e) = D/2 (where D is the diagonal

of e), and MPD = maxe∈EC
_

(e) (where E is the set of entries in the given level).

C3974.indb 202 4/21/09 5:41:02 PM

Computing Medoids in Large Spatial Datasets 203

Similar to the avg case, in order to determine the number of medoids that best
approximate the target distance T, we perform a binary search. If E is the set of entries
in the partitioning level, then the candidate |R| values range between 1 and |E|. For
each considered |R|, we use the max slotting algorithm (described in Section 8.4).
Let S be the set of slots for a value of |R|. To estimate the achieved C(R) [i.e., to

fIGURe 8.11 The TPAQ-MA algorithm.

Algorithm TPAQ-MA (P, T)

1. Initialize an empty list

2. Set E = set of the entries at the topmost level with MPD≤T

3. low = 1; high = |E|

4. While low ≤ high do

5. mid = (low + high)/2

6. Group the entries in E into mid slots

7. S = the set of created slots

8. If C(S) < T, set high = mid

9. Else, set low = mid

10. For each s S do

11. Perform a NN search at s.c on the points under s.E

12. Append the retrieved point to list

13. Return list

–

fIGURe 8.12 Entries and final slots.

N3

N4

N5

N6
N7

N8

N9

a
b

c
d

e

f

g

h
i

j

k

l

m

n

o
qr

s
t

u

v

w

s1

s2

s3

s4

C3974.indb 203 4/21/09 5:41:04 PM

204 Geographic Data Mining and Knowledge Discovery

compute C
_

(S)], we assume that the maximum distance within each slot s is equal to the
radius of the minimum circle enclosing the entry centers in s. For example, if level 1
is selected for partitioning and |R| = 3, the slotting produces the grouping shown in
Figure 8.10. C(R) is estimated as the maximum radius of the three circles, that is, C

_
(S) =

max{r1, r2, r3} = r1. Formally, if MincircRadius(s) is the radius of the smallest circle
enclosing e.c ∀e∈s, then C

_
(S) = maxs∈S MincircRadius(s). When the binary search ter-

minates, we retrieve the medoids corresponding to the best value of |R|. The algorithm
of Figure 8.11 directly applies to max MA queries, by using the max versions of MPD
and C

_
(S), and by implementing line 6 with the max slotting algorithm.

8.6 MeDoID-oPtIMIzAtIon QUeRIes

In real-world scenarios, opening a facility has some cost. Thus, users may wish to
find a good tradeoff between overall cost and coverage (i.e., the average or maximum
distance between clients and their closest facilities). If the relative importance of
these conflicting factors is given by a user-specified cost function f(C(R), |R|), the aim
of an MO query is to find the medoid set R that minimizes f. The TPAQ methodology
applies to this problem, provided that f is increasing on both C(R) and |R|. Consider
the example of Figure 8.1 in the avg case, and let f(C(R), |R|) be C(R) + Costpm × |R|,
where Costpm is the cost per medoid. Assume that we know a priori all the optimal
i-medoid sets Ri and the corresponding C(Ri), for i = 1,...,23. If the plot of f(C(Ri), |Ri|)
vs. |Ri| is shown in Figure 8.13, then the optimal |R| is 3 and the result of the query
is {h, o, t} (as in Figure 8.1). TPAQ-MO is based on the observation that f(C(Ri), |Ri|)
has a single minimum. Hence, it applies a gradient descent technique to decide the
partitioning level and the optimal number of medoids |R|.

In both the avg and max cases, TPAQ-MO initially descends the R-tree of P and
for each candidate level, it computes its cost. We define the cost of a level as the value
f(MPD, |E|), where E is the set of its entries. TPAQ-MO selects for partitioning the
top-most level whose cost is greater than the cost of the previous one (i.e., at the first

fIGURe 8.13 f(C(Ri), |Ri|) versus number of medoids.

Number of medoids
1 2 3 4

f(C(Ri),|Ri|)

...5 6 7

Cost of root
(1 root MBR-medoid)

cost of level 2
(2 root entries-medoids)

Cost of level 1
(7 leaf node MBRs-medoids)

C(Ri)

Costpm·|Ri|

C3974.indb 204 4/21/09 5:41:05 PM

Computing Medoids in Large Spatial Datasets 205

detected increase in the curve of Figure 8.13). If the MPD estimations are accurate, then
the medoid set that minimizes f has size |R| between 1 and |E| (the number of entries
at the partitioning level). The traversal of the R-tree down to the appropriate level is
performed by the InitEntries function of Figure 8.7 by modifying the while-condition
in line 3 to “the cost of the current level is less than the cost of the previous one.” In
Figure 8.2, InitEntries compares the costs of the root entry (1 medoid) and level 2 (two
medoids — one for each root entry). Since the cost of level 2 is less than that of the root,
it proceeds with level 1, whose cost is larger than level 2. Thus, level 1 is selected for
partitioning and InitEntries returns the set of extended entries from N3 to N9.

