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Abstract. In this paper, we consider the route coordination problem in emergency
evacuation of large smart buildings. The building evacuation time is crucial in sav-
ing lives in emergency situations caused by imminent natural or man-made threats
and disasters. Conventional approaches to evacuation route coordination are static
and predefined. They rely on evacuation plans present only at a limited number of
building locations and possibly a trained evacuation personnel to resolve unexpected
contingencies. Smart buildings today are equipped with sensory infrastructure that
can be used for an autonomous situation-aware evacuation guidance optimized in
real time. A system providing such a guidance can help in avoiding additional evac-
uation casualties due to the flaws of the conventional evacuation approaches. Such
a system should be robust and scalable to dynamically adapt to the number of evac-
uees and the size and safety conditions of a building. In this respect, we propose a
distributed route recommender architecture for situation-aware evacuation guidance
in smart buildings and describe its key modules in detail. We give an example of its
functioning dynamics on a use case.

Keywords: Evacuation guidance, real-time routing, distributed evacuation coordi-
nation, complex event processing, situation aware routing.

1. Introduction

In a large building hazard, an efficient and rapid evacuation is of the utmost importance
as hundreds or thousands of people need to be evacuated as quickly as possible. The
objective of the building evacuation is an efficient relocation of people from a hazardous
building under imminent danger to safe areas through safe and rapid evacuation routes.

Standard building evacuation approaches do not provide any means for modification
of an evacuation plan as an incident unfolds. They usually rely on general recommen-
dations and guidelines about what to consider and how to react in emergency evacua-
tion (see, e.g., [4]). Frequently, no coordination is available except for predefined evac-
uation maps that contain (usually two) predetermined main evacuation routes that may
get blocked as a hazard evolves. In the case of a hazard in large buildings, conventional
evacuation approaches assume the introduction of trained evacuation coordinators at spe-
cific building locations, if possible. They guide evacuation based on an ad hoc decision
making and incomplete situation awareness considering their locally accessible hazard
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information and smartphone communication with a main evacuation coordinator. Thus,
the hazard real–time information dissemination and a timely update of evacuation routes
is complicated causing an inefficient evacuation and in the worst case, human casualties.

While we cannot prevent imminent casualties of the hazard, we can avoid casualties
due to a deficient emergency evacuation process that does not adapt timely to the hazard
dynamics. To minimize evacuation–related casualties in a building emergency evacua-
tion, smart building technologies can be used for diffusion of the evacuation information
in real-time among evacuees. Recently, it was proposed that, by bringing together works
from the fields of Agent-Based Social Simulation (ABSS) (see, e.g., [3]), Ambient In-
telligence (AmI) (e.g., [44]), and Agreement Technologies (AT) (e.g., [41]), advanced
methods and tools can be developed to address the aforementioned evacuation coordina-
tion problem [1]. AmI techniques are adequate to capture relevant features of the situation
(sensors) and provide decision–makers with the means to act upon them (actuators). AT,
on the other hand, are used to explore intelligent strategies for managing such advanced
installations as large-scale open distributed social systems.

In this paper, we propose a distributed evacuation route guidance (ERG) system based
on the integration of these technologies and a distributed crowd flow optimization. The
objective is to minimize the overall evacuation egress time, i.e., the time from the start of
evacuation until all people have moved out of the building through safe exits considering
individual evacuation constraints. By safe exits, we mean all exits of a building that are
considered to be safe based on real-time monitoring, and not only predefined emergency
exits as in conventional emergency approaches.

The ERG system should seamlessly detect evacuation requests and the current hazard
context. We apply complex event processing for inferring this context by exploiting real–
time data. Then, it should compute efficient and safe evacuation routes in real–time based
on the ongoing emergency dynamics. A dynamic, context-sensitive notion of safety is
a key factor for such routes, in particular as panic-related behaviors of stampeding and
herding may occur at potential bottlenecks of evacuation routes depending, among other
factors, on the number of people who intend to pass through them (see, e.g., [20]).

In such settings, an adequate notion of fairness of evacuation route recommendations
is important to assure the trustworthiness of the system from the evacuees’ viewpoint
[35]: the guidance should not only achieve good overall performance of the evacuation
process, but must also generate evacuation routes for each of the evacuees that each of
them perceives as efficient and fair. For example, if there are two close-by evacuees at
some building location, they should be proposed the same evacuation route, and if not
possible, than the routes with similar safety conditions and evacuation time. Moreover,
building evacuation scenario is intrinsically distributed in the sense that sensors and evac-
uees are geographically dispersed and the hazard conditions usually vary throughout the
building. For this reason and to increase the solution scalability, we also distribute the
computation of evacuation routes throughout the building.

This paper is organized as follows. Section 2 presents related work. We assume that
the ERG system operates with landmark localization and complex event processing de-
scribed in Section 3. In Section 4, we formally describe the evacuation coordination prob-
lem. In Section 5, we provide the system architecture and describe the main components.
Section 6 describes the functioning of the distributed computation of evacuation routes
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including different necessary individual and global constraints. The functioning of the
architecture is shown on a case-study in Section 7. In Section 8, we conclude the paper.

2. Related work

Traditional evacuation coordination approaches overestimate the probability of the burst
of mass panic [38] and minimize the information given to evacuees. This may increase
fear and undermine the crowd’s shared social identity developed during the common ex-
perience of an emergency [15]. Even though human behavior in crowds has been studied
for some time (see, e.g., [50]), the functioning of the emerging crowd behavior in a hazard
and the connection between the triggers of mass panic and the panic dynamics have been
explored only recently (see, e.g., [15,38,39]).

Newer research results demonstrate that panic outreach in crowds is not that common,
and, lately, it has been observed and demonstrated that evacuees demonstrate solidarity
and collaboration in emergency (see, e.g., [13,15,42,47]). Cocking et al. conducted two
interview-based studies of survivors’ experiences of different emergencies in [9], while
Drury et al. in [13] report on a survey of 1240 adults affected by the 2010 Chile earth-
quake. It was found that people in a mass emergency can create a common social identity,
thus behaving sensibly and displaying solidarity and social support for each other. This
causes people to be cooperative and altruistic towards others even if strangers in life-
threatening situations and results in coordinated and beneficial collective actions [9,15].
These actions include such features as mutual support and coordination, which in turn
provide a basis for collective agency and adaptive action [14].

Contrary to the traditional emergency approaches that seek to herd evacuees as if they
were unintelligent and instinctive [15], the previously mentioned findings indicate that we
should consider that evacuees are eager to collaborate and will accept evacuation routes
that are beneficial for all if they are not individually harmful. In this light, we draw our
attention to the evacuation route coordination solutions that can facilitate self-organizing
behavior of evacuees by giving them updated and useful evacuation route recommenda-
tions so that they can make system-wide rational and efficient evacuation decisions.

Understanding evacuee’s decision making in choosing routes is important for deliv-
ering evacuation route recommendations. Crociani et al. in [10] treat evolving pedestrian
behavior and introduce a general model for decision making related to pedestrian route
choices. The model encompasses three aspects influencing these choices, as observed in
an experimental observation: expected travel time, perceived level of congestion on the
chosen path, and decisions of another preceding pedestrian to pursue a different path.

