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Abstract

The following essay is a reappraisal of the role of the smooth test proposed by Neyman (1937)

in the context of current applications in econometrics. We revisit the derivation of the smooth

test and put it into the perspective of the existing literature on tests based on probability

integral transforms suggested by early pioneers such as R.A.Fisher (1930, 1932) and Karl Pearson

(1933, 1934) and the other tests for goodness-of-�t. Our discussion touches data-driven and

other methods of testing and inference on the order of the smooth test and the motivation

and choice of orthogonal polynomials used by Neyman and others. We review other locally

most powerful unbiased tests and look at their di�erential geometric interpretations in terms

of Gaussian curvature of the power hypersurface and review some recent advances. Finally,

we venture into some applications in econometrics by evaluating density forecast calibrations

discussed by Diebold, Gunther and Tay (1998) and others. We discuss the use of smooth tests in

survival analysis as done by Pe~na (1998), Gray and Pierce (1985) and in tests based on p-values

and other probability integral transforms suggested in Meng (1994). Uses in diagnostic analysis

of stochastic volatility models are also mentioned. Along with our narrative of the smooth test

and its various applications, we also provide some historical anecdotes and sidelights that we

think interesting and instructive.



1 Introduction

Statistical hypothesis testing has a long history. Neyman and Pearson (1933 [80]) traced

its origin to Bayes (1763 [8]). However, the systematic use of hypothesis testing began only

after the publication of Pearson's (1900 [86]) goodness-of-�t test. Even after 100 years, this

statistic is very much in use in a variety of applications and is regarded as one of the 20 most

important scienti�c breakthroughs in the twentieth century. Simply stated, Pearson's (1900 [86])

test statistic is given by

P�2 =

qX
j=1

(Oj � Ej)
2

Ej

; (1)

where Oj denotes the observed frequency and Ej is the (expected) frequency that would be

obtained under the distribution of the null hypothesis, for the jth class, j = 1; 2; :::; q. Although

K. Pearson (1900 [86]) was an auspicious beginning to twentieth century statistics, the basic

foundation of the theory of hypothesis testing was laid more than three decades later by Neyman

and Pearson (1933 [80]). For the �rst time the concept of \optimal test" was introduced through

the analysis of \power functions." A general solution to the problem of maximizing power

subject to a size condition was obtained for the single parameter case when both the null and

the alternative hypotheses were simple. The result was the celebrated Neyman-Pearson(N-P)

lemma, which provides a way to construct an uniformly most powerful (UMP) test. A UMP

test, however, rarely exists, and, therefore, it is necessary to restrict optimal tests to a suitable

subclass that requires the test to satisfy other criteria such as local optimality and unbiasedness.

Neyman and Pearson (1936 [81]) derived a locally most powerful unbiased (LMPU) test for the

one-parameter case and called the corresponding critical region the \type-A region." Neyman

and Pearson (1938 [82]) obtained the LMPU test for testing a multi-parameter hypothesis and

termed the resulting critical region as the \type-C region."

Neyman's (1937 [76]) smooth test is based on the type-C critical region. Neyman suggested

the test to rectify some of the drawbacks of the Pearson goodness-of-�t statistic given in (1). He

noted that it is not clear how the class intervals should be determined and that the distributions

under the alternative hypothesis were not \smooth." By smooth densities, Neyman meant those

that are close to and have few intersections with the null density function. In his e�ort to

�nd a smooth class of alternative distributions, Neyman (1937 [76]) considered the probability

integral transformation of the density, say f (x), under the null hypothesis and showed that the

probability integral transform is distributed as uniform in (0; 1) irrespective of the speci�cation

of f (x) : Therefore, in some sense, \all" testing problems can be converted into testing only one

kind of hypothesis.

Neyman was not the �rst to use the idea of probability integral transformation to reformulate
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the hypothesis testing problem into a problem of testing uniformity. E. Pearson (1938 [84])

discussed how Fisher (1930 [41], 1932 [43]) and K. Pearson (1933 [87], 1934 [88]) also developed

the same idea. They did not, however, construct any formal test statistic. What Neyman (1937

[76]) achieved was to integrate the ideas of tests based on the probability integral transforms in

a concrete fashion along with designing \smooth" alternative hypotheses based on normalized

Legendre polynomials.

