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8 Computing Medoids  
in Large Spatial Datasets

Kyriakos Mouratidis

Dimitris Papadias

Spiros Papadimitriou

8.1 IntRoDUCtIon

In this chapter, we consider a class of queries that arise in spatial decision mak-
ing and resource allocation applications. Assume that a company wants to open a 
number of warehouses in a city. Let P be the set of residential blocks in the city. P 
represents customer locations to be potentially served by the company. At the same 
time, P also comprises the candidate warehouse locations because the warehouses 
themselves must be opened in some residential blocks. In this context, an analyst 
may ask any of the following questions:

 Q1. k-Medoid query: If the number k of warehouses is known, in which resi-
dential blocks should they be opened, so that the average distance from 
each location in P to its closest warehouse is minimized?
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190  Geographic Data Mining and Knowledge Discovery

 Q2. Medoid-aggregate query: If the average distance should be around a 
given value, what is the smallest number of warehouses (and their loca-
tions) that best approximates this value?

 Q3. Medoid-optimization query: If the warehouse opening/maintenance 
overhead and the transportation cost per mile are given, what is the num-
ber of warehouses (and their locations) that minimizes the total cost?

The warehouse locations correspond to the medoids. Since the k-medoid problem 
(Q1) is NP-hard (Garey and Johnson, 1979), research has focused on approximate 
algorithms, most of which are suitable only for datasets of small and moderate sizes. 
On the contrary, this chapter focuses on very large databases. In addition to conven-
tional k-medoids, we introduce and solve the alternative queries Q2 and Q3, which 
have practical relevance.

To formalize, given a set P of data points, we wish to find a set of medoids R ⊆ P, 
subject to certain optimization criteria. The average (avg) Euclidean distance 
||p – r(p)|| between each point p ∈ P and its closest medoid r(p) ∈ R is denoted by

 

C R
P

p r p
p P

( )
| |

|| ( )||.= -
∈

∑1

 

Letting |R| represent the cardinality of R, the k-medoid query can be formally 
stated as: “Given dataset P and integer parameter k, find R ⊆ P, such that |R| = k and 
C(R) is minimized.” Figure 8.1 shows an example, where the dots represent points 
in P (e.g., residential blocks), k = 3 and R = {h, o, t}. The three medoids h, o, t are 
candidate locations for service facilities (e.g., warehouses or distribution centers), so 
that the average distance C(R) from each block to its closest facility is minimized.

The medoid-aggregate (MA) query is defined as: “Given P and a value T, find  
R ⊆ P, such that |R| is minimized and C(R) ≈ T.” In other words, k is not specified in 
advance. Instead, a target value T for the average distance is given, and we want to 
select a minimal set R of medoids, such that C(R) best approximates T. Finally, the 
medoid-optimization (MO) query is formalized as: “Given P and a cost function f 
that is monotonically increasing with both the number of medoids |R| and with C(R), 

fIGURe 8.1 Example of 3-medoids.
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Computing Medoids in Large Spatial Datasets  191

find R ⊆ P such that f(C(R), |R|) is minimized.” For example, in Q3 above, function 
f may be defined as f(C(R), |R|) = C(R) + Costpm × |R|, where Costpm is the opening/
maintenance cost per warehouse. The goal is to achieve the best tradeoff between the 
number of warehouses and the average distance achieved.

Interesting variants of the above three query types arise when the quality of a 
medoid set is determined by the maximum distance between the input points and 
their closest medoid; i.e., when

 C(R) = maxp∈P ||p - r(p)|| .

For instance, the company in our example may want to minimize the maximum 
distance (instead of the average one) between the residential blocks and their closest 
warehouse, potentially achieving a desired C(R) with the minimal set of warehouses 
(MA), or minimizing a cost function (MO).

In this chapter, we present Tree-based PArtition Querying (TPAQ) (Mouratidis, 
Papadias, and Papadimitriou, 2008), a methodology that can efficiently process all 
of the previously mentioned query types. TPAQ avoids reading the entire dataset 
by exploiting the grouping properties of a data partition method on P. It initially 
traverses the index top-down, stopping at an appropriate level and placing the cor-
responding entries into groups according to proximity. Finally, it returns the most 
centrally located point within each group as the corresponding medoid. Compared 
to previous approaches, TPAQ achieves solutions of comparable or better quality, 
at a small fraction of the processing cost (seconds as opposed to hours). The rest of 
the chapter is organized as follows. Section 2 reviews related work. Section 3 intro-
duces key concepts and outlines the general TPAQ framework. Section 4 considers 
k-medoid queries, while Section 5 and Section 6 focus on MA and MO queries, 
respectively. Section 7 presents experimental results and Section 8 concludes the 
chapter.

8.2 bACKGRoUnD

Although TPAQ can be used with any data partition method, we assume R*-trees 
(Beckmann, et al., 1990) due to their popularity. Section 8.2.1 overviews R*-trees 
and their application to nearest neighbor queries. Section 8.2.2 presents existing 
algorithms for k-medoids and related problems.

8.2.1 r-trees and nearest neighbor search

We illustrate our examples with the R*-tree of Figure 8.2 that contains the data 
points of Figure 8.1, assuming a capacity of four entries per node. Points that are 
nearby in space (e.g., a, b, c, d) are inserted into the same leaf node (N3). Leaf nodes 
are recursively grouped in a bottom-up manner according to their proximity, up to 
the top-most level that consists of a single root. Each node is represented as a mini-
mum bounding rectangle (MBR) enclosing all the points in its sub-tree. The nodes 
of an R*-tree are meant to be compact, have small margin, and achieve minimal 
overlap among nodes of the same level (Theodoridis, Stefanakis, and Sellis, 2000). 
Additionally, in practice, nodes at the same level contain a similar number of data 
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192  Geographic Data Mining and Knowledge Discovery

points, due to a minimum utilization constraint (typically 40%). These properties 
imply that the R*-tree (or any other data partition method based on similar concepts) 
provides a natural way to partition P according to data proximity and group cardi-
nality criteria. Furthermore, the R*-tree is a standard index for spatial query pro-
cessing. Specialized structures may yield solutions of better quality for k-medoid 
problems, but would have limited applicability in existing systems, where R-trees 
are prevalent.