If each evacuee is given updated information about travel times on his/her available
evacuation paths, and he/she chooses the fastest path, Wardrop’s first principle states that,
in a traffic assignment incorporating congestion effects, no evacuee can unilaterally re-
duce his/her travel time by shifting to another path. The emerging crowd behavior can be
modelled through user optimization which leads to deterministic user equilibrium (see,
e.g., [18]). The latter can be arbitrarily more costly for congested networks than the glob-
ally optimal evacuation route assignment (see, e.g., [24,30,33]). Moreover, assuming that
all the evacuees share the same objective (e.g., fast evacuation), the Wardrop equilibrium
solution is fair for the evacuees of the same evacuation origin, i.e., the evacuation times of
the paths chosen by evacuees from the same origin towards safe exits are similar. On the
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contrary, the travel times of evacuation paths might not be fair for different origins, i.e.,
the ratio of travel times of the evacuation paths between any two evacuation origins in the
network of the same or similar distances can be arbitrarily high (see, e.g., [24,33].

Chen and Feng in [7] propose two heuristic flow control algorithms for a real-time
building evacuation with multiple narrow doors: with no limitation on the number of evac-
uation paths and k required evacuation paths, respectively. Filippoupolitis and Gelenbe
in [17] proposed a distributed system for the computation of shortest evacuation routes
in real-time. The evacuation recommendations are computed by decision nodes and are
communicated to the evacuees located in their vicinity. However, this approach considers
only the cost proportional to physical distance that increases as the hazard progresses and
does not take into consideration crowd congestion on the routes.

To provide for efficiency and fairness of route assignments in congested networks,
in [30] and [33], Lujak et al. propose a traffic route optimization model focused on the
system-optimum that considers the concepts of fairness and envy-freeness. Applying this
approach to the evacuation, we can aim at the system optimum constrained by individual
evacuee requirements and thus further improve the evacuation efficiency.

Computationally, the evacuation path finding has some similarities with the assign-
ment of road routes to vehicles and the medical emergency management where patients
are assigned to ambulances and hospitals. The application of the concept of distributed
decision making (e.g., [45,54]) was proposed in medical emergency management [31,32]
and traffic coordination [33] to increase the scalability in these domains. While the last
three mentioned distributed coordination approaches find an efficient solution consider-
ing system optimum constrained by individual actors’ requirements, [33] considers also
fairness and envy-freeness of individual decision makers. These two concepts are crucial
for avoiding panic and disturbance in the coordination of building evacuation, especially
in the presence of evacuees with special needs.

The safety conditions during evacuation can change rapidly. Therefore, the commu-
nication of updated evacuation path information is important for safe evacuation of all
the evacuees in a building under hazard. Possible communication devices can be, e.g.,
smartphone-like devices [53], variable message signs [43], LED displays installed on the
building walls, etc. Since nowadays a smartphone is the most used communication and
navigation device for outdoor locations and it can provide a context aware personalized
real-time evacuation information, we consider an evacuation route guidance system that
uses smartphones. In [25], common trends of architectural design, technologies, proper-
ties, and drawbacks of indoor positioning systems based on communications supported by
smartphones are analyzed. Even though it is still not frequently used for inner–space navi-
gation due to the open issues with indoor positioning (see, e.g., [12,25]), there are various
works on the smartphone use for indoor route recommenders (see, e.g., [21,28,56]).

In [28], a light-weight application running on a smartphone for intelligent parking
service is presented. It works based on a precise indoor positioning solution, which fuses
WLAN signals and the measurements of the built-in sensors of the smartphones. The po-
sitioning accuracy, availability and reliability of the proposed positioning solution are ad-
equate for facilitating indoor parking navigation. In [56], Yim presents an indoor-location-
based, context-aware, and video-on-demand Android app that actively recommends show-
cases that the user most likely wants to visit in a museum. Another recommender system
that arranges personalized visits through a museum was proposed in [21]. The visits are
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arranged based on user profiles and visitor location data provided by in-door localization
techniques. Such situation-aware recommender systems can be considered as a special
type of the current Context-Aware Recommender Systems (CARS) [2].

To provide evacuees with safe evacuation routes adaptive to changing hazard con-
ditions, real–time computation and seamless handling of changing safety conditions are
crucial. In [19], Guest et al. developed computer visual analytic system and real-time vi-
sual analytic tools for situationally aware evacuations of large urban structures. They used
two different levels of detail in the representation of building graphs that can be used as a
part of a visual analytic system for near real-time response. This in turn permits situational
changes to be incorporated into the underlying models and rerouting of evacuees.

In [17], a distributed system for the computation of evacuation routes in real–time was
proposed. The system is composed of a network of decision and sensor nodes distributed
within the building. The former compute the evacuation routes in a distributed manner
and communicate them to evacuees or rescue personnel in their vicinity. The concept
of an “effective length” is given and it depends on the physical length of the link and
the hazard present along the link. The system computes the shortest evacuation path in
respect to its effective length. However, it does not consider possible congestion on the
proposed evacuation paths and the influence of human factor on evacuation times.

The evacuation guidance system has to deal with humans, each one with possibly dif-
ferent individual characteristics. Due to these behavioral differences and to the human
factor, generally, there is still a lack of coordination methods that are able to take hu-
man behavior into account. An evacuation route recommendation system that considers
the panic behaviors of herding and stampeding in the evacuation routes was proposed
in [35]. The system considers the influence of stress on human reactions to the recom-
mended routes and iteratively ponders users’ response to the suggested routes influenced
by stress-related irrational behaviours until system acceptable routes are found. More-
over, the influence of affiliate ties and self-concerned individuals among evacuees on the
evacuation performance was studied in [34]. Here, Lujak et al. model self-concerned and
social group behaviour via individual and team reasoning. The recommended routes take
into consideration the affiliate ties to guarantee evacuee’s compliance with the routes.

As a continuation of the works [33,34,35] that deal with different aspects of building
evacuation, in this paper we propose a distributed architecture that uses necessary sen-
sory, localization, semantics, processing, and distributed optimization technologies that
can provide real time situation–aware evacuation route guidance.

3. Used technologies

In this Section, we describe the technologies used for the localization of the evacuees in
indoor environments as well as the technology for event processing.

3.1. Localization with landmarks

A prerequisite for avoiding congestion in finding evacuation routes is a detailed knowl-
edge about the location of all persons in the building. An overview of indoor ultrasonic
positioning systems with related state of the art can be found in [22] and [36]. In [36],
Lymberopoulos et al. present the results from comparing 22 different technical approaches
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to indoor localization. They observe that all tested systems exhibited large accuracy vari-
ations across different evaluation points. This fact raises concerns about the stability and
reliability of current indoor localization technologies. Some of the various technological
approaches to localize persons in buildings are:

– Wifi. The intensity of a WiFi signal can be measured (RSSI received signal indication)
to derive the distances to several access points, which allows calculating a person’s
position via trilateration. Unfortunately, WiFi does not yield good accuracy: the dis-
tance between a smartphone and a WiFi access point is often rather large and may
not be precisely estimated on base of the RSSI, because the signal strength changes
significantly with environmental conditions.

