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Performance of a token-passing system 
with batch arrivals and its application 
to file transfers 
Robert H Deng*, Xianyu Zhang* and Kuan-Tase Huang* 

This paper investigates the performance of token-passing 
systems with limited service and Poisson arrivals. For pure 
Poisson arrivals, the Laplace-Stieltjes Transform (LST) of an 
approximate customer/packet waiting time distribution is 
derived and expressed as a functional equation, from which 
the approximate mean and variance of waiting time are 
obtained; for batch Poisson arrivals, an approximate mean of 
waiting time is derived. Mean waiting time approximations 
are compared against both simulation results and other 
results presented in the literature; the variance approximation 
is evaluated by comparing it to simulation results only, since 
no other results on variance have been reported so far. As 
application examples of our analytical results, multimedia 
file transfers over token-passing LANs are modelled and 
studied. 

Keywords: file transfer, LAN, token-passing system, per- 
formance evaluation 

Token-passing is a widely used LAN access method in 
ring and bus networks 1. Two types of token-passing 
operations are in common use today, multiple- and 
single-token operation 2. In multiple-token operation, 
the transmitting station generates a new free token and 
places it on the network immediately after the last bit of 
transmitted data. As its name suggests, this type of 
operation permits several busy tokens and one free 
token on the network at one time. In contrast, single- 
token operation requires that a transmitting station 
waits until it has erased its own busy token before 
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generating a new free token. The single-token operation 
ensures that there is only one token on the network at 
any given time. When the packet length to network 
latency ratio is greater than one, the single- and 
multiple-token operations are essentially the same; 
however, as this ratio becomes less than one (e.g. due 
to an increase of network transmission capacity), 
multiple-token operation becomes superior. Note that 
the ANSI/IEEE 802.5 token-ring LAN 3 uses single- 
token operation, while ANSI's FDDI  4 implements the 
multiple-token operation to take advantage of its 100 
Mbits/s transmission rate. Token-passing systems can 
also be classified according to their service schemes: 
exhaustive, gated and limited services. In the exhaustive 
service scheme, the queue at a station must be empty 
before the token is passed to the next station. In the 
gated service scheme, only those messages in the queue 
at the time of  the token's arrival are served. Messages 
that arrive while the token is already at the station will 
be served in the next cycle. Finally, in the limited 
service scheme, a specified maximum number  of  
messages/packets in the queue, denoted k, will be 
served upon the arrival of the token. 

The nature of the traffic offered by stations to a 
network is a major factor in determining system 
performance. Many researchers have noted that the 
pure Poisson traffic assumption may result in a quite 
dramatic error in performance estimation for some real 
systems. For example, in file transfer systems it is more 
appropriate to assume batch traffic arrivals than pure 
Poisson arrivals. In this paper, we focus on the token- 
passing protocol with multi-token operation, limited 
service (limited-to-one), and either pure Poisson or 
Poisson batch arrivals. 

The queueing model of the token-passing system or 
polling system is a single-server multi-queue system 
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with a cyclic service discipline. In queueing terminology, 
an active station is a queue, the token is the server, and 
the overhead associated with sending a token from one 
station to the next is the polling/walking time. Through- 
out the paper, we use the generic terms customer, batch 
(of customers), and service time to represent packet, 
message (a batch of packets) and packet transmission 
time, respectively. Multi-queue systems with cyclic 
service have been studied by many authors. Most of the 
key results concerning M/G/1 multi-queue systems, 
both approximate and exact, can be found in References 
5-12. The excellent survey by Takagi 13 contains several 
further references. 

The MH/G/1 batch arrival multi-queue system has 
been discussed by Kuehn 14, who obtained mean 
waiting time approximations using the imbedded 
Markov chain technique; however, the approximation 
error of the Kuehn model becomes unacceptably large 
(over 30%) at medium-to-high offered loads 12. Using 
diffusion approximations, Fischer 15 and Kimura and 
Takahashi t6 have studied mean waiting time approxi- 
mations for the MlXl/G/1 and GIIxl/G/1 batch arrival 
models, respectively. Recently, Ibe and Chen 12 have 
obtained a very good approximation to the mean 
waiting time for the M/G/1 multi-queue system by 
utilizing the concept of sample cycle times. In this 
paper, we generalize the result oflbe and Chen ~2 to the 
study of MN/G/1 models. As for their results, our result 
also clearly shows the dependence of the mean waiting 
time on the order in which the stations are located in 
the network. Neither the Kuehn model nor the Fischer, 
Kimura and Takahashi models are able to show this 
dependence. Furthermore, our approximations are 
more accurate than the previous results, as will be seen 
in our numerical examples. 

