
Singapore Management University
Institutional Knowledge at Singapore Management University
Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

2004

Parameter Selection in Genetic Algorithms
Onur BOYABATLI
Singapore Management University, oboyabatli@smu.edu.sg

Ihsan SABUNCUOGLU
Bilkent University

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

Part of the Business Commons, and the Physical Sciences and Mathematics Commons

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection Lee Kong Chian School Of Business by an authorized administrator
of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BOYABATLI, Onur and SABUNCUOGLU, Ihsan. Parameter Selection in Genetic Algorithms. (2004). Journal of Systemics,
Cybernetics and Informatics. 4, (2), 78-83. Research Collection Lee Kong Chian School Of Business.
Available at: https://ink.library.smu.edu.sg/lkcsb_research/841

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13239463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

 1

Parameter Selection in Genetic Algorithms

Onur BOYABATLI
Production and Operations Management Department, INSEAD

Fontainebleau, 77305, France

and

Ihsan SABUNCUOGLU
Industrial Engineering Department, Bilkent University

Ankara, 06533, Turkey

ABSTRACT
In this study, we provide a new taxonomy of parameters of
genetic algorithms (GA), structural and numerical
parameters, and analyze the effect of numerical parameters on
the performance of GA based simulation optimization
applications with experimental design techniques.
Appropriate levels of each parameter are proposed for a
particular problem domain. Controversial to existing
literature on GA, our computational results reveal that in the
case of a dominant set of decision variable the crossover
operator does not have a significant impact on the
performance measures, whereas high mutation rates are more
suitable for GA applications.

Keywords: Simulation, Optimization, Genetic Algorithm,
parameter selection, factorial design

1. INTRODUCTION

Recent advances in computational techniques have led to an
increased interest in simulation-optimization (sim/opt)
methodologies that are used to solve optimization problems. These
methodologies differ from their antecedents by using simulation as
a prescriptive tool, which has traditionally been used descriptively
to estimate performance of complex stochastic systems. Sim/opt
methodologies have been successfully applied to various
combinatorial optimization problems.

A recent trend in sim/opt research is the use of meta-heuristic
techniques, in particular Genetic Algorithms (GA’s). GA is an
iterative procedure, taking its inspiration from natural genetics. GA
starts with a group of feasible solutions to the problem under
consideration and proceeds to a new set of solutions at each
iteration with the high aim of achieving better fitness (objective
function) values. The performance of GA depends on several
parameters. In this study, we propose a new taxonomy of these
parameters based on their effects on the structure of the algorithm.
We argue that the two parameter categories, structural and
numerical, have different characteristics and thus have different
impacts on GA structure. Even for a GA with same structural
parameters (coding scheme, operator types, stopping criterion), a
different combination of numerical parameters (initial population
type, population size, maximum generation number and the
crossover and mutation probabilities) may lead to drastic changes
in the performance of the algorithm. The very problem-specific

nature of GA makes it difficult to specify the best combination of
these parameters.

This study examines the effects of GA numerical parameters on its
performance in terms of both best fitness found and CPU time; and
proposes guidelines for parameter selection for specific problem
domains. A test problem of a serial assembly line taken from the
literature is selected for experimentation. A GA coded in C is
integrated with a simulation model using SIMAN language. 2k
factorial design is implemented.

The main contribution of our work is twofold. First, it proposes a
new taxonomy for GA parameters, and second, it presents an
extensive analysis on these parameters to draw general
conclusions. In particular, our computational results reveal that in
contrast to previous literature high mutation rates and low cross-
over rates are more suitable under some specific problem domains.

The remainder of this paper is organized as follows. In §2 we give
a brief summary of GA, and literature. §3 presents the proposed
study, whereas in §4 experimental results are demonstrated.
Finally in §5 we summarize and suggest directions for future
research.