– RFID. Radio Frequency Identification technology can also be used for indoor posi-
tioning. Persons equipped with passive RFID tags can be detected by RFID readers
that are spread in the building. RFID technology has several drawbacks: First, it is
rather expensive to equip a building with an adequate number of RFID readers. That
means that the number of RFID readers is relatively small and localization must also
apply triangulation based on distance measures, which causes the same drawback
as the one described above for WiFi. Secondly, it might be difficult to provide each
person with a personal RFID tag.

– iBeacon. IBeacons support indoor navigation (see, e.g., [6,16]) by using Bluetooth
low energy (a wireless personal area network technology marketed as bluetooth Smart)
to send in a configurable frequency a unique ID that can be read by any smartphone.
Therefore, an iBeacon infrastructure is set up easily: Beacons are cheap enough to dis-
tribute many of them, so that they can form a much denser network in the building.
Furthermore, no specific beacon readers are necessary, because usual smartphones
are capable of reading and processing beacon signals.

Table 1. Characteristics of indoor localization technologies

Sender Reader Accuracy

WiFi few senders per floor 1 reader per person low
RFiD 1 sender per person 1 reader per room medium
Beacon many senders per room 1 reader per person high

Table 3.1 summarizes the characteristics of indoor localization technologies. The superior
accuracy of iBeacons is evident: there are as many readers as users, and each building part
can be equipped with beacons resulting in a dense net of landmarks. Furthermore, iBea-
cons provide sufficient localization accuracy [8,40]. Therefore, we assume the presence
of a sufficient number of beacons during evacuation to cover completely the building.

User smartphones The personal smartphone plays two different roles: as a reader of the
iBeacon signals to localize its user and to exploit its built-in sensors so as to derive more
details about the current situation of the user.
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– Beacon reader for localization: In smartphone operating systems such as iOS and
Android, the capability of reading iBeacon signals is already integrated. If we as-
sume that the space is equipped with several iBeacons with non-overlapping ranges,
as soon as a user approaches an iBeacon within the predefined range, the smartphone
triggers an event carrying the iBeacon ID. Then the smartphone perceives that it is
near that iBeacon and can forward this information to a server that coordinates emer-
gency situations. An iBeacon ID is hierarchically structured, (i) a UUID specifies
the particular institution (such as a university), (ii) a major ID could correspond to a
certain building and (iii) a minor ID to a certain room.

– User activity recognition: The built-in sensors of a smartphone can be exploited to
derive the current activity of its particular user. There exist multiple works on how to
use smartphone sensors for performing activity recognition (see, e.g., [23,46,48,51]).
For instance, in [27], different machine learning techniques are applied, such as, e.g.,
decision trees, logistic regression and neural networks to classify accelerometer data
as certain activities. In evacuation, relating the current behavior of geographically
close users is crucial to detect mass panic situations, e.g. the situation when most per-
sons in a room are running. Furthermore, the smartphone serves as an individualized
communication channel to its user for providing personalized routing guidance.

Other sensors and infrastructure More sensors are necessary for achieving situation
awareness in the emergency recommender system. For instance, smoke and temperature
sensors could be used for fire detection. The signals of these sensors could be collected
and analysed on a centralized emergency management system. This system could also
provide a central hub for the data of all user smartphones for calculating the global situa-
tion in a building such as room occupancy and general user behavior.

3.2. Complex Event Processing (CEP)

One of the key issues in emergency recommender systems is detailed knowledge about
the current situation in the building. In our scenario, an appropriate and individualized
guidance for all people in the building requires the information about:

• the smart space network structure and dimensions
• the current position of each person and the occupancies of all spaces in the building
• the situations that can provoke panic
• the space safety for each constituent part of the smart space network that can be

jeopardized by, e.g., fire or built-up smoke, or panic related behaviors.

Apparently, such situational knowledge cannot be predefined, but must be inferred by
exploiting real–time data. Usually, real–time data is provided by sensors, which moni-
tor their environment and produce a continuous stream of data. In our scenario, we use
smartphone sensors and further sensors that are permanently installed in the environment,
such as iBeacons, temperature and smoke sensors. Each set of sensor data they emit cor-
responds to a particular event in the environment.

Situational knowledge can be considered as a dynamic knowledge with a high change
frequency. In emergencies, streams of events must be evaluated in real-time to achieve
situation awareness. A solitary event is usually of low significance since it represents a
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single incident in the physical world. For instance, it is of low importance if a single
person is running, but if a majority of people is doing so, it may indicate mass panic.

Complex event processing (CEP) is a software technology that extracts the informa-
tion value from event streams (see, e.g., [11,16,49]). CEP analyses continuous streams of
incoming events in order to identify the presence of complex sequences of events (event
patterns). The main goal of CEP is to derive the meaningful abstracted and complex (com-
pound) events out of the observed streams of simple atomic and uncorrelated events [6]. In
other words, CEP detects the relationships between relevant simple events from an event
cloud and infers new single complex event with a significant meaning based on these
events (see, e.g., [11,29]). For instance, a panic event can be inferred, if the smartphones
of a majority of visitors in a certain area emit a running event.

Event stream processing systems manage the most recent set of events in memory and
employ sliding windows and temporal operators to specify temporal relations between
the events in the stream (each event has a timestamp). The core concept of CEP is a
declarative event processing language (EPL) to express event processing rules. An event
processing rule contains two parts: a condition part describing the requirements for firing
the rule and an action part that is performed if the condition matches. The condition is
defined by an event pattern using several operators and further constraints.

In the following, we use a simplified pseudo language for expressing event processing
rules, which is easier to understand than an EPL of a productive CEP system. This pseudo
language supports the following operators:

∨ ∧ Boolean operators for events or constraints
NOT Negation of a constraint
→ Sequence of events (e1 → e2 means that e1 occurred before e2)
Timer Timer(time) defines the time to wait

Timer.at(daytime) is a specific (optionally periodic) point of time
.within defines the time window in which the event has to occur.

An event processing engine analyses the stream of incoming events and executes the
matching rules. Luckham introduced the concept of event processing agents (EPA) that
communicate to each other by exchanging events [29]. An EPA is an individual CEP com-
ponent with its own rule engine and rule base. Several EPAs can be connected to an event
processing network (EPN) that constitutes a software architecture for event processing.

4. Evacuation coordination problem

If real-time building information is available to evacuees and they can negotiate their evac-
uation, it becomes possible to provide a selection of safe and efficient routes. Therefore,
we assume that the building and evacuees are monitored in real–time by a strategically
positioned network of sensors through indoor localization systems and tracking technolo-
gies described in Section 3.

Starting from the above stated assumption, let us define a building for evacuation. Let
G = (N,A) be a connected digraph representing the smart building network where N
is the set of n vertices representing offices, halls, and in general, any portion of space
within a building separated by walls or partitions from other parts. In the case of larger
spaces, for simplicity, the same are divided into regions represented by nodes completely
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connected by arcs a ∈ A, where A is the set of arcs a = (i, j), i, j ∈ N and i 6= j,
representing doors, gates or passages connecting nodes i and j.