The R-tree family of indexes has been used for spatial queries such as range 
search, nearest neighbors, and spatial joins. A nearest neighbor (NN) query retrieves 
the data point that is closest to an input point, q. R-tree algorithms for processing 
NN queries utilize some metrics to prune the search space. The most common such 
metric is mindist(N,q), which is defined as the minimum possible distance between q 
and any point in the sub-tree rooted at node N. Figure 8.2 shows the mindist between 
q and nodes N1 and N2. The algorithm of Roussopoulos, Kelly, and Vincent (1995), 
shown in Figure 8.3, traverses the tree in a depth-first manner: starting from the root, 
it first visits the node with the minimum mindist (i.e., N1 in our example). The pro-
cess is repeated recursively until a leaf node (N4) is reached, where the first potential 
nearest neighbor (point e) is found. Let bestNN be the best NN found thus far (e.g., 
bestNN =e) and bestDist be its distance from q (e.g., bestDist = ||e - q||). Subsequently, 
the algorithm only visits entries whose minimum distance is less than bestDist. In 
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Computing Medoids in Large Spatial Datasets  193

the example, N3 and N5 are pruned since their mindist from q is greater than ||e - q||. 
Similarly, when backtracking to the upper level, node N2 is also excluded and the 
process terminates with e as the result. The extension to k (>1) NNs is straight-
forward. Hjaltason and Samet (1999) propose a best-first NN algorithm that is I/O 
optimal (i.e., it only visits nodes that may contain NNs) and incremental (the number 
k of NNs does not need to be known in advance).

8.2.2 k-medoids and related Problems

A number of approximation schemes for k-medoids and related problems appear in 
the literature (Arora, Raghavan, and Rao, 1998). Most of them, however, are largely 
theoretical in nature. Kaufmann and Rousseeuw (1990) propose partitioning around 
medoids (PAM), a practical algorithm based on the hill climbing paradigm. PAM 
(illustrated in Figure 8.4) starts with a random set of k medoids R0 ⊆ P. At each 
iteration i, it updates the current set Ri of medoids by exhaustively considering all 
neighbor sets Ri’ that result from Ri by exchanging one of its elements with another 
data point. For each of these k∙(|P| - k) alternatives, it computes the function C(Ri’) 
and chooses as Ri+1 the one that achieves the lowest value. It stops when no further 
improvement is possible. Since computing C(Ri’) requires O(|P|) distance calcula-
tions, PAM is prohibitively expensive for large |P|. Clustering large applications 
(CLARA) (Kaufmann and Rousseeuw, 1990) alleviates the problem by generating 
random samples from P and executing PAM on them. Ng and Han (1994) propose 
clustering large applications based on randomized search (CLARANS) as an exten-
sion to PAM. CLARANS draws a random sample of size maxneighbors from all the 
k∙(|P| - k) possible neighbor sets Ri’ of Ri. It performs numlocal restarts and selects 
the best local minimum as the final answer.

Although CLARANS is more scalable than PAM, it is inefficient for disk-resident 
datasets because each computation of C(Ri’) requires a scan of the entire database. 

Algorithm NN (q,N)

1. If N is a leaf node

2. For each point p   N

3. If ||p-q||<bestDist

4. best NN = p; bestDist =||p-q||

5. Else // N is an internal node

6. For each child Ni of N do

7. If mindist(q, Ni) < bestDist

8. NN(q, Ni)

fIGURe 8.3 The NN algorithm. (From Roussopoulos, N., Kelly, S., and Vincent, F. Nearest 
neighbor queries. SIGMOD, 1995.)
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194  Geographic Data Mining and Knowledge Discovery

Assuming that P is indexed with an R-tree, Ester, Kriegel, and Xu (1995a,b) devel-
oped focusing on representatives (FOR). FOR takes the most centrally located point 
of each leaf node and forms a sample set, which is considered as representative of 
the entire set P. Then, it applies CLARANS on this sample to find the k medoids. 
FOR is more efficient than CLARANS, but it still has to read the entire dataset in 
order to extract the representatives. Furthermore, in very large databases, the leaf 
level population may still be too high for the efficient application of CLARANS (the 
experiments of Ester, Kriegel, and Xu use R-trees with only 50,559 points and 1,027 
leaf nodes).

To the best of our knowledge, no existing method for the max case is suitable 
for disk-resident data. For in-memory processing, the k-centers algorithm (CTR) of 
Gonzales (1985) answers max k-medoid queries in O(k×|P|) time with an approxima-
tion factor of 2; i.e., the returned medoid set is guaranteed to achieve a maximum dis-
tance C(R) that is no more than two times larger than the optimal one. The algorithm 
is shown in Figure 8.5. The first medoid is randomly selected from P and forms set 
R1. The second medoid is the point in P that lies furthest from the point in R1. These 
two medoids form R2. In general, the i-th medoid is the one that has the maximum 
distance from any point in Ri-1. Finally, set Rk is returned as the result. The algorithm 
is simple and works well in practice. However, its adaptation to large datasets would 
be very expensive in terms of both CPU and I/O cost, since in order to find the i-th 
medoid it has to scan the entire dataset and compute the distance between every data 
point and all elements of Ri-1.

A problem related to k-medoids is min-dist optimal-location (MDOL) computa-
tion. Given a set of data points P, a set of existing facilities, and a user-specified 

fIGURe 8.4 The PAM algorithm. (From Kaufman, L. and Rousseeuw, P. Finding Groups in 
Data. Wiley-Interscience, 1990.)

Algorithm PAM (P, k)

1. Initialize R0 = {r1, r2, ..., rk} to a random subset of P with k elements, and set i = 0

2. Repeat

3. bestNeighbor = Ri

4. For each position j = 1 to k do

5. For each point p   P do

6. Ri' = Ri – {rj}   {p}

7. If C(Ri') < C(bestNeighbor)

8. bestNeighbor = Ri'

9. Ri+1 = bestNeighbor; i = i + 1

10. Until Ri = Ri–1 // no improvement was made

11. Return R
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Computing Medoids in Large Spatial Datasets  195

spatial region Q (i.e., range for a new facility), an MDOL query computes the 
location in Q which, if a new facility is built there, minimizes the average distance 
between each data point and its closest facility. The main difference with respect 
to k-medoids is that the output of an MDOL query is a single point (as opposed to 
k) that does not necessarily belong to P, but it can be anywhere in Q. Zhang et al. 
(2006) propose an exact method for this problem. This technique is complemen-
tary to the proposed algorithms because it can be used to increase the cardinality 
of an existing medoid set when there is a need for incremental processing (e.g., the 
company of our example may decide to open an additional warehouse in a given 
area).

