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ABSTRACT 
In this study, we provide a new taxonomy of parameters of 
genetic algorithms (GA), structural and numerical 
parameters, and analyze the effect of numerical parameters on 
the performance of GA based simulation optimization 
applications with experimental design techniques.  
Appropriate levels of each parameter are proposed for a 
particular problem domain.  Controversial to existing 
literature on GA, our computational results reveal that in the 
case of a dominant set of decision variable the crossover 
operator does not have a significant impact on the 
performance measures, whereas high mutation rates are more 
suitable for GA applications.  

Keywords: Simulation, Optimization, Genetic Algorithm, 
parameter selection, factorial design        

1. INTRODUCTION 

Recent advances in computational techniques have led to an 
increased interest in simulation-optimization (sim/opt) 
methodologies that are used to solve optimization problems. These 
methodologies differ from their antecedents by using simulation as 
a prescriptive tool, which has traditionally been used descriptively 
to estimate performance of complex stochastic systems. Sim/opt 
methodologies have been successfully applied to various 
combinatorial optimization problems. 

A recent trend in sim/opt research is the use of meta-heuristic 
techniques, in particular Genetic Algorithms (GA’s).  GA is an 
iterative procedure, taking its inspiration from natural genetics. GA 
starts with a group of feasible solutions to the problem under 
consideration and proceeds to a new set of solutions at each 
iteration with the high aim of achieving better fitness (objective 
function) values.  The performance of GA depends on several 
parameters. In this study, we propose a new taxonomy of these 
parameters based on their effects on the structure of the algorithm. 
We argue that the two parameter categories, structural and 
numerical, have different characteristics and thus have different 
impacts on GA structure.  Even for a GA with same structural 
parameters (coding scheme, operator types, stopping criterion), a 
different combination of numerical parameters (initial population 
type, population size, maximum generation number and the 
crossover and mutation probabilities) may lead to drastic changes 
in the performance of the algorithm. The very problem-specific 

nature of GA makes it difficult to specify the best combination of 
these parameters. 

This study examines the effects of GA numerical parameters on its 
performance in terms of both best fitness found and CPU time; and 
proposes guidelines for parameter selection for specific problem 
domains.  A test problem of a serial assembly line taken from the 
literature is selected for experimentation.  A GA coded in C is 
integrated with a simulation model using SIMAN language.  2k 
factorial design is implemented.  

The main contribution of our work is twofold. First, it proposes a 
new taxonomy for GA parameters, and second, it presents an 
extensive analysis on these parameters to draw general 
conclusions.  In particular, our computational results reveal that in 
contrast to previous literature high mutation rates and low cross-
over rates are more suitable under some specific problem domains. 

The remainder of this paper is organized as follows.  In §2 we give 
a brief summary of GA, and literature. §3 presents the proposed 
study, whereas in §4 experimental results are demonstrated.  
Finally in §5 we summarize and suggest directions for future 
research. 

2. GA and LITERATURE REVIEW 
GAs are search algorithms based on the mechanics of natural 
selection and natural genetics. In natural genetics, the 
presence/absence of genes and their order in the chromosome 
decide the characteristic features of individuals of a population. 
The different traits are passed on from one generation to the next 
through different biological processes, which operate on the 
genetic structure. By this process of genetic change and survival of 
the fittest, a population well adapted to the environment results. 
Similarly, in GA, a finite-length string coding is used to describe 
the parameter values of each solution for the search problem under 
consideration. Each string corresponds to an individual, and every 
individual acquires its power in the survival process in terms of its 
fitness value. Higher the fitness values, better the individuals 
performance in the evolution process.  A fixed number of 
individuals correspond to a generation.  GA is an iterative 
algorithm such that in every generation, first parents are selected 
depending on their fitness values, and then by some genetic 
operators the strings of children are produced. With their 
calculated fitness values, the new generation is obtained. And this 
procedure is repeated until some stopping criterion is met. Like the 
natural genetics as the generations proceed, the fitness of the whole 
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population (average fitness) increases, corresponding to better 
populations.  

The power and simplicity of GA make it popular for even large-
scale optimization problems. The main advantage of GA is that it 
does not require neither mathematical expression of response 
surfaces nor any derivative or gradient information. After Holland 
[6] has proposed GA as a search mechanism, and especially 
following the Goldberg's [5] book on GA, many applications of 
GA on various problem types are conducted. 