2. GA and LITERATURE REVIEW
GAs are search algorithms based on the mechanics of natural
selection and natural genetics. In natural genetics, the
presence/absence of genes and their order in the chromosome
decide the characteristic features of individuals of a population.
The different traits are passed on from one generation to the next
through different biological processes, which operate on the
genetic structure. By this process of genetic change and survival of
the fittest, a population well adapted to the environment results.
Similarly, in GA, a finite-length string coding is used to describe
the parameter values of each solution for the search problem under
consideration. Each string corresponds to an individual, and every
individual acquires its power in the survival process in terms of its
fitness value. Higher the fitness values, better the individuals
performance in the evolution process. A fixed number of
individuals correspond to a generation. GA is an iterative
algorithm such that in every generation, first parents are selected
depending on their fitness values, and then by some genetic
operators the strings of children are produced. With their
calculated fitness values, the new generation is obtained. And this
procedure is repeated until some stopping criterion is met. Like the
natural genetics as the generations proceed, the fitness of the whole

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 478

 2

population (average fitness) increases, corresponding to better
populations.

The power and simplicity of GA make it popular for even large-
scale optimization problems. The main advantage of GA is that it
does not require neither mathematical expression of response
surfaces nor any derivative or gradient information. After Holland
[6] has proposed GA as a search mechanism, and especially
following the Goldberg's [5] book on GA, many applications of
GA on various problem types are conducted.

Schaffer et al. [10] study the effects of some control parameters of
GA on its performance. The control parameters selected are the
population size, crossover and mutation probabilities and number
of crossover points used in each mating. Experimental design is
used for statistical analysis. The computational results reveal that
the selection and mutation operators together is very significant in
the behavior of GA. Mutation appears to be more effective than
crossover.

Fogarty [4] discusses the effect of varying the mutation probability
over time and its effect on GA performance. A minimization type
test problem is used in the analysis. Two initial population types
are used, one is a seeded population containing good solutions,
whereas the other is randomly created. It is observed that varying
the mutation rate significantly improves the performance of seeded
population case, but not when the initial population is randomly
generated.

Simulation-optimization methodology integrates GA with
simulation modeling during the calculation of the fitness values.
For every individual of a particular generation simulation results
are used to assess the fitness of the corresponding individual. The
power of simulation modeling has made the research in this area
popular, hence there have been several studies on GA based
simulation-optimization applications.

To give an example, Nakano [8] proposes a conventional GA for
job shop problems, whereas Cruz and Haddock [2] presents GA-
based simulation-optimization application on five different
systems, three of which are queuing and the rest are inventory
systems. The results are compared with the results gathered form
IPA (infinitesimal perturbation analysis). Suresh et al. [11] apply
GA on a facility layout problem. Wellman and Gemmill [12]
optimize an assembly line with GA. The results are compared with
that of stochastic quasi-gradient method (SQM).

To the best of our knowledge, there is no a study in the literature
analyzing all the GA parameters, initial population type,
population size, maximum generation number, and mutation and
crossover probabilities. This study proposes a new taxonomy of
GA parameters and presents an extensive analysis of these
parameters to draw conclusions for the best parameter levels for
specific problem domains.

3. PROPOSED STUDY
Although GA seems to be a robust algorithm which contains same
operators and has the same algorithmic logic for different
applications, in fact the algorithm itself is significantly different for
distinct problems. The main reason is that GA has several
parameters and any combination of these parameters has different
impacts on the performance on GA. We classify these parameters
into two classes, structural and numerical.

Structural parameters are the main factors affecting the GA
performance, and the most difficult set of parameters to be dealt
with in a GA application. As understood from its categorical name,
they are concerned with the structure of GA. The change in any
parameter value requires significant alterations in the coding

pattern of GA’s, i.e. you have to rewrite the whole algorithm from
scratch. The coding scheme, operator types and stopping criterion
are the main parameters.

There have been extensive studies on selecting the levels of each
structural parameter; hence GA can obtain sufficient insight from
the well-established literature. For instance, it is known that the
sequence representation of coding schemes is better for scheduling
problems. Moreover, the applicability of the structural parameters
constructs a constraint in front of decision-maker, and forces to
eliminate some parameter values. For instance, the simple one-
point crossover cannot be applied to the problems having sequence
representation

Numerical parameters contribute to the second class of the
taxonomy we proposed. The initial population type, population
size, maximum generation number, crossover and mutation
probabilities are the main factors considered in this category.
These parameters are easy to handle when the coding structure is
considered. Although alterations in these parameter levels do not
require extensive coding, different combination of them leads to
drastic changes in GA performance.

Similar to structural parameters, there are several studies
conducted on the analysis of numerical parameters; but the very
problem-specific nature of GA hinders making general conclusions
about the suitable levels of them. Moreover, these studies analyze
these parameters one at a time, ignoring the interaction between
the parameter types. The literature on this class of parameters is
more ambiguous than the previous class.