Given the set of entries E at the partitioning level, the next step of TPAQ-MO is to
compute the optimal value for |R|, which lies between 1 and |E|. To perform this task,
TPAQ-MO uses a gradient descent method which considers O(log3/2|E|) different
values for |R|. Consider the example of Figure 8.14, where we want to find the value
xopt ∈ [low, high] that minimizes a given function h(x). We split the search interval
into three equal sub-intervals, defined by mid1 = (2·low + high)/3 and mid2 = (low +
2·high)/3. Next, we compute h(mid1) and h(mid2). Assuming that h(mid1) < h(mid2),
we distinguish two cases; either xopt ∈ [low, mid1] (as shown in Figure 8.14a), or xopt ∈
[mid1, mid2] (Figure 8.14b). In other words, the search interval is restricted to [low,
mid2]. Symmetrically, if h(mid1) > h(mid2), then the search interval becomes [mid1,
high]. Otherwise, if h(mid1) = h(mid2), the search is restricted to interval [mid1, mid2].

x

highlow

Minimum

h(x)

(a) xopt [low, mid1]
mid1 mid2

fIGURe 8.14 Computing the minimum of a function h.

x

highlow

h(x)

(b) xopt [mid1, mid2]
mid1 mid2

Minimum

C3974.indb 205 4/21/09 5:41:06 PM

206 Geographic Data Mining and Knowledge Discovery

The xopt can be found by recursively applying the same procedure to the new search
interval. If xopt is an integer, then the search terminates in O(log3/2(high-low)) steps.

We use the above technique to determine the optimal value of |R|, starting with
low = 1 and high = |E|. For each considered |R|, we compute the set of slots S in the
way presented in Section 8.4, and estimate the corresponding C(R) as the quantity
C
_

(S) discussed in Section 8.5. The gradient descent method returns the value of
|R| that minimizes f(C

_
(S), |R|). Finally, the result of TPAQ-MO is the set of points

retrieved by an NN search at the center of each slot s ∈ S of the corresponding par-
titioning. TPAQ-MO is illustrated in Figure 8.15. The algorithm works for both avg
and max MO queries, by using the corresponding MPD and C

_
(S) functions, and the

appropriate slotting strategies. In our running example, for the avg case, level 1 is the

fIGURe 8.15 The TPAQ-MO algorithm.

Algorithm TPAQ-MO (P, f)

1. Initialize an empty list

2. Set E = set of the entries at the topmost level with cost greater than that of the previous level

3. low = 1; high = |E|

4. While low + 2 <high do

5. mid1 = (2·low + high)/3; mid2 = (low + 2·high)/3

6. Group the entries in E into mid1 slots

7. S1 = the set of created slots

8. Group the entries in E into mid2 slots

9. S2 = the set of created slots

10. If f (C(S1), mid1) < f (C(S2), mid2)

11. Set high = mid2 and S = S1

12. Else, if f(C(S1), mid1) > f (C(S2), mid2)

13. Set low = mid1 and S = S2

14. Else, if f(C(S1), mid1) = f(C(S2), mid2)

15. Set low = mid1, high = mid2 and S = S1

16. For each s S do

17. Perform a NN search at s.c on the points under s.E

18. Append the retrieved point to list

19. Return list

–

– –

– –

–

C3974.indb 206 4/21/09 5:41:08 PM

Computing Medoids in Large Spatial Datasets 207

partitioning level and |R| = 3 is selected as the best medoid set size. The slots and the
returned medoids (i.e., h, o, and t) are the same as in Figure 8.8.

8.7 exPeRIMentAL eVALUAtIon

In this section we evaluate the performance of the proposed methods for k-medoid,
medoid-aggregate, and medoid-optimization queries. For each of these three prob-
lems, we first present our experimental results for avg, and then for max, using both
synthetic and real datasets. The synthetic ones (SKW) follow a Zipf distribution with
parameter a = 0.8, and have cardinality 256K, 512K, 1M, 2M and 4M points (with
1M being the default). The real dataset (LA) contains 1,314,620 points (available
at www.rtreeportal.org). All datasets are normalized to cover the same space with
extent 104 × 104 and indexed by an R*-tree (Berchtold, Keim, and Kriegel, 1996) with
a 2Kbyte page size. For the experiments, we use a 3GHz Pentium CPU.