Schaffer et al. [10] study the effects of some control parameters of 
GA on its performance. The control parameters selected are the 
population size, crossover and mutation probabilities and number 
of crossover points used in each mating. Experimental design is 
used for statistical analysis. The computational results reveal that 
the selection and mutation operators together is very significant in 
the behavior of GA. Mutation appears to be more effective than 
crossover. 

Fogarty [4] discusses the effect of varying the mutation probability 
over time and its effect on GA performance. A minimization type 
test problem is used in the analysis. Two initial population types 
are used, one is a seeded population containing good solutions, 
whereas the other is randomly created. It is observed that varying 
the mutation rate significantly improves the performance of seeded 
population case, but not when the initial population is randomly 
generated. 

Simulation-optimization methodology integrates GA with 
simulation modeling during the calculation of the fitness values.  
For every individual of a particular generation simulation results 
are used to assess the fitness of the corresponding individual.  The 
power of simulation modeling has made the research in this area 
popular, hence there have been several studies on GA based 
simulation-optimization applications.  

To give an example, Nakano [8] proposes a conventional GA for 
job shop problems, whereas Cruz and Haddock [2] presents GA-
based simulation-optimization application on five different 
systems, three of which are queuing and the rest are inventory 
systems. The results are compared with the results gathered form 
IPA (infinitesimal perturbation analysis). Suresh et al. [11] apply 
GA on a facility layout problem.  Wellman and Gemmill [12] 
optimize an assembly line with GA. The results are compared with 
that of stochastic quasi-gradient method (SQM).  

To the best of our knowledge, there is no a study in the literature 
analyzing all the GA parameters, initial population type, 
population size, maximum generation number, and mutation and 
crossover probabilities. This study proposes a new taxonomy of 
GA parameters and presents an extensive analysis of these 
parameters to draw conclusions for the best parameter levels for 
specific problem domains. 

3. PROPOSED STUDY 
Although GA seems to be a robust algorithm which contains same 
operators and has the same algorithmic logic for different 
applications, in fact the algorithm itself is significantly different for 
distinct problems. The main reason is that GA has several 
parameters and any combination of these parameters has different 
impacts on the performance on GA.  We classify these parameters 
into two classes, structural and numerical. 

Structural parameters are the main factors affecting the GA 
performance, and the most difficult set of parameters to be dealt 
with in a GA application. As understood from its categorical name, 
they are concerned with the structure of GA. The change in any 
parameter value requires significant alterations in the coding 

pattern of GA’s, i.e. you have to rewrite the whole algorithm from 
scratch. The coding scheme, operator types and stopping criterion 
are the main parameters.  

There have been extensive studies on selecting the levels of each 
structural parameter; hence GA can obtain sufficient insight from 
the well-established literature. For instance, it is known that the 
sequence representation of coding schemes is better for scheduling 
problems. Moreover, the applicability of the structural parameters 
constructs a constraint in front of decision-maker, and forces to 
eliminate some parameter values. For instance, the simple one-
point crossover cannot be applied to the problems having sequence 
representation 

Numerical parameters contribute to the second class of the 
taxonomy we proposed. The initial population type, population 
size, maximum generation number, crossover and mutation 
probabilities are the main factors considered in this category.  
These parameters are easy to handle when the coding structure is 
considered. Although alterations in these parameter levels do not 
require extensive coding, different combination of them leads to 
drastic changes in GA performance.   

Similar to structural parameters, there are several studies 
conducted on the analysis of numerical parameters; but the very 
problem-specific nature of GA hinders making general conclusions 
about the suitable levels of them. Moreover, these studies analyze 
these parameters one at a time, ignoring the interaction between 
the parameter types.  The literature on this class of parameters is 
more ambiguous than the previous class. 

In this study, all of the numerical parameters of GA are examined 
with a priori known level of structural parameter setting.  General 
insights about the best combination of these parameters are 
presented on particular problem domains. More detailed 
explanation about numerical parameters is provided in the 
following sections. 