In this study, all of the numerical parameters of GA are examined
with a priori known level of structural parameter setting. General
insights about the best combination of these parameters are
presented on particular problem domains. More detailed
explanation about numerical parameters is provided in the
following sections.

Testing Scheme

A test problem is taken from the literature [7] for GA based
simulation-optimization application, and significance of different
values of the parameters on GA performance is analyzed on this
test problem by factorial designs and ANOVA (Analysis of
Variance). Two types of performance measure are considered
throughout the analysis:

• Best fitness value obtained

• CPU Time elapsed

The system under consideration is a manufacturing system
consisting of four workstations with exponential processing times
(mean 0.33, 0.5, 0.2, 0.25 respectively) and three buffers, which
are located between the stations. There are 7 decision variables in
the problem, 4 belong to number of machines in each workstation
(Mi), and three for the number of buffer positions between the
stations (Bi).

The objective is to maximize profit where there exists marginal
revenue for each good produced and variable cost for each
machine and buffer space used. The profit function is defined for
all machine levels at 2, and buffer levels at 3 as;

200 * throughput - 25000 * (2+2+2+2) – 1000 * (3+3+3)

where throughput is computed from simulating the model for a 30
day period. Also additional warm- up period of 10 days is used for
eliminating the initial bias. The simulation model is developed
using SIMAN V language in UNIX environment.

GA is coded with respect to a specific set of structural variables,
and experimentation is conducted at each combination of

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 79

 3

numerical values. The basic GA model is selected for the analysis.
The binary coding scheme, roulette wheel selection, objective
function value as fitness, one-point crossover, bit mutation and
maximum iteration numbers as stopping criterion are used in the
experimental analysis.

In our test problem number of machines ranges from 1 to 4,
whereas buffer spaces range from 1 to 16. In the binary coding
representation, machine numbers have 2-bit scheme, where buffers
have 4-bit scheme. The strings representing the individuals are
produced by the concatenation of individual strings, starting from
the number of machines in first workstation, and continuing with
the buffer positions in the same order. 4 two-bit strings, and 3 four-
bit strings lead to a binary representation of individuals with string
length 20. For instance a string corresponding to the decision
variables’ combination;

M1 = 1, M2 = 2 , M3 = 3, M4 = 4, B1 = 10, B2 = 11, B3 = 12 is:

00 01 10 11 1001 1010 1011
 1 2 3 4 10 11 12

The average of five replication results gathered from the
simulation run of the system with the codified parameter levels in
the string corresponds to the fitness value of the string.

The roulette wheel selection procedure is used for the reproduction
process. Since this procedures requires non-negative fitness values,
when there is a negative fitness value in the population, offsetting
technique is used for fitness scaling.

The one-point crossover is applied with a probability of pc. The
mutation is applied by random changes in the bit values of strings.
For every bit of the string, mutation occurs with probability pm. If
there are infeasible solutions reached after the operations, then
these strings are discarded, and new ones are generated from the
beginning instead.

Factorial Design

Since there are 5 distinct numerical parameters, 25 factorial design
is used in this study. For each category, two levels are determined
corresponding to high and low levels, respectively. For each design
point, five independent GA runs are taken. ANOVA is used to
determine the significance of each effect on fitness and CPU time.

For initial population type, there are two common settings in the
literature, random and seeded populations. A random search
heuristic of 250 points is applied, and random population is drawn
among these points. The best 20 or 40 points depending on the
population size are selected for the seeded population.

It is reported in Alander’s study [1], that a value between n and 2n
is optimal for the population size. Considering these results, the
levels of population size are taken as 20 (n) and 40 (2n), where 20
equals to the string length of our GA model.

The levels of operator probabilities are also drawn from the
literature. De Jong [3] suggests that the bit-mutation rate should be
n-1 where n is the string length. It is also reported that crossover
rates between 0.65 and 1, and mutation rates between 0.001 and
0,01 are useful in GA applications. In our study the crossover
probability levels are set as 0.5 and 1,and the mutation levels are
0.01 and 0.05, where 0.05 is equal to 1/n, n is 20 in our model.

We cannot find consistent results about level of maximum
generation number in the existing studies, therefore we make
further experimentation to determine the high and low levels.
According to our pilot runs and considering both fitness and CPU
time response types, the levels of 50 and 100 are selected for the
analysis.

