
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2008

The Pricing Strategy Analysis for the Software-as-a-
Service Business Model
Dan MA
Singapore Management University, madan@smu.edu.sg

Abraham SEIDMANN
University of Rochester

DOI: https://doi.org/10.1007/978-3-540-85485-2_8

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Sciences Commons, and the Management Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
MA, Dan and SEIDMANN, Abraham. The Pricing Strategy Analysis for the Software-as-a-Service Business Model. (2008). Grid
Economics and Business Models: 5th International Workshop, GECON 2008, Las Palmas de Gran Canaria, Spain, August 26, Proceedings.
5206, 103-112. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/245

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13238802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-540-85485-2_8
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F245&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

J. Altmann, D. Neumann, and T. Fahringer (Eds.): GECON 2008, LNCS 5206, pp. 103–112, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Pricing Strategy Analysis for the
“Software-as-a-Service” Business Model

Dan Ma1,∗ and Abraham Seidmann2

1 School of Information Systems, Singapore Management University, Singapore
School of Information Systems, Singapore Management University,

80 Stamford Road, Singapore 178902
madan@smu.edu.sg

Tel.: +65 6828 0926
2 University of Rochester, United States

Abstract. The Software-as-a-Service (SaaS) model is a novel way of delivering
software applications. In this paper, we present an analytical model to study the
competition between the SaaS and the traditional COTS (Commercial off-the-
shelf) software. The main research goal is to analyze the pricing strategy of the
SaaS in a competitive setting. The model captures the most salient differences
between the SaaS and COTS, including their distinct pricing structures, user ini-
tial setup costs, system customization levels, and delivery channels. We find
that the two could coexist in a competitive market in the long run, and more
importantly, we show how the SaaS could gradually take over the whole market
even when its quality is inferior. Surprisingly, our analysis shows that the SaaS
should raise (reduce) its prices when its software quality declines (increases)
over time (in the relative sense).

Keywords: the SaaS business model; pricing strategy; competition; the COTS
software.

1 Introduction

The Internet has enabled a new business model for software providers: the Software-
As-A-Service (SaaS) model. The providers could bundle software applications, an IT
infrastructure, and all necessary support services and deliver them to users across a
network when users have a demand for them. Meanwhile, the providers should store
the software system and users’ data in a central location and are in charge of daily
software maintenance, data backups, software upgrades, and security management.
Hence, users obtain and pay for the final computing utility on demand. Such a
business arrangement is totally different from the conventional delivery model for
software applications. Traditionally, most software has been delivered as commercial
off-the-shelf (COTS) products.1 The provider sells the software application to users

∗ Corresponding author.
1 A COTS product is a commercial software application that “is designed to be easily installed

and to interoperate with existing system components” (see http://whatis.techtarget.com). Al-
most all software bought by the average computer user fits into the COTS category, such as
operating systems, office product suites, word processing, and e-mail programs.

Published in GECON 2008, LNCS 5206, pp. 103–112, 2008.
https://doi.org/10.1007/978-3-540-85485-2_8

104 D. Ma and A. Seidmann

and helps to install it on users’ sites. The users possess the full ownership of the soft-
ware, and must provide IT infrastructure, hardware, and support services in order to
enable continuous use of the software.

The SaaS is experiencing fast growth. The AMR Research reports that the on-
demand software market is growing more than 20% a year, compared with single-digit
growth in traditional software (Lacy 2006). It is expected to reach $10 billion in annual
revenue by 2009, up from $1.5 billion in 2006 (Pallatto 2006). To many users, the SaaS
constitutes an attractive alternative to the traditional COTS solution. The recent study by
InformationWeek indicates that 29% of the 250 business technology pros surveyed were
using at least one licensed application hosted by a provider and accessed over the Inter-
net, and 35% were planning to buy software that way, or were considering it. More
interestingly, interest is found not just among small companies. Instead, 55% of the
respondents have annual revenue of more than $100 million, and a third have more than
$1 billion in revenue (InformationWeek 2007). Large organizations, such as Ama-
zon.com, Cisco, Sprint, Morgan Stanley, Nokia, and Target, are also attracted by the
SaaS and choose to obtain their software on demand, although they can easily set up the
internal system without subjecting to any budget constraint. It is clear that the SaaS
providers are stealing market share from the traditional providers of COTS software,
and putting significant competitive pressure on them (Economist, 2007).

