
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2006

CoSIGN: A parallel algorithm for coordinated
traffic signal control
Shih-Fen CHENG
Singapore Management University, sfcheng@smu.edu.sg

Marina A. EPELMAN

Robert L. SMITH

DOI: https://doi.org/10.1109/TITS.2006.884617

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, Operations Research, Systems

Engineering and Industrial Engineering Commons, Theory and Algorithms Commons, and the
Transportation Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
CHENG, Shih-Fen; EPELMAN, Marina A.; and SMITH, Robert L.. CoSIGN: A parallel algorithm for coordinated traffic signal
control. (2006). IEEE Transactions on Intelligent Transportation Systems. 7, (4), 551-564. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/176

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TITS.2006.884617
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006 551

CoSIGN: A Parallel Algorithm for Coordinated
Traffic Signal Control

Shih-Fen Cheng, Marina A. Epelman, and Robert L. Smith

Abstract—The problem of finding optimal coordinated signal
timing plans for a large number of traffic signals is a challenging
problem because of the exponential growth in the number of
joint timing plans that need to be explored as the network size
grows. In this paper, the game-theoretic paradigm of fictitious
play to iteratively search for a coordinated signal timing plan
is employed, which improves a system-wide performance crite-
rion for a traffic network. The algorithm is robustly scalable
to realistic-size networks modeled with high-fidelity simulations.
Results of a case study for the city of Troy, MI, where there are
75 signalized intersections, are reported. Under normal traffic
conditions, savings in average travel time of more than 20% are
experienced against a static timing plan, and even against an
aggressively tuned automatic-signal-retiming algorithm, savings
of more than 10% are achieved. The efficiency of the algorithm
stems from its parallel nature. With a thousand parallel CPUs
available, the algorithm finds the plan above under 10 min, while
a version of a hill-climbing algorithm makes virtually no progress
in the same amount of wall-clock computational time.

Index Terms—Area traffic control, coordinated traffic signal
control, optimization.

I. INTRODUCTION

S INCE WEBSTER and Cobbe [1] first published their re-
search on pretimed isolated traffic signal control, signif-

icant progress in traffic signal control has been made. With
the introduction of advanced computer, control, and communi-
cation technologies in traffic networks, signal control systems
are now able to receive more network-related information and
respond in a more congestion-adaptive manner. From past
research, we can see that, in general, the more information a
signal controller uses, the better performance it can achieve.
However, the complexity of algorithms for designing signal
timing plans correspondingly grows as more information is be-
ing utilized. Another factor that complicates the problem is the
number of signalized intersections considered. In the general
case, with nonperiodic signal timing plans allowed, the size of
the problem grows exponentially as the number of considered
signals increases. Therefore, in practice, the tradeoff between
the accuracy of the algorithm, the amount of traffic-related
information used, and the size of the network remains an issue.

Manuscript received February 15, 2006; revised July 17, 2006, August 15,
2006, August 25, 2006, and September 7, 2006. This work was supported in
part by the National Science Foundation under Grants DMI-0217283 and DMI-
0422752. The Associate Editor for this paper was H. Dia.

S.-F. Cheng was with the Department of Industrial and Operations Engi-
neering, University of Michigan, Ann Arbor, MI 48109-2117 USA. He is now
with the School of Information Systems, Singapore Management University,
Singapore 178902 (e-mail: chengsf@umich.edu; sfcheng@smu.edu.sg).

M. A. Epelman and R. L. Smith are with the Department of Industrial and
Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117
USA (e-mail: mepelman@umich.edu; rlsmith@umich.edu).

Digital Object Identifier 10.1109/TITS.2006.884617

Based upon amount of information used in the control
schemes, we can classify related research into the following
categories.

1) Offline: Pretimed signal control schemes for both iso-
lated and coordinated signal control belong to this cate-
gory. Since pretimed signal timing plans are computed in
an offline manner, they can only use information related
to historical flow statistics and network configuration.
Webster’s method [1] and its extensions, SIGSET [2],
and SIGCAP [3] are examples of isolated control meth-
ods (only a single signalized intersection is considered).
MAXBAND [4], [5] and its extensions, and TRANSYT
[6] are notable examples of coordinated control methods
(a group of signalized intersections is considered simul-
taneously).

2) Online: The use of sophisticated surveillance technolo-
gies, including inductive loop detectors and surveillance
cameras at signalized intersections, enables traffic signal
controllers to make use of real-time traffic information.
This information, including, but not limited to, vehicle
counts, link volume, and link occupancy, proved to be
very useful in computing real-time signal timing plans
for both isolated and coordinated signal control. Most
modern traffic-signal-control technologies belong to this
category. For the isolated control case, it was Miller
[7] who first proposed a control strategy based on on-
line traffic information. Other more recent methods in-
clude SCATS [8], PRODYN [9], [10], OPAC [11], [12],
UTOPIA [13], SPPORT [14], and COP [15]. It should be
noted that although many of the above control strategies
(e.g., OPAC, PRODYN, and SCATS) are also used in
coordinated control, the coordinations are mostly done
heuristically due to the combinatorial complexity of
the problem. Other notable research that focuses on
the coordinated control problem includes SCOOT [16],
CRONOS [17], REALBAND [18], Lin and Wang [19],
and Heung et al. [20].

3) Predictive: Based on offline and online information, the
next promising extension is to come up with predictions
of future network congestion, and compute the signal
timing plans in anticipation of predicted future traffic
conditions. An example of such an approach is RHODES
[21], [22]. It uses a combination of current real-time
information and planned timing plans from upstream
signals to predict future arrivals.

Among these three categories, the control schemes with
offline and online information are well studied and are widely
implemented. In comparison, control schemes that are capable

1524-9050/$20.00 © 2006 IEEE

Published in IEEE Transactions on Intelligent Transportation Systems, 2006 December, Volume 7, Issue 4, Pages 551-564
https://doi.org/10.1109/TITS.2006.884617

552 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006

of using predictive information are still mostly experimental,
and researchers are just beginning to explore the benefits of
using such information.

The method we propose in this paper does make use of
such predictive information. We rely on information on time-
dependent origin-destination flows, which can be used to pre-
dict link congestion in the future. We believe that high-quality
predictive information will become more and more accessible
due to the following two important technological advances. The
first important advance is high-quality estimation of dynamic
origin-destination trip flows [23], [24]. The second is the use
of vehicle-based GPS systems and other vehicle tracking tech-
nology in vehicle routing. With such equipment, we can pre-
cisely collect the origin-destination information for the “smart”
vehicles (i.e., vehicles outfitted with such equipment). Also,
by using these vehicles as traffic probes, we can get better
estimates of current link congestions. By combining the above
two branches of research, high-quality predictive information
required by our method should become available. The first goal
of this paper is thus to introduce an algorithm that is capable of
incorporating this predictive information in computing adaptive
traffic signal timing plans.

Another goal of this paper is to address the difficulty of find-
ing solutions to the combinatorial problem that arises in general
coordinated traffic signal control. The size of the set of solutions
that need to be considered grows exponentially as the number
of intersections and/or the length of the time horizon considered
increases. Moreover, functions typically used to measure the
performance of the network, such as, for example, average
trip time experienced by the drivers, have to be evaluated via
computationally intensive traffic simulators. These functions
also lack structural properties that traditional optimization al-
gorithms rely upon, calling for novel methods for searching
the solution space. Our algorithm allows for parallel execution,
which makes real-time signal control possible even in a large
network. The applicability of our approach (called CoSIGN,
for “Coordinated SIGNals”) is demonstrated by a test case
study based on the real traffic network of Troy, MI.

This paper is organized as follows. In Section II, the problem
formulation is stated. In Section III, we motivate the use of
a game-theoretic approach to this problem. In Section IV, the
necessary technical background is provided and the algorithm
is stated. In Section V, we restate the coordinated-traffic-signal-
control problem in game theoretic terms and explain the details
of the algorithm’s implementation. In Section VI, the test
case and results of experiments are discussed. Future work is
proposed in Section VII.

II. TRAFFIC-SIGNAL-CONTROL-PROBLEM FORMULATION

We consider the problem of finding an optimal coordinated
traffic signal plan for a group of signalized intersections over a
given time horizon. A problem instance is defined by specifying
the topology of the traffic network, the time horizon, as well as
the time-dependent origin-destination flows over this time hori-
zon. In particular, for every origin-destination pair in the net-
work, the timing of vehicles’ departures from the origin for the
destination and the route they take are presumed to be known.