8.7.1 k-medoid Queries

First, we focus on k-medoid queries and compare TPAQ against FOR, which as dis-
cussed in Section 2.2, is the only other method that utilizes R-trees. For TPAQ,
we use the depth-first algorithm of Roussopoulos et al. (1995) to retrieve the near-
est neighbor of each computed slot center. In the case of FOR, we have to set the
parameters numlocal (number of restarts) and maxneighbors (sample size of the pos-
sible neighbor sets) of the CLARANS component. Ester et al. (1995a) suggest setting
numlocal = 2 and maxneighbors = k × (M - k)/800, where M is the number of leaf
nodes in the R-tree of P. With these parameters, FOR terminates in several hours for
most experiments. Therefore, we set maxneighbors = k × (M - k)/(8000 × logM) and
keep numlocal = 2. These values speed up FOR considerably, while the deterioration
of the resulting solutions is small (with respect to the suggested values of numlocal
and maxneighbors). Regarding the max case, there is currently no other algorithm
for disk-resident data. For the sake of comparison, however, we adapted FOR to
max k-medoid queries by defining C(R) to be the maximum distance between data
points and medoids; that is, the CLARANS component of FOR exchanges the cur-
rent medoid set Ri with a neighbor one Ri’, only if the maximum distance achieved
by Ri’ is smaller than that of Ri. All FOR results presented in this section are average
values over 10 runs of the algorithm. This is necessary because the performance of
FOR depends on the random choices of CLARANS. The algorithms are compared
for different data cardinality |P| and number of medoids k; for k, the tested values are
from 1 to 512, and its default is 32. In each experiment we fix either parameter (i.e.,
|P| or k) to its default value and vary the other one.

We first measure the effect of |P| in the avg case. Figure 8.16a shows the CPU
time of TPAQ and FOR for SKW, when k = 32 and |P| ranges between 256K and
4M. TPAQ is 2 to 4 orders of magnitude faster than FOR. Even for |P| = 4M points,
our method terminates in less than 0.04 sec (while FOR needs more than 3 min).
Figure 8.16b shows the I/O cost (number of node accesses) for the same experiment.
FOR is approximately 2 to 3 orders of magnitude more expensive than TPAQ because
it reads the entire dataset once. Both the CPU and the I/O costs of TPAQ are rela-
tively stable and small because partitioning takes place at a high tree level. The cost

C3974.indb 207 4/21/09 5:41:08 PM

208 Geographic Data Mining and Knowledge Discovery

102

10–2

10–1

256K 512K 1024K 2048K 4096K

10

1

|P|

CPU time (sec)

(a) CPU time

103

TPAQ FOR

104

1

10

256K 512K 1024K 2048K 4096K

103

102

|P|

Node accesses

TPAQ FOR

(b) Node accesses

105

fIGURe 8.16 Performance versus |P| (SKW, avg).

256K 512K 1024K 2048K 4096K

|P|

C(R)

(c) Average distance

800
700
600
500
400
300
200
100

0

TPAQ FOR

C3974.indb 208 4/21/09 5:41:09 PM

Computing Medoids in Large Spatial Datasets 209

improvements of TPAQ come with no compromise in answer quality. Figure 8.16c
shows the average distance C(R) achieved by the two algorithms. TPAQ outper-
forms FOR in all cases. An interesting observation is that the average distance for
FOR drops when the cardinality of the dataset |P| increases. This happens because
a higher |P| implies more possible “paths” to a local minimum. To summarize, the
results of Figure 8.16 verify that TPAQ scales gracefully with the dataset cardinality
and incurs much lower cost than FOR, without sacrificing medoid quality.

The next set of experiments studies the performance of TPAQ and FOR in the
avg case, when k varies between 1 and 512, using an SKW dataset of cardinality
|P| = 1M. Figure 8.17a compares the CPU time of the methods. In all cases, TPAQ
is three orders of magnitude faster than FOR. It is worth mentioning that for k = 512
our method terminates in 2.5 sec, while FOR requires approximately 1 hour and
20 min. For k = 512, both the partitioning into slots of TPAQ and the CLARANS
component of FOR are applied on an input of size 14,184; the input of the TPAQ par-
titioning algorithm consists of the extended entries at the leaf level, while the input of
CLARANS is the set of actual representatives retrieved in each leaf node. The large
difference in CPU time verifies the efficiency of our partitioning algorithm.