The k-medoid problem is related to clustering. Clustering methods designed 
for large databases include DBSCAN (Ester et al., 1996), BIRCH (Zhang, 
Ramakrishnan, and Livny, 1996), CURE (Guha, Rastogi, and Shim, 1998), and 
OPTICS (Ankerst et al., 1999). However, the objective of clustering in general and 
of these techniques in particular is inherently different. Extensive work on medoids 
and clustering has been carried out in the areas of statistics (Hartigan, 1975; 
Kaufman and Rousseeuw, 1990; Hastie, Tibshirani, and Friedman, 2001), machine 
learning (Pelleg and Moore, 1999, 2000; Hamerly and Elkan, 2003), and data min-
ing (Ester et al., 1996; Fayyad et al., 1996). However, the focus there is on assessing 
the statistical quality of a given clustering, usually based on assumptions about the 
data distribution (Hastie et al., 2001; Kaufman and Rousseeuw, 1990; Pelleg and 
Moore, 2000). Only few approaches aim at dynamically discovering the number 
of clusters (Pelleg and Moore, 2000; Hamerly and Elkan, 2003). Besides tackling 
problems of a different nature, these algorithms are computationally intensive and 
unsuitable for disk-resident datasets.

8.3 fRAMeWoRK oVeRVIeW AnD bAsIC DefInItIons

The TPAQ framework traverses the R-tree in a top-down manner, stopping at the 
topmost level that provides enough information for answering the given query. In 
the case of k-medoids, this decision depends on the number of entries at the level. 

fIGURe 8.5 The CTR algorithm for max k-medoids. (From Gonzalez, T. Clustering to mini-
mize the maximum intercluster distance. Theoretical Computer Science, 38: 293–306, 1985.)

Algorithm CTR (P, k) 

1. Choose a point p    P randomly, and set R1 = {p} 

2. For i = 2 to k do 

3. Let p be the point in P – Ri–1 that is furthest from any medoid in Ri–1

4. Ri = Ri–1    {p}

5. Return Rk 
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196  Geographic Data Mining and Knowledge Discovery

On the other hand, for MA and MO queries, the selection of the partitioning level is 
also based on the spatial extents and (in the avg case) on the expected cardinality of 
its entries. Next, TPAQ groups the entries of the partitioning level into slots. For a 
given k, this procedure is performed by a fast slotting algorithm. For MA and MO, 
multiple calls of the slotting algorithm might be required. The last step returns the 
NN of each slot center as the medoid of the corresponding partition. We first provide 
some basic definitions, which are used throughout the chapter.

Definition 1 [Extended entry]: An extended entry e consists of an R-tree entry 
N, augmented with information about the underlying data points, i.e., e = 〈c, w, N〉, 
where the weight w is the expected number of points in the sub-tree rooted at N. The 
center c is a vector of coordinates that corresponds to the geometric centroid of N, 
assuming that the points in the sub-tree of N are uniformly distributed.

Definition 2 [Slot]: A slot s consists of a set E of extended entries, along with 
aggregate information about them. Formally, a slot s is defined as s = 〈c, w, E〉, where 
w is the expected number of points represented by s,

 

w e w
e E

= . .
∈

∑

In the avg case, vector c is the weighted center of s,

 

c
w

e w e c
e E

= ⋅
∈
∑1

. . .

In the max case, vector c is the center of the minimum enclosing circle of all the 
entry centers e.c in s; i.e., c is the center of the circle enclosing e.c ∀e∈E that has the 
minimum possible radius.

A fundamental operation is the insertion of an extended entry e into a slot s. The 
pseudo-code for this function in the avg case is shown in Figure 8.6. The insertion 
computes the new center, taking into account the relative positions and weights of 
the slot s and the entry e, e.g., if s and e have the same weights, the new center is at 
the midpoint of the line segment connecting s.c and e.c. In the max case, the new slot 
center is computed as the center of the minimum circle enclosing e.c and all the entry 
centers currently in s. We use the incremental algorithm of Welzl (1991), which finds 
the new slot center in expected constant time.

Function InsertEntry (extended entry e, slot s)

1. s.c = (e.w·e.c + s.w·s.c)/(e.w + s.w)

2. s.w = e.w + s.w

3. s.E = s.E    {e} 

fIGURe 8.6 The InsertEntry function for avg.
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In the subsequent sections, we describe the algorithmic details for each query 
type. For every considered medoid problem, we first present the avg case, followed 
by max. Note that, similar to PAM, CLARA, CLARANS, and FOR, TPAQ aims at 
efficient processing without theoretical guarantees on the quality of the medoid set. 
Meaningful quality bounds are impossible because TPAQ is based on the underlying 
R-trees, which are heuristic-based structures. Nevertheless, as we show in the experi-
mental evaluation, TPAQ computes medoid sets that are better than those of the exist-
ing methods at a small fraction of the cost (usually several orders of magnitude faster). 
Furthermore, it is more general in terms of the problem variants it can process.

8.4 k-MeDoID QUeRIes

Given an avg k-medoid query, TPAQ finds the top-most level with k’ ≥ k entries. For 
example, if k = 3 in the tree of Figure 8.2, TPAQ descends to level 1, which contains 
k’ = 7 entries, N3 through N9. The weights of these entries are computed as follows. 
Since |P| = 23, the weight of the root node Nroot is wroot = 23. Assuming that the entries 
of Nroot are equally distributed between the two children N1 and N2, w1 = w2 = N/2 = 
11.5 (the true cardinalities are 11 and 12, respectively). The process is repeated for 
the children of N1 (w3 = w4 = w5 = w1/3 = 3.83) and N2 (w6 = w7 = w8 = w9 = w2/4 = 
2.87). Figure 8.7 illustrates the algorithm for computing the initial set of entries. 
Note that InitEntries assumes that k does not exceed the number of leaf nodes. This 
is not restrictive because the lowest level typically contains several thousand nodes 
(e.g., in our datasets, between 3,000 and 60,000), which is sufficient for all ranges of 
k that are of practical interest. If needed, larger values of k can be accommodated by 
conceptually splitting leaf level nodes.

fIGURe 8.7 The InitEntries function.