The goal is to minimize the average travel time experienced by
all drivers in the network during the given time horizon (we use
the terms “driver” and “vehicle” interchangeably).

We formulate this coordinated-traffic-signal-control problem
as a discrete optimization problem, where the planning horizon
is divided into N time periods of equal length of δ seconds,
and the decision variables are the signal phases1 prevailing
during each of the N time periods, at each of the I signalized
intersections.2 The following notation will be used in describing
the coordinated-traffic-signal-control problem:

1) I = {1, 2, . . . , I}: set of signalized intersections.
2) N = {1, 2, . . . , N}: set of time periods (each time period

is δ-seconds long).
3) Si = {1, 2, . . . , Si}: set of permissible signal phases for

intersection i, i ∈ I.
4) si,n ∈ Si: a decision variable representing the signal

phase at intersection i during time period n.
The problem can be formally written as

min AVERAGETRAVELTIME({si,n, i ∈ I, n ∈ N})
s.t. si,n ∈ Si,∀i ∈ I,∀n ∈ N (1)

where the mapping from the vector of decision variables
{si,n} to the objective value is represented by the function
AVERAGETRAVELTIME (·), which reflects the performance
measure we discussed above. The dependence of this function
on the decisions made in the problem, i.e., the signal timing
plans over the planning horizon, is inherently complex and
possesses neither analytical representation nor known structural
properties (such as monotonicity or subadditivity). In effect,
we are faced with a problem of optimizing a “black-box”
function. In particular, in our research, all function evaluations
are provided by a traffic simulation program, as described in
Section V-B.

One immediate concern resulting from this formulation is
the exponential explosion of possible joint decisions as N
and I get larger. In the worst case, all joint decisions, with
number bounded by (maxi{Si})N ·I , have to be enumerated
and evaluated in order to find an optimal solution to assure
global optimality. For a practical size problem, this is impos-
sible. Therefore, we take the approach of searching for a high-
quality locally optimal solution instead. Still, considering the
complexity and scale of the problem, it is not obvious how even
this can be achieved within reasonable time.

In the next section, we will propose the use of a game-
theoretic approach to resolve our dilemma.

III. MOTIVATION FOR A GAME-THEORETIC APPROACH

In this section, we briefly describe the motivation and the in-
tuition behind using game theory in solving coordinated-traffic-
signal-control problems (see [25] for an early application to

1A signal phase is a collection of traffic movements that receive right
of way simultaneously. Therefore, all movements within a phase must be
nonconflicting.

2By defining decision variables this way, we allow acyclic signal timing
plans. In the absence of cyclic parameters, we assume that a fixed amount of
yellow time is incurred if two consecutive decisions at a signal are different.

CHENG et al.: CoSIGN: PARALLEL ALGORITHM FOR COORDINATED TRAFFIC SIGNAL CONTROL 553

dynamic route guidance). Although some game-theory-related
terms are mentioned throughout this section, their formal defin-
itions are deferred to the next section. The intuition behind our
approach is emphasized here.

Recall that the decision variables in our problem are the
signal phases prevailing during each of the N time periods at
each of the I signalized intersections. The number of joint deci-
sions is thus bounded by (maxi{Si})N ·I . The problem quickly
becomes intractable as we increase N and/or I . However, if we
decompose the problem into smaller subproblems, we may be
able to find a sufficiently good solution in a reasonable amount
of time.

The decomposition of the problem can be accomplished by
assuming that each signal in each period is an independent
decision maker. By adopting this decomposition, the central-
ized decision problem, with (maxi{Si})N ·I possible decisions,
can then be transformed into (N · I) subproblems, each with
at most maxi{Si} possible decision alternatives. The effect
is to reduce an exponential to a linear number of alternatives
to consider. However, if we decompose the problem without
considering the interactions among these independent decision
makers, we are just solving (N · I) isolated signal control prob-
lems over very short time horizons, and there is no coordination
among traffic signals.

In order to effectively incorporate coordination of a large
number of decision makers, we turn to the game theory, which
originates from economics. Modern game theory was created
after von Neumann and Morgenstern [26] in 1944, and it
quickly became a popular tool in explaining and predicting
behavior of groups of rational decision makers (players in
game-theory terminology) when their well beings are associ-
ated with the joint actions of all decision makers (players). If
each decision maker who controls a time period for a signal is
viewed as a player in the game, and the average travel time of all
vehicles in the traffic network is viewed as a common payoff for
every player, the coordinated-traffic-signal-control problem can
then be represented as a game of identical interests. The notion
of a solution to a game is that of a Nash equilibrium (a similar
but more transportation-specific result is Wardrop’s principle
[27]), which for a game of identical interests can be viewed as a
coordinatewise local optimum. Intuitively, a joint decision is a
Nash equilibrium if no individual player can improve its payoff
by unilaterally deviating from the original joint decision. Note
that in a game of identical interests, Nash equilibrium is not
necessarily a global optimum.

It is well known that finding Nash equilibria is a hard
problem [28]. One of the earliest algorithms used to find Nash
equilibria is an iterative process called fictitious play (FP) [29],
[30]. The primary pitfall of FP is that, in general, it does not
converge to an equilibrium. However, Monderer and Shapley
[31] showed that for a special class of games, namely games of
identical interests, the FP will converge to equilibrium. Since
virtually all unconstrained discrete optimization problems can
be represented as games of identical interests, this result has
recently inspired researchers in optimization to introduce FP as
an optimization tool [25], [32]. In this paper, after we model the
traffic-signal-control problem as a game of identical interests,
we will apply a variation of the FP algorithm to find a solution.

IV. GAME THEORY AND THE FP ALGORITHM

In this section, we formally define a game and the solution
concept of a Nash equilibrium and discuss how one can use the
FP to find a Nash equilibrium of a game.

A. Game-Theory Fundamentals

Game theory studies how independent decision makers
would act under the assumption that an individual’s payoff will
be determined by actions of all participants. We now define the
components of a game.

1) Players: Each independent decision maker in the game
is defined as a player. Every player has a finite set of
decisions called strategies (or pure strategies) that it can
choose from (or “play,” in game-theory terminology). A
mixed strategy is a probability distribution over the set of
the player’s strategies. A joint strategy is a specification
of (mixed) strategies for all players.

2) Payoff function: For every player, its associated payoff
function is defined as a mapping from joint strategies
to the corresponding payoff this player will get, where
these joint strategies played (or expected payoff, if mixed
strategies were played). In general, players may have dif-
ferent payoff functions. However, in this paper, all players
will be assumed to have identical payoff functions.

3) Best-reply function: Given an arbitrary joint strategy,
a player’s best-reply function will return a strategy that
gives this player its highest payoff value, assuming that
all other players use the strategies specified in this joint
strategy. As we will see later, this is the critical operation
in our approach.

4) Nash equilibrium: A joint strategy is a Nash equilibrium
if no individual player can improve its payoff by unilater-
ally deviating from the play of the original joint strategy.
More precisely, a joint decision is a Nash equilibrium
if for every player, its current decision is its best reply
against this joint strategy. In other words, Nash equilib-
rium is a fixed point of the best-reply function.

The first important existence theorem, proved by Nash [33],
stated that every finite game in strategic form3 has a mixed
strategy equilibrium.

For a complete treatment of these introductory terms and
concepts, we refer to Fudenburg and Tirole [34].

B. FP and Sampled FP (SFP) Algorithms

Computing Nash equilibria can be a difficult task. McKelvey
and Mclennan’s work on GAMBIT [28] is an excellent ref-
erence for various computational methods for finding Nash
equilibria. In this paper, we will use a simple-to-implement
iterative algorithm, which is a variation of FP. Convergence

3A game is said to be in strategic form if it has a finite set of players, each
player has a nonempty strategy set, and each player’s payoff functions are
properly defined for all joint strategies. A strategic game is finite if the number
of players and all players’ strategy sets are finite.

554 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006

results for the FP algorithm and its variants are stated in [31]
and [32]. Since in this paper we are mainly interested in solving
the traffic-signal-control problem, most technical details are
omitted here. See [32] for a complete treatment.