Figure 8.17b shows the effect of k on the I/O cost. The node accesses of FOR are
constant and equal to the total number of nodes in the R-tree of P (i.e., 14,391). On
the other hand, TPAQ accesses more nodes as k increases. This happens because (1) it
needs to descend more R-tree levels in order to find one with a sufficient number (i.e.,
k) of entries, and (2) it performs more NN queries (i.e., k) at the final step. However,
TPAQ is always more efficient than FOR; in the worst case, TPAQ reads all R-tree
nodes up to level 1 (this is the situation for k = 512), while FOR reads the entire data-
set P for any value of k. Figure 8.17c compares the accuracy of the methods. TPAQ
achieves lower C(R) for all values of k. In order to confirm the generality of our
observations, Figure 8.18 repeats the above experiment for the real dataset LA. TPAQ
outperforms FOR by orders of magnitude in terms of both CPU time (Figure 8.18a)
and number of node accesses (Figure 8.18b). Regarding the average distance C(R), the
methods achieve similar results (Figure 8.18c), with TPAQ being the winner.

Next, we focus on max k-medoid queries. We perform the same experiments as in
the avg case, with identical test ranges and default values for |P| and k. Figure 8.19
compares TPAQ and FOR on 32-medoid queries over SKW datasets of varying car-
dinality. As in Figure 8.16, our method significantly outperforms FOR in terms of
both CPU and I/O cost because FOR reads the entire input dataset and its CLARANS
component is much more expensive than our max slotting algorithm. TPAQ is also
considerably better on the quality of the retrieved medoids (Figure 8.19c). This is
expected because FOR is originally designed for the avg k-medoid problem. FOR
converges to poor local minima when CLARANS considers swapping a current
medoid with another representative because it selects the latter randomly among
the set of representatives. Since the representatives follow the data distribution, the
choices of CLARANS are biased toward dense areas of the workspace. Even though
this behavior is desirable in avg k-medoid queries, it is clearly unsuitable for the max
case because even a single point in a sparse area can lead to a large C(R).

Figure 8.20 and Figure 8.21 examine the effect of k on TPAQ and FOR over the
SKW and LA datasets. The CPU cost of both methods increases with k. Larger values

C3974.indb 209 4/21/09 5:41:10 PM

210 Geographic Data Mining and Knowledge Discovery

104

1

10

103

102

Node accesses

k

TPAQ FOR
105

1 2 8 32 128 512
(b) Node accesses

fIGURe 8.17 Performance versus k (SKW, avg).

1 2 8 32 128 512

k

(c) Average distance

C(R)4500
4000
3500
3000
2500
2000
1500

500
1000

0

TPAQ FOR

104

10–1

10–2

10–3
1 2 8 32 128 512

103

10

1

102

CPU time (sec)

k

(a) CPU time

TPAQ FOR

C3974.indb 210 4/21/09 5:41:11 PM

Computing Medoids in Large Spatial Datasets 211

104

105

10–1

10–2

10–3

1 2 8 32

k

128 512

103

10
1

102

CPU time (sec)

(a) CPU time

TPAQ FOR

104

1

10

103

102

Node accesses

k

TPAQ FOR
105

1 2 8 32 128 512
(b) Node accesses

fIGURe 8.18 Performance versus k (LA, avg).

1 2 8 32 128 512

k

(c) Average distance

C(R)3500
3000
2500
2000
1500
1000

500
0

TPAQ FOR

C3974.indb 211 4/21/09 5:41:13 PM

212 Geographic Data Mining and Knowledge Discovery

104

1

10

256K 512K 1024K 2048K 4096K

103

102

|P|

TPAQ FOR

(b) Node accesses

Node accesses105

fIGURe 8.19 Performance versus |P| (SKW, max).

256K 512K 1024K 2048K 4096K

|P|

(c) Average distance

C(R)
3500
4000

3000
2500
2000
1500
1000

500
0

TPAQ FOR

10–1

10–2
256K 512K 1024K 2048K

|P|

4096K

103

10

1

102

CPU time (sec)

(a) CPU time

TPAQ FOR

C3974.indb 212 4/21/09 5:41:14 PM

Computing Medoids in Large Spatial Datasets 213

CPU time (sec)

k

1 2 8 32 128 512

102

103

10–1

10–2

1

10

(a) CPU time

TPAQ FOR

TPAQ FOR

Node accesses

(b) Node accesses

k

104

103

102

1

10

105

1 2 8 32 128 512

fIGURe 8.20 Performance versus k (SKW, max).

k

C(R)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 8 32 128 512
(c) Average distance

TPAQ FOR

C3974.indb 213 4/21/09 5:41:19 PM

214 Geographic Data Mining and Knowledge Discovery

CPU time (sec)

k

1 2 8 32 128 512

102

103

10–1

10–2

1

10

(a) CPU time

TPAQ FOR

TPAQ FOR

Node accesses

k

(b) Node accesses

104

103

102

1

10

105

1 2 8 32 128 512

fIGURe 8.21 Performance versus k (LA, max).

