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Generating Job Schedules for Vessel Operations  
in a Container Terminal 

 
Thin-Yin Leong, Hoong Chuin Lau 

Singapore Management University, 80 Stamford Road Singapore (178902), {tyleong, hclau}@smu.edu.sg 
 
Vessel discharge and load jobs in a container terminal can be divided into sequences, one for each 
assigned quay crane (QC).  A QC sequence lists containers in their desired handling order.  The 
common practice for operators is to make do with just this sequence, without generating a job 
schedule (i.e. desired start-times of handling each container).  Operators who need job schedules 
generate crude ones by using an average gross crane rate (GCR) gleaned from past experience.  For 
realism, the job schedules should recognize the limit the maximum number of prime-movers and yard 
cranes that it can deploy.  In this paper, we study how job schedules can be efficiently generated that 
maximizes the GCR (or equivalently minimizes the QC total make-span).  With an effective 
algorithm, resources available to a QC can be adjusted, sharing with other QCs, to ensure that its job 
sequence can be completed by the target end-time.  This would lead to more efficient use of terminal 
resources and good control on the overall vessel completion time. 
 
Keywords:  Container terminal, transport scheduling, flowshop, heuristics, quay crane.  

1.  Introduction 
Top ten ports of the world (such as Singapore) have multiple container terminals that are being 
operated today by competitive corporations, rather than run as a department of their local government. 
As such, they are increasingly more concerned about competitiveness, cost and service performance 
than ever before.  They now serve concurrently many vessels alongside and their operation hours are 
being extended to be non-stop round-the-clock.  Together with their growth in size to keep up with 
global demand, they have become more complex to operate. 
  
To better understand the complexity of operations in the terminals, we will describe a typical vessel 
operation in its fine detail: A vessel discharge job takes 1.5 mins quay crane (QC) cycle to fetch a 
container from the vessel.  A prime-mover (PM) marries up with the QC and the container is loaded 
onto the PM's trailer.  The PM travels for 8 mins transporting the container from the QC to a yard 
crane (YC).  The YC takes the container off the trailer releasing the PM for its next job, and the YC 
completes its 3.0 mins cycle time to place the container in a yard location.  It then moves to a point 
ready to serve another PM.  A vessel load job would be similarly constructed with the PM arriving at a 
YC first and then transporting the container to a QC.        
 
The container discharge and load jobs can be divided into QC sequences, one for each QC assigned to 
it.  A QC sequence lists containers by the container IDs in their desired handling order.  Associated 
with each QC sequence should be a start-time and a target gross crane rate (GCR), i.e. the average 
number of containers moved in an hour.  From these, the target end-time can be deduced. 
 
In this paper, we investigate a real-world problem faced by a container terminal of how job schedules 
(i.e. desired start-times of handling each container) can be efficiently generated from these sequences.   
The objective in generating the job schedules is to maximize the GCR or equivalently minimize the 
QC operation’s total make-span. The typical approach currently practised, without generating a 
schedule, is to make do with just the QC sequence, because generating a feasible schedule proved to 
be extremely challenging. Another approach is to generate schedules by using an average GCR 
gleaned from past experience, without considerations of PM and YC equipment constraints.  For 
realism, the job schedules should recognize the limit the maximum number of PMs and YCs that it 
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can deploy.  With an effective algorithm, resources available to a QC can be adjusted, sharing with 
other QCs, to ensure that its job sequence can be completed by the target end-time.  This would thus 
lead to more efficient use of terminal resources and good control on the overall vessel completion time. 
 
Our problem is very much related to the classical flow-shop scheduling problem. It is in effect a bi-
directional flow shop where a job is defined as moving a container from the vessel to a pre-designated 
yard, or vice versa. Each job comprises 3 tasks – the processing on a QC, the movement by a PM, and 
the processing by a YC. We are interested in a special constraint that a string of jobs which must be 
either started or completed in a strict handling sequence for one type of machines (i.e. the QCs).  This 
constraint is imposed by the need to discharge or load containers in a certain order from the vessel. 