4. EXPERIMENTAL RESULTS
All the computer applications are carried on Sun HPC Server 4500
with 12 400mhz CPU, 3 GB memory, 45 GB disk and 20/40 GB
8mm tape unit. In ANOVA, 95% precision level is used for both
response types.

Fitness Response

Our computational results indicate that; in terms of the fitness
response, the number of machines in each workstation (Mi) is the
dominating decision variable set, i.e. the total profit obtained
merely depends on the level of this variable. There are two
reasons; first, the machine operating cost is significantly larger
than the buffer cost (25 times larger), so any alteration of Mi has
more significant impact on total cost of the system than the buffer,
and the unit cost of machine is high enough to affect the profit of
the system. Second reason is that; even a unit alteration on one of
Mi ‘s affect the throughput of the system drastically compared to
Bi.

Moreover, only some specific combinations of Mi’s lead to good
solutions (high profit). More than 80% of trials, GA leads to a best
solution with machine combination of 3 – 4 – 2 – 3 or 4 – 4 – 2 –
3. (It is a predictable result, since the first and the second
workstations have the biggest processing times, so they require
more machines compared to the other workstations).

The same combination of machine numbers, but different buffer
levels does not produce significant alterations in total profit, since
the cost of additional buffer position is almost nearly compensated
by the increase in the throughput level.

Another experimental results is that, good solutions are highly
dominant in the solution space. In other words, the solutions with
good combination of machines have significantly more fitness
value than the other solutions. The importance of this property
reveals in GA application. As good solutions are very dominating
in terms of fitness values, the selection procedure usually selects
strings with these patterns for the potential parents of the following
generation. Thus by the crossover operator, genetic material of
these solutions is carried to the next generations. Therefore a rapid
convergence to these good solutions occurs in GA, since every
time children are produced from the parents with same machine
number patterns. These solutions are differentiated according to
their buffer levels.

According to ANOVA the significant main factors with respect to
fitness response are initial population type, population size,
maximum generation number and mutation probability. Following
paragraphs give the interpretation of the results.

Starting with a seeded population has a positive effect on fitness
response. Although it is not a general case for GA applications,
there are empirical studies in the literature supporting such a
conclusion [9]. With a seeded initial population GA starts with
some good solutions at hand; hence like in the case of the random
start, the algorithm does not loose time. Therefore there occurs a
more rapid convergence to solutions with good machine levels. For
specific good machine patterns, seeded GA has more time to try
different combination of buffer levels, which increases the
probability of hitting a better solution.

Population size and maximum generation number have also
positive effects on best fitness value found. Increasing the
population size (n), or generation number (m) enlarges the search
space; apparently more individuals are processed, so probability of
reaching better solutions increases.

Crossover probability is the only factor, which has an insignificant
main effect. The reason behind this depends on the nature of

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 480

 4

solution space. Because of the dominance characteristics
mentioned above, after some initial generations, the individuals
generally have 3 – 4 – 2 – 3 or 4 – 4 – 3 – 3 as machine
combinations, corresponding to strings starting with:

10110110………… 11111010…………

Although there are more patterns present in the solution space, and
each pattern are in different amounts, since these two are the most
common ones having largest of fitness values, for a rough estimate,
both strings have 50% occurrences in a population. Then for 2/3 of
trails, reproduction operator selects two parents with same starting
strings. If selected two potential parents both have one of these
patterns, then the crossover before the 8th bit produce same
individuals. Any cross-site after that point generates individuals
with different buffer levels with same machine numbers. If
somehow an inappropriate level (very low) of buffer is generated
then the fitness decreases drastically and dominance of good
solutions make this individual disappear in the next generation.
Therefore on average crossover cannot produce poor individuals.
In the other case, crossover generates individuals with some
pattern of buffer levels which do not lead to low fitness values.
From the preliminary analysis, we know that different buffer levels
with good machine patterns do not have very significantly different
fitness values. Thus crossover cannot make significant discrepancy
on fitness.