TOKEN-PASSING MODEL 

The multi-queue model of the token-passing system 
considered in this paper is depicted in Figure 1. The 
server (token) serves N queues (with infinite buffer 
capacities) in a cyclic manner. The service discipline is 
limited service (limited-to-one). When the server visits 

, - ~ " O N N N ~ H  h i 

KN SN  1111 O 
Figure 1 Queueing model o f  token passing system 
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a queue, say the ith queue, it only serves one customer if 
any is present; otherwise, it moves to the subsequent 
(i + 1)th queue (when the server is in the Nth queue, it 
moves to the first queue). The walking/polling times of 
the server between the ith and the (i + 1)th queue are 
independent, identically distributed (i.i.d.) random 
variables A i with distribution FAi(e), mean ai and nth 
moment a! n). The mean of the total polling time during 
a cycle of the server to is given by: 

N 

= ~ a  i (1) to 

i = 1  

where to is also called system latency of the token- 
passing system. 

Batches of customers arrive at all queues according 
to independent Poisson processes with rates ABe, 
AB2 . . . . .  ABN. Batch sizes are i.i.d, random variables Ki 
with distribution: 

bik = Pr{Ki=k}, k = 0 ,  1,2 . . . .  (2) 

and first and second moments denoled by E [Ki] and 
E[K2i]. Customers which arrive at the ith queue are 
called type-i customers. The mean arrival rate of type-i 
customers is given by Ai = AeiE[Ki]. Service times of 
type-i customers are i.i.d, random variables Hi with 
distribution FHi(e), mean  h i and the nth moment hlm; 
the service process is also independent of the arrival 
process and of the polling process. 

The utilization at the ith queue Pi is defined as: 

p i =  ABiE[Ki]hi, i =  1,2 . . . . .  N (3) 

The total utilization of the server p is defined as: 

N 

P = ~-~Pi (4) 
i = l  

This paper deals only with the steady state of the multi- 
queue system. It was shown by Kuehn ]4 that the 
following conditions are needed for stability of the 
system: 

N 

< 1 and max(A/) ~~ai  < 1 - p (5) P 

i = l  

CYCLE TIME ANALYSIS 

The scanning epoch at a given queue is defined as the 
instant the server arrives at the queue. For any fixed 
queue, say the ith queue, let Ci denote the random cycle 
time between two consecutive scanning epochs at the 
ith queue. We refer to such a cycle as an/-cycle. During 
an i-cycle, all queues receive a service opportunity; 
however, not all queues may have customers waiting to 
be served. We observe that Ci is independent of the 
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queue index t ~ and we will use C to denote the cycle time 
random variable for any queue i, i --- 1, 2 . . . . .  N. The 
mean of the cycle time C, E [C], is given by  6' 14: 

EIC] = t0/(1 - p) (6) 

The conditional cycle time Di, first introduced by 
Kuehn ~4, is defined as the/-cycle time assuming that 
the ith queue has a customer service time contribution 
to the/-cycle. The mean ofDi ,  E[Di], is given by14: 

E[Di] = (hl + hi)/(1 - p + Pi) (7) 

Let adik be the probability for the service of a type-k 
customer (k 4: i) during the conditional cycle time Di.  It 
can be shown thatl4: 

adik " ~,k E [Di] (8) 

The exact solution of the conditional cycle time 
distribution Foi(e) is still unknown except for its mean 
E [Di] in equation (7). Using the independence assump- 
tion, Kuehn 14 gave the following approximation for the 
LST of the conditional cycle time distribution: 

N N 

CDi(S) = H ¢Ak(S) H (@dik ¢Hk(S) 
k = 1 k4=i 

-Jr (1 - adik))t~Hi(S) (9) 

where OAk(S) and ~m(s) are the LST of the polling time 
distribution FAk(e) and the service time distribution 
Fro(e), respectively. From equation (9), the second 
moment of the conditional cycle time can be evaluated 
as: 

N N 

= -- Ctdikh~) E[D~] Z V a r ( A D + Z ( a d i k h ~ 2 )  2 ~ 

k = l  k4=i 

+ Var(Hi) + EIDi] 2 (10) 

Motivated by Ibe and Cheng 12, in the following we 
introduce the concept of conditional sample cycle 
times Uj and Vj,j  = 1, 2 . . . . .  N, where/_(,/, is defined as 
the cycle time seen by an outside observer assuming 
that the server is serving thejth queue at the observation 
epoch, and Vj is the cycle time seen by an outside 
observer assuming that the server is polling the j th  
queue (walking from the ( j -  1)th queue to the j th  
queue) at the observation epoch. We remark that Uj and 
Vj are not arbitrary cycle times, but cycle times 
'sampled" by an outside observer. 