2.  Literature  
Murty et al (2004 and 2005) and Steenken et al (2004) provide excellent descriptions of container 
terminal operations.  Earlier, operations research studies on container terminal operations have 
focused on high level strategic design and tactical planning problems: demand forecasting, terminal 
and berth capacity planning, berth planning, vessel stowage planning and yard planning.  There have 
not been as many studies on operational scheduling and control concerns as these problems tend to be 
complex, and unless properly handled is best left to practitioners to work out in real-time operational 
execution.  Otherwise, constraint programming and artificial intelligence methods are used.  Artificial 
Intelligence (AI) methods are extremely difficult to implement in real-life and are often avoided by 
practitioners.  So very few are actually implemented into real systems, especially those commercially 
available.   
 
To support potential automation of the terminals with automated guided vehicles (AGVs) and 
automatic stacking cranes (ASCs), these complex problems and solution approaches can no longer be 
avoided.  Liu et al (2002) and Bish et al (2001 and 2005) consider the scheduling and dispatching of 
PMs to support QC operations, addressing specific problems like vehicle routing, job dispatching etc. 
which container terminal operators cannot force compliance on the PM drivers, and may be they can 
do a better job finding the best route. Steenken et al 2000 considers the need to coordinate transport 
and stowage in shipping planning.   
 
Recently, there is a surge of studies (e.g. Zhu and Lim 2004, Ng and Mak 2006, Jung and Kim 2006) 
on discovering the optimal “crane split” of vessel discharge and load jobs among the QCs for a single 
vessel.  This problem is similar to the production line balancing problem.  The output of this would be 
a sequence for each QC, but these studies largely assume infinite terminal resources to support the 
QCs.   Such problems for the whole container terminal (Moccia et al 2005) are complex and large 
mixed integer programs, requiring branch-and-cut, agent-based AI and heuristics approaches.  

3. Problem Formulation  
We now state the notations (refer to Figure 1) for describing the mathematical formulation of our 
problem.  Consider a QC sequence.  For the container in this sequence, thi ni ,,...1= , let be the job 

type, be the job start-time and be the job end-time on equipment
iT

jiS jiE j ,  where 

denotes QC, 

{ x,, }yuj∈
u x denotes PM and denotes YC.  y { }LoadDiscTi ,∈ , where  denotes discharge 
and  denotes load jobs.  C  and  respectively are the QC and YC cycle times (which can 

be simply and  if independent of ) and C is the PM travel time, computed by dividing the 
approximate distance between the container’s current location to its destination with the average PM 
speed.  There is also an interface time C , specified as the minimum time required between a PM 
arrival to a crane and its departure from that crane, during which a container is placed or removed 

Disc
Load ui yiC

iuC yC xi

f
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from its trailer.  In general, all time durations .  By definition, the relationships between the 
variables are as follows: 

0.. ≥C

 3
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Figure 1. Vessel Discharge and Vessel Load Jobs Time Elements 

 
The problem is to determine  and  for uiS yiS ni ,,...1= , which in turn defines  and all the job 
end-times since the cranes and PMs must work hand-in-hand transferring the containers between them. 

xiS

 
The Job Schedule Generation Problem is formulated formally as follows: 
( )XYGenSch : 
Minimize   [or  Maximize unEZ = )/(nGCR 1uun SE −= ] (4)  
subject to  

niES uiui ...,2,1 =≥ −   (5)
 { Exkxi , } ninkSSkDwhereXDn xkxixi ...,1,...,,1:)( ==<≤=≤  (6)
 { } ninkSSkDwhereYDn ykyiyi ...,1,...,,1:)( Eykyi ,< ==≤=≤  (7)
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Objective function (4) minimizes the make-span, i.e. the completion time of the QC sequence.   is 
the start-time of the first QC job and also the sequence start-time. Without loss of generality, we let 

.  Constraint (5) specifies that the QC handling order and its capacity are not violated.  
Constraints (6) and (7) ensure respectively that the number of PMs and YCs deployed at the start-time 
of any job i  do not exceed the available 