For every arc (i, j) ∈ A, there is an arc cost function fij(xij), which without the loss
of generality, we assume is proportional to an average travel time function tij(xij), where
xij is a person flow per time unit, i.e., ]per/min. tij(xij) is in general an increasing
nonlinear function because of the effects of congestion on the arc travel time. Different
functions can be considered, but for simplicity and without loss of generality, we consider
the average travel time function proposed for normal use by the U.S. Federal Highway
Administration traffic assignment model: tij(xij) = τij(1 + 0.15(xij/uij)

4) [37], where
uij is the capacity, and τij is the travel time of arc (i, j) ∈ A in free flow conditions
(without congestion).

Let O ⊆ N and D ⊆ N be the set of all evacuation origins and destinations respec-
tively. We assume that there are |O| origin nodes disjoint from |D| destination nodes,
where |O| + |D| ≤ n. Here, origins are all areas with evacuees inside the smart space
network while destinations are their near safe building exits. To represent the relation be-
tween all safe exits in the graph, we introduce fictitious sink node d̂ ∈ N that is adjacent
to all the destination nodes (safe exits) by fictitious (dummy) arcs (with zero cost and infi-
nite capacity). In this way, we assume that graph G includes (together with actual nodes)
also fictitious node d̂ and its incoming dummy arcs.

Then, let Ro represent a number of evacuees (evacuation requests) per time unit who
request to leave origin node o ∈ O to go to any of the safe exits d ∈ D and, hence, to
fictitious destination d̂. Furthermore, we assume that the evacuation requests are detected
by the sensor network in the building at the beginning of the time window and their
variations are negligible throughout the window.

Our objective is to safely evacuate as many evacuees as possible from all origins
o ∈ O over the safest and the most efficient evacuation paths to any of the safe exits
d ∈ D and, hence, to fictitious destination d̂. In that respect, let Po be a set of simple
paths from origin o, where o ∈ O, towards fictitious destination d̂. Then, if we model the
evacuation as a unified crowd flow, each individual is seen as a unit element (particle) of
that flow and the objective is to maximize the flow of demands (evacuation requests) with
certain constraints we consider in the following.

Let us assume that safety status Sa is given for each arc a ∈ A as a function of
safety conditions that can be jeopardized by a hazard. We normalize it to the range [0, 1],
such that 1 represents perfect conditions while 0 represents conditions impossible for
survival, with a critical level for survival 0 < Scra < 1 depending on the combination of
the previously mentioned parameters. More details on data quantizing and fusion whose
result is the arc safety status can be found in Section 5.2.

If each constituent arc a ∈ k of a generic path k has safety Sa∈k ≥ Scr, then path
k is considered to be safe. On the contrary, path is considered unsafe and its harmful
effects may threaten the evacuees’ lives. The proposed evacuation paths should all satisfy
safety conditions Sk ≥ Scr. However, when such a path is not available, a path with the
maximal safety should be proposed where the travel time passed in the safety jeopardized
areas should be minimized. Since safety may vary throughout a path, we introduce a
normalized path safety that balances the minimal and average arcs’ safety values:
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Sk = |a∈k|

√∏
a∈k

Sa, ∀k ∈ Po, o ∈ O. (1)

Then, let P̄o be a set of available safe simple paths with a maximized safety (1) ac-
ceptable in terms of duration in free flow for each evacuation origin o ∈ O. By acceptable
in terms of duration in free flow, we mean the paths whose traversal time tk in free flow is
within an upper bound in respect to the minimum free flow duration among all the avail-
able evacuation paths for that origin. Let P̄O be the set of all such paths. From set P̄O, we
want to find the paths that, considering congestion produced by evacuation requests Ro
for all o ∈ O, are temporally efficient and envy-free.

The concept of envy-free paths is introduced in [33]. A path allocation θ is α-envy-
free, where α is a maximum tolerance factor for non-enviousness (0 < α ≤ 1) if:

γo ≥ γαo′ , ∀o, o′ ∈ O|o 6= o′, (2)

where γo is a normalized mean path duration cost of each evacuation origin o ∈ O defined
as γo(xo, {xl}l∈M(o)) = |P̄o|

√∏
k∈P̄o

tk · xk andM(o) is a set of the origins whose paths
use one or more same arc(s) as o ∈ O and are therefore coupled with it. In other words,
Formula 2 says that there is no evacuee at origin o′ that envies any other evacuee at origin
o for getting assigned the path with a lower duration than αth power of the path duration
assigned to the evacuee on o′.

In the following, for the self-completeness of this work, we present an adapted math-
ematical programming model from [33] for the optimization of evacuation routes through
Nash social welfare maximization with included envy-freeness constraints:

(N) :

min z(xO) =
∑
o∈O

log

[
|P̄o|

√ ∏
k∈P̄o

∑
a∈A

ta(xa) · φakxk
]

(3)

subject to: ∑
o∈O

∑
k∈P̄o

φak · xk ≤ ua ,∀a ∈ A (4)

γo ≥ γαo′ , ∀o, o′ ∈ O|o 6= o′ (5)

∑
k∈P̄o

ψok · xk = Ro, ∀o ∈ O (6)

xk ≥ 0 , ∀k ∈ P̄o, o ∈ O , (7)

where Φ is the [|A| ∗ |P̄O|] arc-path incidence matrix, and Ψ , the [|O| ∗ |P̄O|] evacuation
origin-path incidence matrix. Capacity constraints (4) limit the total flow across all paths
passing through each arc a ∈ A. Furthermore, (5) is a constraint on envy-free evacuation
origin paths while through constraints (6), we model the fulfillment of evacuation requests
among path flows by forcing the sum of path flows of each commodity o ∈ O to be equal
to the commodity demand (the number of evacuation requests Ro). (7) is a constraint on
non-negative values of path flow xk for each k ∈ P̄o, o ∈ O.
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5. Proposed distributed architecture for evacuation guidance

In this Section, we present the proposed distributed ERG system and describe the compo-
nents comprising it. Then, we give the details on the elements of CEP.

5.1. System architecture

We propose a solution concept for a distributed evacuation route guidance system that
combines different CEP modules in order to provide situation awareness for a distributed
evacuation route recommendation algorithm that is explained in Section 6. An overview
of this architecture is given in Figure 1.

The objective of evacuation route guidance architecture (ERGA) is to provide indi-
vidualized route guidance to evacuees over an app on their smartphones that is connected
with a cloud (see, e.g., [5]) based on the evacuation information received from connected
smartphones within the building and the building sensor network. It should be activated
on request by any connected user within the building or remotely by the sensor network in
the building, hence informing evacuees of the ongoing evacuation. However, in the case
an evacuee does not have a smartphone, he/she could still follow the evacuation directions
on LED displays on the walls of a smart building.

ERGA consists of user agents (UA) and a network of smart building (SB) agents.
As stated earlier, a smart building is represented by a graph G = (N,A). Each node in
N represents a physical space and is represented by an SB agent. The arcs between the
nodes represent the evacuees’ movement options and, in the same time, the communica-
tion channels between neighboring SB agents. The SB agents are a constituent part of a
smart building and process and sense their individually assigned physical space over a
strategically distributed network of sensors within that space. In the case there are evac-
uees present within the space, an SB agent takes a role of the evacuation origin agent.