The mean E [Uj] of the conditional sample cycle time 
Uj can be obtained by investigating the flow balance of 
the system. Let au/k be the probability for the service of a 
type-k customer (k 4=j) during the conditional sample 
cycle time Uj. Using a similar argument as in Kueln 14 
and Kumura and Takahashi 16, we can show that: 

Ctujk = AkE[Uj], k ¢ j  (11) 

At steady state, the mean number of arriving type-k 
customers per sample cycle is equal to the mean 
number of served type-k customers per sample cycle. 
From this it follows that: 

N N 

EIUA = ~ ,  ak + 2hoj + ~-[a.jkhk 
k = l  kY:j  

(12) 

where: 

h) 2~ 
h o j -  2hi (13) 

is the mean residual life of the type-j customer service 
time found in service by the outside observer. Inserting 
( l l)  into (12) we find: 

E[Uj] - (2h0j + to) (14) 

and 

Ak(2h0j + to) k # j  (15) 
Ctujk - (1 -- p + p j ) '  

Let avjk be the probability for the service of a type-k 
customer during the conditional sample cycle time Vj. 
Using the same approach as above we have: 

E[Vj] = (2a~. + to - ai) (16) 
(1 - p) 

and: 

Ak(2aoj + to - aj) (17) 
Ctvjk = (1 -- p) 

where: 
aJ. 2) 

- (18) a0J 2a/ 

is the mean residual life o f the j th  queue's polling time 

A/" 

WAITING T I M E  ANALYSIS 

In this section, we analyse the multi-queue model 
presented earlier. Although the following solution is 
formally exact, the analysis approach is approximate 
due to the independence assumption, i.e. we assume 
that the cycle times C, O i, U / a n d  ~. are all i.i.d, random 
variables. 

Residual life Ri analysis 

C o n s i d e r  a tagged c u s t o m e r  tha t  arr ives  at the i th  
queue.  T h e  res idual  life R i of  a n / - c y c l e  t ime  seen by  the 
tagged c u s t o m e r  is de f ined  as the t ime  interval  f rom the 
ins tan t  the tagged c u s t o m e r  ar r ives  at  the i th  queue  
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until the complet ion of  the/-cycle (i.e. the completion 
of  the first polling of  the i th queue since the arrival of  
the tagged customer). Since customer batch arrivals 
follow Poisson distribution, the residual life Rg is 
statistically identical to the residual life of  a sample 
/-cycle seen by an outside observer. 

Let R,i i be the residual life R i conditional on the 
server was serving a type-j customer when the tagged 
customer arrived at the ith queue. Also, let Rvji be the 
residual life R i conditional on the server was polling the 

j t h  queue when the tagged customer arrived at the ith 
queue. We observe that the random variables R~j~ and 
Rvj, are statistically identical to the residual life of  U/ 
and ~ ,  respectively. 

Let L~kj be a Bernoulli random variable defined on 
10, 1}, with L.ki = 1 if there is a type-k customer service 
during the conditional sample cycle time G.; and 
Luk i = 0 otherwise, i.e.: 

1, Pr{L.k j = 1} = auk j 
Lukj = O. PrlLuk j = 11 = 1 - a u k j  

(19) 

where a~k i is given in equation (15). Then the conditional 
residual life R.i i can be expressed as: 

i i - I  

= Z Ak + Z L'kiHk + HI!/ (20) 
/,- =/+ I k = . j +  1 

where the random variable Hoj is the residual life of  
type-j customer service time. In the above summations  
we have used the following conventions: when k > N, 
k = k(mod N): when i < j  + 1, the first summation will 
be taken f romj  + 1 toN, and then from 1 to i: and when 
i - 1 < j  + 1, the second summation will be taken from 
j + 1 to N, and then from 1 to i - 1. Taking the LST of  
equat ion (20) and using the independence assumption,  
we obtain: 

i i - I  

(~R"ji(S) = U ~Ak(S) U (auk/C~Hk(S) 
k = j+  I k = j+  I 

1 - ~ H j ( S )  

+ (1 - a,k/) ) sh i (21) 

where the last term is the LST of  the residual life 
distribution of  type-j customer service times. Similarly, 
the LST of  the distribution of  Rqi, fI~RVii(s), can be 
obtained as: 

i i - I  

• R,:.(s) = l - [  ¢'~k(S) l--[ (a"ki~'k(s) 
k =.i + I k =.i 

+ (1 - a,,ki)) 1 - ~4y(s)  j :# i (22a)  
sai 

and: 

~R,:ii(s) - 1 - ~Ai(s) j = i 
sai 

(22b) 

Token-passing system with batch arrivals: R H Deng et al. 

where the last term is the LST of  the residual life 
distribution of  t he j th  queue's polling time, and where 
avkj is given in equation (17). 