However, the long-term success of the SaaS in such a competitive setting remains
uncertain. Data security and reliability as well as application control are always
among users’ top concerns (Bednarz 2006) which prevent them from opting for this
new business model. In addition, the multi-tenancy design by the SaaS, under which
providers are hosting a single instance of the software on a single server and main-
taining the customer data on a single database (Hickins 2007), brings users the
concern of lack of customization. For example, SourceRad, which provides clinical
practices with “integrated office scheduling, web-based viewing, online archiving,
disaster recovery, and transcription, all in an affordable, hassle free hosted plat-
form,” (Author visit with SourceRad team, July 2007), operates a “one-to-many”
service model, with no customization. As a result, users must exert additional effort to
make its standard software application fit smoothly with their existing IT systems.

Although some researchers have already investigated the SaaS, such as Susarla et al.
(2003) and Cheng and Koehler (2002), they focus on the monopoly setting and exclude
the existence of COTS software providers as well as their market influence. In this
study, I look at a marketplace in which the SaaS and COTS software solutions both are
available. Our analysis focuses on the competition between the two. The model charac-
terizes three salient differences between the SaaS and COTS. First, they deliver different
products: a customized software application (from the COTS) versus a bundle of stan-
dard software and services (from the SaaS). Second, they adopt distinct pricing modes:
an outright purchase (the COTS) versus a “per transaction” fee structure (the SaaS).
Third, they employ different delivery methods: software installed on a user’s in-house
server (the COTS) versus an interface delivered over the Internet remotely (the SaaS).

We identify several interesting features of such a competition. First of all, we show
that pricing its products strategically would allow the SaaS coexist with the COTS in
the long run. The market will be segmented in such a way that firms with low
transaction volume opt for the SaaS model because of the cheapness and scalability,
and firms with high transaction volume prefer the COTS model to enjoy software that
fits their specific business needs well. Moreover, we find that if users are concerned

 The Pricing Strategy Analysis for the “Software-as-a-Service” Business Model 105

about potential changes in their future business environment, the SaaS providers
should increase their prices. By doing this, they give up the competition with the
COTS provider for high-volume users and instead focus on attracting small and me-
dium firms. In contrast, if users expect the unfit costs of using standard software to
decrease due to the advance of web technologies, the SaaS providers should reduce
their prices to compete aggressively with COTS providers for those large corporate
users. These counter-intuitive yet important findings help to suggest useful competi-
tive pricing strategies to providers of on-demand software.

The rest of the paper is organized as follows. In Section 2, we describe the model.
The analysis of the competition is given by Section 3. Section 4 summarizes our ma-
jor findings, discusses their practical implications, and concludes the paper.

2 The Model

There are three parties in the market: software users, the COTS provider, and the
SaaS provider.

Software users have different IT needs, which are measured by the expected vol-
ume of software use. Users who use the software application more frequently (in
expectation) are considered with larger IT needs. To capture this heterogeneity, we
assume users are uniformly distributed on a unit-length line normalized from 0 to 1.
The location of a user on this line represents its expected transaction volume (in terms
of the number of transactions). In addition, we assume that each user’s actual transac-
tion volume is stochastic. The user only knows the demand distribution, but not the
exact number of transactions needed. In light of this, the actual demand for software
use for each user i is modeled as a random variable uniformly distributed on

[]θθ +− ii dd , , where the parameter id represents his expected number of transac-

tions and θ measures the volatility of the actual transaction volume. Note that id

itself is a random number distributed from 0 to 1.
The COTS provider sells the packaged software application to users and charges a

one-time upfront fee. The source code of the application will be modified to fit the
user’s specific business needs, and thus the COTS in-house system is well custom-
ized. The provider bears an operating cost C to serve one user and receives a one-
time payment P from the user. The user needs to install hardware and infrastructures,
hire IT staff, and organize an internal IT group to provide software maintenance, data
backups, and security and capacity management. Such service costs associated with
each use of the software are denoted by c (i.e., the service costs per transaction). Each
transaction creates a value of u to the user.

The SaaS provider sells the bundle of software and services on demand. The cost
structure faced by the SaaS provider has two components: a setup cost S per user (the
fixed part) and a service cost c per transaction (the variable part). Users pay as they

go, incurring a payment ap per transaction to the provider. The software is installed

on a central location which is controlled by the provider. All users can access and run
it remotely via the Internet. To any individual user, the application is not

106 D. Ma and A. Seidmann

well-customized, and each transaction gives the user a total value of u-t. The parame-
ter t measures the user’s disutility from not using its ideal product and is called users’
unfit costs in this paper. In many cases, it also represents the cost of extra effort to
make the outside application work with the user’s existing IT components smoothly.