1uS

01 =uS

X prime movers and Y yard cranes.  Since increase in 
equipment deployed happens only at the start-times of PM and YC jobs, constraints (6) and (7) will 
ensure that limits X and Y are not exceeded for the whole duration of working the QC sequence.  
Constraint (8) states that the separation time between crane handlings at both ends of a PM travel must 
be at least as long as the travel time so that it is physically possible to execute.  Constraint (9) is the 
non-negativity constraint on the crane start-times.  The optimal schedule of will be referred 
to as . 

XYGenSch
SchOpt

 
One decision problem associated with  is: Is there a schedule with make-span no greater 
than a given value Z using no more than X PMs (or no more than Y YCs, or both)?  Note that if there 
is no restriction on the QC handling sequence, this problem is NP-complete, since the Bin-Packing 
problem can be trivially reduced to it by treating each PM as a bin and Z as the bin capacity.  
Interestingly, when the QC sequence is strictly imposed, this problem can be nicely solved by a 
greedy algorithm, as we will show in the next section.  

XYGenSch

4.  Solution Approaches 
It can be observed that good schedules for  should pack the jobs tightly, with minimal time 
gaps between the end of one QC job and the start of the next QC job.  Hence, one approach for 
generating a job schedule is to pack the jobs one after another, so long as they follow the QC handling 
sequence constraint. This algorithm (denoted as ) would generate the highest possible GCR, but 
violates the PM and YC availability constraints.  

XYGenSch

1Sch

Load

LoadTifCCS iyixiui ,⎩ =−−

niSui ...,,2, = niyi ...,,1, =

∞XGenSch2 ∞X

 
In the case where we do not permit the PM jobs to wait, we can simplify by replacing definitions (2) 
and (3) with (10) and (11) and adding constraint (12): 

ni
DiscTifCCS

S ifuiui
xi ,...1,
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(11) 

 (12) 

 
Invoking constraints (10) and (11) together is the same as changing the inequality in (8) to equality, 
making the constraint binding.  This resulting problem will be referred to as , under 
which only  is a decision variable; formerly a decision variable, S  is 
now a dependent variable.  That is, we need only find the QC job start-times, as the rest of the start-
times can be easily derived by adding or subtracting the cycle, travel and interface times.  

XYGenSch2

 
 (and hence GenSch ) can be solved optimally using a greedy algorithm, both for a 

given set of purely discharge jobs or purely load jobs.  In the following, we will present our algorithm 
for the case of discharge jobs, followed by load jobs.  It turns out that the latter algorithm is identical 
to the former, in reverse time sequence, as we will demonstrate.  
 

 4
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Scheduling Discharge Jobs: We assign jobs in increasing QC handling order.  For each job i, we 
assign its start time to be the earliest time that does not violate the PM and YC capacities.  In other 
words,  is the earliest time such that (1) is no earlier than the end time of job i-1; (2) is the 
time when a PM is available; and (3) is the time when a YC is available.  Let this algorithm be 
denoted as Sch-Discharge.  

uiS uiS xiS

yiS

 
Scheduling Load Jobs: Again, we assign jobs in increasing QC handling order.  The trick here is to 
think of load jobs as discharge jobs in a reverse time sequence – so we perform scheduling in a 
reverse time sequence where the QC task becomes the first instead of the last task.  In doing so, we 
shift the burden to maintain QC handling order at the end to the beginning, and hence the same 
algorithm in Sch-Discharge may be applied.  After scheduling, we simply reverse again the start and 
end times of each job.  This trick has been shown to work for the problem discussed in Bish et al 
(2005).  Let this algorithm be denoted as Sch-Load.  
 