Testing Scheme 

A test problem is taken from the literature [7] for GA based 
simulation-optimization application, and significance of different 
values of the parameters on GA performance is analyzed on this 
test problem by factorial designs and ANOVA (Analysis of 
Variance). Two types of performance measure are considered 
throughout the analysis: 

• Best fitness value obtained 

• CPU Time elapsed 

The system under consideration is a manufacturing system 
consisting of four workstations with exponential processing times 
(mean 0.33, 0.5, 0.2, 0.25 respectively) and three buffers, which 
are located between the stations. There are 7 decision variables in 
the problem, 4 belong to number of machines in each workstation 
(Mi), and three for the number of buffer positions between the 
stations (Bi).  

The objective is to maximize profit where there exists marginal 
revenue for each good produced and variable cost for each 
machine and buffer space used. The profit function is defined for 
all machine levels at 2, and buffer levels at 3 as; 

200 * throughput - 25000 * (2+2+2+2) – 1000 * (3+3+3) 

where throughput is computed from simulating the model for a 30 
day period. Also additional warm- up period of 10 days is used for 
eliminating the initial bias. The simulation model is developed 
using SIMAN V language in UNIX environment. 

GA is coded with respect to a specific set of structural variables, 
and experimentation is conducted at each combination of 
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numerical values. The basic GA model is selected for the analysis. 
The binary coding scheme, roulette wheel selection, objective 
function value as fitness, one-point crossover, bit mutation and 
maximum iteration numbers as stopping criterion are used in the 
experimental analysis. 

In our test problem number of machines ranges from 1 to 4, 
whereas buffer spaces range from 1 to 16. In the binary coding 
representation, machine numbers have 2-bit scheme, where buffers 
have 4-bit scheme. The strings representing the individuals are 
produced by the concatenation of individual strings, starting from 
the number of machines in first workstation, and continuing with 
the buffer positions in the same order. 4 two-bit strings, and 3 four-
bit strings lead to a binary representation of individuals with string 
length 20. For instance a string corresponding to the decision 
variables’ combination; 

M1 = 1, M2 = 2 , M3 = 3, M4 = 4, B1 = 10, B2 = 11, B3 = 12 is: 

00 01 10 11 1001 1010 1011  
             1    2    3   4    10    11     12 

The average of five replication results gathered from the 
simulation run of the system with the codified parameter levels in 
the string corresponds to the fitness value of the string. 

The roulette wheel selection procedure is used for the reproduction 
process. Since this procedures requires non-negative fitness values, 
when there is a negative fitness value in the population, offsetting 
technique is used for fitness scaling. 

The one-point crossover is applied with a probability of pc. The 
mutation is applied by random changes in the bit values of strings. 
For every bit of the string, mutation occurs with probability pm. If 
there are infeasible solutions reached after the operations, then 
these strings are discarded, and new ones are generated from the 
beginning instead.  

Factorial Design 

Since there are 5 distinct numerical parameters, 25 factorial design 
is used in this study. For each category, two levels are determined 
corresponding to high and low levels, respectively. For each design 
point, five independent GA runs are taken.  ANOVA is used to 
determine the significance of each effect on fitness and CPU time.  

For initial population type, there are two common settings in the 
literature, random and seeded populations. A random search 
heuristic of 250 points is applied, and random population is drawn 
among these points. The best 20 or 40 points depending on the 
population size are selected for the seeded population.  

It is reported in Alander’s study [1], that a value between n and 2n 
is optimal for the population size. Considering these results, the 
levels of population size are taken as 20 (n) and 40 (2n), where 20 
equals to the string length of our GA model. 

The levels of operator probabilities are also drawn from the 
literature. De Jong [3] suggests that the bit-mutation rate should be 
n-1 where n is the string length. It is also reported that crossover 
rates between 0.65 and 1, and mutation rates between 0.001 and 
0,01 are useful in GA applications. In our study the crossover 
probability levels are set as 0.5 and 1,and the mutation levels are 
0.01 and 0.05, where 0.05 is equal to 1/n, n is 20 in our model. 

We cannot find consistent results about level of maximum 
generation number in the existing studies, therefore we make 
further experimentation to determine the high and low levels. 
According to our pilot runs and considering both fitness and CPU 
time response types, the levels of 50 and 100 are selected for the 
analysis.  

4. EXPERIMENTAL RESULTS 
All the computer applications are carried on Sun HPC Server 4500 
with 12 400mhz CPU, 3 GB memory, 45 GB disk and 20/40 GB 
8mm tape unit. In ANOVA, 95% precision level is used for both 
response types. 