Competition goes as follows. The two software providers are competing on prices.
They set their respective prices simultaneously to maximize profit by considering the
other’s responses. Given the prices, users choose one provider or just stay out of the
market by comparing the costs and benefits of using each provider.

3 Competition Analysis

In what follows, we analyze three different competition scenarios and then compare
the pricing strategies under each. Section 3.1 first studies the providers’ prices in a
static competition. It will be used as a benchmark case. Then we discuss the essence
of competition in a longer time window with possible dynamic changes in unfit costs,
which could increase or decrease for some practical reasons. Section 3.2 and 3.3 study
each of the two changes respectively and compare the findings to the benchmark case.

3.1 Pricing Strategy in the Static Competition (The Benchmark Case)

Consider user i with expected transaction volume id . Denote its actually transaction

volume by iD . If the user opts for COTS which charges a one-time payment P , it

needs first to decide and install proper IT service capacity level iq internally, which

is obtained by maximizing the user’s expected utility:

{ }[] ()[] () [] iiiiiiiiii
q

cqPqDDEquFqFuqcqPqDuEMax
i

−−<+−=−− /1,min

where (.)F is the cumulative density function of the transaction volume for user i.

With probability ()iqF−1 , the actual transaction volume will be larger than the

user’s pre-installed service capacity. The user loses excess demand. With probabil-

ity ()iqF , the actual transaction volume will be smaller than the user’s service capac-

ity. The user incurs the costs of carrying excess capacity. Solving the optimization

problem gives a closed form solution ⎟
⎠
⎞

⎜
⎝
⎛ −+=

u

c
dq ii

2
1* θ . Hence, the expected

utility for a COTS user is θ
u

cuc
Pcudi

)(
)(

−−−− .2 On the other hand, if the user

opts for the SaaS, it gains an expected utility of ia dtpu)(−− .

2 To understand this expression: the first term is the expected value from using the software; the

second term is the user’s one-time payment to the provider; and the last term represents the
user’s loss due to transaction uncertainty. Detailed derivations are available upon requests.

 The Pricing Strategy Analysis for the “Software-as-a-Service” Business Model 107

It is easy to see that in equilibrium the market is segmented in such a way that us-
ers with low transaction volume choose the SaaS and users with high transaction
volume choose the COTS software, and the indifferent user has the expected transac-

tion volume of
)(

)(*

ctpu

cuc

tcp

P
d

aa −+
−+

+−
= θ . Hence, the COTS provider serves

users in []1,*d , with a market share of *1 d− , and the SaaS serves users in []*,0 d ,

with a market share of *d .

The two providers choose prices P and ap to maximize respective profit as fol-

lows:)1)((*dCPMax
P

−− and ()() *2*

2

1
SddcpMax a

pa

−− .

The equilibrium price pair is characterized in Proposition 1.

Proposition 1. In the static competition, the price equilibrium exists. There is a

threshold value *t for the unfit cost parameter.

a) When
2

* cu
t

−≤ , the equilibrium prices are given by equations (1) and (2).

u

cucCctp
P a

2
)(

22
θ−−+−+= (1)

SuB

ctSuctB
pa 2

)(2)(

−
−++= , where θ)(cucPuB −+= . (2)

b) When *tt ≥ , the equilibrium prices are () ()
⎟
⎠
⎞

⎜
⎝
⎛ −−−−+= tu

u

ccucuC
pP a ,

2

)(

22
, ** θ .

Proposition 1 describes the software providers’ pricing strategy in a static competi-
tion. It is noticeable that the unfit cost parameter plays an important role. Whether or

not it exceeds the given threshold value *t defines distinct pricing strategy. When

such threshold value *t is not reached yet, both providers’ prices are increasing in the

unfit cost but the SaaS’ price is capped at tu − . When the unfit cost exceeds *t , the
SaaS charges tu − , the upper limit of the price which could attract users and leaves
zero consumer surplus.3

In practice, however, unfit costs could change. Unfit costs could grow over time,
given software or hardware changes on the users’ side, or decrease over time due to
technology improvements. For example, if the SaaS uses a browser interface that is
dependent on nonstandard aspects of IE7 but business circumstances faced by users
drive a demand for the latest IE or Firefox, or if the SaaS’s interface involves a mod-
ule built on top of a program that only works in a pre-Vista MS Windows environ-
ment but hardware replacement at the user’s site leads to multiple PCs with the Vista
OS, unfit costs may increase. On the other hand, if the SaaS provider continuously

3 At this price upper limit u-t, the SaaS provider extracts all consumer surpluses. Any price

higher this upper limit will drive users to be out of the market.