4.1   Analysis 

 5

∞X XY

∞X

∞X

XY2

Both Sch-Discharge and Sch-Load can be implemented to solve in worst-case time 
complexity of O(n log X).  For each job, it suffices to determine when a PM would be available.  If we 
maintain a heap of size X which contains the completion timings of each PM, then obtaining the 
earliest completion time of a PM and updating the new completion time (as a result of a job 
assignment) is equivalent to performing a decreaseKey operation on the respective heap, which takes 
logarithmic time.   This also means that if X is constant, then we have a linear time greedy algorithm 
to solve GenSch . For the general case , the situation is slightly tricky since there could 
be cases when a PM is available but a YC is not, and vice versa.  To ensure that we find the earliest 
available time slot to assign a job, we need to scan from the earliest available time of a PM forward 
until the time when a YC is available.  Typically, since the YC cycle is short, this scan is negligible 

∞XGenSch

GenSch2

 
In the following, we will prove that both Sch-Discharge and Sch-Load are optimal for restricted cases.  
 
Proposition 1:  Sch-Discharge is optimal to GenSch if all jobs are discharge jobs. 2
Proof:  This can be shown by an exchange argument as follows.  Denote the schedule obtained by 
Sch-Discharge as Sch.  Suppose that there exists an optimal schedule SchOpt that is not the same as 
Sch.  Consider each job assignment in SchOpt from 1 to n in that order.  Let job i be the first job 
whose start time is different from Sch.  Let the start times of this job be denoted Sui and Sui

OPT   

respectively.  Since the start-time for job i in Sch is the earliest possible, we have Sui < Sui
OPT.  Now 

shift the start-time of job i in SchOpt backward from Sui
OPT to Sui..   Note that this will not introduce 

infeasibility with the jobs before i, since Sch is a feasible schedule.  Clearly, shifting backwards will 
also not affect the feasibility of the jobs after i.  Furthermore, the resulting make-span will either 
remain or improve.  Following this argument inductively, we can convert SchOpt to Sch without 
affecting the make-span.  Hence, Sch is also an optimal schedule. □ 
 
Corollary:  Sch-Load is optimal to if all jobs are load jobs. GenSch2
Proof:  Again, a simple argument as above can show this. 
 
Unfortunately, the above algorithm is not optimal for GenSch in general. Consider the following 
counter example comprising a sequence of 6 pure discharge jobs where the QC and YC cycle times 
are 1 and 2 respectively, PM travel times are 10, 9, 10, 7, 6, 20 respectively, and capacities X=6 and 
Y=2.  In this case, Sch-Discharge produces a make-span of 32 while the optimal make-span is 30. 
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Thus far, we have considered algorithms for purely discharge or purely load jobs.  If we are given a 
mixed sequence of discharge followed by load jobs, then it is technically cumbersome to switch 
between Sch-Discharge and Sch-Load.  Furthermore, this presents the additional challenge to splice 
the solutions together in a manner that can exploit savings at the cross-over time region between 
discharge and load jobs.  For instance, some discharge jobs might be deferred to allow some load jobs 
to start earlier, so that the QC will not need to wait for the load jobs to arrive upon completion of all 
discharge jobs.  
 
In the following we will consider a new single-pass forward algorithm to handle mixed job sequences. 
This algorithm is simple, efficient and effective (see Experiments section).  Unfortunately, it does not 
preserve the optimality property presented in Propositions 1 and 2.  It will however do so if we 
consider a restricted version of the problem.  We define function  to return the 

 largest value, and replace constraints (6) and (7) by (13) and (14): 
XYGenSch2 mMAX

thm
( ) niikEMAXS xkXxi ...,21,...,1: =−=≥   (13)

 ( ) niikEMAXS ykYyi ...,21,...,1: =−=≥   (14)
  

XYGenSch2
⇒

XYGenSch

 modified as above will be referred to as .  It is clear that (13)  (6) and (14) 
 (7).  Hence, feasible solutions to GenSch provide feasible and upper bound solutions 

to .  