Fitness Response  

Our computational results indicate that; in terms of the fitness 
response, the number of machines in each workstation (Mi) is the 
dominating decision variable set, i.e. the total profit obtained 
merely depends on the level of this variable. There are two 
reasons; first, the machine operating cost is significantly larger 
than the buffer cost (25 times larger), so any alteration of Mi has 
more significant impact on total cost of the system than the buffer, 
and the unit cost of machine is high enough to affect the profit of 
the system. Second reason is that; even a unit alteration on one of 
Mi ‘s affect the throughput of the system drastically compared to 
Bi.  

Moreover, only some specific combinations of Mi’s lead to good 
solutions (high profit). More than 80% of trials, GA leads to a best 
solution with machine combination of  3 – 4 – 2 – 3 or 4 – 4 – 2 – 
3. (It is a predictable result, since the first and the second 
workstations have the biggest processing times, so they require 
more machines compared to the other workstations).  

The same combination of machine numbers, but different buffer 
levels does not produce significant alterations in total profit, since 
the cost of additional buffer position is almost nearly compensated 
by the increase in the throughput level.  

Another experimental results is that, good solutions are highly 
dominant in the solution space. In other words, the solutions with 
good combination of machines have significantly more fitness 
value than the other solutions. The importance of this property 
reveals in GA application. As good solutions are very dominating 
in terms of fitness values, the selection procedure usually selects 
strings with these patterns for the potential parents of the following 
generation. Thus by the crossover operator, genetic material of 
these solutions is carried to the next generations. Therefore a rapid 
convergence to these good solutions occurs in GA, since every 
time children are produced from the parents with same machine 
number patterns. These solutions are differentiated according to 
their buffer levels. 

According to ANOVA the significant main factors with respect to 
fitness response are initial population type, population size, 
maximum generation number and mutation probability. Following 
paragraphs give the interpretation of the results. 

Starting with a seeded population has a positive effect on fitness 
response. Although it is not a general case for GA applications, 
there are empirical studies in the literature supporting such a 
conclusion [9]. With a seeded initial population GA starts with 
some good solutions at hand; hence like in the case of the random 
start, the algorithm does not loose time. Therefore there occurs a 
more rapid convergence to solutions with good machine levels. For 
specific good machine patterns, seeded GA has more time to try 
different combination of buffer levels, which increases the 
probability of hitting a better solution. 

Population size and maximum generation number have also 
positive effects on best fitness value found. Increasing the 
population size (n), or generation number (m) enlarges the search 
space; apparently more individuals are processed, so probability of 
reaching better solutions increases.  

Crossover probability is the only factor, which has an insignificant 
main effect. The reason behind this depends on the nature of 
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solution space.  Because of the dominance characteristics 
mentioned above, after some initial generations, the individuals 
generally have 3 – 4 – 2 – 3 or 4 – 4 – 3 – 3 as machine 
combinations, corresponding to strings starting with: 

10110110………… 11111010………… 

Although there are more patterns present in the solution space, and 
each pattern are in different amounts, since these two are the most 
common ones having largest of fitness values, for a rough estimate, 
both strings have 50% occurrences in a population. Then for 2/3 of 
trails, reproduction operator selects two parents with same starting 
strings. If selected two potential parents both have one of these 
patterns, then the crossover before the 8th bit produce same 
individuals. Any cross-site after that point generates individuals 
with different buffer levels with same machine numbers. If 
somehow an inappropriate level (very low) of buffer is generated 
then the fitness decreases drastically and dominance of good 
solutions make this individual disappear in the next generation. 
Therefore on average crossover cannot produce poor individuals. 
In the other case, crossover generates individuals with some 
pattern of buffer levels which do not lead to low fitness values. 
From the preliminary analysis, we know that different buffer levels 
with good machine patterns do not have very significantly different 
fitness values. Thus crossover cannot make significant discrepancy 
on fitness. 

If selection mechanism selects both strings as potential parents (1/3 
of trials), then crossover after 1st, 6th, 7th, and 8th bit does not 
produce distinct children. The crossover from the 2nd, 3rd and 4th 
site generates the children with machine patterns, 3 – 4 – 3 – 3, 4 – 
4 – 2 – 3, 3 – 4 – 1 – 3, 4 – 4 – 4 – 3. From the generated strings all 
except 3 – 4 – 1 – 3 combination are present in good solutions’ 
patterns, so they have close fitness values. The 3 – 4 – 1 – 3 
combination results with a poor fitness value because of the high 
decline in throughput reasoning from the third workstation’s 
bottleneck situation, and will disappear in the following 
generations due to the dominance of good solutions. There is no 
significant difference between the low level and high level of the 
crossover probability, since it generates similar individuals having 
close fitness values.  