Function InitEntries (P, k) 

1. Load the root of the R-tree of P 

2. Initialize list = {e}, where e = (Nroot.c, |P|, Nroot) 

3. While list contains fewer than k extended entries do 

4. Initialize an empty list next_level_entries 

5. For each e = (c, w, N) in list do 

6. Let num be the number of child entries in node N  

7. For each entry Ni in node N do 

8. wi = w/num // the expected cardinality of Ni 

9. Insert extended entry (Ni.c, wi, Ni) into next_level_entries

10. Set list = next_level_entries 

11. Return list 
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198  Geographic Data Mining and Knowledge Discovery

The next step merges the k’ initial entries in order to obtain exactly k groups. 
First, k out of the k’ entries are selected as slot seeds, i.e., each of the chosen 
entries forms a singleton slot. Clearly, the seed locations play an important role 
in the quality of the final answer. The seeds should capture the distribution of 
points in P, i.e., dense areas should contain many seeds. Our approach for seed 
selection is based on space-filling curves, which map a multidimensional space 
into a linear order. Among several alternatives, Hilbert curves best preserve the 
locality of points (Korn, Pagel, and Faloutsos, 2001; Moon et al., 2001). Therefore, 
we first Hilbert-sort the k’ entries and select every m-th entry as a seed, where 
m = k’/k. This procedure is fast and produces well-spaced seeds that follow the data 
distribution. Returning to our example, Figure 8.8a shows the level 1 MBRs (for 
the R-tree of Figure 8.2) and the output seeds s1 = N4, s2 = N9, and s3 = N7 according 
to their Hilbert order. Recall that each slot is represented by its weight (e.g., s1.w 
= w4= 3.83), its center (e.g., s1.c is the centroid of N4), and its MBR. Then, each of 
the remaining (k’ – k) entries is inserted into the k slots, based on proximity. More 
specifically, for each entry e, we choose the slot s whose weighted center s.c is 
closest to the entry’s center e.c. In the running example, assuming that N3 is con-
sidered first, it is inserted into slot s1 using the InsertEntry function of Figure 8.6. 
The center of s1 is updated to the midpoint of N3 and N4’s centers, as illustrated 
in Figure 8.8b. TPAQ proceeds in this manner, until the final slots and weighted 
centers are computed as shown in Figure 8.8c.

After grouping all entries into exactly k slots, we find one medoid per slot by 
performing an NN query. The query point is the slot’s weighted center s.c, and the 
search space is the set of entries s.e. Since all the levels of the R-tree down to the par-
tition level have already been loaded in memory, the NN queries incur very few node 
accesses and negligible CPU cost. Observe that an actual medoid (i.e., a point in P 
that minimizes the average distance) is more likely to be closer to s.c than simply to 
the center of the MBR of s. The intuition is that s.c captures information about the 
point distribution within s. The NN queries on these points return the final medoids 
R = {h, o, t}.

Figure 8.9 shows the complete TPAQ k-medoid computation algorithm. The prob-
lem of seeding the slot table is similar to that encountered in spatial hash joins, 
where the number of buckets is bounded by the available main memory (Lo and 
Ravishankar, 1995, 1998; Mamoulis and Papadias, 2003). However, our ultimate 
goals are different. First, in the case of hash joins, the table capacity is an upper 
bound. Reaching it is desirable in order to exploit available memory as much as pos-
sible, but falling slightly short is not a problem. In contrast, we want exactly k slots. 
Second, in our case, slots should minimize the average distance C(R) on one dataset, 
whereas slot selection in spatial joins attempts to minimize the number of intersec-
tion tests that must be performed between points that belong to different datasets.

TPAQ follows similar steps for the max case. The function InitEntries proceeds 
as before, but without computing the expected cardinality for entries and slots; in 
the max version of the problem, we use only the geometric centroids of the R-tree 
entries. Let E be the set of entries in the partitioning level. We apply the CTR algo-
rithm (described in Section 8.2.2) to select k slot seeds among the entry centers e.c 
in E. Then, we insert the remaining entries in E one by one into the slot with the 
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fIGURe 8.8 Insertion of entries into slots.
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closest center. Finally, we perform an NN search at the center of each slot to retrieve 
the actual corresponding medoid. Recall that the center of each slot is the center of 
the minimum circle enclosing its entries’ centers. Returning to our running example, 
if a 3-medoid query is given in the tree of Figure 8.2, level 1 is chosen as the parti-
tioning level. Among the entries of level 1, assume that CTR returns the centers of 
N4, N6, and N9 as the seeds. The insertion of the remaining entries into the created 
slots (s1, s2, and s3) results in the partitioning shown in Figure 8.10. The three circles 

fIGURe 8.9 The TPAQ algorithm.

Algorithm TPAQ (P, k)

1. Initialize a set S = Ø, and an empty list 

2. Set E = the set of entries returned by InitEntries (P, k)

3. Hilbert-sort the centers of the entries in E and store them in a sorted list sorted_list

4. For i = 1 to k do // compute the slot seeds

5. Form a slot containing the (i.|E|/k)-th entry of sorted_list and insert it into S

6. For each entry e in E (apart from the ones selected as seeds) do

7. Find the slot s in S with the minimum distance ||e.c – s.c||

8. InsertEntry (e, s)

9. For each s   S do

10. Perform a NN search at s.c on the points under s.E

11. Append the retrieved point to list

12. Return list

s1

d
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s3

s1.c

r1
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fIGURe 8.10 3-medoids in the max case.
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correspond to the minimum circles enclosing the centers of nodes in each slot. The 
final step of the TPAQ algorithm retrieves the NNs of s1.c, s2.c, and s3.c, which are 
points d, v, and n, respectively. The returned medoid set is R = {d, v, n}.

8.5 MeDoID-AGGReGAte QUeRIes

A medoid-aggregate (MA) query specifies the desired distance T (between points 
and medoids), and asks for the minimal medoid set R that achieves C(R) = T. The 
proposed algorithm, TPAQ-MA, is based on the fact that as the number of medoids 
|R| increases, the corresponding C(R) decreases, in both the avg and the max case. 
TPAQ-MA first descends the R-tree of P down to an appropriate partitioning level. 
Next, it estimates the value of |R| that achieves the average distance C(R) closest to T 
and returns the corresponding medoid set R. Consider first the avg case. The initial 
step of TPAQ-MA is to determine the partitioning level. The algorithm selects for 
partitioning the top-most level whose minimum possible distance (MPD) does not 
exceed T. The MPD of a level is the smallest C(R) that can be achieved if partitioning 
takes place in this level. According to the methodology of Section 8.4, MPD is equal 
to the C(R) resulting if we extract one medoid from each entry in the level. Since 
computing the exact C(R) requires scanning the entire dataset P, we use an estimate 
of C(R) as the MPD. In particular, for each entry e of the level, we assume that the 
underlying points are distributed uniformly* in its MBR, and that the corresponding 
medoid is at e.c. The average distance C

_
(e)between e.c and the points in e is given 

by the following lemma.
Lemma 8.1: If the points in e are uniformly distributed in its MBR, then their 

average distance from e.c is
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where A and B are the side lengths of the MBR of e, and D is its diagonal length.
Proof: If we translate the MBR of e so that its center e.c falls at the origin (0,0), 

C
_

(e) is the average distance of points (x,y) ∈ [-A/2, A/2] × [-B/2, B/2] from (0,0). 
Hence,