User agents The user agent is associated with the application on a smartphone of an
evacuee (see Figure 1). It manages and stores all the information that is related to a specific
evacuee in the building. The UA is intended to be executed as an app on the smartphone
of an evacuee. Here, we assume that people that enter the building own a smartphone
with the evacuation app installed, or they have been provided with some smartphone–like
device that runs the app when they start to evacuate. The user agent contains three parts:

• module with user preferences and constraints,
• user situation awareness module, and
• route guidance module.

The user preferences and constraints module allows defining constraints such as disabil-
ities (e.g., the use of wheelchair or vision impairment) as well as evacuation–related be-
havioral disorders (e.g., agoraphobia, social phobia, etc.), while the preferences include
the affiliate ties with other users of the building. We assume that a user agent possesses
complete local situation awareness of an evacuee that is deduced in the User Situation
Awareness module and is sent to the closest SB agent together with user data including
his/her preferences and constraints.
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Fig. 1. Situation-aware real-time distributed evacuation route guidance architecture
(ERGA). User agents 1, 2, and m are located in the physical space of SB Agent 1 so
that they are given route recommendations by SB Agent 1

The user situation awareness module exploits sensor data (from the smartphone and
beacons installed in the building) and reasons about the behaviour and location of the
user through local CEP processes. The presence of an evacuee together with the infor-
mation derived from the situation awareness module and the individual preferences and
constraints are passed to the local space situation awareness module in the closest SB
agent. In order to assure privacy, only certain basic data about the user’s situation should
be forwarded to the SB agent (e.g., location, running events).

Every user agent informs the closest SB agent of its personal information, i.e., po-
sition, evacuation constraints, and preferences. Subsequently, the SB agent takes a role
of evacuation origin agent and sends the route guidance to UA from its evacuation route
recommender module described in detail in section 6. Finally, the user interface provides
the user with personalized navigation guidelines for evacuation, helping him/her to leave
the building in the way calculated by the SB agent.

Smart building agents The network of smart building agents is the central computational
and perception part of the evacuation route guidance system. The situation awareness
and decision making are distributed in the network of SB agents such that each agent
is responsible of the semantic reasoning concerning the safety of its assigned physical
space. Then, the qualitative safety status of the space is abstracted to normalized safety
values in the range [0, 1]. Moreover, each SB agent is responsible of the evacuation route
computation for the evacuees positioned in its physical space. It is the link between the
distributed SB agent network and an individual evacuee (see Figure 1).

The SB agent stores its user agents’ information as a part of its initialization since
the frequency of changes in the user’s description is likely to be very low. Furthermore,
we assume that each SB agent has at its disposal the information regarding all evacuation
network’s layout, topology and safety. Furthermore, each SB agent is responsible of eval-
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uating the cost functions of the evacuees within its physical space and thereby determining
the optimal route for each such evacuee.

A single SB agent controls only its own physical space within its realm of influence,
for example, whose maximal surface is up to lmax. If the space is larger than that, then
the space is partitioned into regions controlled by more SB agents. Each SB agent has a
corresponding region (Voronoi cell) consisting of all user agents closer to that SB agent
than to any other SB agent within the same room. Each SB agent contains a local space
situation awareness module that perceives the safety conditions of the physical space it
controls through combining and analysing the events provided by the sensors of the smart
space it represents and the individual user agents that are located within the physical space
controlled by it. Moreover, each SB agent communicates with its neighboring SB agents
and with the user agents present within its physical space.

The local space situation awareness module functions in cycles. At the first phase,
the local building sensor data is fused with the data from the locally present user agents.
Then, the normalized safety value is deduced through CEP events. This data is sent to a
blackboard or alike globally shared data structure containing the overall network safety
values and visible to all agents. Thus, the global situational awareness of the building is
accessible to every SB agent by accessing the blackboard. Once the data regarding all the
evacuees present within the physical space controlled by an SB agent is gathered by the
SB agent, it starts the computation of the safe and efficient evacuation routes.

To relieve the communication load, each SB agent maintains a local copy of the evac-
uation network with the updated safety conditions. Only the changes in the local safety
values and evacuee conditions are broadcasted while the detailed local space situation
awareness information is exchanged only between neighboring SB agents, if necessary.
In this process, CEP is used to filter irrelevant information and to generate higher level
events. Individual user events are aggregated to detect events regarding groups of users,
their distribution and density in the building.

When an SB agent detects an emergency situation, it sends the updated safety value
of its physical space to the shared blackboard. This allows, on the one hand, to monitor
the real-time situation of the building and, on the other hand, to trigger an evacuation
process and to execute control actions in such a process. Each SB agent computes the
routes for the evacuees that are momentarily within its physical space. In the computation
of their optimal routes, it considers their preferences, requirements, and the evacuation
conditions. With the known evacuees’ and the space safety information, the SB agent’s
evacuation route recommender module can compute optimized evacuation routes for each
locally present user agent. It does so by distributed computation and communication with
the rest of the SB agents in a multi-hop fashion. In this process, the algorithm uses:

• Data regarding the building topology: Static information about physical elements in
the building (e.g. rooms, corridors, floors, doors, etc.) and relation among them (e.g.
the area of room A is 10 m2; room A is next to room B and they are both at floor
F). Topology knowledge is represented in such a way that it is sufficient to describe
the building network by a digraph with weights and tags on the constituent nodes and
connecting arcs as described in Section 4. Nodes and arcs are described by their type,
surface, area, inclination, etc.
• Emergency ontology: This ontology contains general knowledge about emergency

and evacuation scenarios, e.g., facts that people with strong affiliate ties should always
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be evacuated together (for instance, families with children and persons with disability
and their assistants), the appropriateness of certain routes for people with limited
mobility in emergency situations, and the influence of certain events like fire and
smoke on the security level of an evacuation space.

• Real-time evacuation situation: Contains the current physical space situation aware-
ness of the SB agent itself as well as regarding the evacuees that are currently in the
space represented by the SB agent. This information includes:

- The number and distribution of people in the space,
- Evacuation preferences and constraints of each person,
- Evacuation network’s safety values and topology regarding the evacuees’ prefer-

ences and constraints.

During evacuation, the global safety situation of the building is dynamically updated
in real–time in order to reflect the dynamically changing safety conditions of the building.
In the same way, each SB agent recalculates the evacuation routes each time the changes
in respect to the evacuees or the safety of the evacuation network occur (i.e., each time
new events are detected).

5.2. CEP components

Both UA and SB agents analyse the incoming streams of events to deduce the current
situation. In this subsection, we discuss the underlying event models and give some ex-
amples for appropriate rules for achieving situation awareness. To make the description
more comprehensive, we simplify the event model and the corresponding rules.