The mutation probability has a significant positive effect on fitness 
value. The power of mutation comes from its ability to search for 
various combinations of buffer levels. After the convergence to 
good solutions with specific machine number patterns, the 
improvements on fitness value is gathered by searching for 
different levels of buffer positions. Since mutation alters the value 
of a bit form 1 to 0, or vice versa, it easily provides diversity in 
solutions. While more combinations are searched, the probability 
of hitting a better solution increases automatically. 

As a conclusion the initial population type, population size, 
maximum generation number and mutation probability presents 
significant behavior, and all of them have positive effect. Thus, it 
is more effective to use higher levels to maximize the fitness value.  

CPU Time Response 

Our results reveal that, the simulation time of the solutions 
generated by GA constitute to 95% of CPU time. Thus, the factors 
affecting the CPU time, in fact, alter the simulation time. 

The simulation time depends on the load of the system. As the 
machine numbers and buffer levels increase the simulation time 
increases, since more production processes occur in the model. 
Like the fitness case, machine numbers are dominating set of 
decision variables according to the CPU time. The main reason is 
that, the production rate merely depends on the machine 
combinations. Buffer levels do not have significant effect on 

simulation time, except some extreme conditions (very low levels 
of buffer interrupting the production process). 

GA converges to some good solutions having specific patterns of 
machine combinations rapidly. These solutions correspond to 
loaded systems, hence their simulation runs generally require more 
time compared to other solutions.  

According to ANOVA, the significant main effects with respect to 
CPU time are population size, maximum generation number and 
mutation probability. The succeeding paragraphs give the 
interpretation of results. 

The initial population type is insignificant with respect to CPU 
time. Although seeded populations converge to good solutions 
(loaded systems) more rapidly, a random start looses only a few 
generations time to converge to the same good set of solutions, and 
on the average these few generations’ individuals’ simulation time 
does not make significant impact on CPU time. 

Population size and maximum generation number have negative 
effects on best fitness value found. Increasing the population size 
(n), or generation number (m) enlarges the search space; so CPU 
time increases. 

The crossover probability is insignificant according to CPU time, 
as in the case of fitness response. The reasons are also valid for the 
CPU time case. Generally to cross or not does not make any sense, 
because in each case the produced children have similar patterns, 
and apparently they correspond to similar loaded systems. 

Different from the other factors, mutation probability has a 
negative significant effect on CPU time, i.e. increasing the 
mutation probability pm decreases the CPU time. The preliminary 
analysis on the solution space reveals that negative deviations from 
the good machine combinations lead to more significant decrease 
in simulation time, when compared with the increase in simulation 
time in the case of a positive alteration of machine numbers, which 
carry the model to a more loaded one. Another interpretation about 
the algorithm is that after some starting generations all the 
populations are composed of individuals having combinations of  3 
– 4 – 2 – 3 or 4 – 4 – 2 – 3 as machine numbers leading to strings 
starting with: 

String 1: 10110110..  String 2: 11110110.. 

A change from 1 to 0 leads a decrease in value of the variable, 
which corresponds a less-loaded system and the opposite results 
with an increased real value, which is a more loaded system. For 
string 1, the probability to go a more loaded system is 3/8 in terms 
of machine numbers, because there are 3 “0”’s present in the 
string. On the other hand a less-loaded system is achieved in 5 of 8 
trials because of 5 “1”’s in the string. These probabilities are even 
more discriminating in string 2, because of six 1’s and two 0’s, 
corresponding to 6/8 and 2/8, respectively.  

Since different levels of buffers do not have a significant impact on 
CPU time with good patterns of machine numbers, knowing that 
they have close simulation time, the CPU time decreases when the 
mutation probability increases, because in most of the trials, 
mutation carries the solution to a less-loaded system. This result is 
proved by comparing the probabilities, for first type of strings in 5 
of each 8 trials system becomes a less-loaded one, and for second 
string in 6 of 8 trials same result is obtained. 