The intuition behind FP lies in the theory of learning in
games. In a classical FP process (see, for example, [29]), every
player assumes that other players are playing unknown station-
ary mixed strategies and tries to learn them iteratively. The
estimates of the unknown stationary mixed strategies are rep-
resented as belief distributions or beliefs, and are shared among
all players. The belief distribution for player i is a mixed strat-
egy calculated by finding the relative frequency of all strategies
from the history of its past plays. During each iteration, each
player finds its best reply against the belief distribution of other
players (i.e., its belief of how they will play). These best replies
are then included in the history of past plays, and the beliefs
are updated accordingly. To start the FP process, an arbitrary
joint strategy is used. The FP algorithm does not converge
to equilibrium in general. However, for games of identical
interests, as in our case, the sequence of beliefs generated by
the FP algorithm is guaranteed to converge to equilibrium [31].

The best-reply operation of the classical FP algorithm
outlined above is too computationally expensive to implement
in practice. Lambert et al. [32] thus suggested a variant they
called the SFP that is computationally practical. SFP is very
similar to FP, except that the best-reply evaluation in each
iteration is done against samples randomly drawn from the
belief distribution instead of the belief distribution itself. A
convergence result for SFP with gradually increasing sample
sizes is proved in [32]. In practice, however, samples of size
one are often used at each iteration.

The SFP algorithm, with sample size one, is described as
follows.

1) Initialization: An initial joint strategy is chosen arbitrar-
ily. It is then stored in the history.

2) Sample: A strategy is independently drawn from the
history of each player (i.e., for each player, each past play
is selected with equal probability).

3) Best Reply: For every player, the best reply is computed
by assuming that all other players play the strategies
drawn in step 2).

4) Update: The best replies obtained in step 3) are stored in
the history.

5) Stop? Check if the stopping criterion is met; if not, go to
step 2), otherwise stop.

The pseudocode for the SFP algorithm and the sampling
subroutine is listed in Algorithm 1. This pseudocode is specified
for a game with P players. Here, D and B are P -dimensional
vectors whose components contain individual strategies of the
players, and (·)T denotes the transpose operation. H is a
“history” matrix, where H(k, j) represents player j’s best reply
in the kth iteration. Notation H(k, :) represents the kth row of
matrix H, while H(:, j) is the column containing the history
of past plays of player j. This representation of the history
allows convenient access to relevant information for sampling
in step 2).

Algorithm 1 Sampled Fictitious Play (sample size 1).
SFP()
1: H(0, :)← INITIALSOLUTION()
2: k ← 0
3: while STOPCRITERION() is false do
4: D← SAMPLE(H, k)
5: B← BESTREPLY(D)
6: H(k + 1, :)← BT

7: k ← k + 1
8: end while

D = SAMPLE (H, k)
1: for j = 1 to P do
2: u← DISCRETEUNIFORM (0, k − 1)
3: D(j)← H(u, j)
4: end for
5: return D

Algorithm 1 implements the SFP algorithm in a straightfor-
ward way. Line 1 generates an initial solution (joint strategy) by
calling function INITIALSOLUTION, thus populating the zeroth
row of history matrix H. Line 4 performs a uniform sampling
from each player’s history independently. Line 5 computes
a best reply B to the sampled decision D. Line 6 appends
B at the end of the history matrix H. Note that except for
k = 0, each row k of matrix H stores best replies computed
in iteration k. The above three lines are then repeated until
STOPCRITERION returns true. Since BESTREPLY subroutine
simply solves a collection of P one-dimensional optimization
problems whose input is the sampled decision D, it can be
executed in parallel. As we will see later, the parallelization of
the best-reply computation is the most important feature that
makes the SFP algorithm efficient.

Although this is not explicitly specified in the general
pseudocode, we will keep track of the “incumbent” solution,
i.e., the pure strategy with best performance observed so far,
throughout the algorithm. At termination, the SFP algorithm
returns the current and therefore best incumbent solution.

The SFP algorithm was first implemented and used as an
optimization scheme by Garcia et al. [25], who applied it
to a dynamic traffic assignment problem. When compared to
previously established methods, the SFP algorithm was able
to obtain solutions of the same quality significantly faster.
Lambert and Wang [35] further demonstrated the effectiveness
of the SFP algorithm as compared to simulated annealing for a
communication protocol design problem.

V. COSIGN: SFP ALGORITHM FOR THE

TRAFFIC-SIGNAL-CONTROL PROBLEM

As mentioned above, traffic-signal-control problems are usu-
ally solved by either restricting the space of solutions by
searching for parameters of predetermined cyclic patterns or
by limiting the number of signals considerably. Instead, our
approach will be to search for solutions to the full-scale co-
ordinated signal planning problem by using the SFP algorithm.

To solve a problem with the SFP algorithm, we must first
formulate it as a game. In the following sections, we will

CHENG et al.: CoSIGN: PARALLEL ALGORITHM FOR COORDINATED TRAFFIC SIGNAL CONTROL 555

describe how to construct a game-theoretic model for the traffic
signal optimization problem. Based on this formulation, we can
then specify the performance measure used to evaluate signal
timing plans and describe the best-reply subroutine using this
performance measure.

A. Formulating Coordinated Traffic-Signal-Control Problem
as a Game

With the same notation as defined in Section II, we can
formulate the problem as a game.

1) Player: Each tuple (i, n), i ∈ I, n ∈ N is a player. Let P
be the set of all players and P = I ·N be the number of
players.

2) Strategy Space: For each player (i, n) ∈ P, its strategy
space is the set Si. Player (i, n)’s decision is denoted by
D(i, n).

3) Payoff function: By collecting decisions D(i, n) from all
players, a signal timing plan for the planning horizon is
formed. By sending this plan to the traffic simulator, we
can find the average travel time experienced by all drivers,
which is the payoff function value for all players.

B. Simulation by INTEGRATION-UM

Accurate evaluation of the average travel time can be ac-
complished by invoking a computer traffic simulator. In our
experiment, the simulation is done by INTEGRATION-UM,
developed by Van Aerde et al. [36] and modified by researchers
at the Intelligent Transportation Systems Research Center of
Excellence at the University of Michigan. INTEGRATION-
UM is an event-based mesoscopic deterministic traffic simu-
lator. In order to perform a simulation, we need to provide
INTEGRATION-UM with the following inputs.

1) Network-topology definitions: The transportation net-
work is modeled as a directed graph in INTEGRATION-
UM. To fully specify the network topology, we first define
intersections and connection points as the nodes in the
graph. There are two types of nodes in INTEGRATION-
UM: zone centroids, which can be used as origins and
destinations for the vehicle trips, and normal nodes,
which can be used as intersections or connecting points.
The roads are then defined as directed links connecting
these nodes. Important physical properties of each link,
including length, capacity, free-flow traveling speed,4 and
the signal timing plan and the phase controlling this link
(if any), must also be provided.

2) Traffic signal settings: Signal timing plans in the origi-
nal version of INTEGRATION-UM were assumed to be
cyclic. Cyclic plans were specified by parameters that
define cyclic patterns, i.e., cycle length, green split, offset,
and lost (yellow) time. We modified INTEGRATION-
UM in order to take players’ joint strategy as input. Note

4Free-flow traveling speed of a certain link is the speed driver experiences
when he/she is the only user of that link.

that with a short enough time period δ, the player model
can emulate any cyclic pattern. Unlike cyclic plans, the
signal timing plans specified by players’ joint decisions
incur lost time at intersection i only when players (i, n)
and (i, n + 1) in two consecutive periods n and n + 1
have different decisions.

3) Traffic flows: INTEGRATION-UM assumes that the net-
work is empty at the start of the simulation, and all
the traffic entering the network is generated by multi-
ple “flows.” Each flow, implicitly assumed to consist
of only homogeneous motorized vehicles, is defined by
specifying origin, destination, flow rate (in number of
vehicles per hour), and flow starting and ending times.
As mentioned in Section I, this information is usually not
directly available; therefore, we must combine data from
several sources, including survey, real-time adjustments,
and predictions, in order to come up with reasonable esti-
mates. This is where an accurate predictive information
can really help us. With better predictive information,
the simulation will better describe real traffic congestion,
and this implies that CoSIGN will be optimizing a more
realistic traffic simulation. As a result, for the signal
timing plan generated by CoSIGN, the gap between its
performance in the simulation and in the real traffic
network should also become smaller.

