
International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Service	Lifecycle,	Service	Management,	Service	Monitoring,	Service	Registry,	Service	Repository,	
Service	Semantics

INTRODUCTION

Moving to service-oriented architecture (SOA)
introduces a completely new structure of enter-
prise IT (Krafzig et al., 2004). For each appli-
cation in the enterprise reusable services must
be defined encapsulating the implementation
platforms and technologies used. Subsequently,
these services can be orchestrated by process
languages as BPEL (OASIS, 2007) or BPMN
(OMG, 2011) to compose complex and applica-
tion spanning business processes that realize the
different business strategies (Figure 1).

Introducing SOA causes a paradigm shift:
In SOA, reusable services are the crucial com-
ponents of IT infrastructure. A service portfolio
that is under continual development serves as

the integration platform for enterprise-wide
business processes. Managing the service port-
folio is an essential task during IT operations.
From a general perspective, moving to SOA let
an enterprise substitute application and technol-
ogy management by service management.

As one major goal SOA fosters the reuse
of already existing services. Particularly, ser-
vice management has to support all aspects of
service-reuse. Especially, it has to deal with the
following issues:

• Finding	a	service: Software developers and
business process designers need decent sup-
port to decide whether the service portfolio
contains an appropriate re-usable service.
Otherwise, a new enterprise-wide usable
service must be commissioned.

Establishing Service
Management in SOA

Carsten	Kleiner,	Hannover	University	of	Applied	Sciences	and	Arts,	Germany

Jürgen	Dunkel,	Hannover	University	of	Applied	Sciences	and	Arts,	Germany

ABSTRACT
In	service-oriented	architectures	the	management	of	services	is	a	crucial	task	during	all	stages	of	IT	operations.	
Based	on	a	case	study	performed	for	a	group	of	finance	companies	the	different	aspects	of	service	manage-
ment	are	presented.	First,	the	paper	discusses	how	services	must	be	described	for	management	purposes.	In	
particular,	a	special	emphasis	is	placed	on	the	integration	of	legacy/non	web	services.	Secondly,	the	service	
lifecycle	that	underlies	service	management	is	presented.	Especially,	the	relation	to	SOA	governance	and	an	
appropriate	tool	support	by	registry	repositories	is	outlined.

DOI: 10.4018/jeei.2012010101

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Server für wissenschaftliche Schriften der Hochschule Hannover

https://core.ac.uk/display/132392973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• Selecting	a	service	version: If a suitable
service has been found, the appropriate
version of the service must be selected.
Services will usually change over time
so that different versions will co-exist.
Version control regarding dependencies
and incompatibilities between different
service versions is indispensable for man-
aging huge service portfolios. Therefore,
change management is a significant aspect
of service management.

• Providing	 service	 access: After the ad-
equate version of a service has been chosen,
the software developer must be provided
with all information necessary to invoke
the service, e.g., service signature, transport
protocols and service endpoints.

• To accomplish these objectives, service
management has to overcome different
challenges.

• Service	 semantics: The prerequisite of
service-reuse is a complete understand-
ing of the services provided. Firstly, se-
mantics of each service must be precisely
defined so that every service requester
can understand all the effects and impacts
of a service invocation. Furthermore, all
non-functional aspects of a service such
as quality of service (QoS) and service
level agreements (SLAs) must be specified
by formal contracts preventing differing
interpretations. For instance, the security
properties or performance characteristics
of a service must be known in advance.

• Heterogeneous	 technologies: Big enter-
prises, especially in the financial sector are
based on a heterogeneous IT infrastructure,
including legacy systems, e.g., CICS trans-
action monitors or packaged systems like
SAP. In a service-oriented architecture the
services of the portfolio are implemented
in different technologies running on dif-
ferent platforms. In real-world scenarios,
a service-oriented architecture cannot only
rely on Web services but must integrate
legacy services based on proprietary pro-
tocols and technologies.

• Tool	support: Big enterprises might have
to administer several hundreds of services
with a few thousands of operations. Due
to the huge number of services, an ap-
propriate tool support is indispensable. A
service registry-repository must provide
all necessary artifacts to find, understand
and manage the services.

In summary, the real challenge in SOA-
based enterprise IT is not developing a single
service, but managing a huge amount of con-
tinuously changing services.

In this paper we want to present the re-
sults of a project we realized together with
five enterprises from the financial sector. The
main goal was to study and evaluate different
concepts for service management. We laid the
emphasis on a pragmatic approach, i.e., the
objective was a service management process
that could be easily established in the different

Figure	1.	Portfolio	of	services	in	a	service-oriented	architecture

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 3

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

enterprises. Our pragmatic approach should
be based on technological standards as far as
possible. Usually, an extensive tool support
exists for well-established standards, so that
the costs of developing own solutions can be
significantly reduced. Therefore, we will discuss
in particular in what extend Web services stan-
dards like WSDL, UDDI and WS* can be used
in management of legacy services. Finally, we
investigated the particular requirements on an
adequate tool support for service management.

The paper is organized as follows: In
the next section we discuss how services in a
service-oriented architecture can be described.
In particular, different standards and formal-
isms for service description are discussed. We
outline the different aspects of service man-
agement related to the service life cycle. The
subsequent section presents the requirements
for SOA registry-repositories in some more
detail. Finally, we summarize our results and
provide an outlook on future lines of research
and development.

Service Description

Many different aspects must be considered for
using a service that is not self-implemented.
First, the service description must specify
the service interface providing the technical
basis for service invocation. Furthermore, non-
functional aspects such as quality of service
(QoS) and service level agreements (SLAs)
(Lee et al., 2003; Wada et al., 2006) must be
formally defined. For instance, details about the
security mechanisms in place must be known
before passing confidential data to a service.
Other management aspects support life cycle
management. For instance, version informa-
tion with regard to service lifecycle has to be
provided. Finally, the semantics of a service
must be specified to decide if a certain service
can fulfill the intended tasks. For Web services
decent formalisms exist for most of these aspects
of service descriptions. In this section, we will
discuss how they can be applied for legacy
services, which are services implemented by
proprietary legacy technology.