The conclusion is that the population size and maximum 
generation number has positive effects on CPU time. Since we are 
trying to minimize the CPU time, low levels of these parameters 
are appropriate. Because the mutation has negative effect on CPU, 
it is better to set it at its high level. As the crossover probability 
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and initial population type do not have significant impact on CPU 
time, they can be used in any level. 

Further Experimentation 

There are two conclusions which take our attention. One of them is 
the insignificance of crossover probability for each response types; 
and best performance of the high mutation probability in both 
cases. Thus, we decide to make further analysis of mutation 
probability, and crossover probability by single factor analysis. 
Two distinct experimental conditions are chosen, all the 
parameters are set to their high levels and low levels separately. 
Statistical inference about the results is obtained by comparing the 
performances using paired-t test. 

First, we investigate the significance of crossover probability. Our 
initial values were 0.5 and 1; we also examine the behavior of the 
performance measures under levels of pc = 0, 0.25 and 0.75. Figure 
1.a represents the change in fitness value due to the alteration of pc, 
and Figure 1.b presents the results for CPU time. 

Each point in the graphs corresponds to the average of independent 
GA applications. For fitness value, as observed from Figure 1.a, 
there is no significant difference in performance measure for 
different levels of crossover probability. The paired-t test 
statistically validates this conclusion, because the difference of 
means of two successive points presents an insignificant behavior. 
The CPU time graph also shows the insignificance of the crossover 
probability, which is also validated by paired-t test results of every 
consecutive pairs. This further analysis supports the results of our 
factorial design, such that crossover operator does not have a 
significant impact on GA performance under particular problem 
domains. The same type of analysis is applied for different levels 
of mutation probability. Figure 2.a presents fitness value according 
to different levels of mutation probability, while Figure 2.b shows 
the CPU time behavior. 

According to the results of paired-t test, design point 2 (high level) 
presents insignificant behavior until pm = 0.4, excluding the pm = 0 
case. But there is a significant improvement on fitness going from 
0.3 to 0.4 level of mutation probability. The other respective points 
present insignificant behavior except pm = 1.  

Fitness vs Crossover Probability
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Figure 1: Analysis of Different Crossover Probabilities 

CPU Time vs Crossover Probability

0
5000

10000
15000
20000
25000
30000

0 0.25 0.5 0.75 1

Crossover Probability

C
PU

 T
im

e

Low High
 

b) CPU Time with Different Levels of Crossover Probability 
Figure 1: Analysis of Different Crossover Probabilities (cont’d) 

 

The results obtained agree with the previous experimental design. 
The mutation operator is very effective in terms of finding better 
solutions. This idea can be observed best by looking at the design 
point 1 (low level) with pm = 0. There is no mutation and GA 
cannot find even good solutions.  

Increasing the mutation probability increases the fitness value until 
pm = 0.4. The other probabilities are insignificant after this level 
when compared respectively until pm = 0.95. There is a significant 
decrease in fitness at pm = 1. This is because of the inadequate 
pattern of GA: High mutation distorts the building blocks of GA 
such that good characteristics of individuals cannot be properly 
transferred to the following generations. 

Investigation of Figure 2.b shows that increments in mutation 
probability make significant reductions in CPU time covered. This 
result also agrees with our conclusions about test problem domain. 
As more mutation occurs more less-loaded systems are processed; 
hence simulation time decreases. But after point of 0.9 there is an 
increase in CPU time, which is in parallel with the fitness case. As 
the pattern of GA is disturbed, no convergence to good solutions 
occur, and unpredictable points from anywhere of solution space 
are processed. The search mechanism looses its logic, so increase 
in CPU time is observed. 

From Figures 2.a and 2.b, it is concluded that even more 
increments than 0.05 in mutation probability lead better solutions 
in terms of maximum fitness and minimum CPU time. Mutation 
probability of 0.4 is the most convenient choice, since it has the 
maximum fitness and significantly less CPU time. 
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a) Best Fitness with Different Levels of Mutation Probability 
Figure 2: Analysis of Different Mutation Probabilities 
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Figure 2: Analysis of Different Mutation Probabilities 

5. CONCLUSION 
In this study, we have proposed a new taxonomy of parameters of 
GA, numerical and structural, and examine the effects of numerical 
parameters on the performance of the algorithm in GA based 
simulation-optimization applications by the use of a test problem.  
Our aim is not to find the best parameter combination for a 
particular problem, but to come up with general conclusions. We 
start with the characteristics of the problem domain. The main 
characteristic features of our problem domain are: 

- There is a dominance of a set of decision variables with respect to 
the objective function value of the optimization problem: The 
objective function value is directly related with the combination of 
this dominant set of variables. Alteration of the values of dominant 
variable alters the solution’s performance substantially when 
compared with the other decision variables. 