108 D. Ma and A. Seidmann

invests in improving its system integration features, users’ unfit costs may be decreas-
ing over time. For instance, Salesforce.com developed and launched AppExchange in
January 2006. AppExchange is an online marketplace for on-demand business soft-
ware. Currently it includes over 150 applications, and Adobe, Skype, and Factiva are
among the various partners. AppExchange allows Salesforce.com and other on de-
mand software providers to integrate their applications and therefore promises soft-
ware users seamless extension of their existing systems (Cowley 2005; Kuchinskas
2006). In this case, users expect to have reduced unfit costs because a uniform plat-
form eases collaboration across applications. Considering such changing natures of
the market, we need a two-stage model to capture the essence of competition in a
longer time window with possible dynamic changes in unfit costs. In the first stage,

the vendors choose their prices (), Ppa simultaneously, which are assumed un-

changeable in the time line we are studying. The SaaS imposes unfit costs 1t in the

first stage. Users could have certain expectations about a future change in unfit costs:
users may expect unfit costs to increase if they anticipate changes in demand or hard-
ware upgrades, or to decrease if they anticipate technological advances that favor the
shared software business model. In the second stage, such a change is realized. Users
will then consider switching. We make two simplifying assumptions for model tracta-
bility. First, users and software providers weight utilities and profits obtained from
both stages equally. Second, the initial setup costs of the SaaS to serve a new client
are negligible. These two assumptions help to ease the analytical exposition without
changing the results qualitatively.

3.2 The Two-Stage Model with Increased Unfit Costs

Consider the scenario that the initial unfit cost is 1t while users expect such cost to

increase to Ht later. Figure 1 depicts this two-stage competition. In the first stage,

with an unfit cost 1t , users in []1,0 d choose the SaaS, and users in []1,1d opt for the

COTS software. The user 1d should be indifferent between the two choices. In the

second stage, with an increased unfit cost 1ttH > , SaaS users in []1,ddS switch to

the COTS system for a better fit while the rest stay with their initial choices. The

“marginal” switcher is given by
)(

)(

ctpu

cuc

ctp

P
d

HaHa
S −+

−+
−+

= θ .4 On the other

hand, the user 1d , since it is indifferent between the two providers in the first stage,

gains the same total utility from both. If it chooses the SaaS and switches to the COTS

later, its total utility is { }
⎭
⎬
⎫

⎩
⎨
⎧ −−−−+−−

u

cuc
Pdcudtpu a

θ)(
)()(111

; if it chooses

4 An existing SaaS user i compares the utility from the SaaS,

iHa dtpu)(−− , with the utility

from the COTS,
u

cuc
Pdcu i

θ)(
)(

−−−− , to decide whether to switch. Therefore, the marginal

switcher is the one who gets same utility from both providers.

 The Pricing Strategy Analysis for the “Software-as-a-Service” Business Model 109

1dSd

Users choose the SaaS
initially and stay with it
afterward.

Users choose the SaaS
initially and switch to the
COTS in the second stage

Users choose the
COTS vendor initially
and stay it afterward.

1
0

Fig. 1. Competition with Increased Unfit Costs

the COTS initially, it obtains
⎭
⎬
⎫

⎩
⎨
⎧ −−−+

⎭
⎬
⎫

⎩
⎨
⎧ −−−−

u

cuc
dcu

u

cuc
Pdcu

θθ)(
)(

)(
)(11

.

By equating these two utilities, we get:

)(

)(

1
1 ctpu

cuc
d

a −+
−= θ

. (3)

The COTS provider gets]1,[1d users in the first stage and],[1ddS users in the

second stage. Its profit comes from users’ one-time payment. The SaaS provider

serves],0[1d users in the first stage and],0[Sd users in the second stage. It gains

profit from users’ every use of the software. Their prices are determined as follows.

[]S
P

dCPMax −− 1)(. (4)

() ())(
2

1 22
1

00

1

Sa

dd

a
p

ddcpxdxxdxcpMax
S

a

+−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+− ∫∫ . (5)

Let
Httap

,1
 and

Htt
P

,1
 be the equilibrium prices in such a two-stage competition

and let
Htt

d
,1

1
 be the indifferent user defined by equation (3). Let

1tap and
1t

P be

the equilibrium prices in the static competition with unfit costs 1t , i.e., the prices in

the benchmark case, and *

1t
d be the indifferent user in that case.