Def inep ,  i andp~/as  the probabilit ies that the server 
is serving a type-j customer and that the server is 
polling the j t h  queue, respectively, when the tagged 
customer arrives at the ith queue. Following the 
approach of  Ibe and Chang j2, and using the fact that 
customer batch arrivals are Poisson distributed, it can 
be shown that: 

P,~i = Zi hi (23)  

and: 

a/ (24) P~'/- E [CI 

Note that Z(p,¢ + p~:/) = 1. Then the residual life of  the 
sample cycle time seen by the tagged customer is: 

N 

Ri = Z [PwR"ii + P~:iRqi] 
j =  I 

and the LST of its distribution is: 

(25) 

N 

dPRi(s) = E [Pw~R'di(S) + Pvi~Rrii(S)} (26)  

i = I 

Let Var(H0j) denote the variance of  the residual life 
of  type:/" customer service time. Let Var(A~! i) denote the 
variance of  the residual life of  t h e j t h  queue's polling 
time. From renewal theory it is known that'S: 

h !3) h!2)~ 2 
Var(g°A--- 3h/ 

a 13) /a(2)\2 
Var(A0i ) = 3a i (28) 

From equation (26), the mean E[Ri] and the second 
moment  E [Ri 2] of  the residual life Ri can be evaluated. 
After some calculations, we obtain from equation (26) 
that: 

N 

E [Ri] = E {p./E [R.ii] + poE [Rvii] ] (29) 
j= t  

where: 
i l -  ] 

E[R"i i ]  = Z ak + Z a'kihk + hoi (30)  
k = j+  I k=i+ I 

f i I Z ak + Zavk jhk  +aoi j sL i  
E[Rqi ] = k=.j + l k= j  

aoi, j = i (31)  
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and that: 

N 

E[R~I = Z {pujE[R~ji] + p~jiE[R~il } (32) 
j = l  

where: 
i 

E[R~ii] = 

i - I  

Var(Ak)+ Z (a~kjh~2) 2 2 - -  aukjhk) 
k = j + l  k = j + l  

+ Var(Hoj) + E[Ruji] 2 (33) 

i i - 1  

Z Var(Ak)+ Z (avkjh~2)-a~kih2) 
k = j + 1 k = j 

+ Var(H0j) + ElRuji] 2, j --# i 

Var(Aoj) + E [Rvji] 2, j = i (34) 

Functional equation on customer waiting time for 
systems with pure Poisson arrivals 

Consider a tagged customer that is the kth arrival at the 
ith queue, and denote: 

W,.(k): the waiting time in the ith queue of the tagged 
customer. 

Ri(k): the residual life of the sample cycle seen by 
the tagged customer. 

Di(l): the conditional/-cycle time due to the service 
of the/ th customer at the ith queue (if any is 
present), l < k. 

N/(k): the number of customers found waiting in the 
ith queue (not including the one in service) 
by the tagged customer upon arrival. 

po.(k): the probability that Ni(k) = j. 

We have: 

oo k - 1  

W i ( k ) = R i ( k ) J r  ~:= pij(k) Z Di(') 
.i = o / = k - j  

(35) 

Assuming that the ith queue is in steady state (i.e. 
k --* ~), then Wi(k), Ri(k), andpr(k) are independent of 
the index k, and Di(1) is independent of the index l, and 
they can be written as IV,,., R;, p,j and Di, respectively. 
Taking the LST of the above equation and using the 
independence assumption, it follows that: 

oo 

¢YPwi(S) = ¢~Ri(S) Zp6(CYPDi(S))J 
.i = 0 

(36) 

In equation (36), ¢bwi(S) is the LST of Fwi(O), the 
customer waiting time distribution at the ith queue, 
and d#ni(s ) and Ooi(S) are given in equations (26) and 
(9), respectively. 

Introducing the probability generating function for 
the state distributionpij at the ith queue,j  = 0, 1, 2,. .  • 

CX3 

Pi(z) = ~ pO.z j (37) 
j = o 

Equation (36) can be rewritten as: 

~wi(S)  = ~Ri(S)ei(l~i'~Di(S)) ( 3 8 )  

To proceed with our analysis, we now derive a 
relationship between the generating function Pi(z) and 
the LST ~wi(S). Regarding the ith queue as an M/G/I  
system, in the steady state, the queue appears statistically 
identical to an arriving and a departing customer. Also, 
the number of customers in the ith queue left behind by 
the tagged departing customer can alternatively be 
considered as the number of arriving customers during 
the waiting time of the tagged customer. Therefore, the 
distribution PO is the same as the distribution of the 
number of arriving type-/customers during the waiting 
time of the tagged customer. With this observation, it is 
easy to show that: 

Pi(z) = ~wi[Ai(l -- Z)] (39) 

Substituting equation (39) into (38), it follows that: 

dAIwi(S ) = ~Ri (S)~wi(~ i[ l  -- CI)~'(S)]) (40) 

This result gives the LST for the customer waiting time 
distribution expressed as a functional equation. The 
functional equation (40) is usually impossible to invert. 
However, the various moments of the customer waiting 
time can easily be obtained. In particular, the mean 
and the variance of the customer waiting times are 
given by: 

E[R;! 
EIW4 - (41) 

(1 - XiE IDd) 

E[R~] + A.~E[Wi](E[D~] + 2E[RiIE[Di]) 
Var [Wi] = 1 - AZE [Di] 2 

- E [Wil 2 (42) 

respectively. Equation (41) is identical to the result 
obtained by Ibe and Cheng 12. 