XYGenSch3

XY

⇒
3

 
The following greedy algorithm  is proposed:  Start sequentially from job  to find  
and then compute the rest using (1), (10), (11) and (12).  Using the property of constraints (13) and 
(14), the feasible solution for each job i  can be found by shifting only job i  forward so that its PM 
job start-time is not earlier than the  largest end-time from among all the PM jobs preceding it and 
its YC job’s start-time is not earlier than the  largest end-time from among all the YC jobs 
preceding it.  Again, we seek to restore feasibility with least delay to job i .   Both algorithms generate 
the job start-times for QC, PM and YC jobs in a single pass, without violating the handling order of 
QC jobs or exceeding andY  (the PM and YC availability limits).  It can be shown that Sch is 
optimal for . 

XYSch3

thX

2=i uiS

XY

thY

X
XY

3
GenSch3

5.  Experiments and Discussions 
In this section, we report computational experiments to test the efficiency of the algorithms and 
quality of results measured in real-world terms.  Extensive experimental results that compare our 
heuristics with other heuristics and exact MIP models have been reported in a separate paper (see 
Zhao et al 2007).  
 
A total of 432 realistic test cases were generated for the following data values (all times in 
minutes): { } { },5.3,0.3,3.2,0.2,5.1,0.1,25.0 ∈∈= yuf CCC { }612,510,48 ±±±∈xiC  

(uniformly-distributed),  and { }7,6,5,4∈X { }5,4,3,2∈Y .  For each test case, a QC job sequence 
of 100 jobs is randomly generated, with 50 discharge jobs followed immediately by 50 load jobs.  We 
compute the following results:  average (approx.) and maximum PMs and YCs used under , 
maximum number YC used and number of times more than 

XYSch3
Y YCs are used under , and GCR 

under , Sch  and Sch . 
∞XSch3

SchOpt XY3 ∞X3
 
Results of the computational experiments are as follows:  

 6
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(1)   is near-optimal with = -0.3% average and -3.6% 

maximum. takes 5sec to 43sec to compute, averaging at 22sec.   With  ≈ 

 and  running in sub-second time, we conclude that in real life, constraints (10) 
to (12) are generally reasonable assumptions to make and  offers a very practical near-
optimal approach. 

XYSch3

SchOPTGCR

SchOptSchOptSch GCRGCRGCR XY /)( 3 −

XYSch3

SchOpt

Sch

XYSchGCR 3

XY3

(2)  was found to be better than optimal: = 4.4% 
average and 33.5% maximum.  It is of course infeasible relative to the constraint on 

∞XSch3 SchOptSchOptSch GCRGCRGCR X /)( 3 −∞

Y YCs.  
However, the number of times Y  was violated was found to be moderate: 11 jobs on average and 
55 jobs maximum out of 100.   

 
Using our proposed scheme for generating job schedules , we are able to examine the 
relationship between GCR and various PM/QC and YC/QC available ratios, which is shown in Figure 
2.  The GCR increases with PM/QC rising linearly and then saturates at different levels that increases 
with YC/QC.  This is consistently with what is observed in actual terminal operations, though they 
usually track the relationship to the deployed ratios rather than the availability limits. 

XYSch3
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Figure 2: Gross Crane Rate vs PM and YC equipment available 

6.  Concluding Remarks 
The most critical resource in the container terminals is usually not the YC: YC holding is typically 
almost four times that of QC.  The liberal relative quantities of YC is mostly to cater for the fact that 
YCs are physically distributed over a very large area and they are not mobile enough to be quickly 
moved from one location to another location.  Hence, the key issue is not YC availability but 
activating the right sub-set of YCs.  The terminals can usually do with more PMs since QC is the most 
expensive resource of the three, and thus should not be slowed down unnecessarily by the lack of YCs 
or PMs.  But having too many PMs without highly sophisticated coordination means would only lead 
to queues in the wrong places and massive traffic congestion. Hence the controlling variable in 
container terminal productivity is usually PM availability.  For this reason, we can safely focus on 

 rather than GenSch∞Y. ∞XGenSch
 
We observe that the number of YC deployed does not go frequently above reasonable Y  limits when 
the schedule is generated using Sch3X∞..  In fact, the number YCs used are often below Y , i.e. 
 7
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 8

constraint (7) is usually non-binding.   This suggests that we may not need to constraint YCs and let it 
be an outcome of the PM/QC availability instead.  Additional YCs required, beyond base availability 
given, may be marshaled for blocks of time from other QCs.  Conversely, this QC can share its YCs 
with other QCs when they need them for short periods of time.  Therefore, the result exploited in a 
multiple QCs situation would result in higher GCRs for all QCs, with no additional investment in YCs 
by the container terminal. 
 