A detailed description of specifications of INTEGRATION-UM
can be found in Wunderlich’s Ph.D. dissertation [37].

We selected INTEGRATION-UM as our traffic simulator
purely on the basis of convenience of implementation, since
its source code was readily available to us. We would like to
emphasize that since our system architecture is flexible with
regard to the type of simulator used, any traffic simulator could
have been used here. The only requirement is that it must be
able to accept the signal timing plan generated by our algorithm
as input and output necessary information to our solver, as
described below.

C. SFP With Simulation-Based Best-Reply Computation

A crucial step in implementing the SFP is the computation
of best replies in line 5 of Algorithm 1. Since for the coordi-
nated signal control problem the objective function can only
be evaluated through the execution of the traffic simulator, the
only way to accurately compute each player’s best reply is by
pure enumeration of all player’s strategies. In a problem with I
intersections and N time periods, best-reply computations for
all players would generally require (N

∑I
i=1 Si) simulations.

In practice, the number of simulations can be decreased
somewhat by observing the following facts.

1) In line 4 of Algorithm 1, a joint strategy D is sampled.
One can evaluate this strategy (using the simulator) and
pass the resulting objective function value as a parameter
to the best-reply function. Recall that for each player,
the best reply is obtained by comparing the objective
function values of the sampled joint strategy and the joint
strategies obtained by substituting this player’s strategy
with other elements of its strategy set. Since the value

556 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006

of the former is provided to the best-reply subroutine,
(N · I) simulations can be saved.

2) Given a sampled joint strategy D, there may exist some
intersections/time periods when there is only light traffic
waiting to pass through. Since the performances of all
strategies of the corresponding players are likely to be
very close, best-reply computations (and hence calls to
the simulator) can be skipped for those players. We can
define a threshold α, and calculate a best reply for a player
by invoking the simulator only if combined traffic volume
in the time period is greater than α. (In our experiments,
we used α = 0, skipping best-reply computations only
when no traffic was traveling through the intersection in
a time period.) When the traffic volume is less than or
equal to α, the best reply of this player can be essentially
selected arbitrarily. To increase the exploration of the
joint strategy space, we drew a random strategy uniformly
from the player’s strategy set in this case.

To take advantage of the second observation, in addition to
the objective function value (i.e., average travel time), we need
an information on the traffic volume at each intersection during
each time period, obtained from time-dependent traffic statistics
for the sampled strategy. Since this information only needs
to be obtained in the beginning of each iteration, we distin-
guish between executing INTEGRATION-UM in two different
modes: mode MAX, where both average travel time and the
time-dependent traffic statistics are outputted, and mode MIN,
where only average travel time is outputted. (The latter mode is
much less time consuming than the former.)

SFP algorithm for the coordinated signal control prob-
lem with simulation-based best-reply computation scheme de-
scribed as above will be called CoSIGN and used throughout
this paper. The stopping criterion used in CoSIGN is the
number of SFP iterations.

Algorithm 2 Simulation-based best-reply function.
B = BESTREPLY(D)

1: (v,F)← INTEGRATION-UMMAX(D)
2: for all i ∈ I do
3: for all n ∈ N do
4: if F(i, n) ≥ α then
5: vmin ← v
6: B(i, n)← D(i, n)
7: D′ ← D
8: for all s ∈ Si, s
= D(i, n) do
9: D′(i, n)← s

10: vs ← INTEGRATION-UMMIN(D′)
11: if vs < vmin then
12: vmin ← vs

13: B(i, n)← s
14: end if
15: end for
16: else
17: B(i, n)← RANDOM(Si)
18: end if
19: end for
20: end for
21: return B

The pseudocode for the simulation-based best-reply function
is listed in Algorithm 2. Below is the list of functions used in
Algorithm 2 (here D denotes a joint strategy).

1) INTEGRATION-UMMIN(D): The function runs the sim-
ulation and returns the objective function value.

2) INTEGRATION-UMMAX(D): The function runs the
simulation and returns the objective function value and
time-dependent traffic statistics. The objective function
value is stored in v, while the time-dependent traffic
statistics data are stored in F, a matrix where F(i, n)
represents traffic volume at intersection i during time
period n.

3) Random(Si): The function uniformly picks an element
from Si and returns it.

The pseudocode in Algorithm 2 implements the ideas dis-
cussed earlier. A common evaluation of the simulator in MAX
mode is performed in line 1. For each player, if the traffic
volume is below the threshold α (as checked in line 4), a phase
of the corresponding signal is randomly selected in line 17.
Otherwise, the algorithm loops through and evaluates all phases
of the signal (except the phase used in D, which is already
evaluated), starting in line 8.

Notice that whenever the simulator is executed in either
MIN or MAX modes, we will be able to read the performance
measures and therefore update the incumbent pure strategy.
This best pure strategy will be delivered as the solution at the
end of the algorithm execution, as described in Section IV-B.

VI. CASE STUDY: TROY, MI, NETWORK

In order to test the performance of the CoSIGN algorithm,
we used a realistic traffic network model built by Wunderlich
and co-workers [37]–[39]. This case study model has been
constructed based on the real traffic network of Troy, MI, and, to
ensure fidelity, carefully calibrated against empirical measure-
ments. To maintain this fidelity, we did not modify the model in
any way except to insert the signal timing plans we generated.
A map snapshot of the Troy network is shown in Fig. 1. The
corresponding model of the network topology is shown in
Fig. 2. Here are the parameters used in our experiments.

1) length of the time period: δ = 10 s;
2) number of time periods: N = 720;
3) number of signalized intersections: I = 75;
4) number of players: P = N · I = 54 000;
5) stopping criterion: 20 iterations of CoSIGN are executed.
The original cyclic pattern of traffic signals embedded in the

model was used as the initial solution. We assumed that all
vehicles will follow fastest free-flow paths5 from their origins
to destinations.

A. Competing Timing Plans and Algorithms

The goals of this section are twofold: to demonstrate the
potential benefits of coordinated traffic signal control using
predictive traffic information (as discussed in the Introduction),

5The fastest free-flow paths are computed with the assumption that free-flow
speeds prevail on all links over the planning horizon.

CHENG et al.: CoSIGN: PARALLEL ALGORITHM FOR COORDINATED TRAFFIC SIGNAL CONTROL 557

Fig. 1. Snapshot of Troy’s area map.

Fig. 2. Troy network-topology model, composed of 529 links, 200 nodes, and
72 zone centroids that can serve as origins or destinations.

as well as evaluate the effectiveness of our algorithmic ap-
proach, the CoSIGN algorithm, for this task. Toward these
goals, we compared CoSIGN to the following alternatives.

1) Static: Fixed cyclic signal timing plans were supplied by
the city of Troy and embedded in the original model.
When implemented, these signal timing plans were de-
fined by cycle time, offsets, and phase splits. Since real-
time signal plan optimization was not available in Troy at
the time the model was built, these plans are kept constant
throughout the planning horizon.

2) Automatic Signal Retiming (ASR): Although real-time
signal-timing-plan optimization was not available in Troy
when the model was constructed, the INTEGRATION-
UM simulator provides an automatic cycle and phase
split optimization tool, which can be used to evaluate
the potential impact of such schemes. When the tool is
turned on, cycle lengths and green splits at all signals
are recalculated at user-specified intervals, using current
traffic volume information. For detailed description of
this algorithm, see the Appendix.

Since static and ASR timing plans control each signal in
isolation, the benefits of coordinated signal control can be
demonstrated by comparing CoSIGN to static and ASR control
schemes. This comparison is conducted in Section VI-B.

1) Coordinate Descent (CD): A straightforward way to
solve a discrete optimization problem of the form (1) is to
start with some initial solution, loop through all variables
(i.e., coordinates) one by one, and solve each single-
variable problem while keeping the values of all other
variables fixed. The result from the single-coordinate
optimization is used to update the current solution. The
process stops when a solution cannot be further improved
after looping through all variables. In our setting, the
CD can be formally implemented as follows: (Here, Dk

denotes the joint strategy at iteration k, (sp,Dk
−p) denotes

the same joint strategy with the strategy of player p re-
placed by sp, and the subroutine BESTREPLYp evaluates
the best-reply strategy for player p only.)

The stopping criterion in line 3 of CD is based on the number
of consecutive nonimproving iterations, u. If u = P (recall that
P is the number of variables in this problem), the objective

558 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006

function value cannot be improved after looping through all P
variables, and thus, we stop.