The aim of this paper is modest. We put the Neyman (1937 [76]) smooth test in perspective

with the existing methods of testing available at that time; evaluate it based on the current state

of the literature; derive the test from the widely used Rao (1948 [93]) score principle of testing,

and, �nally, we discuss some of the applications of the smooth test in econometrics and statistics.

Section 2 discusses the genesis of probability integral transforms as a criterion for hypothesis

testing with Subsections 2.1 through 2.3 putting Neyman's smooth test in perspective in the

light of current research in probability integral transforms and related areas. Section 2.4 discusses

the main theorem of Neyman's smooth test. Section 3 gives a formulation of the relationship of

Neyman's smooth test as Rao's score (RS) and other optimal tests. Here, we also bring up the

notion of unbiasedness as a criterion for optimality in tests and also puts forward the di�erential

geometric interpretation. In Section 4 we look at di�erent applications of Neyman's smooth

tests. In particular, we discuss inference using di�erent orthogonal polynomials, density forecast

evaluation and calibration in �nancial time series data, survival analysis and applications in

stochastic volatility models. The paper concludes in Section 5.

2 Background and Motivation

2.1 Probability integral transform and the combination of probabil-

ities from independent tests

In statistical work, sometimes, we have a number of independent tests of signi�cance for the same

hypothesis, giving di�erent probabilities (like p-values). The problem is to combine results from

di�erent tests in a single hypothesis test. Let us suppose that we have carried out n independent

tests with p-values, y1; y2; :::; yn. Tippett (1931 [112], p. 142) suggested a procedure based on

the minimum p-value, i.e., on y(1) = min(y1; y2; :::; yn): If all n null hypotheses are valid, then

y(1) has a standard beta distribution with parameters (1; n) : One can also use any smallest p-

value, y(r), the r
th smallest p-value in place of y(1), as suggested by Wilkinson (1951 [115]).The

statistic y(r) will have a beta distribution with parameters (r; n� r + 1) . It is apparent that

there is some arbitrariness in this approach through the choice of r. Fisher (1932 [43], Section

21.1, pp. 99-100) suggested a simpler and more appealing procedure based on the product of
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the p-values, � =
Q

n

i=1 yi. K. Pearson (1933 [87]) also considered the same problem in a more

general framework along with his celebrated problem of goodness-of-�t. He came up with the

same statistic �; but suggested a di�erent approach to compute the p-value of the comprehensive

test.1

In the current context, Pearson's goodness-of-�t problem can be stated as follows. Let us

suppose that we have a sample of size n, x1; x2; :::; xn. We want to test whether it comes from a

population with probability density function (pdf) f (x). Then, the p-values (rather 1�p-values),
yi (i = 1; 2; :::; n) can be de�ned as

yi =

xiZ
�1

f (!) d!: (2)

Suppose that we have n tests of signi�cance and the values of our test statistics are Ti, i =

1; 2; :::; n; then,

yi =

TiZ
�1

fTi (t) dt; (3)

where fT (t) is the pdf of T: To �nd the distribution or the p-value of � = y1y2:::yn both Fisher

and Karl Pearson started in a similar way, though Pearson was more explicit in his derivation.

In this exposition, we will follow Karl Pearson's approach.

Let us simply write

y =

xZ
�1

f (!) d!; (4)

and the pdf of y as g (y) : Then, from (4) we have

dy = f (x) dx; (5)

and we also have from change of variables

g (y) dy = f (x) dx: (6)

1To di�erentiate his methodology from that of Fisher, K. Pearson added the following note at the end of his

paper:

\After this paper had been set up Dr Egon S. Peason drew my attention to Section 21.1 in the

Fourth Edition of Professor R.A. Fisher's Statistical Methods for Research Workers, 1932. Professor

Fisher is brief, but his method is essentially what I had thought to be novel. He uses, however, a �2

method, not my incomplete ��function solution; ... As my paper was already set up and illustrates,

more amply than Professor Fisher's two pages, some of the advantages and some of the diÆculties

of the new method, which may be helpful to students, I have allowed it to stand."
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Hence, combining (5) and (6),

g (y) = 1; 0 < y < 1; (7)

i.e., y has a uniform distribution over (0; 1) : From this point Pearson's and Fisher's treatments

di�er.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y  2

y1

Figure 1. Surface of the equation y1y2 = �2 for �2 = 0:125:

The surface given by the equation

�n = y1y2:::yn (8)

is termed \n�hyperboloid" by Pearson, and what is needed is the volume of n�cuboid (since

0 < yi < 1; i = 1; 2; :::; n) cut o� by the n�hyperboloid. We show the surface �n in Figures 1

and 2 for n = 2 and n = 3, respectively. After considerable algebraic derivation Pearson (1933

[87], p. 382) showed that the p-value for �n is given by

Q�n = 1� P�n = 1� I (n� 1;� ln�n) ; (9)

where I (:) is the incomplete gamma function ratio de�ned by [Johnson and Kotz (1970 [57], p.

167)]

I (n� 1; u) =
1

� (n)

Z
u
p
n

0

tn�1e�tdt: (10)

We can use the test statistic Q�n both for combining a number of independent tests of

signi�cance and for the goodness-of -�t problem.

4



0.
2

0.
4

0.
6

0.
8

0.2 0.4 0.6 0.8

 0
0.

2
0.

4
0.

6
0.

8
1

y1
y3

y2

Figure 2. Surface of the equation y1y2y3 = �3 for �3 = 0:125:

Pearson (1933 [87], p. 383) stated this very clearly:

\If Q�n be very small, we have obtained an extremely rare sample, and we have

then to settle in our minds whether it is more reasonable to suppose that we have

drawn a very rare sample at one trial from the supposed parent population, or that

our hypothesis as to the character of the parent population is erroneous, i.e., that the

sample x1; x2; :::; xn was not drawn from the supposed population."

Pearson (1933 [87], p. 403) even criticized his own celebrated �2 statistic, stating that the

�2 test in equation (1) has the disadvantage of giving the same resulting probability whenever

the individuals are in the same class. This criticism has been repeatedly stated in the literature.

Bickel and Doksum (1977 [18], p. 378) have put it rather succinctly, \in problems with contin-

uous variables there is a clear loss of information, since the �2 test utilizes only the number of

observations in intervals rather than the observations themselves." Tests based on P�n (or Q�n

) do not have this problem. Also, when the sample size n is small, grouping the observations in

several classes is somewhat hazardous for the inference.

As we mentioned, Fisher's main aim was to combine n p-values from n independent tests to

obtain a single probability. By putting Z = �2 lnY where Y � U(0; 1); we see that the pdf of

Z is given by

fZ (z) =
1

2
e�

z
2 ; (11)
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i.e., Z has a �2
2 distribution. Then, if we combine n independent zi's by

nX
i=1

zi = �2
nX
i=1

ln yi = �2 ln�n; (12)

this statistic will be distributed as �2
2n: For quite some time this statistic was known as Pearson's

P�. Rao (1952 [94], p. 44) called it Pearson's P� distribution [see also Maddala (1977 [72],

pp. 47-48)]. Rao (1952 [94], pp. 217-219) used it to combine several independent tests of the

di�erence between means and on tests for skewness. In the recent statistics literature this is

described as Fisher's procedure [for example, see Becker (1977 [9])].

In summary, to combine several independent tests, both Fisher and K. Pearson arrived at

the same problem of testing the uniformity of y1; y2; :::; yn. Undoubtedly, Fisher's approach was

much simpler, and it is now used more often in practice. We should, however, add that K.

Pearson had a much broader problem in mind, including testing goodness-of-�t. In that sense,

Pearson's (1933 [87]) paper was more in the spirit of Neyman's (1937 [76]) that came four years

later.

As we discussed above, the fundamental basis of Neyman's smooth test is the result that when

x1; x2; :::; xn are independent and identically distributed (IID) with a common density f (:) ; then

the probability integral transforms y1; y2; :::; yn de�ned in equation (2) are IID, U (0; 1) random

variables. In econometrics, however, we very often have cases in which x1; x2; :::; xn are not IID.

In that case we can use Rosenblatt's (1952 [101]) generalization of the above result.