- The good solutions are highly dominant over other solutions with 
respect to the objective function value, but not significantly diverse 
among each other.  

- Combining the above two features; good solutions have specific 
set of patterns in dominant set of decision variables, and these 
solutions are dominant over other feasible solutions among the 
solution space. 

These properties of the problem domain generate a rapid 
convergent behavior of GA. According to our computational 
results, high mutation rates give better performance.  GA 
mechanism creates a lock-in effect in the search space, i.e. the 
processed solutions have similar string patterns, hence high 
mutation rates decreases the risk of premature convergence and 
provides diversification in the search space in this particular 
problem domain. Due to the dominance crossover operator does 
not have significant impact on the performance of GA. Moreover, 
starting with a seeded population generates more efficient results. 
Because of the rapid convergent behavior of GA high levels of 
population size and maximum generation number parameters are 
inappropriate when the tradeoff between fitness improvement and 
CPU time covered is considered.  

We conduct same type of factorial design analysis on the 
extensions of our test problem.  Variations of objective function 
values and a constrained version of the problem are issues, but the 
experimental results agree with the previous statements about the 
best parameter levels for the particular problem domain under 
consideration. 

As a future research direction, the same analyses can be carried out 
for different problem domains, and with different structural 

parameter settings, and even the interaction between the numerical 
and structural parameters could be investigated. 

6. REFERENCES 
[1] J.T. Alander, “On optimal population size of genetic 
algorithms“,Proceedings of CompEuro 92, 1992, pp.65-70. 

[2] J.A. Cruz, and J. Haddock, “A general scheme of simulation 
optimization using a genetic algorithm,“ Technical Report, 
Rensselaer Polytechnic Institute, New York, 1993. 

[3] K.A. De Jong An analysis of the behavior of a class of genetic 
adaptive systems. Doctoral dissertation, University of Michigan, 
1975. 

[4] T.C. Fogarty, “Varying the probability of mutation in the 
genetic algorithm,“ Proceedings of the Third International 
Conference on Genetic Algorithms, 1989, pp.104-109. 

[5] D. Goldberg, Genetic algorithms in search, optimization and 
machine learning, Addison-Wesley, reading, M.A, 1989. 

[6] J.H. Holland, Adaptation in Natural and Artificial Systems. 
University of Michigan Press, Ann Arbor, 1975. 

[7] A.M. Law, and M. G. McComas, “Simulation-based 
optimization,“ Proceedings of the 2000 Winter Simulation 
Conference, 2000, pp. 46-49. 

[8] R. Nakano, and T. Yamada, “Conventional genetic algorithm 
for job shop problems, “Proceedings of the 4th Int. Conference 
on Genetic Algorithms, 1991, pp.474-479. 

[9] C.R. Reeves, Modern Heuristic Techniques for 
Combinatorial Problems, Wiley, New York, 1993. 

[10] J.D. Schaffer, R.A. Caruna, L.J. Eshelman and R. Das, “A 
study of control parameters affecting online performance of 
genetic algorithms for function optimization,“ Proceedings of the 
Third International Conference on Genetic Algorithms, 1989, 
pp. 51-60. 

[11] G. Suresh, V.V. Vinod and S. Sahu, “A genetic algorithm for 
facility layout,“ International Journal of Production Research, 
Vol. 33, 1995, pp. 3411-3423. 

[12] M.A. Wellman and D.D. Gemmill, “A genetic algorithm 
approach to optimization of asynchronous automatic assembly 
systems, “The International Journal of Flexible Manufacturing 
Systems, Vol. 7, 1995, pp. 27-46. 

SYSTEMICS, CYBERNETICS AND INFORMATICS                    VOLUME 2 - NUMBER 4 83


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2004

	Parameter Selection in Genetic Algorithms
	Onur BOYABATLI
	Ihsan SABUNCUOGLU
	Citation


	Microsoft Word - journalpaper.doc