Service Interface

Different middleware approaches provide well-
established formalisms for describing service
interfaces, e.g., Interface Definition Language
(IDL) in Corba (OMG, 1997) and Web Service
Description Language (WSDL) for Web ser-
vices (Booth et al., 2007). Especially WSDL
allows a technology-independent description
of all relevant technical aspects of a service.
In WSDL four different parts are distinguished:

• The format of input and output messages
that must be sent and received to interact
with a service is defined by XML schema.

• All operations of a service are specified
by the incoming and outgoing messages
and the corresponding message exchange
patterns (MEP) (Booth et al., 2007).

• The message format and the transport
protocols are determined in the service
bindings, e.g., message format (such as
SOAP) and transport protocol (e.g., HTTP).

• Finally, the service endpoints describe the
locations where the services reside.

A service description specifying these
aspects is technically complete in the sense
that the stubs classes responsible for service
marshaling and demarshaling can be generated
automatically.

For Web services, WSDL is the standard
formalism for service description with a com-
prehensive tool support. However, for legacy
services WSDL cannot be used directly. Nev-
ertheless, WSDL is a good starting point for
describing legacy services also, since WSDL
is extensible and also because legacy system
providers offer different tools to generate WSDL
descriptions from legacy code.

• In legacy systems, the service operations
with the corresponding input and output
messages are described by proprietary
data structures, e.g., by Cobol copybooks
or 3270 screen buffers. To allow the usage
of WSDL these legacy data structures must

4 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

be defined by XML schema as in the type
part of WSDL. Fortunately, there exist
tools to convert legacy data to XML, e.g.,
CB2XML (Thomas, 2011) or DFHLS2WS
(Williams et al., 2007).

• Furthermore, the specification of the bind-
ings and service endpoints must be adjusted
to the technical characteristics of the legacy
systems. The extensibility mechanisms of
WSDL (Booth et al., 2007; IBM, 2011)
allow to incorporate arbitrary XML code
in WSDL, e.g., to define legacy specific
elements and attributes. For instance, to
specify a Websphere MQ service endpoint,
a technology-specific XML vocabulary
determining queue names and delivery
mechanisms can be defined.

Integration of legacy services can be ac-
complished by exchanging SOAP messages
(Lawrence, 2007). Figure 2 shows how a SOAP/
legacy gateway helps to integrate a legacy ser-
vice in a service-oriented architecture.

1. A WSDL description is generated from the
legacy service.

2. Stub classes are generated from the WSDL
description.

3. The service requester invokes the legacy
service using the stub classes that send
the input data via SOAP messages to the
gateway.

4. The gateway converts the SOAP message
to legacy data (e.g., a Cobol copybook) and
sends it via a proprietary protocol to the
legacy system (e.g., to a Websphere MQ
message queue).

Return values are sent back on exactly the
opposite way to the service requester.

Non-Functional Aspects

The usefulness of a particular service depends
strongly on its non-functional properties (Wada
et al., 2006). Generally, we can distinguish
constraints from service capabilities.

Constraints are conditions that the service
requester has to fulfill. In general, the messages
used for service invocation must be adapted
according to the given service constraints. For
instance, it might be necessary that the input
message for a service contains a certain type
of security token (e.g., a X.509 certificate).
In contrast, capabilities describe a particular
behavior that the service provider guarantees
(under the condition that the requester satisfies
all the constraints). For instance, it can be as-
serted that the response time is smaller than a
threshold or that all data is encrypted according
to specified mechanisms. Service capabilities
can provide decision criteria for selecting an
appropriate service.

Figure	2.	Using	SOAP/legacy	gateways	for	integrating	legacy	services

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 5

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

According to Lee et al. (2003) different
types of quality-of-service (QoS) properties
can be distinguished:

• Quantitative QoS properties are described
by a numerical value. Typically, quantita-
tive measures characterize service capabili-
ties like performance, reliability or avail-
ability measurements (e.g., response time
or throughput). Estimating such numerical
values is very challenging. Usually perfor-
mance or reliability measures cannot be
calculated by formal mechanisms, but they
are influenced by many different dynami-
cally changing factors such as workload,
utilization, and network traffic or hardware
problems. A pragmatic approach that most
enterprises use is estimating quantitative
QoS properties by analyzing monitored
data. Note that this approach doesn’t yield
any guarantees for the service requester.
There are always certain circumstances
under which a service cannot meet the
promised quality.

• Qualitative QoS properties define the es-
sential requirements and characteristics of a
service that can be described by a Boolean
expression. For instance, the assumed secu-
rity mechanisms or the transaction behavior
of a service are specified by qualitative
QoS properties (e.g., the use encryption
algorithms and the type of required security
tokens). Usually, qualitative QoS properties
must be completely fulfilled for a successful
service invocation.

The dependencies between service con-
straints and capabilities can be defined in
form of so-called Service Level Agreements
(SLA). An SLA can be understood as a contract
between a service provider and the service
requesters about their rights and obligations.
An indispensable prerequisite for establishing
Service Level Agreements in an enterprise is
that they are provable (Keller et al., 2003). In
particular, violations of SLAs must be detected
for allowing the enforcement of corresponding
penalties, i.e., what happens when the service

provider fails to offer the pre-agreed quality.
Therefore, two prerequisites must be fulfilled.

• Service Level Agreements must be pre-
cisely specified in a formal language
that is machine-readable and leaves no
room for interpretation. It is crucial that
non-functional aspects are described in a
formal way for allowing service requester
and server provider to rely on well-defined
rules of service usage.

• All QoS properties need to be measurable
and must be continuously monitored during
the provisioning of the service for detect-
ing SLA violations. In general monitoring
is a prerequisite for contract enforcement.
Each SLA might also contain some penalty
clauses that specify the consequences of a
specific SLA violation (Rana et al., 2007).
We will discuss service monitoring in some
more detail.

There are already some standards in the
Web services stack that address the descrip-
tion of non-functional aspects. The WS Policy
(Vedamuthu et al., 2007) and the WS Policy
Attachment (Vedamuthu et al., 2007) offer a
rather general framework for specifying non-
functional service aspects for Web services such
as QoS properties. WS Policy provides just
formalisms for combing arbitrary assertions by
using Boolean expression. However, formulat-
ing a specific assertion in a particular domain
requires a domain-specific vocabulary. In some
fields such a vocabulary has been already
defined in corresponding WS* specifications,
e.g., WS Security Policy (OASIS, 2007) defines
the vocabulary for security issues, and WS RM
Policy Assertion (OASIS, 2004, 2007) that for
reliability aspects. However, for many areas an
own enterprise- or domain-specific vocabulary
must be defined, e.g., for performance charac-
teristics such as response time or throughput.
Another example for missing standards is an
assertion vocabulary for cost or billing aspects.
Overall, even Web services are still lacking
comprehensive standards for defining policies.