Proposition 2. When users anticipate a future increase in unfit costs, Htt →1 , both

vendors will increase their prices; i.e.,
11, tatta pp

H
> , and

11, ttt
PP

H
> . More users

will choose the COTS software initially, i.e., *

,1 11
ttt

dd
H

< ,, and the SaaS will lose

existing clients to the COTS provider once the cost increase occurs.

Proposition 2 states three important findings. First, although increased unfit costs
imply a decrease in the quality of the SaaS product (tu −), the on demand software

110 D. Ma and A. Seidmann

provider should nevertheless increase its price:
11, tatta pp

H
> . By charging a high

price, the provider gives up competing for high-volume users with the COTS pro-
vider; it instead concentrates on exploiting low-volume users that are unable to afford
the COTS anyway. Second, the COTS provider also raises its price, which is intuitive
because its product becomes more attractive. Interestingly, we find that the COTS

provider’s pricing function (
u

cucCctp
P Ha

2

)(

22

θ−−+
−+

= , equation (1)) is the

same as that in a static competition with Htt = . This means that the COTS provider

should adopt a simple pricing strategy. Software is priced as if it were in a one-stage
competition with invariant unfit costs. Finally, we conclude that a belief that unfit
costs will increase benefits in-house solution providers but hurts the SaaS providers.

3.3 The Two-Stage Model with Decreased Unfit Costs

Figure 2 shows the two-stage competition when t decreases. In the first stage, with

unfit costs 1t , users in []1,0 d choose the SaaS, and users in []1,1d buy the COTS.

The indifferent user is at 1d . In the second stage, the unfit cost decreases to 1ttL < ,

which could be the result of web technology improvements, adoption of software
standards and protocols, or creation of a uniform software platform. In such cases,
existing COTS users compare their utility from switching to the SaaS,

iLa dtpu)(−− , and staying with the COTS,
u

cuc
dcu i

θ)(
)(

−−− . The “marginal”

switcher, Sd , is the one who gains the same utility from these two options:

)(

)(

ctpu

cuc
d

La
S −+

−= θ .

The indifferent user 1d can be found as follows. If this user chooses the COTS and

then switches to the SaaS later, its expected total utility is

{ }11)(
)(

)(dtpu
u

cuc
Pdcu La −−+

⎭
⎬
⎫

⎩
⎨
⎧ −−−− θ

; if it chooses the SaaS in the first

stage, its total utility is { } { }111)()(dtpudtpu Laa −−+−− . By equating both, we get

)(

)(

11
1 ctpu

cuc

ctp

P
d

aa −+
−+

−+
= θ . (6)

Note that the number of switchers (from the COTS to SaaS) is not affected by the
COTS price because it is considered a sunk cost at the second stage.

The COTS and SaaS providers choose profit-maximizing prices respectively, as
described by equations (4) and (5).

Let
Lttap

,1
 and

Ltt
P

,1
 be the prices of the SaaS and COTS products, and let

Ltt
d

,1
1

 be the indifferent user defined by equation (6).

 The Pricing Strategy Analysis for the “Software-as-a-Service” Business Model 111

Sd1d

Users choose the SaaS
initially and stay with it
afterward.

Users choose the COTS
initially and switch to the
SaaS in the second stage

Users choose the
COTS vendor initially
and stay it afterward.

10

Fig. 2. Competition with decreased unfit costs

Proposition 3. When users anticipate a decrease in unfit costs, Ltt →1 , both provid-

ers will reduce their prices; i.e.,
11 , tatta pp

L
< , and

11 , ttt
PP

L
< . More users will

choose the SaaS initially; i.e., *

,1 11
ttt

dd
L

> . Existing clients of the COTS provider

have little incentive to switch to the on-demand software even if unfit costs decrease,
but they may do so if transaction volatility is high.

Three important findings are stated in Proposition 3. First, the SaaS provider’s re-
sponse to the expected decrease in unfit costs, which represents an increase in the
quality of its product, is to reduce its price. The increased quality and reduced price
together put the SaaS in a much better position in the competition with the COTS
provider to gain high-volume users, who are much more profitable in the eyes of the
SaaS.5 Second, the COTS provider once again will stick to a simple pricing strategy.