CEP in the user agents User agent exploits sensor data and infers (i) the location and
(ii) the behavior of a single user. To explain the CEP component in more detail, we will
assume that user agent monitors two types of explicit (or atomic) events to achieve this
type of situation awareness:

– beaconEvent(beaconID): an iBeacon with a certain ID has been detected.
– accelerationEvent(velocity): the smartphone is moving with a certain velocity.

The beaconEvents collected by a particular smartphone are used to derive the current
position of its owner. The following CEP rule creates enteringSpace and leavingSpace
events, meaning that the user is entering, respectively leaving certain space. These events
can be considered as complex (or materialized) events. They carry the ID of the user and
the related beacon ID.

CONDITION beaconEvent AS b1 → beaconEvent AS b2
∧b1.id 6= b2.id

ACTION CREATE enteringSpace(userID, b2.location)
CREATE leavingSpace(userID, b1.location)

The rule describes the situation that a new beaconEvent b2 has been read in the smart-
phone, where the beacon ID has changed. (Here the beacon ID, more precisely its minor
ID, corresponds with a space representing that part of the building.)
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Detecting a running user is another situation that must be forwarded to the SB agent,
because many running users can indicate a panic situation. An appropriate CEP rule
checks if the average velocity of a user is higher than 5 km/h considering a time win-
dow of 10 seconds:

CONDITION accelerationEvent AS a [win:time:10sec]
∧ average(a,velocity) > 5 km/h

ACTION CREATE runningEvent(userID)

If the condition is fulfilled, then this rule creates a runningEvent that contains the ID
of the corresponding user.

CEP in the smart building agents The CEP component in the SB agent is responsible
for deriving the situation in its physical space. For instance, it could receive and analyze
the following atomic events: produced by the CEP rules running on the users smartphones.

– enteringSpace(userID, space): a user with a certain ID has entered a certain space.
– leavingSpace(userID, space): a user with a certain ID has left a certain space.
– runningEvent(userID): a user with a certain ID is running.

Another kind of situation awareness describes the global situation. A first type of rules
calculates the occupancy of the space controlled by the SB agent.

The following CEP rule calculates the number of persons located at a certain space by
counting all entries and exits registered in that space during the last 15 minutes:

CONDITION (enteringSpace AS e ∨ leavingSpace AS l)
[win:batch:15min]
∧ count(e) AS enters
∧ count(l) AS exits

ACTION CREATE occupancy(e.space, enters-exits)

The second type of rules infers a global behavior of the people present currently in the
building. For instance, the next rule intends to detect a panic situation in the building:

CONDITION runningEvent AS r [win:time:1 min]
occupancy AS o
∧ count(r) > o.value · 0.2

ACTION CREATE panicEvent(r.space)

It groups all runningEvents according to a time-spatial window. The grouping crite-
rion is defined by a time interval of 1 minute. If more than 20% of the people staying in a
space are running, a panic situation is indicated. Note that also other situations could be
detected by appropriate CEP rules. For instance, a blocked staircase could be inferred if
numerous persons could not continue their recommended evacuation path along the stair-
case. Furthermore, there are other sensors in the smart building that can be exploited to
derive certain building states. For instance, the data from temperature and smoke sensors
can be used to detect a fire situation in a certain space of the building. There are appro-
priate CEP rules that derive such situations as well. In the following subsection we show
how sensors can be used to obtain a safety value for the space in which they are located.
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Safety calculation Space safety is calculated by combining (aggregating) the values ob-
tained from different sensors. A thorough description of this field can be found in, e.g.,
[26,57]. Since this is not a main topic of this paper, here we propose a way of calculating
safety values in the case of fire so as to get a feeling of how sensor data and CEP rules
can be combined.

We assume that a fire is detected by smoke and temperature sensors. The number
of sensors of each type in the same physical space usually depends on the size of the
space. For simplicity, we assume that smoke sensors return a value in the range [0, 1],
(0 - no smoke and 1 - maximum smoke), while temperature (in centigrades) is in the
range [0, 100]. We consider normal (safe) temperatures to be up to 40 centigrades so we
normalize the temperature with the following formula:

Tnorm =

{
0 if T real ≤ 40◦C,

(T real − 40)/60 otherwise,
(8)

such that the resulting normalized temperature Tnorm obtained from the real temperature
readings T real is in the range [0, 1]. The idea is to aggregate the values read by different
sensors in the same space in such a way that the safety value decreases with the increase
of the number of sensors that detect an incident.

We propose the aggregation function f(x, y) = x + y − x × y (also known as prob-
abilistic sum), where x, y ∈ [0, 1]. This function is associative, commutative and the
result of combining x with y is always higher or equal to x and y. This means that each
sensor will support and increase the evidence of a lack of safety or jeopardy for evac-
uees. In this light, let jeopardy J be defined as J = 1 − S, with the range [0, 1], where
0 represents full safety and 1 a hazardous area. For example, if two smoke sensors re-
port values ss1 = 0.6 and ss2 = 0.7, and a temperature sensor detects T real = 50◦C
(Tnorm = 0.17), the resulting safety is calculated as follows: based on the smoke sen-
sors, jeopardy is J(ss1, ss2) = 0.6 + 0.7 − 0.6 × 0.7 = 0.88. Combined with the
temperature sensor, J(ss, ts) = 0.88 + 0.17 − 0.88 × 0.17 = 0.9. Safety is then:
S(ss, ts) = 1− J(ss, ts) = 1− 0.9 = 0.1.

We assume that information about temperature and smoke sensors is represented by
the following type of events:

– temperatureEvent(sensorID, value): temperature value read by sensor sensorID.
– smokeEvent(sensorID, value): smoke value detected by sensor sensorID.

The following rule detects and normalizes an abnormal high temperature (higher than
40◦C) identified by a sensor. Note that, for some reason, different SB agents might define
different thresholds and/or normalization functions.

CONDITION temperatureEvent AS t
∧ t.value > 40◦C

ACTION CREATE highTemperature((t.value - 40)/60)

The next type of rule obtains the safety value by aggregating smoke and high temper-
ature events according to the function described above, considering a time window of 30
seconds:
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CONDITION (highTemperature AS t ∨ smokeEvent AS s)
[win:time:30sec]

ACTION CREATE safety(1 - window(*).aggregate(0, (result, value) =>
result+ value− result× value))

The aggregate enumeration method takes an expression providing the initialization
value (0) and an accumulator expression. The return value is the final accumulator value,
i.e. the safety of the space controlled by the SB agent.

6. Evacuation route recommender module

Finding evacuation routes in a building considering the impact of congestion and envy-
freeness is coupled spatially. The objective is a robust and scalable decision-making sup-
port that will align the choices of the routes by self–interested evacuees with the goal of
overall evacuation system efficiency considering crowdedness. To achieve that objective,
we propose a distributed decision–making approach that maintains consistency in all of
the routing decisions while distributing the overall route computation process among SB
agents that compute routes with a minimum of synchronizations.

With that scope, we implement an adapted version of the evacuation route recom-
mender module that was presented in [35] and described briefly in the following. The
recommender module is made of two parts: the routes’ safety optimization and the routes
travel time system optimization considering congestion and fairness (see Fig. 2).