6 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Legacy services can exploit WS Policy
as a description language for non-functional
properties without any problem, because WS
Policy is completely technology-independent.
However, the assertion-specific vocabulary
defined in some WS* specs cannot be eas-
ily transferred to legacy services. Instead,
legacy-specific vocabularies must be set up.
One example is determining the transactional
behavior of a service or defining the parameters
for reliable message transport both of which
might be technology-dependent.

When a SLA has been formally specified,
the service provider as well as the service
requester can monitor SLA violations. Differ-
ent types of SLA violation can be considered:
defective performance, i.e., the service provides
lower quality (for instance longer execution
times); late performance, i.e., a service provides
the promised quality with some delays; the
service doesn’t provide at all. Certain penalties
can define the consequences of a SLA violation.
Often, financial sanctions reduce the costs of
using the failed service (or of subsequent service
usage). Another possibility is a decrease of the
service providers’ public reputation.

Web services Agreement Specification
(WS-Agreement) (Andrieux et al., 2007) is a
standard from the Global Grid Forum that can
be used as a protocol for establishing SLA con-
tracts between service provider and consumer.
This standard is XML-based and technology-
independent and therefore also well-suited for
legacy services.

Management Aspects

Management aspects cover all the necessary
information for supporting lifecycle manage-
ment. In particular, the following aspects are
of interest.

• Lifecycle	 state: For each service its ac-
tual lifecycle state must be known: for
instance, it is crucial, whether a service
is just planned or already in operation.
Note that a well-defined service lifecycle

model is a prerequisite for distinguishing
lifecycle states.

• Versioning: Because services are subject
to further development and maintenance,
different versions of the same service might
co-exist. Therefore, each service descrip-
tion must contain appropriate version and
release information. Furthermore, for each
service version a corresponding lease time
should specify when it is deprecated.

• Dependencies: Usually, services mutu-
ally rely on each other, especially if they
are orchestrated using process modeling
languages like BPEL (OASIS, 2007) or
BPMN (OMG, 2011). Another type of
dependency exists between all services
that belong to a certain release. Overall,
dependencies between services must be
comprehensively defined.

• Access	Rights: Furthermore, each service
must be related to the organizational
structure of an enterprise. The usage of a
particular service might be restricted to a
specific group of persons. (For instance, a
service for increasing the salary might only
be accessible by people from the personnel
office.) Therefore, for each service its ap-
propriate access rights must be specified.
Because SOA services are provided by
different applications with their own user
accounts, an enterprise-wide integration
of user accounts in form of an identity	
federation is required.

Administrative information must be acces-
sible for each service. For describing manage-
ment aspects we can also make use of the WS
Policy framework. Specific XML code can
define state, version and dependency infor-
mation. Unfortunately, there are no standards
in this field yet, so that an enterprise-specific
XML format has to be developed. Only for
specifying authorizations a standard formalism
already exists: the Security Assertions Markup
Language (SAML) (OASIS, 2005) allows the
detailed specification of access rights for par-
ticular users in form of assertions.

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 7

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Service Semantics

Service-oriented Architectures foster the reuse
of services that are not self-implemented. Using
a service without knowing its implementation
details requires a complete understanding of the
service´s semantics. In particular, services can
be reused, that works with inputs and outputs that
users can provide/accept and that provides the
required functionality. For example, if a service
requester is looking for a booking service for
accommodations, he can also use reservation
services for hotels, hostels or boarding houses.
This means that he has to understand that the
domain concepts ‘hotel’, ‘hostel’ and boarding
house’ are sub-concepts or specializations of
the concept ‘accommodation’. Also service
parameters often require some semantic un-
derstanding. For instance, a service consumer
has to know, if a parameter ‘length’ requires
inch or cm as the appropriate measurement
unit. In summary, a service requester needs
service semantics for using a service appropri-
ate; as well as for service discovery, selection,
composition and replacement. Furthermore, the
service users must know all about its specific
restrictions and specialties.

There are a lot of different ambitious ap-
proaches for describing semantics, e.g., using
complex formalisms. Those are therefore mostly
used in research projects. Instead, enterprises are
looking for a pragmatic way to define service
semantics. In general, a range of the following
formalisms can be applied:

• Informal	 textual	 descriptions: Actually,
only few enterprises use precise formalisms
for service semantics. In our case study,
all companies specified service seman-
tics only informally by unstructured text
documents. But they don’t feel comfort-
able with this approach, because textual
descriptions are imprecise and leave room
for interpretations.

• Design-by-contract: One aspect of the
semantic description of a service is a pre-
cise specification of the service interface.

Design-by-contract uses pre and post condi-
tions to describe the obligations of a service
caller and the corresponding guarantees of
the service provider. The Object Constraint
Language (OCL) of UML (OMG, 2006)
allows formulating Boolean and temporal
expressions for defining restrictions on op-
eration parameters and return values. There
are several tools (Demuth, 2011) that can
use OCL constraints for generating code
that checks pre- and post-conditions. Actu-
ally, OCL is rather established in industry
and most of the enterprises are planning to
enrich the service description with OCL in
the near future.

• Ontologies: An ontology is a semantic mod-
el to describe domain concepts including
their properties, relations and dependen-
cies. Independent of the applied formalism
service provider and consumer must have
a common understanding of the concepts
defined in the semantic model. There are
many different ontology languages. Well-
known are e.g., RDF (Manola & Miller,
2004), RDF-S (Brickley & Guha, 2004)
and OWL (W3C OWL Working Group,
2009). Ontologies can support the intel-
ligent search of appropriate services using
reasoning and inference mechanisms.