Algorithm 3 Coordinate Decent (CD) algorithm.
CD()
1: D0 ← INITIALSOLUTION()
2: k ← 0, p← 1, u← 1
3: while u < P do
4: ŝp ← BESTREPLYp(Dk)
5: Dk+1 ← (ŝp,D

k
−p)

6: if Dk+1 = Dk then
7: u = u + 1
8: else
9: u = 1
10: end if
11: k ← k + 1, p← (p mod P) + 1
12: end while

The CD algorithm by construction considers the coordinated
signal timing plans; thus, we also expect it to enjoy the benefits
of coordination, as CoSIGN does. However, CD is a “serial”
algorithm, in that, it considers the variables sequentially, with
the output of one single-variable optimization serving as an
input into the next one. In a real traffic network (like the Troy
network), where the number of variables is large and the time
required to invoke a single simulation is nonnegligible, the time
required to obtain any significant improvement through run-
ning CD algorithm may be prohibitively long. To demonstrate
the benefits of parallelization, we will explore the possibility
of parallel execution of CoSIGN and compare it to CD in
Sections VI-C and D.

B. Benefits of Signal Coordination and Predictive Information

Results of experiments comparing CoSIGN to the static
and ASR signal timing plans can be seen in Table I. The
performance measure is the average travel time experienced by
all drivers in the traffic network, evaluated by INTEGRATION-
UM. For the normal-flow case taken from Wunderlich’s model,
around 26 000 vehicles were allowed to flow into the network
from the beginning of the simulation to the 24th minute mark.
This traffic volume as well as the flow patterns used in our
experiments is consistent with the traffic patterns observed in
Troy at the time the model was constructed. After the inflow
was stopped, the simulator was allowed to run an additional
96 min in order to clear all traffic. To evaluate performance
under different traffic conditions, we created two similar sce-
narios (light-flow case and heavy-flow case) where the same
traffic flow pattern and time horizon were used, but the flow
rate was decreased (increased) by 50%, so that approximately
13 000 (39 000) vehicles were allowed to flow into the network.

Note that as depicted in line 4 of Algorithm 1, a random
sample is drawn from the history during the beginning of
each iteration. This randomness makes CoSIGN a stochastic
algorithm. Therefore, to assess the performance of CoSIGN,
we report summary statistics (mean, best, and worst values) of
solutions found by 15 independent runs of CoSIGN on each
problem instance. Although there is some variability in quality

TABLE I
PERFORMANCE OF THREE COMPETING ALGORITHMSa

of the obtained solutions, stemming from the stochastic nature
of the algorithm, CoSIGN finds a signal plan that significantly
improves on the starting solution in each instance.

Table I compares average travel times of signal plans found
by multiple CoSIGN executions to that of a static signal plan
and the one found by the ASR. From Table I, we can see that
the plans found by CoSIGN (both on average and even in the
worst case) perform better than the other two, under all flow
conditions, and the margin of advantage increases as the flow
gets heavier. Since the static signal timing plan is not adaptive
to traffic conditions, this result is to be expected. As for the
ASR algorithm, although it is responsive to the real-time traffic
condition, its underlying assumption is that the network is
undersaturated, and this condition is more likely to be violated
in the heavy-flow case than in the light-flow and normal-flow
cases. This leads to relative deterioration of performance of the
ASR approach in the heavy-flow case.

It should also be noted that in the ASR implementation
within INTEGRATION-UM, the interval between signal
retimings is a user-specified parameter. Our experiments with
various settings of this parameter demonstrated its critical
importance to the performance of ASR. Results reported in
Table I reflect the performance of ASR with the retiming
interval that was empirically found to be the best for each
experiment. (These “best” intervals had different lengths under
different traffic conditions, and we found no discernible pattern
of dependence of the method’s performance on the interval
length; e.g., more frequent retimings did not necessarily lead
to improvements.) In other words, the reported margin of
CoSIGN over the ASR is a conservative bound, and in practice,
with retiming intervals determined mostly ad hoc, this margin
will be much larger. In Fig. 3, we plot the evolutions of mean
best value (average travel time of current incumbent solution)
versus iteration number for the normal-flow case. Similar
evolutions are drawn for the light-flow and heavy-flow cases
in Figs. 4 and 5, respectively. Figs. 3–5 motivate our choice
of terminating the CoSIGN after 20 iterations: Most of the
improvements were achieved within the first ten iterations, and
improvements around 20th iteration were small.

Another interesting statistic we observe in these computa-
tional experiments is the average travel time experienced by
drivers leaving their origins at different times. For all three flow

CHENG et al.: CoSIGN: PARALLEL ALGORITHM FOR COORDINATED TRAFFIC SIGNAL CONTROL 559

Fig. 3. Evolution of best values as a function of iteration count for the normal-
flow case.

Fig. 4. Evolution of best values as a function of iteration count for the light-
flow case.

Fig. 5. Evolution of best values as a function of iteration count for the heavy-
flow case.

Fig. 6. Average travel time as a function of vehicles’ departure times for the
light-flow case.

Fig. 7. Average travel time as a function of vehicles’ departure times for the
normal-flow case.

scenarios, we consider 24 groups of vehicles, grouped
according to their departure times, where the ith group contains
vehicles departing within the ith minute. For each such group,
the average travel time of all vehicles in the group is then
plotted as a data point. In Figs. 6–8, the average travel times
of each group for each control scheme are plotted against all
possible departure minutes (1, 2, . . . , 24). From these figures,
we can conclude that as the flow grows heavier, the CoSIGN
performs relatively better than the two alternatives.

C. Parallelized Implementation of CoSIGN

We have demonstrated the benefits of a coordinated sig-
nal control algorithm that takes into account the predictive
traffic information in the previous section. However, another
important consideration is the time required to execute such
an algorithm. In a straightforward serial implementation on
a Pentium-4 2.8-GHz PC with 1-GB RAM, running RedHat

560 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006

Fig. 8. Average travel time as a function of vehicles’ departure times for the
heavy-flow case.

Linux, 20 iterations of CoSIGN took 169.04 h for the normal-
flow case, and 397.6 h for the heavy-flow case.

Since CoSIGN is expected to be responsive to current traffic
conditions and forecasts, its execution time should be short
enough to fit into the desired update interval. One way to signif-
icantly reduce the “wall-clock” running time without sacrificing
the precision or scope of the solution is through parallelization.
In this section, we will describe how to parallelize CoSIGN and
discuss the impact that the degree of parallelization has on the
running time of the algorithm.

As mentioned earlier, the computation between line 2 and
line 17 in Algorithm 2 can be parallelized. With K identical
CPUs available, we can divide the best-reply evaluations for all
players into K tasks and assign each task to a CPU. Each task
will take the sampled joint strategy D, its associated objective
value v, and the set of players Pj , as input parameters. The
output of each task will be the best replies, Bj , for players
in Pj . Note that since

⋃K
j=1 Pj = P, we have

⋃K
j=1 Bj = B.

Regardless of the degree of parallelization, as long as samples
drawn in line 4 of Algorithm 1 and in line 17 of Algorithm 2
remain the same, CoSIGN will evaluate the same set of solu-
tions and return the same output.

In order to assess the impact of parallelization without resort-
ing to repeatedly rerunning the CoSIGN on clusters of CPUs of
various sizes, we instead analytically relate the running time of
CoSIGN to the degree of parallelization and rely on a single run
of CoSIGN to make performances estimates.

We will use the following notation:
SMAX time required to execute INTEGRATION-

UMMAX(·);
SMIN time required to execute INTEGRATION-

UMMIN(·);
P number of players;
NCoSIGN number of CoSIGN iterations executed

(NCoSIGN = 20 in our implementation);
K number of available CPUs.

In our calculations, we neglect the time spent on commu-
nications between CPUs and samplings in the implementation

of CoSIGN, since the time spent on simulations dominates total
execution time. Also, we assume that at every iteration, K tasks
for best-reply evaluation are created in a balanced manner, i.e.,
they require approximately equal time for execution.