Mean waiting time for systems with batch Poisson 
arrivals 

The functional equation approach presented above 
does not apply to systems with batch arrivals, since the 
queue with batch arrivals no longer appears statistically 
identical to an arriving and departing customer. In the 
following, we derive the mean customer waiting time 
for systems with batch Poisson arrivals using a mean 
value approach. 

Let E[Wi(1)] be the mean waiting time of the first 
customer in an arbitrary message at the ith queue, Let 
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Ni be the number of customers found waiting at the ith 
queue by a batch upon arrival. We have: 

EIW~(1)I = EIn~l + E[NiIE[Di] 

= E[Ri] + AiE[DiIE[Wi] (43) 

where in the last step we have used Little's formula. 
From Kuehn 14, for batch arrivals we also have: 

'  EIK, l) E[Wg] = K I W i ( l ) ]  + 2 

Substituting equation (44) into (43) and solving for 
E[Wi] we arrive at: 

E[Ril + E[Dil(E[K~]/E[Kil  - 1)/2 
E lWd = 1 - ZiE [Dd (45) 

N U M E R I C A L  R E S U L T S  

In this section, we present numerical examples in order 
to discuss some general characteristics of the multi- 
queue model, and to show the degree of accuracy of our 
approximate solution. The mean waiting time approxi- 
mation is compared against simulation results generated 
by the IBM RESQ2 packagelg, and other results 
presented in the literature; the variance approximation 
is evaluated by comparing it to simulation results only, 
since no other results on this have been reported so far. 
The numerical results will be given for two types of 
models: (1) M/G/I  multi-queue models (Tables 1 and 
2); and (2) MM/G/1 multi-queue models (Tables 3-6). 
Throughout the following examples, it is assumed that 
the number of queues N = 10; the mean customer 
service time hi = l, and the queue walking/polling time 
is exponentially distributed with mean a i = 0.05, 

i =  1,2 . . . . .  N. 
A more detailed discussion of the results follows. 

Table 1 shows results of our approximate mean E [W/] 
and standard derivation awi of customer waiting time 
with respect to p for the M/M/1 multi-queue. The table 
also includes simulation results on E [W/] and a~., the 
exact and approximate mean waiting time obtained 
from Takagi l° and Boxma and Meister I1, and from 
Kuehn 14, respectively. From this example, as well as 

Table 1 Symmetrical M/M/I multi-queue 

Token-passing system with batch arrivals: R H Deng et al. 

from the rest of the examples, we observe that the 
proposed approximation on awi gives an under- 
estimation, and that it is quite close to the simulation 
result at low to moderate values of p. Table 2 shows 
results from the nonsymmetric M/M/1 multi-queue 
( '~l ---- 6~L, '~i ---- A,  i >/2). Both the simulation results and 
our approximations indicate that identical queues do 
not necessarily have the same mean and variance of 
waiting time; they depend on a queue's position relative 
to the queue with the highest customer arrival rate. In 
this example, queue 1 has the highest arrival rate and 
all other queues have the same arrival rate. The mean 
and standard derivation of customer waiting time 
decrease almost uniformly from queue 2 to queue 10 
(for compactness, only queues 2, 4, 6, 8 and 10 are 
listed). For an explanation of this phenomenon, the 
reader is directed to Box and Truong 8 and to Ibe and 
Cheng 12. 

Tables 3-6 show results for MM/G/1 multi-queues. 
The tables give mean customer waiting time obtained 
from simulation, our approximations, and the results 
of Kimura and Takahashi 16 and Kuehn 14. Tables 3 and 
4 show results for symmetrical M[Xl/M/1 multi-queues 
with constant and geometrically distributed batch 
sizes, respectively. All three approximations on E [W/] 
are quite accurate; however, our approximation is the 
closest to the simulation. 

The results on nonsymmetrical MM/M/1 multi- 
queues with constant and geometrically distributed 
batch size are given in Tables 5 and 6, respectively. 
From both our approximation results and simulation 
results we have again observed the waiting time 
dependence on the queue position for statistically 
identical queues; however, the dependence is far less 
weak compared to pure Poisson arrivals. Therefore, 
mean customer waiting times at consecutive queues 
with identical characteristics (i.e. queues from 2 to 10) 
are only represented by their average in the tables. 