• Ontology	 languages	 for	service	descrip-
tions: Meanwhile, ontology languages
specialized on the semantic description of
(Web) services have been introduced: the
most popular are OWL-S (Martin et al.,
2004) and WSMO (de Bruijn et al., 2005;
Lara et al., 2005) that can support semantic
service matchmaking (Paolucci et al., 2002)
and automatic service composition (Yang
et al., 2004). Semantic matching tries to
match service requests and service adver-
tisements that both are described by using
existing ontologies. This type of matching
problems should be decided automatically
and should yield services that provide the
requested functionality. Automatic service
composition generates composite services
based on a high level specification of the

8 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

desired composition and a set of compos-
ability rules that compare syntactical and
semantic features of the services (Medjahed
et al., 2003).

For most enterprises approaches such as
OWL-S or WSMO are too complex, difficult
to understand and therefore too expensive (Lara
et al., 2005). A more pragmatic approach is
the employment of Semantic Annotations for
WSDL (SAWSDL) (Farrell & Lausen, 2007),
which is a W3C standard allowing the annota-
tion of WSDL language elements. In particular,
the WSDL message types can contain pointers
to an arbitrary conceptual model, which for in-
stance is described in RDF-S, OWL or another
ontology language.

In summary, it is challenging to introduce
semantic service descriptions in an enterprise-
wide service portfolio. But our case study has
shown that an incremental process is promis-
ing. First, textual descriptions can be enriched
by OCL pre and post conditions. Secondly,
semantic annotations based on SAWSDL can
be introduced, which presume that a concep-
tual domain model already exists. Finally,
service ontologies could be developed. They
allow advanced options such as using the RDF
query language SPARQL (Prud’hommeaux
& Seaborne, 2008), or exploiting inference
mechanisms for intelligent reasoning.

Service Management During
the Service Lifecycle

In a real-world enterprise IT adequate SOA
governance must be in place making use of the
service descriptions in all facets as described
in the previous section. It is important to note
that not only technical aspects are important for
governance but the domain-specific business
aspects alike. This can be inferred from the
fact that SOA by its very nature is supposed
to be accessible by both business as well as
technology experts. Naturally, SOA should also
be supported by appropriate software tools.

Prerequisite: SOA Governance

SOA governance is typically understood as the
set of guidelines, rules and regulations within
an organization on how the IT is structured
and managed internally. It also consists of a
set of processes that should be in place in order
to enforce the aforementioned specifications.

Since SOA is both a technological as well
as a business oriented pattern at least the first
two steps in the development process differ
significantly from traditional software develop-
ment processes. This is due to the fact that the
business departments are much more involved
in the development process than before. Thus
software tools used for service management
have to be accessible by both technical as well
as business experts. Ideally they are not only
accessible but even improve and simplify the
communication between those parties in the
SOA process. In that way the software tools can
be used to support all aspects of the process.

SOA governance does have to take all
phases of the service lifecycle into account. The
well-known (cf. Durvasula et al., 2008) simple
lifecycle model which is sufficient for analyzing
the governance aspects consists of three stages
(Requirements & Analysis, Design & Devel-
opment, IT Operations) which are depicted in
Figure 3. It is important to stress that opposite
to widespread belief, data from operations is
also required in order to enable real manage-
ment of a SOA. That is because services once
in operation have to be monitored, their usage
has to be controlled and other operations related
information has to be analyzed. This analysis is
often carried out by managing personnel. Thus
software tools for SOA management have to
provide an interface to managing personnel and
also have to be integrated with IT operational
systems. In fact, SOA specific extensions of
those systems will be required in order to fa-
cilitate business activity monitoring.

Roles are often used within an organization
in order to define responsibilities independent
of particular beings. In SOA apart from the

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 9

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

classical IT roles such as system analyst, ap-
plication developer and IT administrator there
is the need for defining an additional set of
roles. In our case studies we identified the roles
of domain owner, SOA architect, service de-
veloper (not to be confounded with application
developer!) and metadata administrator. These
roles seem to be of sufficient general importance
even though an enterprise specific extension or
adjustment may be required. In any case should
software tools that support service management
be able to deal with such extended and flexible
roles in a SOA. They should also support these
roles and moreover be supportive of optimizing
the cooperation between them.

Services Lifecycle

In order to be able to define the requirements
for service management more precisely, it is
necessary to look in more detail into the ser-
vice lifecycle. We did that in our case study in
cooperation with a wide range of companies,
mainly from the financial sector. Though we
received our empirical results solely in financial
companies we feel that the foundation of our
study is wide enough to lead to easily transfer-
able results for other fields.

The more detailed lifecycle model that has
been developed in our study is shown in Figure
4. Initially a service reaches the status planned
after the idea is raised to offer a specific func-
tionality as service. Note that the functionality
does not have to be a new one; this model also
applies to legacy functionality that is lifted to

a service as well as external functionality to be
integrated. The potential service is described in
a concept paper which is then submitted to the
local SOA managing board or SOA architect
(depending on the particular organization),
reaching the state suggested. The managing
instance will then decide on the future develop-
ment regarding this service:

• The concept may be approved if the service
seems beneficial, is subject to implementa-
tion in the near future and thus entered into
the development pipeline achieving the
status concept	approved.

• The service may seem beneficial in gen-
eral, but the concept is not yet sufficiently
detailed, completed or contains inconsis-
tencies; in this case the service is returned
to the suggesting party for an extended
planning stage.

• The service is considered not relevant or
already existing; in this case the service
will not be considered for implementation
and may be treated as decommissioned.

In the design and development phase a
service will be implemented and thereafter
is subject to testing and validation similar to
traditional software components. It may either
be considered ready for production moving to
the tested	and	implementation	approved status.
Or the service still contains errors or deviates
from the original concept in which case it is
returned to the developers and moves back to
the concept	approved state.

Figure	3.	Simple	model	of	service	lifecycle	(cf.	Durvasula	et	al.,	2008)	

10 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

After successful testing a service is de-
ployed and thus published to the IT operations
stage. After operations has made the service
available on a production system it reaches the
in	production status. This is the status where
service monitoring takes place as described in
the previous section, generating all necessary
usage information for the services. This infor-
mation should be stored in a central location
ideally the same location which has been used
for managing services throughout the previous
stages of the lifecycle. Other developers and
especially the SOA governing instance in the
company may use such data for planning the
future development of a service. There might
be the need for certain adjustments which leads
to the service going into the in	revision state.
In this state the next version of the service is
planned and implemented while the current
version may remain in production.