Fig. 2. Evacuation route recommender module

Routes’ safety optimization In this part, each SB node representing an origin o ∈ O
with evacuation requests Ro > 0 computes a set P̄o of k simple safest paths, (the paths
with minimum jeopardy) that are also efficient (acceptable in terms of travel duration).

To discourage the usage of unsafe arcs with Sa < Scr, in the preprocessing step
before computing the paths, we multiply the travel time of unsafe arcs by M−Sa , where
M is a very large number. In this way, the unsafe arcs will be included in the shortest
paths only if there is no alternative path composed of safe arcs. Moreover, the number of
the unsafe arcs in proposed paths will be minimal and their safety value will be maximal.
Then, a possible algorithm to use for the computation of k fastest simple paths is, e.g.,
Yen’s algorithm [55]. The found set of safest efficient paths is ordered in a non-decreasing
order of free-flow travel time and to obtain set P̄o of available (simple) safe efficient paths,
the paths within a predefined upper bound α ≥ 1 in respect to the fastest path are selected.
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Routes’ travel time system optimization with fairness The route’s travel time sys-
tem optimization with fairness considers possible crowdedness and is divided into two
phases, Figure 3. At the first phase, Nash social welfare maximization problem (3)-(7)
with included envy-freeness constraints is decomposed to obtain subproblems that will be
optimized independently locally by each SB agent through local computations and mu-
tual communication of relevant data with other SB agents. The decomposition is done at
four levels, one level for each shared constraint and the routing solution for all evacuees
is achieved by an auction-like primal-dual optimization method among the SB agents
through the exchange of the local variables until an acceptable system–wide solution is
found. The details on the optimization approach can be found in [33]. However, for the
self-completeness of this work, we bring its short description in the following. At the be-

Fig. 3. Two phases of the distributed evacuation route computation

ginning of the evacuation route’s duration optimization, every route is available and every
evacuee located at his/her initial position is uncommitted with respect to the evacuation
routes. Following initialization, every SB agent with evacuees present within its physical
space is fully aware of: i) its evacuees with their evacuation constraints and preferences
and ii) entire network structure with arcs’ travel times and safety values.

Based on the evacuation requests RSB expressed in terms of person flow per time
unit, each SB agent tries to achieve a sufficient number of shortest paths considering free
flow (no congestion). Thereafter, each SB agent propagates its evacuation requests to the
intermediate nodes of the chosen paths. These requests are implemented in the form of a
message and are sent by SB agents in a multi-hop fashion through intermediate nodes up
to the fictitious sink node.

In the following, we describe the decomposition at four levels. At the first level, SB
agents define arcs’ dual variables (Lagrange multipliers that can be seen as arcs’ prices) to
handle flow arc capacity constraints. The prices of the evacuation network’s arcs are ad-
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justed based on the SBs’ overall demand on the routes influencing congestion. At the sec-
ond level, SB agents with present evacuees act as the evacuees’ evacuation origin agents
and negotiate with other evacuation origin agents the assignment of envy-free paths.

Each evacuation origin agent has a local information of the flows along the paths of
other origins that share with it the same arcs and/or nodes. At the third level, the subprob-
lem regarding the consistency of this local information is solved within each cluster of the
paths sharing one or more arcs and/or nodes. Thus the computation of the main problem
(3)-(7) is distributed into |O| subproblems, each one related to an SB agent with present
evacuees. At the fourth level, the Lagrangean relaxation of problem (3)-(7) resolves the
constraint on distribution of demanded flow Ro over paths k ∈ P̄o, for each SB agent
representing evacuation origin o ∈ O.

The SB agents on the intermediate nodes of the paths of other SB agents compute
the travel times due to the congestion on their outgoing arcs as soon as they receive new
evacuation requests and resolve conflicts in terms of the prices in a distributed way as
explained in [33].

In each iteration, each evacuation origin agent calculates optimal evacuation paths
based on the set of momentary prices for each level of decomposition. The dual variables
converge to their dual optimal values as long as the lower level problems are solved on a
faster time scale than the higher level ones so that all the problems at a lower level have
converged at each iteration of a master problem [33].

After the route assignment is made for all evacuation requests by evacuation origin
agents at the first phase of the optimization model, each such SB agent decides, at the
second phase, of the assignment of its evacuees to the routes assigned to it at the first
phase. This is done based on relevant personal characteristics and social welfare param-
eters that guarantee fairness of the assignment of the evacuees to the routes through an
iterative auction, see Figure 3. The negotiation through auctions at the second phase is
local between each evacuation origin agent and the evacuees momentarily present at that
origin, similar to [33].

To avoid the movement of the congestion from one point to another (see, e.g., [52]),
the evacuation route is re-computed for each user every time he/she changes his/her physi-
cal location with a related SB agent or the safety conditions of the evacuation path change.
The resulting route guidance is personalized considering the relevant user’s factors and the
influence of the evacuees’ routes on each other.

7. Case study

We show the functioning of the architecture on a simple assumed evacuation scenario pre-
sented in Figure 4. Given is an evacuation network with 9 SB agents (nodes of the graph)
that represent 5 different physically limited spaces (halls) A, . . . , E and an evacuation
staircase F . This layout can be a representation, for example, of a movie multiplex with
4 different movie theaters.

As can be seen from Figure 4, halls A, B, and D and staircase F are represented
only by one SB agent since their total surface is lower than lmax. However, due to a too
large size, halls C and E are represented by two and three SB agents, respectively. When
needed, we will denote the part of spaces represented by different SB agents as, e.g., e5

(area of hall E managed by SB agent 5).
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Fig. 4. Example of an evacuation network modelling from the smart building floor plan.
Arc labels consist of three numeric values: travel time ta [sec], capacity ua [] per/min]
and safety Sa [0,1]

A separate arc in each direction is created for every two communicating neighboring
evacuation spaces and, correspondingly, SB agents. For simplicity, in Figure 4, we draw
just outgoing arcs from halls A, . . . ,D to the main hall E, and similarly, from hall E to
staircase F . The capacity of every arc is 30p/min except for the arcs connecting space
D with E whose capacity is u87 = 60p/min and of the arcs connecting space E with the
staircase F , u59 = u69 = u79 = 30p/min, Figure 4.

We assume that the critical safety for survival is Scr = 0.5. Initially, during the normal
operation of the building and before any incident started, safety of all halls was intact and
its value was 1, i.e. SA = SB = SC2

= SC3
= SD = SE5

= SE6
= SE7

= SF = 1,
which translates into the value of the safety of all the arcs in the network equal to 1.