 
C e

AB
x y dxdy

B

B

A

A

( ) ,= +
--

∫∫1 2 2

2

2

2

2

which evaluates to the quantity of Lemma 8.1.
The MPD of each level is estimated by averaging C

_
(e) over all e ∈ E, where E is 

the set of entries at the level:
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∈
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*  This is a reasonable assumption for low-dimensional R-trees (Theodoridis et al., 2000).
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TPAQ-MA applies the InitEntries function to select the top-most level that has 
MPD ≤ T. The pseudo-code of InitEntries is the same as shown in Figure 8.7, after 
replacing the while-condition of line 3 with the expression: “the estimated MPD is 
more than T.” Returning to our running example, the root node Nroot of the R-tree of 
P has MPD=C

_
(Nroot), which is higher than T. Therefore, InitEntries proceeds with 

level 2 (containing entries N1 and N2), whose MPD is also higher than T. Next, it 
loads the level 1 nodes and computes the MPD over entries N3 to N9. The MPD is less 
than T, and level 1 is selected for partitioning. InitEntries returns a list containing 
seven extended entries corresponding to N3 up to N9.

The next step of TPAQ-MA is to determine the number of medoids that best approxi-
mate value T. If E is the set of entries in the partitioning level, the candidate values for |R| 
range between 1 and |E|. TPAQ-MA assumes that C(R) decreases as |R| increases, and 
performs binary search in order to find the value of |R| that yields the average distance 
closest to T. This procedure considers O(log|E|) different values for |R|, and creates 
slots for each of them as discussed in Section 8.4. Since the exact evaluation of C(R) for 
every examined |R| would be very expensive, we produce an estimate C

_
(S) of C(R) for 

the corresponding set of slots S. Particularly, we assume that the medoid of each slot s is 
located at s.c, and that the average distance from the points in every entry e ∈ s is equal 
to distance ||e.c – s.c||. Hence, the estimated value for C(R) is given by the formula

 

C S
P

e w e c s c
e ss S

( )
| |

. || . . ||,= ⋅ -
∈∈

∑∑1

where S is the set of slots produced by partitioning the entries in E into |R| groups. 
Note that we could use a more accurate estimator assuming uniformity within each 
entry e ∈ s, similar to Lemma 8.1. However, the derived expression would be more 
complex and more expensive to evaluate, because now we need the average distance 
from s.c (as opposed to the center e.c of the entry’s MBR). The TPAQ-MA algorithm 
is shown in Figure 8.11.

In the example of Figure 8.2, the partitioning level contains entries E = {N3, 
N4, N5, N6, N7, N8, N9}. The binary search considers values of |R| between 1 and 7. 
Starting with |R| = (1 + 7)/2 = 4, the algorithm creates S with four slots, as shown 
in Figure 8.12. It computes C

_
(S), which is lower than T. It recursively continues the 

search for |R| ∈[1,4] in the same way, and decides that |R| = 4 yields a value of C
_

(S) 
that best approximates T. Finally, similar to TPAQ, TPAQ-MA performs an NN 
search at the center s.c of the slots corresponding to |R| = 4, and returns the retrieved 
points ( f, k, t, and o) as the result.

Consider now the max version of the MA problem. InitEntries chooses for parti-
tioning the top-most level with MPD less than or equal to T. The MPD of a level is 
an estimated upper bound for the maximum distance C(R), assuming that we return a 
medoid at the center of each of the level’s entries. Given an R-tree entry e and assum-
ing that we can find a medoid at e.c (i.e., the crossing point of its MBR diagonals), then 
the maximum possible distance of any point in e from the medoid is half the MBR 
diagonal length. Therefore, the MPD of a level is computed as the half of the maxi-
mum entry diagonal in the level. In other words, C

_
(e) = D/2 (where D is the diagonal 

of e), and MPD = maxe∈EC
_

(e) (where E is the set of entries in the given level).
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Similar to the avg case, in order to determine the number of medoids that best 
approximate the target distance T, we perform a binary search. If E is the set of entries 
in the partitioning level, then the candidate |R| values range between 1 and |E|. For 
each considered |R|, we use the max slotting algorithm (described in Section 8.4).  
Let S be the set of slots for a value of |R|. To estimate the achieved C(R) [i.e., to 

fIGURe 8.11 The TPAQ-MA algorithm.

Algorithm TPAQ-MA (P, T)

1. Initialize an empty list

2. Set E = set of the entries at the topmost level with MPD≤T

3. low = 1; high = |E| 

4. While low ≤ high do 

5. mid = (low + high)/2 

6. Group the entries in E into mid slots

7. S = the set of created slots

8. If C(S) < T, set high = mid

9. Else, set low = mid

10. For each s   S do

11. Perform a NN search at s.c on the points under s.E

12. Append the retrieved point to list

13. Return list

–

fIGURe 8.12 Entries and final slots.
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compute C
_

(S)], we assume that the maximum distance within each slot s is equal to the 
radius of the minimum circle enclosing the entry centers in s. For example, if level 1 
is selected for partitioning and |R| = 3, the slotting produces the grouping shown in 
Figure 8.10. C(R) is estimated as the maximum radius of the three circles, that is, C

_
(S) = 

max{r1, r2, r3} = r1. Formally, if MincircRadius(s) is the radius of the smallest circle 
enclosing e.c ∀e∈s, then C

_
(S) = maxs∈S MincircRadius(s). When the binary search ter-

minates, we retrieve the medoids corresponding to the best value of |R|. The algorithm 
of Figure 8.11 directly applies to max MA queries, by using the max versions of MPD 
and C

_
(S), and by implementing line 6 with the max slotting algorithm.

8.6 MeDoID-oPtIMIzAtIon QUeRIes

In real-world scenarios, opening a facility has some cost. Thus, users may wish to 
find a good tradeoff between overall cost and coverage (i.e., the average or maximum 
distance between clients and their closest facilities). If the relative importance of 
these conflicting factors is given by a user-specified cost function f(C(R), |R|), the aim 
of an MO query is to find the medoid set R that minimizes f. The TPAQ methodology 
applies to this problem, provided that f is increasing on both C(R) and |R|. Consider 
the example of Figure 8.1 in the avg case, and let f(C(R), |R|) be C(R) + Costpm × |R|, 
where Costpm is the cost per medoid. Assume that we know a priori all the optimal 
i-medoid sets Ri and the corresponding C(Ri), for i = 1,...,23. If the plot of f(C(Ri), |Ri|) 
vs. |Ri| is shown in Figure 8.13, then the optimal |R| is 3 and the result of the query 
is {h, o, t} (as in Figure 8.1). TPAQ-MO is based on the observation that f(C(Ri), |Ri|) 
has a single minimum. Hence, it applies a gradient descent technique to decide the 
partitioning level and the optimal number of medoids |R|.