It might also be detected that a certain
service is (no longer) required or used in which
case it can be prepared for removing from the
production system. This is expressed by the
announced	 deprecated state. After a certain
period of time the service is physically removed
from the production system. The particular time
interval depends on the service and company
in question. This is expressed by the decom-
missioned state. At this time the service is
no longer available but all meta-information
assembled about the service is still available.

This may be important for future services and
SOA planning in general.

The increased complexity of the lifecycle
coupled with the governance requirements from
the previous section causes strong demand for
advanced software support for service manage-
ment. Tools that provide such functionality are
typically called service registries and/or service
repositories. In the next section we will describe
requirements for these tools based on the dis-
cussion of service management in this section.

Using Registry Repositories
for Service Management

Support During Service Lifecycle

As already discussed in the previous section a
central software tool for managing all informa-
tion about services in all different stages of the
lifecycle is extremely beneficial. Such service
registry-repositories (SOA-RR) are an impor-
tant component of a SOA and support service
management as well as governance throughout
the full service lifecycle.

In particular a SOA-RR may be used for
the following important tasks:

• In the requirements and analysis stage it
may be used as a well-defined instance be-
tween the different parties involved in this
part of the lifecycle (e.g., SOA board and

Figure	4.	Detailed	model	of	service	lifecycle

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 11

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

service designers). It may assist in securing
a redundancy-free SOA as well as con-
formance to the technological guidelines
within the company. Moreover it facilitates
a valid judgment of the business case for
any given service by the managing board.
Finally it may be used for enforcing a proper
process model as well as conformance to
the defined business strategy.

• During design and development it may
increase reuse of basic services (cf. Krafzig
et al., 2004) by the developers and may
assist them in observing version-based
dependencies between services. A SOA-
RR supports the compliance with defined
SLAs both on the basic service level as
well as on the business service and process
levels. Finally, it assists SOA board and
lead developers in gaining an overview
of the current implementation status of the
company’s SOA at any given time.

• In the operations stage information in the
SOA-RR may be used for discovering
rarely used services and to prepare decom-
missioning of services by e.g., identifying
dependent services. It may also be used as a
single point of storage for change requests
to a given service. Finally, the information
in the SOA-RR could also be used for ac-
counting information in case the company
internally or externally uses a charge model
for the services.

Information for this final stage is in many
cases based on data that is generated while
services are in production. Monitoring life
services and feeding the information back into
the SOA-RR is a very important feature and is
thus discussed in more detail.

Detailed Requirements for SOA-RR

In our study we also tried to evaluate existing
commercial offerings of SOA-RR products. In
order to do so we analyzed the requirements for
SOA-RR described in the previous section. This
leads to a functionality-oriented list of detailed
requirements for SOA-RR in order to perfectly
support service management.

We structured the necessary functions into
four categories, namely basic functions, static
functions, dynamic functions and technical
functions which will be explained in more
detail in the sequel.

Among the basic	functions is the storage
and management of all artifacts that are impor-
tant for a SOA, namely services themselves,
descriptions of interfaces, message formats,
business processes and policies. All enter-
prises regardless their internal structures and
processes require storage and management of
full-text documents and arbitrary binary files.
Of course all required metadata associated with
any of these artifacts should also be managed
by the SOA-RR. Finally it is not only required
to store this information but also to be able to
search for and visualize information. Note that
services are not restricted to Web services in
the context of most enterprises: other types of
services integrated into the SOA such as legacy
services should be equally manageable by the
SOA-RR.

With static	functions we denote all func-
tionality that is not inherently related to opera-
tion of services in the production environment.
Static functions support service developers,
architects and the SOA board in the earlier stages
of the lifecycle. Static functions include service
discovery in order to increase the level of ser-
vice reuse as well as dependency management
between services and/or versions of services.
These are already required during analysis and
design in order to be able to improve the design
of services. Moreover management of connec-
tions between different artifacts in a SOA such
as versioning and classification of services is
also necessary in the analysis and design stages
already. It should again be noted that integration
of legacy services (cf. IBM, 2011) is already
very important in this set of functions as the SOA
architects need a complete view on all services
in the IT infrastructure in order to achieve the
best possible overall design.

The IT operations part of the service
lifecycle also has to be supported by a SOA-
RR. Such dynamic or runtime	functions may
be of a very technical nature such as user,

12 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

roles and rights management. They may also
be of interest for the managing instances of a
company considering e.g., support for change
management or accounting of service usage.
If required in a particular SOA the support for
dynamic service discovery and binding also
originates from dynamic functions supported
by the SOA-RR. In summary, the requirements
in the area of dynamic functions can be roughly
structured into the following groups:

1. Lifecycle management
2. User and rights management
3. Change management
4. Logging
5. Monitoring/Accounting
6. Governance support

Starting with these groups the require-
ments for a SOA-RR can be further detailed
into specific micro requirements which can
then be evaluated against products in question.
The groups for the dynamic functions which
have been named lead to the following micro
requirements:

1a. Service lifecycle can be managed.
1b. User-defined service lifecycle can be de-

fined and will be used.
1c. States in a service lifecycle can be assigned

automated actions to be performed upon
entry/presence/exit of a given state.

1d. User and rights management of SOA-RR
is specific to certain states of a lifecycle.

2a. User and rights management is SOA-RR
specific.

2b. User model for SOA-RR is based on roles.
2c. SOA-RR can be configured to use external

rights management software (e.g., LDAP).
3a. Changes to a service are managed by SOA-

RR.
3b. Automated notifications are sent by

SOA-RR upon changes to a service to
pre-configured users.

3c. Users can manually register to receive
notifications upon changes to a service.

3d. Automated registration of users to receive
notifications upon changes to a service
are possible based on certain conditions;
conditions may include information from
previous states of the service lifecycle,
e.g., authors of a service are automatically
notified when a new version of the service
has been published by a different author.

In a similar manner the other groups of
dynamic requirements can be further detailed as
well as these exemplary groups. This is omitted
here due to space constraints.

Among the technical	 functionality to be
provided by a SOA-RR are traditional database
management system functions such as reliabil-
ity, backup, recovery features and the option to
operate it in a distributed environment. Also
the potential for easy integration into the given
IT infrastructure of the company is extremely
important leading to requirements such as
extensibility, support of well-known standards
and publicly available API.