Without loss of generality, we have made simplifying assumptions in our study, e.g. each PM carries 
only one container and only one yard location is visited per PM trip. Further operational refinements 
are needed for deploying the proposed algorithm in container terminal operations, which include these 
and many other practical details. These additions however would not compromise or alter the nature 
of results reported here. As an example, we may replace PMs in our model with straddle carriers (SCs), 
the alternative mover-stacker used in terminal operations.  SC terminal operations has the advantages 
that no YCs are needed since SCs can stack containers in the yard, and QCs and SCs do not have to 
wait for each other as they can put and pickup containers from the wharf side, i.e. their operations are 
de-synchronized within reasonable limits. Our results will still apply.   
 
In this paper, we considered job scheduling for a single QC. In a continuing work, we study a 
decentralized multi-QC coordination problem where resources (PM, YCs) are shared. There, we 
employ a combinatorial auction mechanism to broker the utilization of shared resources to conflicting 
demands arising from multiple QCs. The algorithm proposed in this paper provides the base algorithm 
for individual QCs (bidders) to generate their optimal resource bundle bids to be submitted to the 
auctioneer.  
 

References 
[1] Bish, Leong, Li, Ng and Simchi-Levi (2001),  Analysis of a New Vehicle Scheduling and Location 

Problem, Naval Research Logistics 48(5), 363 – 385. 
[2] Bish, Chen, Leong, Nelson, Ng and Simchi-Levi (2005), Dispatching Vehicles in a Mega 

Container Terminal, OR Spectrum 27(4), 491 – 506. 
[3] Jung and Kim (2006),  Load scheduling for multiple quay cranes in port container terminals, 

Journal of Intelligent Manufacturing 17(4),  479 – 492. 
[4] Liu, Jula and Ioannou (2002), Design, simulation, and evaluation of automated container, IEEE 

Transactions on Intelligent Transportation Systems 3(1), 12 – 26. 
[5] Moccia, Cordeau, Gaudioso and Laporte (2005), A branch-and-cut algorithm for the quay crane 

scheduling problem in a container terminal, Naval Research Logistics 53(1), 45 – 59. 
[6] Murty, Liu, Wan and Linn (2004), A decision support system for operations in a container 

terminal, Decision Support Systems 39(3), 309 – 332. 
[7] Murty, Wan, Liu, Tseng, Leung, Lai and Chiu (2005), Hong kong International Terminals Gains 

Elastic Capacity Using a Data-Intensive Decision-Support System, Interfaces 35(1), 61 –75. 
[8] Ng and Mak (2006),  Quay crane scheduling in container terminals, Engg Optimization 38(6), 723 

–737. 
[9] Steenken, Voβ and Stahlbock (2004), Container terminal operations and operations research – a 

classification and literature review, OR Spectrum 26, 3 – 49. 
[10] Zhao, Leong, Ge, and Lau (2007), Bidirectional Flow Shop Scheduling with Multi-Machine 

Capacity and Critical Operation Sequencing, Proc. 22nd IEEE International Symp. on Intelligent 
Control. 

[11] Zhu and Lim (2004),  Crane Scheduling with Spatial Constraints: Mathematical Model and 
Solving Approaches, Proc. 8th International Symp. AI and Math, Florida, USA.  

335

Regular Papers


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2007

	Generating Job Schedules for Vessel Operations in a Container Terminal
	Thin Yin LEONG
	Hoong Chuin LAU
	Citation


	tmp.1446520482.pdf.HCx29