If selection mechanism selects both strings as potential parents (1/3
of trials), then crossover after 1st, 6th, 7th, and 8th bit does not
produce distinct children. The crossover from the 2nd, 3rd and 4th
site generates the children with machine patterns, 3 – 4 – 3 – 3, 4 –
4 – 2 – 3, 3 – 4 – 1 – 3, 4 – 4 – 4 – 3. From the generated strings all
except 3 – 4 – 1 – 3 combination are present in good solutions’
patterns, so they have close fitness values. The 3 – 4 – 1 – 3
combination results with a poor fitness value because of the high
decline in throughput reasoning from the third workstation’s
bottleneck situation, and will disappear in the following
generations due to the dominance of good solutions. There is no
significant difference between the low level and high level of the
crossover probability, since it generates similar individuals having
close fitness values.

The mutation probability has a significant positive effect on fitness
value. The power of mutation comes from its ability to search for
various combinations of buffer levels. After the convergence to
good solutions with specific machine number patterns, the
improvements on fitness value is gathered by searching for
different levels of buffer positions. Since mutation alters the value
of a bit form 1 to 0, or vice versa, it easily provides diversity in
solutions. While more combinations are searched, the probability
of hitting a better solution increases automatically.

As a conclusion the initial population type, population size,
maximum generation number and mutation probability presents
significant behavior, and all of them have positive effect. Thus, it
is more effective to use higher levels to maximize the fitness value.

CPU Time Response

Our results reveal that, the simulation time of the solutions
generated by GA constitute to 95% of CPU time. Thus, the factors
affecting the CPU time, in fact, alter the simulation time.

The simulation time depends on the load of the system. As the
machine numbers and buffer levels increase the simulation time
increases, since more production processes occur in the model.
Like the fitness case, machine numbers are dominating set of
decision variables according to the CPU time. The main reason is
that, the production rate merely depends on the machine
combinations. Buffer levels do not have significant effect on

simulation time, except some extreme conditions (very low levels
of buffer interrupting the production process).

GA converges to some good solutions having specific patterns of
machine combinations rapidly. These solutions correspond to
loaded systems, hence their simulation runs generally require more
time compared to other solutions.

According to ANOVA, the significant main effects with respect to
CPU time are population size, maximum generation number and
mutation probability. The succeeding paragraphs give the
interpretation of results.

The initial population type is insignificant with respect to CPU
time. Although seeded populations converge to good solutions
(loaded systems) more rapidly, a random start looses only a few
generations time to converge to the same good set of solutions, and
on the average these few generations’ individuals’ simulation time
does not make significant impact on CPU time.

Population size and maximum generation number have negative
effects on best fitness value found. Increasing the population size
(n), or generation number (m) enlarges the search space; so CPU
time increases.

The crossover probability is insignificant according to CPU time,
as in the case of fitness response. The reasons are also valid for the
CPU time case. Generally to cross or not does not make any sense,
because in each case the produced children have similar patterns,
and apparently they correspond to similar loaded systems.

Different from the other factors, mutation probability has a
negative significant effect on CPU time, i.e. increasing the
mutation probability pm decreases the CPU time. The preliminary
analysis on the solution space reveals that negative deviations from
the good machine combinations lead to more significant decrease
in simulation time, when compared with the increase in simulation
time in the case of a positive alteration of machine numbers, which
carry the model to a more loaded one. Another interpretation about
the algorithm is that after some starting generations all the
populations are composed of individuals having combinations of 3
– 4 – 2 – 3 or 4 – 4 – 2 – 3 as machine numbers leading to strings
starting with:

String 1: 10110110.. String 2: 11110110..

A change from 1 to 0 leads a decrease in value of the variable,
which corresponds a less-loaded system and the opposite results
with an increased real value, which is a more loaded system. For
string 1, the probability to go a more loaded system is 3/8 in terms
of machine numbers, because there are 3 “0”’s present in the
string. On the other hand a less-loaded system is achieved in 5 of 8
trials because of 5 “1”’s in the string. These probabilities are even
more discriminating in string 2, because of six 1’s and two 0’s,
corresponding to 6/8 and 2/8, respectively.

Since different levels of buffers do not have a significant impact on
CPU time with good patterns of machine numbers, knowing that
they have close simulation time, the CPU time decreases when the
mutation probability increases, because in most of the trials,
mutation carries the solution to a less-loaded system. This result is
proved by comparing the probabilities, for first type of strings in 5
of each 8 trials system becomes a less-loaded one, and for second
string in 6 of 8 trials same result is obtained.