C(R)

k0
1000
2000
3000
4000
5000
6000
7000

1 2 8 32 128 512
(c) Average distance

TPAQ FOR

C3974.indb 214 4/21/09 5:41:20 PM

Computing Medoids in Large Spatial Datasets 215

of k incur higher I/O costs for TPAQ for the reasons explained in the context of
Figure 8.17b. FOR performs a constant number of node accesses because it always
reads the entire dataset. Regarding the quality of the returned medoid sets, our algo-
rithm achieves much lower maximum distance C(R).

8.7.2 medoid-aggregate Queries

In this section we study the performance of TPAQ-MA, starting with the avg case. We
use datasets SKW (with 1M points) and LA, and vary T from 100 to 1500 (recall that
our datasets cover a space with extent 104 × 104). Since there is no existing algorithm
for processing such queries on large indexed datasets, we compare TPAQ-MA against
an exhaustive algorithm (EXH) that works as follows. Let E be the set of entries at the
partitioning level of TPAQ-MA. EXH computes and evaluates all the medoid sets for
|R| = 1 up to |R| = |E|, by performing partitioning of E into slots with the technique
presented in Section 4. EXH returns the medoid set that yields the closest average
distance to T. Note that EXH is prohibitively expensive in practice because, for each
examined value of |R|, it scans the entire dataset P in order to exactly evaluate C(R).
Therefore, we exclude EXH from the CPU and I/O cost charts.

Figure 8.22a shows the C(R) for TPAQ-MA versus T on SKW. Clearly, the aver-
age distance returned by TPAQ-MA approximates the desired distance (dotted line)

1600

Target avg distance T

T

Achieved avg distance C(R)

(a) Average distance

C(R)
1400
1200
1000

800
600
400
200

0
100 300 500 700 900 1100 1300 1500

T

(b) Dev. from EXH

Dev. from EXH (%)

0

2

4

6

8

10

12

14

100 300 500 700 900 1100 1300 1500

fIGURe 8.22 Performance versus T (SKW, avg).

C3974.indb 215 4/21/09 5:41:22 PM

216 Geographic Data Mining and Knowledge Discovery

very well. Figure 8.22b plots the deviation percentage between the average distances
achieved by TPAQ-MA and EXH. The deviation is below 9% in all cases, except for
T = 300 where it is equal to 13.4%. Interestingly, for T = 1500, TPAQ-MA returns
exactly the same result as EXH with |R| = 5. Figure 8.22c and Figure 8.22d illustrate
the CPU time and the node accesses of our method, respectively. For T = 100, both
costs are relatively high (100.8 sec and 1839 node accesses) compared to larger val-
ues of T. The reason is that when T = 100, partitioning takes place at level 1 (i.e., the
leaf level, which contains 14,184 entries) and returns |R| = 1272 medoids, incurring
many computations and I/O operations. In all the other cases, partitioning takes
place at level 2 (containing 203 entries), and TPAQ-MA runs in less than 0.11 sec and
reads fewer than 251 pages.

Figure 8.23 repeats the above experiment for the LA dataset. Figure 8.23a and
Figure 8.23b compare the average distance achieved by TPAQ-MA with the input
value T and the result of EXH, respectively. The deviation from EXH is always
smaller than 8.6%, while for T = 1500 the answer of TPAQ-MA is the same as
EXH. Concerning the efficiency of TPAQ-MA, we observe that the algorithm has,
in general, very low CPU and I/O cost. The highest cost is again in the case of
T = 100 for the reasons explained in the context of Figure 8.22; TPAQ-MA partitions

T

(c) CPU time

CPU time (sec)

10–2

102

103

10–1

10

1

100 300 500 700 900 1100 1300 1500

fIGURe 8.22 (Continued).

T

(d) Node accesses

Node accesses

1

103

104

102

10

100 300 500 700 900 1100 1300 1500

C3974.indb 216 4/21/09 5:41:25 PM

Computing Medoids in Large Spatial Datasets 217

1600

Target avg distance T

T

Achieved avg distance C(R)

(a) Average distance

C(R)
1400
1200
1000

800
600
400
200

0
100 300 500 700 900 1100 1300 1500

fIGURe 8.23 Performance versus T (LA, avg).