In BESTREPLY function, one call to INTEGRATION-
UMMAX(·) and at most (N

∑I
i=1(Si − 1)) calls to

INTEGRATION-UMMIN(·) will be made. Let PT be the
number of calls made to INTEGRATION-UMMIN(·) in one
iteration. The wall-clock running time of BESTREPLY function
with K CPUs utilized as described above is bounded above by

TBR ≤ SMAX +
⌈

PT

K

⌉
SMIN (2)

which is an upper bound since, as discussed in Section V-C,
best-reply computations are skipped for some of the players.
Therefore, the total wall-clock running time of NCoSIGN itera-
tions of CoSIGN will be

T (K) =NCoSIGN · TBR

≤NCoSIGN

(
SMAX +

⌈
PT

K

⌉
SMIN

)
. (3)

To obtain a tighter bound, let Ps be the average number of
simulations actually used per iteration, after we consider the
savings described in Section V-C; we can then replace (3) with

T (K) = NCoSIGN

(
SMAX +

⌈
Ps

K

⌉
SMIN

)

≈NCoSIGN

⌈
Ps

K

⌉
SMIN. (4)

In the Troy test case with normal traffic flows, we observed
during a typical run of CoSIGN (with NCoSIGN = 20) SMIN =
1.3 s and Ps = 21 582 (note that this is about a 60% reduction
in the number of simulations). Hence, (4) becomes

T (K) ≤ 20
⌈

21 582
K

⌉
1.3 s = 20

⌈
21 582

K

⌉
1.3
60

min. (5)

For instance, for K = 134, 70 min of wall-clock computation
time will be needed to execute CoSIGN. For K = 256, the
required time is 37 min, and for K = 1024—just 9 min. We
chose these illustrative values of K since such computational
facilities are readily available at educational institutions such as
the University of Michigan and the University of Texas. To give
the reader a broader sense of the impact that different degrees
of parallelization have on the wall-clock time required by the
CoSIGN, we plotted (5) in Fig. 9.

To demonstrate that parallelization is indeed feasible, we
implemented a parallel version of CoSIGN on cluster sys-
tems managed by the Center for Advanced Computing6 at the

6http://cac.engin.umich.edu.

CHENG et al.: CoSIGN: PARALLEL ALGORITHM FOR COORDINATED TRAFFIC SIGNAL CONTROL 561

Fig. 9. Running time of CoSIGN versus degree of parallelization K.

University of Michigan. The specifications of the cluster sys-
tems are as follows.

1) Morpheus: The 208 processor Athlon cluster is composed
of 17 nodes of dual Athlon 1600MP CPUs, 29 nodes of
dual Athlon 2400MP CPUs, and 58 nodes of dual Athlon
2600MP CPUs.

2) Nyx: The 450 processor Opteron cluster is composed of
225 nodes of dual Opterons, ranging from Opteron 240s
(@ 1400 MHz) to Opteron 244s (@ 1800 MHz).

In our experiments, the typical number of processors used
was either 8, 16, or 32, due to the job scheduling policy at the
Center.

Note that these systems are equipped with CPUs slower
than the one we have run our serial experiment on; there-
fore, the curve in Fig. 9 is not directly applicable. However,
a corresponding plot for running time versus the degree of
parallelization can be easily reconstructed by measuring SMIN

on each system.
One of the main assumptions in our derivation is that the

time spent on communication can be neglected. We verified this
assumption by looking at the timing analysis from our parallel
experiments. We observed that in all cases, the percentage of
time spent on communication is less than 0.005%. Therefore,
at least in our current experiments, the communication time is
indeed negligible.

D. Relative Performance of Parallelized CoSIGN versus CD

As noted in prior sections, the CoSIGN is a heuristic that
searches for an optimal solution to the coordinated-traffic-
signal-control problem. Although we have empirically shown
the algorithm’s benefits based on a realistic test case, the
solution found in 20 iterations is not guaranteed to be an optimal
solution to the problem, even in the local sense. In fact, while
the average vehicle travel time in the normal flow case was
15.60 min under the signal plan found by CoSIGN, the CD
algorithm described in Section VI-A, given a sufficient time,
found a plan with an average time of 13.13 min. It should be

noted, however, that it took CD 362 500 iterations over several
days of running time to identify this solution.

A meaningful way to compare the practical performance
of any two heuristic algorithms, such as CoSIGN and CD,
on a problem is to compare the objective values of solutions
they find given the same amount of wall-clock time. As we
demonstrate in this section, as the number of processors made
available to CoSIGN increases, its wall-clock running time
decreases, and the quality of solutions found by the CD in the
same time deteriorates dramatically.

As in the previous section, we do not resort to multiple
algorithm runs but rather use analytical estimates of running
times of CD and CoSIGN to perform the comparison.

Recall that the CD algorithm is initialized with some initial
solution, and in each step afterward, it uses a simulation to
evaluate the current player’s alternative decision. In each of
these steps, the solution will be modified if the current player’s
alternative decision improves the solution. As this process
suggests, the CD algorithm cannot be parallelized and must
be executed serially. Therefore, the wall-clock time required to
execute NCD iterations of CD is

(NCD + 1)SMIN. (6)

(We did not invoke the threshold test to bypass potentially
unnecessary simulations in CD since that would require run-
ning INTEGRATION-UMMAX at every iteration. Since SMAX

exceeds SMIN by 50% to 150%, depending on the number of
vehicles in the network, the added computational effort would
outweigh potential savings.)

Let NCD(K) denote the number of iterations CD would
be able to perform if it were allowed the same amount of
wall-clock time as it takes to execute NCoSIGN iterations of
the parallelized CoSIGN algorithm running on a cluster of K
processors, i.e., T (K). Setting (NCD(K) + 1)SMIN = T (K)
and using the formulas above, we obtain

NCD(K) ≤ NCoSIGN (SMAX +
PT /K� · SMIN)
SMIN

− 1

=NCoSIGN

(
SMAX

SMIN
+

⌈
PT

K

⌉)
− 1. (7)

[Recall that PT = N
∑I

i=1(Si − 1).] Once again, if Ps is the
actual average number of simulations used per iteration by
CoSIGN, we can obtain a tighter bound:

NCD(K) ≤ NCoSIGN

(
SMAX

SMIN
+

⌈
Ps

K

⌉)
− 1. (8)

In the Troy test case with normal traffic flows, NCoSIGN =
20, Ps = 21 582, and the numeric form of (8) becomes

NCD(K) ≤ 20
(

SMAX

SMIN
+

⌈
21 582

K

⌉)
− 1

≈ 20
⌈

21 582
K

⌉
. (9)

562 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006

Fig. 10. Average travel time of solution found by CD when given the same
wall-clock time as the parallel execution of CoSIGN with K processors versus
K: For the normal-flow case.

The number of iterations CD will be able to complete in
the same amount of wall-clock time as CoSIGN is inversely
proportional to the number of processors available to CoSIGN.

As mentioned in the beginning of the section, we did perform
one multiday run of CD for the normal flow scenario in the
Troy network. We can now compare the performance of the
algorithms as follows: For a particular value of K, we estimate
NCD(K) based on percent (9) and consult the output of the
CD run to obtain the average travel time for the signal plan
found by CD in NCD(K) iterations. The resulting comparison
is presented in Fig. 10, where we plot the average travel time
of solutions found by CD in NCD(K) iterations versus K
for the normal-flow case. A similar graph for the heavy-flow
case is plotted in Fig. 11. (These graphs may appear a bit
counterintuitive at first, as the increase in the number of CPUs
results in worse objective function values found. To interpret
these graphs, recall that addition of CPUs decreases the amount
of wall-clock time allotted to CD, allowing for fewer iterations
and less progress.) For comparison, the average travel times
of 15.08 min (for the normal-flow case) and 27.62 min (for
the heavy-flow case) obtained by CoSIGN are also plotted on
the same graph. (Recall that these are the mean performance
measures of solutions found by several runs of CoSIGN on each
problem instance.)

As Fig. 10 indicates, CD underperforms the CoSIGN in this
comparison if the latter is allowed 26 CPUs or more. More-
over, if CPUs number in the hundreds, the CD makes almost
no progress from the initial solution in the time it takes the
CoSIGN to complete its run. Similar result can be observed in
Fig. 11, where CD underperforms CoSIGN in this comparison
if the latter is allowed 16 CPUs or more.