Its pricing function,
u

cucCctp
P a

2

)(

22
1 θ−−+

−+
= (Equation (1)), is the same as

that in a static competition with unfit costs 1tt = . It therefore can just ignore the

expected future changes and price its software as if in a one-stage competition. Third,
existing users of COTS software are unlikely to switch to the on-demand software.
These users have two choices: stay with the COTS solution, with a utility of

u

cuc
dcu i

θ)(
)(

−−− , or switch, with a utility of iLa dtpu)(−− . Since cpa >

always, the user switches only if its transaction volatility (θ) is high. Hence, we
conclude that once an in-house system has been installed, users have little incentive to
switch to the SaaS unless they need to manage risks caused by volatile demand.

4 Discussion and Conclusion

In this paper we try to shed light on the pricing strategy of the SaaS providers in the
competition with the traditional COTS software providers. We examine the equilib-
rium prices in both static and dynamic market conditions where users face stochastic
demand. Our findings show that the SaaS on-demand model is superior when a user
faces low transaction volume and/or high transaction volatility. It offers small firms

5 The SaaS gets paid per transaction. So high-transaction-volume users are more profitable than

low-transaction-volume users.

112 D. Ma and A. Seidmann

cost-saving access to software and becomes the natural choices of them, and mean-
while it competes with the COTS solution on firms with large transaction volume.

One common belief in designing the SaaS software is that increasing the product
quality by reducing its unfit cost should support higher prices. Hence, some results
from our two-period analysis may seem counter-intuitive at first glance. We establish
that the SaaS provider’s optimal response to users’ anticipation of decreased unfit
costs (which means an increase in product quality) is to reduce its price. The SaaS is
more competitive in this situation and thus can go after the more profitable high-
volume users. Since the SaaS provider is paid on a per transaction basis, users with
high transaction volumes are considered more profitable. Although the provider gains
smaller revenue per transaction (due to the reduction in its unit price), its market share
expands to encompass part of the segment with larger transaction volume. On the
other hand, when users anticipate a future increase in unfit costs (which means a de-
crease in the quality of the SaaS product), the on-demand software provider should
increase its price. By charging a higher price, it gives up competing against the COTS
provider for high-volume users. Instead, it separates the market and concentrates on
exploiting low-volume users that are unable to afford the COTS anyway.

Although this work only focuses on analyzing the SaaS providers’ pricing strategy in
the competitive market, there are many possibilities for further SaaS studies. It would be
interesting to examine the role of differential service level agreements (SLAs). When
users have demand for different levels of service, the SLA constitutes a way to segment
the market and improve the SaaS’s profit. Another possible extension encompasses the
design and management of a dual channel. Certain vendors (such as Oracle and IBM)
have changed their business models to offer both COTS and SaaS products. Typically,
they are selling a sophisticated version of their software products as a COTS product
and are leasing simplified operating versions as the SaaS. Future research may investi-
gate the proper pricing and functionality bundle per channel.

References

1. Bednarz, A.: Manufacturers Eye on On-Demand Software. Network World, April 24
(2006)

2. Cheng, H.K., Koehler, G.J.: Optimal Pricing Policies of Web-enabled Application Ser-
vices. working paper (2002)

3. Cowley, S.: Salesforce.com Makes Platform Move with AppExchange. InfoWorld (Sep-
tember 2005)

4. Hickins, M.: Oracle: On-demand is Now On The Grid. Enterprise (April 2007)
5. Kuchinskas, S.: Salesforce Finally Ships AppExchange. Ecommerce, January 17 (2006)
6. Lacy, S.: The On-Demand Software Scrum. Business Week, April 17 (2006)
7. Proponents of Software as a service say it will wipe out traditional software. The Econo-

mist, April 21 (2006)
8. Pallatto, J.: IBM Recruiting IS vs. Partners to SaaS. Channel Insider, Feburary 23 (2006)
9. Software as a Service (Research Report). InformationWeek (March 2007)

10. Susarla, A., Barua, A., Whinston, A.: Understanding the Service Component of Applica-
tion Service Provision: An Empirical Analysis of Satisfaction with ASP Services. MIS
Quarterly 27, 123–919 (2003)

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2008

	The Pricing Strategy Analysis for the Software-as-a-Service Business Model
	Dan MA
	Abraham SEIDMANN
	Citation

	The Pricing Strategy Analysis for the “Software-as-a-Service” Business Model
	Introduction
	The Model
	Competition Analysis
	Pricing Strategy in the Static Competition (The Benchmark Case)
	The Two-Stage Model with Increased Unfit Costs
	The Two-Stage Model with Decreased Unfit Costs

	Discussion and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