T

(b) Dev. from EXH

Dev. from EXH (%)

0

2

4

6

8

10

100 300 500 700 900 1100 1300 1500

(c) CPU time

CPU time (sec)

T
10–2

102

103

10–1

10

1

100 300 500 700 900 1100 1300 1500

T

(d) Node accesses

Node accesses

1

103

102

10

100 300 500 700 900 1100 1300 1500

C3974.indb 217 4/21/09 5:41:27 PM

218 Geographic Data Mining and Knowledge Discovery

19,186 entries into slots and extracts |R| = 296 medoids, taking in total 105.6 sec and
performing 781 node accesses.

In Figure 8.24 and Figure 8.25 we examine the performance of TPAQ-MA in the
max case, using datasets SKW and LA. We compare again with the EXH algorithm.
It is implemented as explained in the beginning of the subsection, the difference
being that now it uses the max k-medoid TPAQ algorithm. For max, the range of T is
from 500 to 1500. We do not use the same range as in the previous two experiments
(i.e., 100 to 1500) because for T<500 the number of required medoids becomes very
high and EXH requires several hours to terminate. As shown in Figure 8.24a and
Figure 8.25a, the maximum distance of TPAQ-MA is close to the desired value T. In
general, the deviation from EXH (illustrated in Figure 8.24b and Figure 8.25b) is low,
and in the worst case it reaches 6.1% for SKW and 11.6% for LA. The algorithm ter-
minates in less than 21 sec in all cases, and incurs a small number of node accesses.

8.7.3 medoid-oPtimization Queries

Finally, we experiment on the performance of TPAQ-MO, using datasets SKW (with 1M
points) and LA. We process medoid-optimization queries with f(C(R), |R|) = C(R) + Costpm ×
|R|, where Costpm is the cost per medoid and ranges between 1 and 256. TPAQ-MO is
again compared with an exhaustive algorithm (EXH), which in the MO case (1) computes
all the medoid sets with |R| from 1 to |E|, by performing partitioning into slots in the same
level as TPAQ-MO, (2) calculates the (average or maximum) distance C(R) achieved for
each considered set, and (3) returns the one that minimizes function f.

First, we experiment on avg MO queries using the SKW dataset. Figure 8.26a plots
the deviation percentage (between the values of f achieved by TPAQ-MO and EXH) as
a function of the cost Costpm per medoid. The deviation does not exceed 1.8% in any
case. Interestingly, TPAQ-MO returns exactly the same medoid sets as EXH for many
values of Costpm, verifying the effectiveness of the gradient descent technique and the
accuracy of the estimators described in Section 6. Figure 8.26b and Figure 8.26c show
the CPU and I/O costs of the algorithm. In both charts, the cost of TPAQ-MO is much
higher when Costpm ≤ 8. In these cases, the CPU time is between 147 and 157 sec and
the number of node accesses ranges between 251 and 430. The returned medoid sets
have size |R| between 33 and 174. On the other hand, when Costpm > 8 the CPU time
is less than 0.1 sec and the incurred node accesses are fewer than 60. The answer con-
tains from 3 to 24 medoids. This large difference is explained by the fact that when
Costpm ≤ 8 partitioning takes place in level 1 (with 14,184 entries), while for Costpm > 8
the partitioning level is level 2 (with 203 entries).

In Figure 8.27 we repeat the above experiment for the LA dataset. The perfor-
mance of TPAQ-MO is very similar to the SKW case. The deviation of TPAQ-MO
from EXH is 0.07% and 1.82% for Costpm equal to 4 and 8, respectively. For all the
other values of Costpm, our algorithm retrieves the same medoid set as EXH. The
cost of TPAQ-MO is plotted in Figure 8.27b and Figure 8.27c. There is a large dif-
ference in both the CPU time and the node accesses for Costpm ≤ 4 and Costpm > 4.
The reason for this behavior is the same as in Figure 8.26.

C3974.indb 218 4/21/09 5:41:27 PM

Computing Medoids in Large Spatial Datasets 219

1600

Target max distance T

T

Achieved max distance C(R)

(a) Average distance

C(R)
1400
1200
1000

800
600
400
200

0
500 700 900 1100 1300 1500

(b) Dev. from EXH

Dev. from EXH (%)

0

3

2

1

5

4

6

7

500 700 900 1100 1300 1500

T

T

(d) Node accesses

Node accesses

0

600

500

400

300

200

100

500 700 900 1100 1300 1500

fIGURe 8.24 Performance versus T (SKW, max).