Even though, in the long (very long!) run, CD found a
better solution than CoSIGN, since wall-clock times available
in practice are limited, the parallelized CoSIGN algorithm will
always be superior to CD in practice. Since CD is an inherently
sequential algorithm, multiple available CPUs can be utilized
by running the CD for the specified number of iterations starting

Fig. 11. Average travel time of solution found by CD when given the same
wall-clock time as the parallel execution of CoSIGN with K processors versus
K: For the heavy-flow case.

at different initial solutions on each CPU and reporting the best
solution found. However, based on our empirical experience,
CD makes a very slow progress in each iteration. Therefore,
it will not in fact achieve a significant improvement over the
starting points it is provided.

VII. FUTURE WORK

A natural extension of this paper is to test the CoSIGN
on other even larger and more detailed traffic networks. The
use of more advanced traffic simulators may also be desirable
in modeling more complicated traffic characteristics. Also, in
some cases, we may want to reduce the length of control
intervals in order to better emulate real-world scenarios. All
these factors, when combined together, will make an already
challenging problem even more so. To reduce computational
requirement, we can replace the full-blown simulations with
simplified ones (e.g., see [40]) in best-reply evaluations. Since,
in evaluating best replies, what we really care about is the
relative superiority of a single player’s strategy selections; a
simplified simulation that can accurately provide this relative
performance comparison will be good enough. Of course, in
order to design good approximated best replies, a deep under-
standing of the problem structure is required (as demonstrated
in [25]). This issue is critical, since being able to complete the
best-reply evaluations quickly is the key to the implementation
of real-time control.

Another interesting extension is to evaluate the robustness of
the signal timing plans obtained by CoSIGN in the presence of
stochastic traffic flows. For a small traffic network, the relia-
bility of traffic signal timing plans can be derived analytically
(e.g., see [41]). In our case, analytical derivation is not possible
due to the size of the problem; therefore, we should seek other
indicators, e.g., the variance of vehicle travel times. This type
of analysis will be very useful in determining the effectiveness
of our approach in the face of stochasticity.

Another way to deal with the stochasticity in traffic flows
is to adopt a rolling-horizon type of implementation (e.g., see

CHENG et al.: CoSIGN: PARALLEL ALGORITHM FOR COORDINATED TRAFFIC SIGNAL CONTROL 563

[21] and [42]). Each time we observe a change in the traffic flow
pattern (either measured directly or inferred indirectly), we can
use the latest information to update the model and rerun the
CoSIGN algorithm.

Finally, to more accurately capture the operating conditions
of real traffic networks, we should introduce feasibility con-
straints to our model (e.g., minimal or maximal green time
continuously given to a phase). However, if constraints are
introduced to our model, some sampled joint decisions may
become infeasible, and this requires special treatment. Our
current conjecture is that such difficulty can be handled by
defining proper repair rules.

Our ultimate goal is to design an algorithm that is capa-
ble of finding a robust, scalable, and responsive coordinated
traffic signal timing plan in a large-scale traffic network. The
framework introduced in this paper provides the foundations
for developing such a system. However, to move closer to
our ultimate goal, we should incrementally incorporate the
improvements discussed here.

APPENDIX

AUTOMATIC SIGNAL RETIMING

ASR in INTEGRATION-UM is an online cycle time and
phase-split optimization heuristic, as described in Wunderlich
[37]. The underlying theory for this approach is based on
Webster and Cobbe’s model [1]. Underlying analysis will not
be explained in detail here; instead, the implementation of the
algorithm as embedded in INTEGRATION-UM is presented.

The ASR algorithm determines signal timing plans based
on current flows on the approaches7 leading to the signalized
intersections. (In this Appendix, we use the term “flow” to
represent the volume of traffic on a link or approach.) The re-
timing algorithm in INTEGRATION-UM is invoked repeatedly
at user-specified intervals, and proceeds in three steps.
1) Estimating Link Flows: For each signalized intersection,

the equivalent flow for each link is estimated by combing
average incoming flow and average size of the standing queue.
The following formula is used for this purpose:

va = fa + 4qa (10)

where va is the estimated flow on link a, fa is the exponentially
smoothed average flow on link a, and qa is the exponentially
smoothed average size of the standing queue on link a.

Both average incoming flow (fa) and average size of the
standing queue (qa) of link a are obtained by periodically
performing the following exponential smoothing updates:

fa := 0.75fa + 0.25fa
in (11)

qa := 0.9qa + 0.1q̂a (12)

where fa
in is the number of vehicles flowing into link a during

the interval between smoothing updates, and q̂a is the size of
standing queue on link a during the same interval.

7If a signal timing plan is used at more than one intersection within the traffic
network, the approach is defined as the set of links coming into these controlled
intersections during the same phase.

2) Computing Critical Values: Based on the above flow
data, the procedure will compute a measure (i.e., critical value)
that represents the relative congestion of each link. By using
this measure, the procedure then computes the cycle length and
the allocation of green times.

For each link a leading to the intersections controlled by the
signal timing plan, a critical value (measure of congestion) ya

is computed as the ratio between estimated link flow and link’s
saturation flow:

ya =
va

sa
(13)

where sa is link a’s saturation flow rate (as defined in the
network-topology definition).

Let the set Ap consist of all the links that have the right of
way during phase p of the signal under consideration. The criti-
cal value for phase p is then the maximal ya of all links in Ap:

yp = max
{

max
a∈Ap

{ya}, ymin

}
(14)

where ymin is a predefined minimal critical value.
The combined critical value for the signal timing plan, de-

noted by Y , is then the sum of values of yp over all its phases:

Y =
∑

p

yp. (15)

3) Computing Cycle Time and Green Time for Each Phase:
The new cycle time for each signal timing plan Co is computed
from its corresponding critical value Y and the sum of lost time
(i.e., yellow time) for all phases L. For Y ≤ 0.95

Co = max
{

min
{

(1.5L + 5)
(1− Y)

, Cmax

}
, Cmin

}
. (16)

Otherwise, Co = Cmax · Cmin and Cmax are the specified min-
imal and maximal cycle times, respectively. After Co is ob-
tained, the length of green time for all phases can be computed
accordingly. gp, which is the length of green time assigned to
phase p, is determined by

gp =
yp

Y
(Co − L). (17)

ACKNOWLEDGMENT

The authors would like to thank K. Wunderlichs for the valu-
able suggestions and advice and M. Wellman and the anony-
mous referees for their detailed comments and suggestions.

REFERENCES

[1] F. V. Webster and B. M. Cobbe, “Traffic signals,” Her Majesty’s Sta-
tionery Office, London, U.K., Road Research Tech. Rep. 39, 1958.

[2] R. Allsop, “SIGSET: A computer program for calculating traffic capacity
of signal-controlled road junctions,” Traffic Eng. Control, vol. 13, no. 2,
pp. 58–60, 1971.

[3] ——, “SIGCAP: A computer program for assessing the traffic capacity of
signal-controlled road junctions,” Traffic Eng. Control, vol. 17, no. 8–9,
pp. 338–341, Aug.–Sep. 1976.

[4] J. D. C. Little, “The synchronization of traffic signals by mixed-
integer linear programming,” Oper. Res., vol. 14, no. 4, pp. 568–594,
Jul./Aug. 1966.

564 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 7, NO. 4, DECEMBER 2006

[5] J. D. C. Little, M. D. Kelson, and N. H. Gartner, “MAXBAND: A program
for setting signals on arteries and triangular networks,” Transp. Res. Rec.,
vol. 795, 1981.

[6] D. I. Robertson, “TRANSYT method for area traffic control,” Traffic Eng.
Control, vol. 11, no. 6, pp. 276–281, 1969.

[7] A. J. Miller, “A computer control system for traffic networks,” in
Proc. 2nd Int. Symp. Theory Road Traffic Flow, London, U.K., 1965,
pp. 200–220.

[8] A. G. Sims, “The Sydney coordinated adaptive traffic system,” in Proc.
Urban Transp. Division ASCE, New York, 1979, pp. 12–27.

[9] J. J. Henry, J. L. Farges, and J. Tuffal, “The PRODYN real time traffic
algorithm,” in Proc. 4th IFAC/IFIP/IFORS Conf. Control Transp. Syst.,
1983, pp. 305–310.

[10] J. J. Henry and J. L. Farges, “PRODYN,” in Proc. 6th IFAC/IFIP/IFORS
Symp. Control, Comput. and Commun. Transp., 1989, pp. 253–255.