The conclusion is that the population size and maximum
generation number has positive effects on CPU time. Since we are
trying to minimize the CPU time, low levels of these parameters
are appropriate. Because the mutation has negative effect on CPU,
it is better to set it at its high level. As the crossover probability

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 81

 5

and initial population type do not have significant impact on CPU
time, they can be used in any level.

Further Experimentation

There are two conclusions which take our attention. One of them is
the insignificance of crossover probability for each response types;
and best performance of the high mutation probability in both
cases. Thus, we decide to make further analysis of mutation
probability, and crossover probability by single factor analysis.
Two distinct experimental conditions are chosen, all the
parameters are set to their high levels and low levels separately.
Statistical inference about the results is obtained by comparing the
performances using paired-t test.

First, we investigate the significance of crossover probability. Our
initial values were 0.5 and 1; we also examine the behavior of the
performance measures under levels of pc = 0, 0.25 and 0.75. Figure
1.a represents the change in fitness value due to the alteration of pc,
and Figure 1.b presents the results for CPU time.

Each point in the graphs corresponds to the average of independent
GA applications. For fitness value, as observed from Figure 1.a,
there is no significant difference in performance measure for
different levels of crossover probability. The paired-t test
statistically validates this conclusion, because the difference of
means of two successive points presents an insignificant behavior.
The CPU time graph also shows the insignificance of the crossover
probability, which is also validated by paired-t test results of every
consecutive pairs. This further analysis supports the results of our
factorial design, such that crossover operator does not have a
significant impact on GA performance under particular problem
domains. The same type of analysis is applied for different levels
of mutation probability. Figure 2.a presents fitness value according
to different levels of mutation probability, while Figure 2.b shows
the CPU time behavior.

According to the results of paired-t test, design point 2 (high level)
presents insignificant behavior until pm = 0.4, excluding the pm = 0
case. But there is a significant improvement on fitness going from
0.3 to 0.4 level of mutation probability. The other respective points
present insignificant behavior except pm = 1.

Fitness vs Crossover Probability

300000

500000

700000

900000

0 0.25 0.5 0.75 1

Crossover Probability

Fi
tn

es
s

V
al

ue

Low High

a) Best Fitness with Different Levels of Crossover Probability
Figure 1: Analysis of Different Crossover Probabilities

CPU Time vs Crossover Probability

0
5000

10000
15000
20000
25000
30000

0 0.25 0.5 0.75 1

Crossover Probability

C
PU

 T
im

e

Low High

b) CPU Time with Different Levels of Crossover Probability
Figure 1: Analysis of Different Crossover Probabilities (cont’d)

The results obtained agree with the previous experimental design.
The mutation operator is very effective in terms of finding better
solutions. This idea can be observed best by looking at the design
point 1 (low level) with pm = 0. There is no mutation and GA
cannot find even good solutions.

Increasing the mutation probability increases the fitness value until
pm = 0.4. The other probabilities are insignificant after this level
when compared respectively until pm = 0.95. There is a significant
decrease in fitness at pm = 1. This is because of the inadequate
pattern of GA: High mutation distorts the building blocks of GA
such that good characteristics of individuals cannot be properly
transferred to the following generations.

Investigation of Figure 2.b shows that increments in mutation
probability make significant reductions in CPU time covered. This
result also agrees with our conclusions about test problem domain.
As more mutation occurs more less-loaded systems are processed;
hence simulation time decreases. But after point of 0.9 there is an
increase in CPU time, which is in parallel with the fitness case. As
the pattern of GA is disturbed, no convergence to good solutions
occur, and unpredictable points from anywhere of solution space
are processed. The search mechanism looses its logic, so increase
in CPU time is observed.

From Figures 2.a and 2.b, it is concluded that even more
increments than 0.05 in mutation probability lead better solutions
in terms of maximum fitness and minimum CPU time. Mutation
probability of 0.4 is the most convenient choice, since it has the
maximum fitness and significantly less CPU time.