(c) CPU time

CPU time (sec)

T
0

20

25

5

15

10

500 700 900 1100 1300 1500

C3974.indb 219 4/21/09 5:41:30 PM

220 Geographic Data Mining and Knowledge Discovery

1600

Target max distance T

Achieved max distance C(R)

(a) Average distance

C(R)
1400
1200
1000

800
600
400
200

0
500 700 900 1100 1300 1500

T

(b) Dev. from EXH

Dev. from EXH (%)

0

4

2

8

6

10

12

500 700 900 1100 1300 1500

T

(c) CPU time

CPU time (sec)

T
0

10
12
14
16

2
4

8
6

500 700 900 1100 1300 1500

fIGURe 8.25 Performance versus T (LA, max).

T

(d) Node accesses

Node accesses

0

600

500

400

300

200

100

500 700 900 1100 1300 1500

C3974.indb 220 4/21/09 5:41:33 PM

Computing Medoids in Large Spatial Datasets 221

(a) Dev. from EXH

Dev. from EXH (%)

Cost per medoid
0

0.4

1.2

0.8

1.6

2

1 256128643216842

(b) CPU time

CPU time (sec)

Cost per medoid
10–2

10–1

10

1

102

103

1 256128643216842

fIGURe 8.26 Performance versus Costpm (SKW, avg).

(c) Node accesses

0

102

10

103
Node access

Cost per medoid

1 256128643216842

C3974.indb 221 4/21/09 5:41:34 PM

222 Geographic Data Mining and Knowledge Discovery

(a) Dev. from EXH

Dev. from EXH (%)

Cost per medoid
0

0.4

1.2

0.8

1.6

2

1 256128643216842

(b) CPU time

CPU time (sec)

Cost per medoid

10–1

1

10

102

103

1 256128643216842

fIGURe 8.27 Performance versus Costpm (LA, avg).

(c) Node accesses

0

102

10

103 Node access

Cost per medoid

1 256128643216842

C3974.indb 222 4/21/09 5:41:36 PM

Computing Medoids in Large Spatial Datasets 223

fIGURe 8.28 Performance versus Costpm (SKW, max).

(a) Dev. from EXH

Dev. from EXH (%)

Cost per medoid
0

2
1

5
6

4
3

7
8

1 256128643216842

(b) CPU time

CPU time (sec)

Cost per medoid
10–2

10–1

1

10

103

1 256128643216842

(c) Node accesses

1

102

10

103 Node access

Cost per medoid

1 256128643216842

In the last two experiments we focus on max MO queries. Figure 8.28 and
Figure 8.29 illustrate the performance of TPAQ-MO when Costpm varies between
1 and 256, using datasets SKW and LA, respectively. The deviation from EXH is
usually small. For SKW, the maximum deviation is 7.5%. For LA, the deviation
is in general higher; on the average it is around 10% with maximum value 22.3%
(for Costpm = 8). TPAQ-MO performs worse for LA because it contains large empty

C3974.indb 223 4/21/09 5:41:38 PM

224 Geographic Data Mining and Knowledge Discovery

areas. On the other hand, SKW (even though it is very skewed) covers the whole
workspace. Concerning the CPU time of TPAQ-MO, it does not exceed 43 sec in any
case. As in Figure 8.26 and Figure 8.27, both the I/O and the CPU costs drop when
partitioning takes place at a higher level. For SKW (for LA), the partitioning level is
level 1 for Costpm ≤ 16 (for Costpm ≤ 4), while for higher Costpm it is level 2.

(a) Dev. from EXH

Dev. from EXH (%)

Cost per medoid
0

10

15

5

20

25

1 256128643216842

(b) CPU time

CPU time (sec)

Cost per medoid
10–1

1

10

102

1 256128643216842

fIGURe 8.29 Performance versus Costpm (LA, max).

(c) Node accesses

1

102

10

103 Node access

Cost per medoid

1 256128643216842

C3974.indb 224 4/21/09 5:41:39 PM

Computing Medoids in Large Spatial Datasets 225

8.8 ConCLUsIon

This chapter studies k-medoids and related problems in large spatial databases. In
particular, we consider k-medoid, MA, and MO queries. We present TPAQ, a frame-
work that efficiently processes all three query types, and is applicable to both their
avg and max versions. TPAQ provides high-quality answers almost instantaneously,
by exploiting the data partitioning properties of a spatial access method on the input
dataset. TPAQ is a three-step methodology that works as follows. Initially, it descends
the index, and stops at the topmost level that provides sufficient information about
the underlying data distribution. Next, it partitions the entries of the selected level
into a number of slots. Finally, it performs a NN query to retrieve one medoid for
each slot. Extensive experiments with synthetic and real datasets demonstrate that
(1) TPAQ outperforms the state-of-the-art method for k-medoid queries by orders of
magnitude, while achieving results of better or comparable quality, and (2) TPAQ is
also very efficient and effective in processing MA and MO queries. TPAQ relies on
spatial indexing, which is known to suffer from the dimensionality curse (Korn, Pagel,
and Faloutsos, 2001). A challenging direction for future work is to extend it to high-
dimensional spaces, using appropriate data partition indexes (Berchtold et al., 1996).