In both the avg and max cases, TPAQ-MO initially descends the R-tree of P and 
for each candidate level, it computes its cost. We define the cost of a level as the value 
f(MPD, |E|), where E is the set of its entries. TPAQ-MO selects for partitioning the 
top-most level whose cost is greater than the cost of the previous one (i.e., at the first 

fIGURe 8.13 f(C(Ri), |Ri|) versus number of medoids.
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detected increase in the curve of Figure 8.13). If the MPD estimations are accurate, then 
the medoid set that minimizes f has size |R| between 1 and |E| (the number of entries 
at the partitioning level). The traversal of the R-tree down to the appropriate level is 
performed by the InitEntries function of Figure 8.7 by modifying the while-condition 
in line 3 to “the cost of the current level is less than the cost of the previous one.” In 
Figure 8.2, InitEntries compares the costs of the root entry (1 medoid) and level 2 (two 
medoids — one for each root entry). Since the cost of level 2 is less than that of the root, 
it proceeds with level 1, whose cost is larger than level 2. Thus, level 1 is selected for 
partitioning and InitEntries returns the set of extended entries from N3 to N9.

Given the set of entries E at the partitioning level, the next step of TPAQ-MO is to 
compute the optimal value for |R|, which lies between 1 and |E|. To perform this task, 
TPAQ-MO uses a gradient descent method which considers O(log3/2|E|) different 
values for |R|. Consider the example of Figure 8.14, where we want to find the value 
xopt ∈ [low, high] that minimizes a given function h(x). We split the search interval 
into three equal sub-intervals, defined by mid1 = (2·low + high)/3 and mid2 = (low + 
2·high)/3. Next, we compute h(mid1) and h(mid2). Assuming that h(mid1) < h(mid2), 
we distinguish two cases; either xopt ∈ [low, mid1] (as shown in Figure 8.14a), or xopt ∈  
[mid1, mid2] (Figure 8.14b). In other words, the search interval is restricted to [low, 
mid2]. Symmetrically, if h(mid1) > h(mid2), then the search interval becomes [mid1, 
high]. Otherwise, if h(mid1) = h(mid2), the search is restricted to interval [mid1, mid2]. 

x

highlow

Minimum

h(x)

(a) xopt   [low, mid1]
mid1 mid2

fIGURe 8.14 Computing the minimum of a function h.

x

highlow

h(x)
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Minimum
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The xopt can be found by recursively applying the same procedure to the new search 
interval. If xopt is an integer, then the search terminates in O(log3/2(high-low)) steps.

We use the above technique to determine the optimal value of |R|, starting with 
low = 1 and high = |E|. For each considered |R|, we compute the set of slots S in the 
way presented in Section 8.4, and estimate the corresponding C(R) as the quantity 
C
_

(S) discussed in Section 8.5. The gradient descent method returns the value of 
|R| that minimizes f(C

_
(S), |R|). Finally, the result of TPAQ-MO is the set of points 

retrieved by an NN search at the center of each slot s ∈ S of the corresponding par-
titioning. TPAQ-MO is illustrated in Figure 8.15. The algorithm works for both avg 
and max MO queries, by using the corresponding MPD and C

_
(S) functions, and the 

appropriate slotting strategies. In our running example, for the avg case, level 1 is the 

fIGURe 8.15 The TPAQ-MO algorithm.

Algorithm TPAQ-MO (P,  f )

1. Initialize an empty list

2. Set E = set of the entries at the topmost level with cost greater than that of the previous level

3. low = 1; high = |E| 

4. While low + 2 <high do 

5. mid1 = (2·low + high)/3; mid2 = (low + 2·high)/3 

6. Group the entries in E into mid1 slots 

7. S1 = the set of created slots 

8. Group the entries in E into mid2 slots 

9. S2 = the set of created slots 

10. If f (C(S1), mid1) < f (C(S2), mid2) 

11. Set high = mid2 and S = S1

12. Else, if f(C(S1), mid1) > f (C(S2), mid2)

13. Set low = mid1 and S = S2

14. Else, if f(C(S1), mid1) = f(C(S2), mid2)

15. Set low = mid1, high = mid2 and S = S1

16. For each s   S do

17. Perform a NN search at s.c on the points under s.E

18. Append the retrieved point to list

19. Return list

–

– –

– –

–
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partitioning level and |R| = 3 is selected as the best medoid set size. The slots and the 
returned medoids (i.e., h, o, and t) are the same as in Figure 8.8.

8.7 exPeRIMentAL eVALUAtIon

In this section we evaluate the performance of the proposed methods for k-medoid, 
medoid-aggregate, and medoid-optimization queries. For each of these three prob-
lems, we first present our experimental results for avg, and then for max, using both 
synthetic and real datasets. The synthetic ones (SKW) follow a Zipf distribution with 
parameter a = 0.8, and have cardinality 256K, 512K, 1M, 2M and 4M points (with 
1M being the default). The real dataset (LA) contains 1,314,620 points (available 
at www.rtreeportal.org). All datasets are normalized to cover the same space with 
extent 104 × 104 and indexed by an R*-tree (Berchtold, Keim, and Kriegel, 1996) with 
a 2Kbyte page size. For the experiments, we use a 3GHz Pentium CPU.

8.7.1 k-medoid Queries

First, we focus on k-medoid queries and compare TPAQ against FOR, which as dis-
cussed in Section 2.2, is the only other method that utilizes R-trees. For TPAQ, 
we use the depth-first algorithm of Roussopoulos et al. (1995) to retrieve the near-
est neighbor of each computed slot center. In the case of FOR, we have to set the 
parameters numlocal (number of restarts) and maxneighbors (sample size of the pos-
sible neighbor sets) of the CLARANS component. Ester et al. (1995a) suggest setting 
numlocal = 2 and maxneighbors = k × (M - k)/800, where M is the number of leaf 
nodes in the R-tree of P. With these parameters, FOR terminates in several hours for 
most experiments. Therefore, we set maxneighbors = k × (M - k)/(8000 × logM) and 
keep numlocal = 2. These values speed up FOR considerably, while the deterioration 
of the resulting solutions is small (with respect to the suggested values of numlocal 
and maxneighbors). Regarding the max case, there is currently no other algorithm 
for disk-resident data. For the sake of comparison, however, we adapted FOR to 
max k-medoid queries by defining C(R) to be the maximum distance between data 
points and medoids; that is, the CLARANS component of FOR exchanges the cur-
rent medoid set Ri with a neighbor one Ri’, only if the maximum distance achieved 
by Ri’ is smaller than that of Ri. All FOR results presented in this section are average 
values over 10 runs of the algorithm. This is necessary because the performance of 
FOR depends on the random choices of CLARANS. The algorithms are compared 
for different data cardinality |P| and number of medoids k; for k, the tested values are 
from 1 to 512, and its default is 32. In each experiment we fix either parameter (i.e., 
|P| or k) to its default value and vary the other one.