Fitness vs Mutation

500000
600000
700000
800000
900000

0
0.0

5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
5 1

Mutation Probability

Fi
tn

es
s

Va
lu

e

Low Level High Level

a) Best Fitness with Different Levels of Mutation Probability
Figure 2: Analysis of Different Mutation Probabilities

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 482

 6

CPU Time vs Muta tion

0
5000

10000
15000
20000
25000
30000

0

0.
05 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95 1

Muta tion Probab ility

C
PU

 T
im

e

Low Level High Level

b) CPU Time with Different Levels of Mutation Probability
Figure 2: Analysis of Different Mutation Probabilities

5. CONCLUSION
In this study, we have proposed a new taxonomy of parameters of
GA, numerical and structural, and examine the effects of numerical
parameters on the performance of the algorithm in GA based
simulation-optimization applications by the use of a test problem.
Our aim is not to find the best parameter combination for a
particular problem, but to come up with general conclusions. We
start with the characteristics of the problem domain. The main
characteristic features of our problem domain are:

- There is a dominance of a set of decision variables with respect to
the objective function value of the optimization problem: The
objective function value is directly related with the combination of
this dominant set of variables. Alteration of the values of dominant
variable alters the solution’s performance substantially when
compared with the other decision variables.

- The good solutions are highly dominant over other solutions with
respect to the objective function value, but not significantly diverse
among each other.

- Combining the above two features; good solutions have specific
set of patterns in dominant set of decision variables, and these
solutions are dominant over other feasible solutions among the
solution space.

These properties of the problem domain generate a rapid
convergent behavior of GA. According to our computational
results, high mutation rates give better performance. GA
mechanism creates a lock-in effect in the search space, i.e. the
processed solutions have similar string patterns, hence high
mutation rates decreases the risk of premature convergence and
provides diversification in the search space in this particular
problem domain. Due to the dominance crossover operator does
not have significant impact on the performance of GA. Moreover,
starting with a seeded population generates more efficient results.
Because of the rapid convergent behavior of GA high levels of
population size and maximum generation number parameters are
inappropriate when the tradeoff between fitness improvement and
CPU time covered is considered.

We conduct same type of factorial design analysis on the
extensions of our test problem. Variations of objective function
values and a constrained version of the problem are issues, but the
experimental results agree with the previous statements about the
best parameter levels for the particular problem domain under
consideration.

As a future research direction, the same analyses can be carried out
for different problem domains, and with different structural

parameter settings, and even the interaction between the numerical
and structural parameters could be investigated.

6. REFERENCES
[1] J.T. Alander, “On optimal population size of genetic
algorithms“,Proceedings of CompEuro 92, 1992, pp.65-70.

[2] J.A. Cruz, and J. Haddock, “A general scheme of simulation
optimization using a genetic algorithm,“ Technical Report,
Rensselaer Polytechnic Institute, New York, 1993.

[3] K.A. De Jong An analysis of the behavior of a class of genetic
adaptive systems. Doctoral dissertation, University of Michigan,
1975.

[4] T.C. Fogarty, “Varying the probability of mutation in the
genetic algorithm,“ Proceedings of the Third International
Conference on Genetic Algorithms, 1989, pp.104-109.

[5] D. Goldberg, Genetic algorithms in search, optimization and
machine learning, Addison-Wesley, reading, M.A, 1989.

[6] J.H. Holland, Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[7] A.M. Law, and M. G. McComas, “Simulation-based
optimization,“ Proceedings of the 2000 Winter Simulation
Conference, 2000, pp. 46-49.

[8] R. Nakano, and T. Yamada, “Conventional genetic algorithm
for job shop problems, “Proceedings of the 4th Int. Conference
on Genetic Algorithms, 1991, pp.474-479.

[9] C.R. Reeves, Modern Heuristic Techniques for
Combinatorial Problems, Wiley, New York, 1993.

[10] J.D. Schaffer, R.A. Caruna, L.J. Eshelman and R. Das, “A
study of control parameters affecting online performance of
genetic algorithms for function optimization,“ Proceedings of the
Third International Conference on Genetic Algorithms, 1989,
pp. 51-60.

[11] G. Suresh, V.V. Vinod and S. Sahu, “A genetic algorithm for
facility layout,“ International Journal of Production Research,
Vol. 33, 1995, pp. 3411-3423.

[12] M.A. Wellman and D.D. Gemmill, “A genetic algorithm
approach to optimization of asynchronous automatic assembly
systems, “The International Journal of Flexible Manufacturing
Systems, Vol. 7, 1995, pp. 27-46.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 2 - NUMBER 4 83

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2004

	Parameter Selection in Genetic Algorithms
	Onur BOYABATLI
	Ihsan SABUNCUOGLU
	Citation

	Microsoft Word - journalpaper.doc