RefeRenCes

Ankerst, M., Breunig, M., Kriegel, H.P., and Sander, J. OPTICS: Ordering points to identify
the clustering structure. SIGMOD, 1999.

Arora, S., Raghavan, P., and Rao, S. Approximation schemes for Euclidean k-medians and
related problems. STOC, 1998.

Beckmann, N., Kriegel, H.P., Schneider, R., and Seeger, B. The R*-tree: An efficient and
robust access method for points and rectangles. SIGMOD, 1990.

Berchtold, S., Keim, D., and Kriegel, H. The X-tree: An index structure for high-dimensional
data. VLDB, 1996.

Ester, M., Kriegel, H.P., Sander, J., and Xu, X. A density-based algorithm for discovering
clusters in large spatial databases with noise. KDD, 1996.

Ester, M., Kriegel, H.P., and Xu, X. A database interface for clustering in large spatial data-
bases. KDD, 1995a.

Ester, M., Kriegel, H.P., and Xu, X. Knowledge discovery in large spatial databases: focusing
techniques for efficient class identification. SSD, 1995b.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press, 1996.

Garey, M. and Johnson, D. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

Gonzalez, T. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38: 293–306, 1985.

Guha, S., Rastogi, R., and Shim, K. CURE: An efficient clustering algorithm for large data-
bases. SIGMOD, 1998.

Hamerly, G. and Elkan, C. Learning the k in k-means. NIPS, 2003.
Hartigan, J.A. Clustering Algorithms. Wiley, 1975.
Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning. Springer-

Verlag, 2001.
Hjaltason, G. and Samet, H. Distance browsing in spatial databases. ACM TODS, 24(2):

265–318, 1999.

C3974.indb 225 4/21/09 5:41:39 PM

226 Geographic Data Mining and Knowledge Discovery

Kamel, I. and Faloutsos, C. On packing r-trees. CIKM, 1993.
Kaufman, L. and Rousseeuw, P. Finding Groups in Data. Wiley-Interscience, 1990.
Korn, F., Pagel, B.U., and Faloutsos, C. On the ‘dimensionality curse’ and the ‘self-similarity

blessing’. TKDE, 13(1): 96–111, 2001.
Lo, M.L. and Ravishankar, C.V. Generating seeded trees from data sets. SSD, 1995.
Lo, M.L. and Ravishankar, C.V. The design and implementation of seeded trees: An efficient

method for spatial joins. TKDE, 10(1): 136–151, 1998.
Mamoulis, N. and Papadias, D. Slot index spatial join. TKDE, 15(1): 211–231, 2003.
Moon, B., Jagadish, H.V., Faloutsos, C., and Saltz, J.H. Analysis of the clustering properties

of the hilbert space-filling curve. TKDE, 13(1): 124–141, 2001.
Mouratidis, K., Papadias, D., and Papadimitriou S. Tree-based partition querying: a methodol-

ogy for computing medoids in large spatial datasets. VLDB Journal, 17(4):923–945,
2008.

Ng, R. and Han, J. Efficient and effective clustering methods for spatial data mining. VLDB, 1994.
Pelleg, D. and Moore, A.W. Accelerating exact k-means algorithms with geometric reasoning.

KDD, 1999.
Pelleg, D. and Moore, A.W. X-means: Extending k-means with efficient estimation of the

number of clusters. ICML, 2000.
Roussopoulos, N., Kelly, S., and Vincent, F. Nearest neighbor queries. SIGMOD, 1995.
Theodoridis, Y., Stefanakis, E., and Sellis, T. Efficient cost models for spatial queries using

r-trees. TKDE, 12(1): 19-32, 2000.
Welzl, E. Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in

Computer Science, 555: 359–370, 1991.
Zhang, D., Du, Y., Xia, T., and Tao, Y. Progressive computation of the min-dist optimal-loca-

tion query. VLDB, 2006.
Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: An efficient data clustering method for

very large databases. SIGMOD, 1996.

C3974.indb 226 4/21/09 5:41:39 PM

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2009

	Computing Medoids in Large Spatial Datasets
	Kyriakos MOURATIDIS
	Dimitris PAPADIAS
	Spiros PAPADIMITRIOU
	Citation

	someTitle