All these clusters of requirements can
be detailed in the same two-step process as
has been shown exemplarily for the dynamic
functionality cluster and the groups of lifecycle
management, user and rights management and
change management. All the micro requirements
extracted from this process together form a
huge set of potential functions that almost no
product will be able to fulfill without custom-
ized extensions. Therefore the complete list of
micro requirements should then be assembled
in a spreadsheet, prioritized and weighted (by
each potential using company individually) in
order to achieve a customized set of the most
important functions in a given enterprise envi-
ronment. Even if several of the listed functions
do not seem immediately required for a given
company they should be kept in mind, because
it is very likely that they are required later on
with increasing level of SOA maturity.

In order to assess the usability of a certain
SOA-RR product and/or compare it with other
products one requires an additional set of practi-

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 13

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

cal requirements. These are extremely company
and specific policy dependent. They include is-
sues like quality of documentation, complexity
of installation, configuration and operation as
well as ergonomic user interface. In addition
issues like extensibility, price, licensing options
and reference customers may be used as micro
requirements in the non-functional area as well.
They also have to be included into an overall
judgment of a specific SOA-RR tool.

In our cooperation project we performed
a market study to narrow the list of potential
candidate products for our cooperating compa-
nies to a short list in a first step by analyzing
system documentation. Note that parts of the
individual priorities have already been used to
determine the products on the short list. The
products on that short list have been: Software
AG CentraSite, IBM WebSphere Service
Registry & Repository, Bea AquaLogic Ser-
vice Registry (now: Oracle Service Registry),
Systinet Registry (now part of: HP SOA Sys-
tinet). Finally for each cooperating company
we used the individual priorities and weights
to compare the products from the short list in
detail in a second step. This comparison was
based on concrete installations of the products
and application to real-world services from
the partners. The results strongly depend on
the individual situation and thus no generally
valid recommendation can be made.

Service Monitoring

Of particular importance for SOA manage-
ment and governance is monitoring the current
production operation of an enterprise’s SOA.
This is already obvious from the discussion of
non-functional service aspects as well as from
the description of SOA governance tasks. For
service monitoring should provide an under-
standing of the quantitative aspects the entire
SOA. A main goal is to guarantee Quality of
Service, i.e., stability and trust in a dynamically
changing IT infrastructure. Recently, Assurance
Networks have been introduced discussing
adequate mechanisms for achieving service
quality (Dunkel, 2011; Kakuda & Malek,

2011). In particular the following issues can
be distinguished:

• Bottleneck	analysis: An important aspect
of the technical SOA management is the
detection of bottlenecks in the enterprise
IT allowing performance-tuning activities.
To be able to do that information about the
execution times of and average response
time of services and processes as well as
error rates and call frequencies is required.
This information can be obtained while
monitoring the operation of the services
within a SOA.

• Network	diagnosis: Another capability of
system monitoring is a network diagnosis
in real-time. The system manager are in-
terested in detecting threads like network
intrusion, hardware or network failures as
early as possible to take appropriate actions.

• Capacity	planning: IT operation’s manage-
ment requires detailed monitoring informa-
tion as the basis for capacity planning and
infrastructure optimization.

• Managing	 SLAs: Furthermore, service
monitoring is a necessary infrastructure for
establishing Service Level Agreements in
an enterprise. Only observed performance
measurements allow a rather precise es-
timation of QoS properties. And service
monitoring is the tool for guaranteeing
the compliance with defined service level
agreements, i.e., for detecting SLA viola-
tions during system operations.

• SOA	governance: Based on the monitored
atomic data further information can be
derived, which is important for the general
SOA governance. Among that information
may be billing and accounting for com-
mercial services and the conformance to
defined security policies. This may go as far
as monitoring call statistics for certain ser-
vices and advertising these. Also business
statistics might be generated from process
monitoring information depending on the
SOA maturity level of the organization.

14 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The companies in our case study also con-
sidered service monitoring to be so important
that a follow-up project had been started.

Depending on the particular goals of
service monitoring in an organization and the
tools employed, several different architectural
options are possible. In the simplest case each
service would report the desired data to a central
monitoring component in fixed intervals. This
may be sufficient for simple monitoring infor-
mation such as call frequency but is not really
satisfactory as foundation for SOA governance.

Another option might be to define a fixed
monitoring interface which every service has
to implement. This interface would then be
called by the monitoring component in certain
intervals. The benefit over the first option is
that a central monitoring component owns
the monitoring process. Thus service errors or
unfulfilled SLAs can be detected. The major
drawback is that the service implementation
itself has to be concerned with monitoring by
implementing the interface. To overcome this,
a loosely coupled architecture for monitoring
should be preferred as shown in Figure 5.

In this architecture the monitoring compo-
nent is independent of the services. It operates
directly on the ESB to collect important execu-
tion information. It is also connected to the

SOA-RR for two reasons: firstly the monitoring
component operates based on the RR to obtain
meta information required for proper operation.
Secondly it assembles important monitoring
information and stores it in the SOA-RR. This
is required because the SOA-RR is the founda-
tion for SOA governance, i.e., the instance
where the monitoring information will be
evaluated.

SUMMARY

In this paper we have discussed important as-
pects of managing services in a service-oriented
architecture. The discussion and findings are
based on a case study that we have performed
in cooperation with several major companies
from the financial sector in the Hannover re-
gion. Of specific interest for these companies
is the integration of legacy/non-web services
within their SOA.

In particular we have discussed which
aspects of services need to be described for
service management. For each of these aspects
we have given example languages that can be
used. Thereafter we have shown that service
management in an enterprise environment re-
quires SOA governance. Such governance has
to be based on the specific service lifecycle in

Figure	5.	Architectural	model	for	SOA/service	monitoring

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 15

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

a SOA and should be supported by appropriate
software tools. A specific lifecycle model which
has been developed in our project has been pre-
sented and the SOA registry-repositories (SOA-
RR) have been identified as the central piece in
SOA governance. Also we have discussed why
service monitoring and the feedback of results
of this monitoring into the SOA-RR are very
important for mature service management; this
is still not standard in many products nowadays.