FILE TRANSFER OVER TOKEN-PASSING 
S Y S T E M S  

We now apply the analytical results developed above to 
evaluate the performance of multimedia file transfer 

p Exact Our model Kuehn's model =4 

EIWiI" EI~I  b ~ h  EIW/I ~ c~,~ EIW,.1 

0.1 0.41899 0.41364 (4.7%) 0.58118 0.41902 0.58391 0.40775 
0.3 0.83942 0.82440 (5.0%) 1.27926 0.83971 1.16764 0.7290 I 
0.5 1.63158 1.60263 (6.1%) 2.21910 1.63276 1.93800 1.21926 
0.7 3.67925 3.62540 (3.8%) 4.73152 3.68341 3.60808 2. 35258 
0.9 21.36372 2 I. 11024 (5.6%) 23.94623 21.39689 17.75597 13.1 6488 

abased on Boxma-Meis ter  formula 
bBased on simulation 
~Based on Ibe-Chen formula 
Note: A confidence level of 95% was used in the simulation: thc percentage within parenthcses denotes the relative width of the confidence interval. 
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Table 2 Asymmetrical M/M/I  multi-queue 

p Simulation Our model Kimura 16 Kuehn 14 

E [Wil awl E IW, I a o~i E IW, l E [Wil 

Queue 1 

0.2 0.67249 (2.2%) 1.05357 0.65994 0.95605 0.661654 0.62641 
0.4 1.47354 (7.7%) 2.29467 1.46073 1.83008 1.47229 1.26901 
0.6 4.13450 (4.2%) 5.38628 3.84863 3.95958 3.91209 2.99000 
0.8 44.93304 (8.9%) 44.58387 39.20802 32.41350 39.54176 25.71818 

Queue 2 

0.2 0.58972 (3.4%) 0.92633 0.58968 0.84592 0.58583 0.54675 
0.4 1.10762 (2.1%) 1.60931 1.10271 1.41082 1.07604 0.89456 
0.6 2.22369 (2.6%) 2.48569 2.13769 2.28341 1.98178 1.46153 
0.8 6.17162 (3.0%) 6.53270 5.56162 4.84830 4.44515 3.19629 

Queue 4 

0.2 0.57800 (4.6%) 0.87145 0.58849 0.84461 
0.4 1.10090 (3.2%) 1.52315 1.09490 1.40592 
0.6 2.19492 (2.0%) 2.46494 2.09590 2.27110 
0.8 6.01273 (I.9%) 6.49710 5.30526 4.83403 

Queue 6 

0.2 0.57666 (4.8%) 0.86720 0.58730 0.84350 
0.4 1.08827 (2.8%) 1.51794 1.08710 1.39861 
0.6 2.14972 (4.0%) 2.42195 2.05411 2.24614 
0.8 5.89917 (2.0%) 6.27625 5.04889 4.74622 

Queue 8 

0.2 0.57094 (3.5%) 0.86256 0.58610 0.84258 
0.4 1.08791 (1.5%) 1.51251 1.07929 1.39076 
0.6 2.08976 (2.7%) 2.36025 2.01232 2.20812 
0.8 5.71441 (2.8%) 6.08167 4.79253 4.58062 

Queue 10 

0.2 0.56992 (5.7%) 0.85998 0.58491 0.84186 
0.4 1.06272 (2.3%) 1.50039 1.07149 1.38172 
0.6 2.02811 (1.8%) 2.30015 1.97053 2.15633 
0.8 5.47500 (3.0%) 5.87009 4.53617 4.32833 

~Based on lbe-Chen formula 
Note: confidence interval 95%. 

Table 3 Symmetrical Mlxl/M/I multi-queue with constant batch 
size (E[K] = 4) 

p Simulation Our model Kimura 16 Kuehn TM 

ElWi] EIWi] EIWi] EIW,] 

0.1 2.98440 (4.4%) 2.93299 2.75884 2.92171 
0.3 4.17897 (4.6%) 4.12438 3.92423 4.01368 
0.5 6.47204 (7.7%) 6.36961 6.01890 5.95610 
0.7 12.47658 (5.3%) 12.17397 11.25207 10.84315 
0.9 62.17523 (4.8%) 62.30619 55.57403 54.07419 

Note: confidence interval 90%. 

over token-passing LANs, one of  the most important  
applications in LAN communicat ions .  To simplify the 
description, we consider the transfer of  text and image 
files over token-passing LANs. General izat ion of  the 

model to include other  file types is straightforward, as 
can be seen from the following discussions. 

A generic file transfer system configuration 
is depicted in Figure 2. We consider three system 
configurations: 

1 Single Text Server: the single text (file) server 
configurat ion consists of  a number  of  workstations 
sending text files to and retrieving text files from a 
single text server. The text requests are transmitted 
over the token-passing LAN from workstations to 
the text server, and are processed on a first-come- 
first-served basis at the text server. The text server 
may also issue text requests to workstations, i.e. text 
file transfers between the server and workstations 
are bidirectional. 