Let us assume that, due to a malfunction on an electrical installation, a fire began at
hall A. We assume there are several smoke (ss) and temperature (ts) sensors installed
in different parts of the space controlled by each SB agent. In particular, agent SB 1
responsible of hall A contains smoke sensors ss1

1 and ss2
1, and temperature sensors ts1

1

and ts2
1 that detect smoke and high temperature reading the following values: ss1

1 = 0.2,
ss2

1 = 0.3, ts1
1 = 50◦C, and ts2

1 = 40◦C. These data are introduced into the event stream
as: [..., smokeEvent(ss1

1, 0.2), smokeEvent(ss2
1, 0.3), temperatureEvent(ts1

1, 50),
temperatureEvent(ts2

1, 40), ...].
CEP rule that detects abnormal high temperature is triggered only once with an event

from sensor ts1
1. It generates and includes the following event into the stream:

highTemperature(0.17).
Sequentially, another CEP rule obtains the jeopardy value by aggregating values from

smoke sensors: J(ss1
1, ss

2
1) = 0.2 + 0.3 − 0.2 × 0.3 = 0.44. The resulting value is

combined with the temperature sensor, J(ss1, ts
1
1) = JA = 0.44 + 0.17− 0.44× 0.17 =

0.54. Safety of hall A is computed as SA = 1− JA = 1− 0.54 = 0.46.
Therefore, shortly after the incident, the safety of hall A fell to 0.46 (below Scr) and

the building must be evacuated. The fire starts to extend to the neighboring halls B, D
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and e7 (since the walls and doors are not fire–proof). Thus, the safeties of these halls
are starting to decrease and momentarily their values are SB = 0.8, SD = 0.7 and
SE7

= 0.8 (obtained by CEP rules analogously to the previous example). The rest of the
halls maintain their safety value intact, including areas e5 and e6 (since the fire propagates
from the left part of E and is not detected in these parts of the E hall).

Let us assume that there are 300 evacuees in hall A; 400 evacuees in hall B; 700 in
hall C, 100 in hall D, and 300 in hall E. Furthermore, let us assume that evacuees are
distributed uniformly randomly in each hall. The maximum evacuation time of the whole
building given by the evacuation coordinator is 30 minutes. This means that the evacuation
request of agent SB 1, R1, is 10 persons/min, for SB 2, R2= 11.7 persons/min, R3=11.7
persons/min for SB 3, R4=26.8 persons/min for SB 4, and R8=3.4 persons/min for SB 8.

Evacuation route recommendation should be given to the evacuees such that they all
evacuate safely considering personal and evacuation constraints introduced previously. SB
agents jointly compute safe, efficient and envy-free routes in the following way. Firstly,
each SB agent with present evacuation requests finds safe routes. Since in Figure 4, all
arcs are with safeties Sa > Scr, at this level, all physical paths are possible.

At the next step, we perform routes’ travel time system optimization with fairness. If
we assume that the tolerance factor for the temporal efficiency is 15%, i.e., α = 1.15,
then initially each SB agent finds a set of temporally efficient paths from the set of safe
paths. In more detail, safe temporally efficient paths for SB 1 are p11 = ((1, 6), (6, 9))
with path’s free flow duration t11 = 80 sec and p12 = ((1, 7), (7, 9)) with the duration
t12 = 85 sec. There is only one efficient path for SB 2, p2 = ((2, 5), (5, 9)) with the
duration t2 = 90 sec, and one such path for SB 3, p3 = ((3, 5), (5, 9)) with the duration
t3 = 70 sec. Moreover, SB 4 contains two safe efficient paths, p41 = ((4, 5), (5, 9) and
p42 = ((4, 6), (6, 9)), both with free-flow duration t41 = t42 = 70 sec. Agent SB 8 has
only one efficient path p8 = ((8, 7), (7, 9)) with the duration t = 65 sec.

SB agents with evacuation requests send the requests for their safe efficient paths
to all the SB agents on the intermediate paths’ nodes. Then SB agents decompose the
problem at four levels and compute dual prices for their outgoing arcs based on the con-
gestion, capacity, consistency, and envy-freeness constraints as described in Section 6. In
particular, initially, the accumulation of the paths’ passage requests are satisfied from the
congestion point of view everywhere except for arc (5, 9) that has capacity 30, and the
accumulated requests on the paths of agents SB 2, SB 3, and SB 4 are 30.1 pers/min. This
is why the flow of agent SB 4 needs to decrease on path ((4, 5), (5, 9)) at the cost of path
((4, 6), (6, 9)) that has an increase of 7.5 persons per minute.

Final route flows for SB agents are as follows. SB 1, 4.7 per/min on path p11, and 5.3
per/min on path p12. SB 2, SB 3, and SB 8 agents direct all their evacuation requests on
their single paths. SB agent 4, 14,7 per/min on path p41 and 12,1 per/min on path p42.
Based on these values and the individual evacuation requirements of the evacuees, in the
second phase, each SB agent assigns the routes it was assigned on the first phase to the
evacuees present in its physical space.

8. Conclusions

In this paper, we presented a distributed evacuation route guidance architecture (ERGA)
for large smart buildings. Our approach takes into account the evacuees’ current location
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and building safety obtained by a smart building sensor network and personal mobile
devices to recommend the best evacuation route for each localized evacuee. The ERGA
always computes and recommends the most efficient safe paths for the evacuees. As the
evacuees move and change their position, the recommendations change based on their
momentary positions independently of whether the evacuees follow the recommended
routes or not.

The organizational structure of the proposed architecture includes a network of smart
building agents and user agents. Each SB agent is responsible of the computation of a per-
sonalized evacuation route for each user agent within the physical area under its control.
Since, here, we deal with a highly computationally complex problem, the implementation
of the proposed distributed sensing and computation in the SB agents adds scalability
and robustness to the route computation. The evacuation route optimization approach first
considers the safety of evacuation routes and then their temporal efficiency. Therefore,
first, a set of the safest routes is found and then, the routes that are temporally efficient are
selected within this set. By temporally efficient, we mean the routes that are acceptable
from the point of view of their total travel time knowing the walking speed.

To implement this architecture in a real-world context, we propose the usage of the
following technologies: iBeacons and smartphones for obtaining real-time evacuees’ and
building safety information, CEP for complex event processing, and a distributed opti-
mization algorithm for efficient route computation. With the usage of iBeacon technology
for the recognition of the evacuees, only the evacuees with a smartphone and the installed
app will be recognized by the system. However, if additional sensors are used in the
building, e.g., cameras, then the system could recognize all the evacuees and the related
congestion level in different areas of the smart building as long as there is sufficient vis-
ibility within the building. We use CEP rules for updating the number of pedestrians in
an area. The precision of this technology is related with the precision of the supporting
people tracking technologies, in particular, iBeacons. To increase the tracking accuracy,
further sensors are needed.

Our proposal addresses the computational complexity of managing the huge amount
of data that can be continuously generated in a large installation. On the one hand, users’
smartphones process events perceived from the infrastructure and forward only relevant
high level events to the network of SB agents. Moreover, the decision of running the
user agent on personal smartphones facilitates dealing with users’ privacy concerns. To
guarantee the efficiency of the evacuation, an important issue is the percentage of the
evacuees that use the ERGA app on their smartphones during the evacuation. For best
evacuation results, the evacuees should be familiar with smartphone navigation and should
follow the ERGA recommendations.

In the future work, first we plan to perform a sensitivity analysis evaluating to which
extent the results vary based on the level of accuracy in the iBeacon signals’ reading; then,
we plan to test our architecture in a simulated sufficiently complex large installation sce-
nario where we will evaluate the correctness of CEP rules and the route recommendation
algorithm in different settings. Then, for the proof of concept, we intend to deploy a field
test in a University-like building.
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