We first measure the effect of |P| in the avg case. Figure 8.16a shows the CPU 
time of TPAQ and FOR for SKW, when k = 32 and |P| ranges between 256K and 
4M. TPAQ is 2 to 4 orders of magnitude faster than FOR. Even for |P| = 4M points, 
our method terminates in less than 0.04 sec (while FOR needs more than 3 min). 
Figure 8.16b shows the I/O cost (number of node accesses) for the same experiment. 
FOR is approximately 2 to 3 orders of magnitude more expensive than TPAQ because 
it reads the entire dataset once. Both the CPU and the I/O costs of TPAQ are rela-
tively stable and small because partitioning takes place at a high tree level. The cost 
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improvements of TPAQ come with no compromise in answer quality. Figure 8.16c 
shows the average distance C(R) achieved by the two algorithms. TPAQ outper-
forms FOR in all cases. An interesting observation is that the average distance for 
FOR drops when the cardinality of the dataset |P| increases. This happens because 
a higher |P| implies more possible “paths” to a local minimum. To summarize, the 
results of Figure 8.16 verify that TPAQ scales gracefully with the dataset cardinality 
and incurs much lower cost than FOR, without sacrificing medoid quality.

The next set of experiments studies the performance of TPAQ and FOR in the 
avg case, when k varies between 1 and 512, using an SKW dataset of cardinality 
|P| = 1M. Figure 8.17a compares the CPU time of the methods. In all cases, TPAQ 
is three orders of magnitude faster than FOR. It is worth mentioning that for k = 512 
our method terminates in 2.5 sec, while FOR requires approximately 1 hour and 
20 min. For k = 512, both the partitioning into slots of TPAQ and the CLARANS 
component of FOR are applied on an input of size 14,184; the input of the TPAQ par-
titioning algorithm consists of the extended entries at the leaf level, while the input of 
CLARANS is the set of actual representatives retrieved in each leaf node. The large 
difference in CPU time verifies the efficiency of our partitioning algorithm.

Figure 8.17b shows the effect of k on the I/O cost. The node accesses of FOR are 
constant and equal to the total number of nodes in the R-tree of P (i.e., 14,391). On 
the other hand, TPAQ accesses more nodes as k increases. This happens because (1) it 
needs to descend more R-tree levels in order to find one with a sufficient number (i.e., 
k) of entries, and (2) it performs more NN queries (i.e., k) at the final step. However, 
TPAQ is always more efficient than FOR; in the worst case, TPAQ reads all R-tree 
nodes up to level 1 (this is the situation for k = 512), while FOR reads the entire data-
set P for any value of k. Figure 8.17c compares the accuracy of the methods. TPAQ 
achieves lower C(R) for all values of k. In order to confirm the generality of our 
observations, Figure 8.18 repeats the above experiment for the real dataset LA. TPAQ 
outperforms FOR by orders of magnitude in terms of both CPU time (Figure 8.18a) 
and number of node accesses (Figure 8.18b). Regarding the average distance C(R), the 
methods achieve similar results (Figure 8.18c), with TPAQ being the winner.

Next, we focus on max k-medoid queries. We perform the same experiments as in 
the avg case, with identical test ranges and default values for |P| and k. Figure 8.19 
compares TPAQ and FOR on 32-medoid queries over SKW datasets of varying car-
dinality. As in Figure 8.16, our method significantly outperforms FOR in terms of 
both CPU and I/O cost because FOR reads the entire input dataset and its CLARANS 
component is much more expensive than our max slotting algorithm. TPAQ is also 
considerably better on the quality of the retrieved medoids (Figure 8.19c). This is 
expected because FOR is originally designed for the avg k-medoid problem. FOR 
converges to poor local minima when CLARANS considers swapping a current 
medoid with another representative because it selects the latter randomly among 
the set of representatives. Since the representatives follow the data distribution, the 
choices of CLARANS are biased toward dense areas of the workspace. Even though 
this behavior is desirable in avg k-medoid queries, it is clearly unsuitable for the max 
case because even a single point in a sparse area can lead to a large C(R).

Figure 8.20 and Figure 8.21 examine the effect of k on TPAQ and FOR over the 
SKW and LA datasets. The CPU cost of both methods increases with k. Larger values  
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of k incur higher I/O costs for TPAQ for the reasons explained in the context of 
Figure 8.17b. FOR performs a constant number of node accesses because it always 
reads the entire dataset. Regarding the quality of the returned medoid sets, our algo-
rithm achieves much lower maximum distance C(R).

8.7.2 medoid-aggregate Queries

In this section we study the performance of TPAQ-MA, starting with the avg case. We 
use datasets SKW (with 1M points) and LA, and vary T from 100 to 1500 (recall that 
our datasets cover a space with extent 104 × 104). Since there is no existing algorithm 
for processing such queries on large indexed datasets, we compare TPAQ-MA against 
an exhaustive algorithm (EXH) that works as follows. Let E be the set of entries at the 
partitioning level of TPAQ-MA. EXH computes and evaluates all the medoid sets for 
|R| = 1 up to |R| = |E|, by performing partitioning of E into slots with the technique 
presented in Section 4. EXH returns the medoid set that yields the closest average 
distance to T. Note that EXH is prohibitively expensive in practice because, for each 
examined value of |R|, it scans the entire dataset P in order to exactly evaluate C(R). 
Therefore, we exclude EXH from the CPU and I/O cost charts.

Figure 8.22a shows the C(R) for TPAQ-MA versus T on SKW. Clearly, the aver-
age distance returned by TPAQ-MA approximates the desired distance (dotted line) 
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very well. Figure 8.22b plots the deviation percentage between the average distances 
achieved by TPAQ-MA and EXH. The deviation is below 9% in all cases, except for 
T = 300 where it is equal to 13.4%. Interestingly, for T = 1500, TPAQ-MA returns 
exactly the same result as EXH with |R| = 5. Figure 8.22c and Figure 8.22d illustrate 
the CPU time and the node accesses of our method, respectively. For T = 100, both 
costs are relatively high (100.8 sec and 1839 node accesses) compared to larger val-
ues of T. The reason is that when T = 100, partitioning takes place at level 1 (i.e., the 
leaf level, which contains 14,184 entries) and returns |R| = 1272 medoids, incurring 
many computations and I/O operations. In all the other cases, partitioning takes 
place at level 2 (containing 203 entries), and TPAQ-MA runs in less than 0.11 sec and 
reads fewer than 251 pages.