2 Multiple Text Servers." utilization of  the LAN may be 
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Table 4 Symmetrical Mlxl/M/I multi-queue with geometrical 
batch size distribution (b = p ( 1 - p), k = 1, 2 . . . . .  E [K] = 4,p = 0.25) 

p Simulation Our model Kimura 16 Kuehn 14 

EIWA ElWi] EIWA EIWA 

0.1 5.49609 (9.6%) 5.44695 5 .27280  5.43568 
0.3 7.23986 (8.1%) 7.40906 7 .20890  7.29835 
0.5 11.24821 (9.4%) 11.10645 10.75575 10.29694 
0.7 19.79063 (8.6%) 20.66454 19.74264 19.3337 
0.9 102.85097 (7.7%) 103.21549 96.48329 94.98350 

Note: confidence interval 90%. 

Table 5 Asymmetrical Mlfl/M/I multi-queue with constant batch 
size (E[K] = 4) 

p Simulation Our model Kimura 16 Kuehn 14 

EIW,1 EIW~I EIW, I EIW3 

Queue I 

0.2 3.66399 (4.6%) 3.62046 3 . 2 2 7 7 0  3.58694 
0.4 5.97645 (4.1%) 5.78765 5 . 3 4 0 0 6  5.59593 
0.6 13.44173 (5.2%) 11.88435 11.09900 11.02572 
0.8 114.57623 (9.8%) 95.45826 82.06984 81.96842 

Queue  i (i = 2, 3 . . . . .  10) 

0.2 3.40843 (6.3%) 3.42343 3 . 2 5 0 3 9  3.38288 
0.4 4.76799 (5.3%) 4.92232 4 . 7 0 1 1 3  4.71978 
0.6 8.57251 (4.1%) 7.97516 7 . 5 7 8 2 8  7.38259 
0.8 20.27276 (4.0%) 18.02967 16.98395 16.17706 

Note: confidence interval 90%. 

Table 6 Asymmetrical MI'I/M/I multi-queue with geometrical 
batch size (E[K] = 4) 

p Simulation Our model Kimura I~ Kuehn 14 

EIW, I EIW, I EIWil EIW, I 

Queue 1 

0.2 7.01404 (11.4%) 6.58099 6.39340 6.54746 
0.4 10.63600 (8.7%) 10.11457 9 .81721  9.92286 
0.6 21.68063 (7.4%) 19.92007 19.03410 19.06145 
0.8 162.50624 (8.5%) 151.70850 138.31995 138.21866 

Queue  i (i = 2, 3 . . . . .  10) 

0.2 6.43616 (10.1%) 6.25965 6 . 0 8 6 5 2  6.219102 
0.4 8.81094 (11%) 8 .75755  8 . 5 3 6 3 6  8.56501 
0.6 15.31900 (13.1%) 13.896218 13.49933 13.30364 
0.8 33.57623 (9.2%) 31.01045 29.96472 29.15784 

Note: confidence interval 90%. 

i m p r o v e d  by  h a v i n g  two o r  m o r e  text  servers ,  e ach  
h a n d l i n g  d i f fe ren t  texts in the  system.  
Single Text Server and Single Image Server." as in ( 1 ) a n d  
(2), we a s s u m e  tha t  text  file t r ans fe r s  be tween  
w o r k s t a t i o n s  a n d  the  text  se rver  a re  b i d i r e c t i o n a l :  
a w o r k s t a t i o n  m a y  send  text  f i les to a n d  re t r ieve text  

files f rom the  text  server.  U n l i k e  text  file t ransfers ,  
i m a g e  file t r ans fe r s  a re  u n i d i r e c t i o n a l ,  i.e. we 
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Workstation 

Figure 2 File transfer system configuration 

a s s u m e  tha t  all  i m a g e  files a re  i n p u t  f rom an  
ex te rna l  i m a g e  i n p u t  device  a n d  are  a l r e a d y  s to red  
in the  i m a g e  (file) server. Th i s  c o n f i g u r a t i o n  can  be 
g e n e r a l i z e d  to i n c l u d e  m u l t i p l e  text  a n d  i m a g e  
servers,  a n d  to i n c l u d e  servers  o f  o t h e r  file types.  