[11] N. H. Gartner, “OPAC: A demand-responsive strategy for traffic signal
control,” Transp. Res. Rec., vol. 906, pp. 75–81, 1983.

[12] N. H. Gartner, F. J. Pooran, and C. M. Andrews, “Implementation of the
opac adaptive control strategy in a traffic signal network,” in Proc. IEEE
Intell. Transp. Syst. Conf., 2001, pp. 195–200.

[13] V. Mauro and D. DiTaranto, “UTOPIA,” in Proc. 6th IFAC/IFIP/IFORS
Symp. Control, Comput. and Commun. Transp., 1989, pp. 245–252.

[14] S. Yagar and B. Han, “A procedure for real-time signal control that consid-
ers transit interference and priority,” Transp. Res., Part B, vol. 28, no. 4,
pp. 315–331, 1994.

[15] S. Sen and K. L. Head, “Controlled optimization of phases at an intersec-
tion,” Transp. Sci., vol. 31, no. 1, pp. 5–17, Feb. 1997.

[16] P. B. Hunt, D. I. Robertson, R. D. Bretherton, and R. I. Winton,
“SCOOT—A traffic responsive method for coordinating signals,” in
Transp. Road Res., Berkshire, U.K., Lab. Rep. no. LP 1014, 1981.

[17] F. Boillot, J. Blosseville, J. Lesort, V. Motyka, M. Papageorgiou, and
S. Sellam, “Optimal signal control of urban traffic networks,” in Proc.
6th Int. Conf. Road Traffic Monitoring and Control, 1992, pp. 75–79.

[18] P. Dell’Olmo and P. B. Mirchandani, “REALBAND: An approach for
real-time coordination of traffic flows on a network,” in Transp. Res. Rec.,
vol. 1494, 1995, pp. 106–116.

[19] W.-H. Lin and C. Wang, “An enhanced 0-1 mixed-integer LP formulation
for traffic signal control,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4,
pp. 238–245, Dec. 2004.

[20] T. H. Heung, T. K. Ho, and Y. F. Fung, “Coordinated road-junction traffic
control by dynamic programming,” IEEE Trans. Intell. Transp. Syst.,
vol. 6, no. 3, pp. 341–350, Sep. 2005.

[21] P. B. Mirchandani and L. Head, “A real-time traffic signal control system:
Architecture, algorithms, and analysis,” Transp. Res., Part C, vol. 9, no. 6,
pp. 415–432, 2001.

[22] P. B. Mirchandani and F.-Y. Wang, “RHODES to intelligent transportation
systems,” IEEE Intell. Syst., vol. 20, no. 1, pp. 10–15, Jan./Feb. 2005.

[23] K. Ashok and M. E. Ben-Akiva, “Alternative approaches for real-time
estimation and prediction of time-dependent origin-destination flows,”
Transp. Sci., vol. 34, no. 1, pp. 21–36, 2000.

[24] ——, “Estimation and prediction of time-dependent origin-destination
flows a stockhastic mapping to path flows and link flows,” Transp. Sci.,
vol. 36, no. 2, pp. 184–198, 2002.

[25] A. Garcia, D. Reaume, and R. L. Smith, “Fictitious play for finding
system optimal routings in dynamic traffic networks,” Transp. Res.,
Part B, vol. 34, no. 2, pp. 146–157, Feb. 2000.

[26] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior, 2nd ed. Princeton, NJ: Princeton Univ. Press, 1947.

[27] J. G. Wardrop, “Some theoretical aspects of road traffic research,” in Proc.
Inst. Civil Eng. Part II, 1952, vol. 1, pp. 325–378.

[28] R. D. McKelvey and A. McLennan, “Computation of equilibria in finite
games,” in Handbook of Computational Economics, vol. 1. Amsterdam,
The Netherlands: Elsevier, 1996.

[29] G. W. Brown, “Iterative solution of games by fictitious play,” in
Activity Analysis of Production and Allocation. New York: Wiley, 1951,
pp. 374–376.

[30] J. Robinson, “An iterative method of solving a game,” Ann. Math., vol. 54,
no. 2, 1951.

[31] D. Monderer, L. S. Shapley, “Fictitious play property for games with
identical interests,” J. Econ. Theory, vol. 68, no. 1, pp. 258–265, Jan. 1996.

[32] T. J. Lambert, M. A. Epelman, and R. L. Smith, “A fictitious play approach
to large-scale optimization,” Oper. Res., vol. 53, no. 3, pp. 477–489,
May/Jun. 2005.

[33] J. F. Nash, “Equilibrium points in n-person games,” Proc. Nat. Acad. Sci.,
vol. 36, no. 1, pp. 48–49, Jan. 1950.

[34] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT Press,
1991.

[35] T. J. Lambert and H. Wang, “Fictitious play approach to a mobile unit
situation awareness problem,” Univ. Michigan, Ann Arbor, MI, 2003.
Tech. Rep.

[36] M. Van Aerde, J. Voss, and G. McKinnon, INTEGRATION Simulation
Model User’s Guide. Kingston, ON, Canada: Queen’s Univ., 1989.

[37] K. E. Wunderlich, “Link travel time prediction for dynamic route guid-
ance in vehicular traffic networks,” Ph.D. dissertation, Univ. Michigan,
Ann Arbor, MI, 1994.

[38] K. E. Wunderlich, D. E. Kaufman, and R. L. Smith, “Link travel time
prediction for decentralized route guidance architectures,” IEEE Trans.
Intell. Transp. Syst., vol. 1, no. 1, pp. 4–14, Mar. 2000.

[39] K. E. Wunderlich and R. L. Smith, “Large scale traffic modeling for
route guidance evaluation: A case study,” Univ. Michigan, Ann Arbor,
MI, IVHS Program Tech. Rep. 92-08, 1992.

[40] P. Dell’Olmo and P. B. Mirchandani, “A model for real-time traffic coor-
dination using simulation based optimization,” in Advanced Methods in
Transportation Analysis, L. Bianco and P. Toth, Eds. New York: Springer-
Verlag, 1996, pp. 525–546.

[41] H. K. Lo, “A reliability framework for traffic signal control,” IEEE Trans.
Intell. Transp. Syst., vol. 7, no. 2, pp. 250–260, Jun. 2006.

[42] F. Busch and G. Kruse, “MOTION for SITRAFFIC—A modern approach
to urban traffic control,” in Proc. IEEE Intell. Transp. Syst. Conf., 2001,
pp. 61–64.

Shih-Fen Cheng received the B.S.E. degree in me-
chanical engineering from National Taiwan Univer-
sity, Taipei, Taiwan, R.O.C., and the Ph.D. degree
in industrial and operations engineering from the
University of Michigan, Ann Arbor.

He is an Assistant Professor of information sys-
tems with Singapore Management University. His
research focuses on the optimization of complex
systems in engineering and business domains via
game-theoretic and market-based approaches. He is
particularly interested in the application areas of

transportation, manufacturing, and decentralized resource allocation.

Marina A. Epelman received the B.A. degree in
mathematics from Cornell University, Ithaca, NY,
and the Ph.D. degree in operations research from
Massachusetts Institute of Technology, Cambridge.

She is an Associate Professor of industrial and
operations engineering with the University of Michi-
gan, Ann Arbor. She studies optimization models and
solution techniques, traditional and novel, for a broad
variety of application areas, including transportation,
manufacturing, medicine, etc. She is an Associate
Editor for Operations Research.

Robert L. Smith received the Bachelors degree in
physics from Harvey Mudd College, Claremont, CA,
and the MBA degree and the Ph.D. degree in en-
gineering science from the University of California,
Berkeley.

He is the Altarum/ERIM Russell D. O’Neal Pro-
fessor of engineering with the University of Michi-
gan, Ann Arbor. His research interests include
developing theory and algorithms for the optimiza-
tion of complex systems and, in particular, dynamic
route guidance and coordinated traffic signal control.

He is the author of nearly 90 peer-reviewed publications.
Dr. Smith is a fellow of the Institute for Operations Research and the

Management Sciences. In addition, he is a past Associate Editor for Operations
Research and Management Science.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2006

	CoSIGN: A parallel algorithm for coordinated traffic signal control
	Shih-Fen CHENG
	Marina A. EPELMAN
	Robert L. SMITH
	Citation

	CoSIGN: A Parallel Algorithm for Coordinated Traffic Signal Control