Consequently, SOA-RR tools have to sup-
port all the XML based languages used for ser-
vice descriptions as well as all the requirements
arising from supporting the service lifecycle.
We have assembled all these requirements and
shown that they can roughly be classified as
basic, static, dynamic or technical. Advanced
software tools are on the market and the best
choice depends on the individual priorities of the
particular enterprise. For the companies in our
project we have developed a balanced scorecard.
Based on this, each company is able to define
its individual weights for the complete list of
requirements. After defining such weights the
best individual choice of a SOA-RR product at
the time of writing can be concluded.

Future Work

Some parts of our research are subject to con-
stant changes while others seem pretty stable.
The general aspects of service description
are not expected to change much whereas the
particular languages used to describe them
may change significantly in the near future. In
particular the area of service semantics (maybe
in a given domain context) might be subject to
rapid improvement. Consequently, the require-
ments to support semantic service descriptions
might increase.

The validity of the service lifecycle mod-
eled in our project should be evaluated in
real-world scenarios in other business sectors
as financial. While the general stages seem
pretty reasonable for every sector there might be
some specific parts which are domain specific.
Requirements for SOA-RR would have to be
adjusted accordingly.

The tool evaluation results are undergoing
constant change as the tools are improving
constantly. Thus the partner companies of our
project will need to monitor the market closely
in order to be able to derive the most recent re-
sults at any time. Currently the companies are at
different stages in the process of establishing a
service management as described in this paper.
Thus the time when a SOA-RR is required to
establish a proper service management differs
from immediate to medium-term.

Apart from service semantics we see the
most potential for improvements in the near
future in the area of service and business
process monitoring. We are currently working
on a project with the same companies in order
to establish a service and process monitoring
within their SOA. Particular focus in this project
is on generation of monitoring information and
the feedback of such data into the SOA-RR.
This is required to establish a business process
and service controlling based on monitoring.

ACKNOWLEDGMENT

The authors would like to thank the partner
companies from the competence center for
information technology and management
(CC_ITM) for funding of this research project.
In particular they would like to thank the com-
panies for practical support and domain-specific
cooperation during the project.

REFERENCES

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K.,
Ludwig, H., Nakata, T., et al. (2007). Grid	Resource	
Allocation	Agreement	Protocol	(GRAAP)	WG:	Web	
Services	Agreement	Specification	(WS-Agreement).
Retrieved October 24, 2011, from http://www.ogf.
org/documents/GFD.107.pdf

Booth, D., & Liu, C. K. (2007). Web	Services	Descrip-
tion	Language	(WSDL)	Version	2.0	Part	0:	Primer.
Retrieved October 24, 2011, from http://www.w3.org/
TR/2007/REC-wsdl20-primer-20070626

16 International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Brickley, D., & Guha, R. V. (2004). RDF	Vocabu-
lary	Description	Language	1.0. Retrieved October
24, 2011, from http://www.w3.org/TR/rdf-schema/

de Bruijn, J., Bussler, C., Domingue, J., Fensel,
D., Hepp, M., Keller, U., et al. (2005). Web	Service	
Modeling	Ontology	WSMO. Retrieved October 24,
2011, from http://www.w3.org/Submission/WSMO/

Demuth, B. (2011). Dresden	OCL. Retrieved October
24, 2011, from http://www.dresden-ocl.org/index.
php/DresdenOCL

Dunkel, J. (2011). Assurance networks from a
software perspective. In Proceedings	 of	 the	 10th	
International	 IEEE	 Symposium	 on	 Autonomous	
Decentralized	Systems, Tokyo, Japan (pp. 441-448).

Durvasula, S., Guttmann, M., Kumar, A., et al. (2008).
SOA	Practitioners’	Guide	Part	3:	 Introduction	 to	
Services	Lifecycle. Retrieved October 24, 2011, from
http://www.soablueprint.com/practitioners_guide

Farrell, J., & Lausen, H. (2007). Semantic	Annotations	
for	WSDL	and	XML	Schema. Retrieved October 24,
2011, from http://www.w3.org/TR/sawsdl/

IBM. (2011). Write	the	WSDL	extensions. Retrieved
October 24, 2011, from http://publib.boulder.ibm.
com/infocenter/iseries/v5r3/index.jsp?topic=/
rzatz/51/webserv/wswsifattwsdl.htm

Kakuda, Y., & Malek, M. (2011). A unified design
model for assurance networks and its applications
to mobile adhoc networks. In Proceedings	 of	 the	
10th	IEEE	International	Symposium	on	Autonomous	
Decentralized	Systems, Tokyo, Japan (pp. 637-644).

Keller, A., & Ludwig, H. (2003). The WSLA
Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal	 of	
Network	and	Systems	Management, 11(1), 57–81.
doi:10.1023/A:1022445108617

Krafzig, D., Banke, K., & Slama, D. (2004). En-
terprise	 SOA:	 Service-Oriented	Architecture	 Best	
Practices. Upper Saddle River, NJ: Prentice Hall.

Lara, R., Polleres, A., Lausen, H., Roman, D.,
de Bruijn, J., & Fensel, D. (2005). A	Conceptual	
Comparison	between	WSMO	and	OWL-S. Retrieved
October 24, 2011, from http://www.wsmo.org/2004/
d4/d4.1/v0.1/20050106/d4.1v0.1_20050106.pdf

Lawrence, C. (2007). Adapting	legacy	systems	for	
SOA. Retrieved October 24, 2011, from http://www.
ibm.com/developerworks/webservices/library/ws-
soa-adaptleg/

Lee, K., Jeon, J., Lee, W., Jeong, S.-H., & Park, S.-W.
(2003). QoS	for	Web	Services:	Requirements	and	Pos-
sible	Approaches. Retrieved October 24, 2011, from
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

Manola, F., & Miller, E. (2004). RDF	Primer. Re-
trieved October 24, 2011, from http://www.w3.org/
TR/rdf-primer/

Martin, D., Burstein, M., Hobbs, J., Lassila, O.,
McDermott, D., McIllraith, S., et al. (2004). OWL-S	
Semantic	Markup	Web	Services. Retrieved October
24, 2011, from http://www.w3.org/Submission/
OWL-S/

Medjahed, B., Bouguettaya, A., & Elmagarmid, A.
(2003). Composing Web services on the Semantic
Web. The	 Very	 Large	 Data	 Base	 Journal, 12(4),
333–351. doi:10.1007/s00778-003-0101-5