In  all  sys tem c on f igu ra t i ons ,  we a s s u m e  tha t  the  
issue  o f  bo th  text file a n d  i m a g e  file reques t s  o b e y  
Poisson d is t r ibu t ions .  We also a s sume  that  a works ta t ion  

is a l l o w e d  to have  m o r e  t h a n  one  o u t s t a n d i n g  reques t  
at  a t ime,  so tha t  the  file a r r iva l  p rocess  at  the  servers  is 
Po i s son  d i s t r ibu ted .  F o r  text  file l ength  e s t i m a t i o n  we 
a d o p t  the  p r o b a b i l i t y  d i s t r i b u t i o n  g iven  b y  Welze l  z° 
(see Table 7). I m a g e  file is a s s u m e d  to have  a c o n s t a n t  
l eng th  o f  512 kby tes  (which  c o r r e s p o n d s  to 1024 X 1024 
p ixe l  i m a g e  with  a r e so lu t i on  level o f  I by t e /p ixe l  a n d  a 
c o m p r e s s i o n  ra t io  o f  2). F u r t h e r m o r e .  s ince  the  t raff ic  
g e n e r a t e d  by  the t r a n s m i s s i o n  o f  c on t ro l  da t a  a n d  
que ry  messages  is very  low c o m p a r e d  to the  t raff ic  o f  
text a n d  i m a g e  files, we will  no t  t ake  the  t raff ic  o f  da t a  
o t h e r  t h a n  text a n d  i m a g e  files in to  c o n s i d e r a t i o n .  

In  the  e x a m p l e s  below,  we are  in t e res t ed  in the  file 
so jou rn  t ime  at  e ach  w o r k s t a t i o n  a n d  at  the  servers.  
The  file s o j o u r n  t ime  at  a se rver  is m e a s u r e d  f rom the  

m o m e n t  the  r eques t  for a file f rom a w o r k s t a t i o n  ar r ives  
at  the  server  unt i l  the  c o m p l e t i o n  o f  the  last  p a c k e t  
t r a n s m i s s i o n  o f  the  r eques t ed  file. T h e  file so jou rn  t ime  
at  a w o r k s t a t i o n  is d e f i n e d  s imi la r ly .  Let  the  n u m b e r  o f  
s t a t ions  (works t a t i ons  a n d  servers)  be N. T h e  m e a n  file 
so jou rn  t ime  at  the  i th  s t a t ion  for  file o f  l eng th  Ki = k is 

g iven by: 

E[Si/k] = E[W,( I ) ]  + (k - I)E[Di] + hi, 

i = 1, 2 . . . . .  N (46) 

Table 7 Probability. distribution of text file length 

Text file length (Kbyte) Probability 

2 0.51 
8 0.20 

15 0.07 
24 0.06 
39 0.05 
69 0.05 

100 0.06 
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and  the mean  file sojourn t ime at the i th  stat ion 
a v e r a g e d  o v e r  a l l  f i l e  l e n g t h s  i s  g i v e n  b y :  

oo 

E IS;l = ~E [Si/k]bik = E I~(1)1 
k = l  

+ (E[Ki] - 1)E[Di] + hi (47) 

Numerical  results for the three system configurations 
are depicted in Figures 3-5,  where the subscripts W, T 
and I denote workstation, text server and image server, 
respectively. In all the figures we assume that station 
walking time is exponential ly  distributed with mean 
a i = 0 . 0 5 ,  i = 1, 2 . . . . .  N, that the number of  work- 
stations is 9, and that packet length is 1 kbyte with 
normalized packet transmission (customer service) 
time equal to 1. Text file lengths for both workstations 
and text servers follow the distribution provided in 
Table 7. Image length for the image server is 512 
packets. 

Figure 3 shows the results for the single text server 
configuration, where the packet arrival rate to the text 
server is nine times as large as the rates to each 
workstation, i.e. A,x = 9A,, A, w = A,. The results of  the 
multiple (two in this case) text server configuration are 
shown in Figure 4, where text requests from workstations 
are addressed to the two servers with equal probability. 
In this case we assumed thatA, T = 4.5A,,A,w = A,. Finally, 
results for the single text server and single image server 
configuration are given in Figure 5, where we have 
assumed that A.T = 9)t., A,l = 9A, and A,w = 9~,. 
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CONCLUSIONS 

In this paper we have studied the performance of  
token-passing systems with either pure Poisson or 
Poisson batch arrivals. The LST of  an approximate 
customer waiting time distribution has been derived 
for systems with pure Poisson arrivals, from which the 
approximate mean and variance of customer waiting 
time have been obtained. An approximate mean 
waiting time for systems with Poisson batch arrival was 
given. The approximations were verified by computer 
simulations. Both mean waiting time approximation 
and variance of waiting time approximation showed 
good agreement with simulation results, especially as 
low to medium traffic load. 

We have also considered some application examples 
of the analytical technique developed in this paper. In 
particular, we have proposed three system configurations 
for file transfer over token-passing LANs. We evaluated 
the file sojourn time for each system configuration. 
Generalizations of the file transfer configurations 
would be (1) to include more file types, and (2) to 
include both file traffic and interactive traffic in the 
system model. 
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