Figure 8.23 repeats the above experiment for the LA dataset. Figure 8.23a and 
Figure 8.23b compare the average distance achieved by TPAQ-MA with the input 
value T and the result of EXH, respectively. The deviation from EXH is always 
smaller than 8.6%, while for T = 1500 the answer of TPAQ-MA is the same as 
EXH. Concerning the efficiency of TPAQ-MA, we observe that the algorithm has, 
in general, very low CPU and I/O cost. The highest cost is again in the case of 
T = 100 for the reasons explained in the context of Figure 8.22; TPAQ-MA partitions 
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19,186 entries into slots and extracts |R| = 296 medoids, taking in total 105.6 sec and 
performing 781 node accesses.

In Figure 8.24 and Figure 8.25 we examine the performance of TPAQ-MA in the 
max case, using datasets SKW and LA. We compare again with the EXH algorithm. 
It is implemented as explained in the beginning of the subsection, the difference 
being that now it uses the max k-medoid TPAQ algorithm. For max, the range of T is 
from 500 to 1500. We do not use the same range as in the previous two experiments 
(i.e., 100 to 1500) because for T<500 the number of required medoids becomes very 
high and EXH requires several hours to terminate. As shown in Figure 8.24a and 
Figure 8.25a, the maximum distance of TPAQ-MA is close to the desired value T. In 
general, the deviation from EXH (illustrated in Figure 8.24b and Figure 8.25b) is low, 
and in the worst case it reaches 6.1% for SKW and 11.6% for LA. The algorithm ter-
minates in less than 21 sec in all cases, and incurs a small number of node accesses.

8.7.3 medoid-oPtimization Queries

Finally, we experiment on the performance of TPAQ-MO, using datasets SKW (with 1M 
points) and LA. We process medoid-optimization queries with f(C(R),  |R|)  = C(R) + Costpm ×  
|R|, where Costpm is the cost per medoid and ranges between 1 and 256. TPAQ-MO is 
again compared with an exhaustive algorithm (EXH), which in the MO case (1) computes 
all the medoid sets with |R| from 1 to |E|, by performing partitioning into slots in the same 
level as TPAQ-MO, (2) calculates the (average or maximum) distance C(R) achieved for 
each considered set, and (3) returns the one that minimizes function f.

First, we experiment on avg MO queries using the SKW dataset. Figure 8.26a plots 
the deviation percentage (between the values of f achieved by TPAQ-MO and EXH) as 
a function of the cost Costpm per medoid. The deviation does not exceed 1.8% in any 
case. Interestingly, TPAQ-MO returns exactly the same medoid sets as EXH for many 
values of Costpm, verifying the effectiveness of the gradient descent technique and the 
accuracy of the estimators described in Section 6. Figure 8.26b and Figure 8.26c show 
the CPU and I/O costs of the algorithm. In both charts, the cost of TPAQ-MO is much 
higher when Costpm ≤ 8. In these cases, the CPU time is between 147 and 157 sec and 
the number of node accesses ranges between 251 and 430. The returned medoid sets 
have size |R| between 33 and 174. On the other hand, when Costpm > 8 the CPU time 
is less than 0.1 sec and the incurred node accesses are fewer than 60. The answer con-
tains from 3 to 24 medoids. This large difference is explained by the fact that when 
Costpm ≤ 8 partitioning takes place in level 1 (with 14,184 entries), while for Costpm > 8 
the partitioning level is level 2 (with 203 entries).

In Figure 8.27 we repeat the above experiment for the LA dataset. The perfor-
mance of TPAQ-MO is very similar to the SKW case. The deviation of TPAQ-MO 
from EXH is 0.07% and 1.82% for Costpm equal to 4 and 8, respectively. For all the 
other values of Costpm, our algorithm retrieves the same medoid set as EXH. The 
cost of TPAQ-MO is plotted in Figure 8.27b and Figure 8.27c. There is a large dif-
ference in both the CPU time and the node accesses for Costpm ≤ 4 and Costpm > 4. 
The reason for this behavior is the same as in Figure 8.26.
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fIGURe 8.28 Performance versus Costpm (SKW, max).
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In the last two experiments we focus on max MO queries. Figure 8.28 and 
Figure 8.29 illustrate the performance of TPAQ-MO when Costpm varies between 
1 and 256, using datasets SKW and LA, respectively. The deviation from EXH is 
usually small. For SKW, the maximum deviation is 7.5%. For LA, the deviation 
is in general higher; on the average it is around 10% with maximum value 22.3% 
(for Costpm = 8). TPAQ-MO performs worse for LA because it contains large empty 
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areas. On the other hand, SKW (even though it is very skewed) covers the whole 
workspace. Concerning the CPU time of TPAQ-MO, it does not exceed 43 sec in any 
case. As in Figure 8.26 and Figure 8.27, both the I/O and the CPU costs drop when 
partitioning takes place at a higher level. For SKW (for LA), the partitioning level is 
level 1 for Costpm ≤ 16 (for Costpm ≤ 4), while for higher Costpm it is level 2.
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8.8 ConCLUsIon

This chapter studies k-medoids and related problems in large spatial databases. In 
particular, we consider k-medoid, MA, and MO queries. We present TPAQ, a frame-
work that efficiently processes all three query types, and is applicable to both their 
avg and max versions. TPAQ provides high-quality answers almost instantaneously, 
by exploiting the data partitioning properties of a spatial access method on the input 
dataset. TPAQ is a three-step methodology that works as follows. Initially, it descends 
the index, and stops at the topmost level that provides sufficient information about 
the underlying data distribution. Next, it partitions the entries of the selected level 
into a number of slots. Finally, it performs a NN query to retrieve one medoid for 
each slot. Extensive experiments with synthetic and real datasets demonstrate that 
(1) TPAQ outperforms the state-of-the-art method for k-medoid queries by orders of 
magnitude, while achieving results of better or comparable quality, and (2) TPAQ is 
also very efficient and effective in processing MA and MO queries. TPAQ relies on 
spatial indexing, which is known to suffer from the dimensionality curse (Korn, Pagel, 
and Faloutsos, 2001). A challenging direction for future work is to extend it to high-
dimensional spaces, using appropriate data partition indexes (Berchtold et al., 1996).
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