OASIS. (2004). Web	Services	Reliable	Messaging	
TC	WS-Reliability	1.1. Retrieved October 24, 2011,
from http://docs.oasis-open.org/wsrm/ws-reliability/
v1.1/wsrm-ws_reliability-1.1-spec-os.pdf

OASIS. (2005). SAML	V2.0	Executive	Overview.
Retrieved October 24, 2011, from http://www.
oasis-open.org/committees/download.php/13525/
sstc-saml-exec-overview-2.0-cd-01-2col.pdf

OASIS. (2007). Web	Services	Business	Process	Ex-
ecution	Language	Version	2.0. Retrieved October 24,
2011, from http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

OASIS. (2007). Web	 Services	 Reliable	 Messag-
ing	Policy	Assertion	(WS-RM	Policy)	Version	1.1.
Retrieved October 24, 2011, from http://docs.
oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-
spec-os-01.pdf

OASIS. (2007). WS-SecurityPolicy	1.2. Retrieved
October 24, 2011, from http://docs.oasis-open.org/
ws-sx/ws-securitypolicy/v1.2/ws-securitypolicy.
html

Object Management Group (OMG). (1997). Common	
object	request	broker	architecture. Retrieved October
24, 2011, from http://www.corba.org

Object Management Group (OMG). (2006). Object	
Constraint	Language	Version	2.0. Retrieved October
24, 2011, from http://www.omg.org/spec/OCL/2.0/

Object Management Group (OMG). (2011). Business	
Model	and	Notation	(BPMN)	Version	2.0. Retrieved
October 24, 2011, from http://www.omg.org/spec/
BPMN/2.0/

International Journal of E-Entrepreneurship and Innovation, 3(1), 1-17, January-March 2012 17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Paolucci, M., Kawamura, T., Payne, T., & Sycara, K.
(2002). Semantic matching of web services capabili-
ties. In I. Horrocks & J. Hendler (Eds.), Proceedings	
of	the	First	International	Semantic	Web	Conference
(LNCS 2342, pp. 333-347).

Prud’hommeaux, E., & Seaborne, A. (Eds.). (2008).
SPARQL	 –	 Query	 Language	 for	 RDF. Retrieved
October 24, 2011, from http://www.w3.org/TR/
rdf-sparql-query/

Rana, O., Warnier, M., Quillinan, T., & Brazier, F.
(2007). Managing violations in service level agree-
ments. In Proceedings	of	the	Usage	of	Service	Level	
Agreements	 in	 Grids	 Workshop,	 alongside	 ACM/
IEEE, Austin, TX.

Thomas, P. T. R. (2011). CB2XML:	Cobol	copybook	
to	XML	converter. Retrieved October 24, 2011, from
http://sourceforge.net/projects/cb2xml/

Vedamuthu, A. S., Orchard, D., Hirsch, F., Hondo,
M., Yendluri, P., Boubez, T., & Yalçinalp, Ü. (2007).
Web	 Services	Policy	 1.5	 –	Attachment. Retrieved
October 24, 2011, from http://www.w3.org/TR/
ws-policy-attach/

Vedamuthu, A. S., Orchard, D., Hirsch, F., Hondo, M.,
Yendluri, P., Boubez, T., & Yalçinalp, Ü. (2007). Web	
Services	Policy	1.5	–	Framework. Retrieved October
24, 2011, from http://www.w3.org/TR/ws-policy/

W3C OWL Working Group (Ed.). (2009). OWL	2	
Web	 Ontology	 Language. Retrieved October 24,
2011, from http://www.w3.org/TR/owl2-overview/

Wada, H., Suzuki, J., & Oba, K. (2006). Modeling
non-functional aspects in service oriented archi-
tecture. In Proceedings	of	 the	 IEEE	International	
Conference	on	Services	Computing (pp. 222-229).

Williams, N., Herrman, R., Lopez, L., & Ebbers, M.
(2007). Implementing	CICS	Web	Services. Retrieved
October 24, 2011, from http://www.redbooks.ibm.
com/redbooks/pdfs/sg247206.pdf

Yang, J., & Papazoglou, M. (2004). Service com-
ponents for managing the life-cycle of service
compositions. Information	Systems, 29(2), 97–125.
doi:10.1016/S0306-4379(03)00051-6

Carsten	Kleiner	received	a	MS	in	computer	science	from	Purdue	University	in	1996,	a	diploma	
degree	in	mathematics	and	computer	science	from	the	University	of	Hannover,	Germany,	in	1997	
as	well	as	a	doctoral	degree	(Dr	rer	nat)	from	the	University	of	Hannover	in	2003.	Thereafter	
he	worked	 for	 several	 years	as	a	 technical	 consultant	 and	project	manager	 in	 the	 software	
industry.	Since	2004	he	is	a	professor	for	secure	information	systems	in	the	computer	science	
department	of	the	University	of	Applied	Sciences	and	Arts	Hannover,	Germany.	His	research	
interests	include	database	and	information	systems	and	their	applications,	as	well	as	information	
systems	for	mobile	devices.	His	focus	in	this	area	is	on	security	aspects	and	web	services	for	
mobile	platforms.	He	is	also	interested	in	computer	science	education,	specifically	for	capstone	
courses.	Carsten	Kleiner	is	a	member	of	the	German	Computer	Science	Society	(GI)	as	well	as	
the	Association	for	Computing	Machinery	(ACM).

Jürgen	Dunkel	received	a	Diploma	degree	in	computer	science	from	University	of	Dortmund	in	
1984	and	a	Doctoral	degree	from	University	of	Hagen	(Germany)	in	1989.	Afterwards,	he	worked	
for	several	years	as	a	software	architect	and	project	manager	in	software	industry.	Since	1998	
he	is	a	professor	of	computer	science	at	the	Hochschule	Hannover	(University	of	Applied	Sci-
ences	and	Arts).	His	research	interests	include	software	architecture,	event-driven	architecture,	
semantic	models,	and	model-driven	software	development.	Currently	he	is	working	in	several	
projects	applying	complex	event	processing	in	sensor	networks.	Jürgen	Dunkel	is	a	member	of	
the	German	Computer	Science	Society.