Theorem 1 (Rosenblatt(1952)) Let (X1; X2; :::; Xn) be a random vector with absolutely con-

tinuous density function f (x1; x2; :::; xn) : Then, the n random variables de�ned by

Y1 = P (X1 � x1) ; Y2 = P (X2 � x2jX1 = x1) ;

:::; Yn = P (Xn � xnjX1 = x1; X2 = x2; :::; Xn�1 = xn�1)

are IID U (0; 1) :

The above result can immediately be seen from the following observation that

P (Yi � yi; i = 1; 2; :::; n) =

Z
y1

0

Z
y2

0

:::

Z
yn

0

f (x1) dx1f (x2jx1) dx2:::f (xnjx1; :::; xn�1) dxn

=

Z
y1

0

Z
y2

0

:::

Z
yn

0

dt1dt2:::dtn (13)

= y1y2:::yn:

Hence, Y1; Y2; :::; Yn are IID U (0; 1) random variables. Quesenberry (1986 [92], pp. 239-240)
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discussed some applications of this result in goodness-of-�t tests. In Section 4.2, we will discuss

its use in density forecast evaluation.

2.2 Summary of Neyman (1937)

As we mentioned earlier, Fisher (1932 [43]) and Karl Pearson (1933 [87], 1934 [88]) suggested

tests based on the fact that the probability integral transform is uniformly distributed for an

IID sample under the null hypothesis (or the correct speci�cation of the model). What Neyman

(1937 [76]) achieved was to integrate the ideas of tests based on probability integral transforms in

a concrete fashion along with the method of designing alternative hypotheses using orthonormal

polynomials.2 Neyman's paper began with a criticism of Karl Pearson's �2 test given in (1). First,

in Pearson's �2 test, it is not clear how the q class intervals should be determined. Secondly, the

expression in (1) does not depend on the order of positive and negative di�erences (Oj � Ej).

Neyman (1980 [78], pp. 20-21) gives an extreme example represented by two cases. In the �rst,

the signs of the consecutive di�erences (Oj � Ej) are not the same, and in the other there is a

run of, say, a number of \negative" di�erences, followed by a sequence of \positive" di�erences.

These two possibilities might lead to similar values of P�2 , but Neyman (1937 [76], 1980 [78])

argued that in the second case the goodness-of-�t should be more in doubt, even if the value of

�2 happens to be the small. In the same spirit, the �2-test is more suitable for discrete data and

the corresponding distributions under the alternative hypothesis are not \smooth." By smooth

alternatives Neyman (1937 [76]) meant those densities that have few intersections with the null

density function and that are close to the null.

Suppose we want to test the null hypothesis (H0) that f (x) is the true density function for

the random variable X. The speci�cation of f (x) will be di�erent depending on the problem

at hand. Neyman (1937 [76], pp. 160-161) �rst transformed any hypothesis testing problem of

this type to testing only one kind of hypothesis.3 Let us state the result formally through the

2It appears that Jerzy Neyman was not aware of the above papers by Fisher and Karl Pearson. To link

Neyman's test to these papers, and possibly since Neyman's paper appeared in a rather recondite journal, Egon

Pearson (Pearson 1938 [84]) published a review article in Biometrika. At the end of that article Neyman added

the following note to express his regret for overlooking, particularly, the Karl Pearson papers:

\I am grateful to the author of the present paper for giving me the opportunity of expressing my

regret for having overlooked the two papers by Karl Pearson quoted above. When writing the paper

on the \Smooth test for goodness of �t" and discussing previous work in this direction, I quoted

only the results of H.Cram�er and R. v. Mises, omitting mention of the papers by K. Pearson. The

omission is the more to be regretted since my paper was dedicated to the memory of Karl Pearson."

3In the context of testing several di�erent hypotheses, Neyman (1937 [76], p. 160) argued this quite eloquently

as follows :

\If we treat all these hypotheses separately, we should de�ne the set of alternatives for each of

them and this would in practice lead to a dissection of a unique problem of a test for goodness of
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following simple derivation.

Suppose, that under H0; x1; x2; :::; xn are independent and identically distributed with a

common density function f (xjH0). Then, the probability integral transform

y � y (x) =

Z
x

�1
f (ujH0) du; (14)

has a pdf given by

h (y) = f (xjH0)
@x

@y
for 0 < y < 1: (15)

Di�erentiating (14) with respect to y, we have

1 = f (xjH0)
dx

dy
: (16)

Substituting this into (15), we get

h (y) � h (yjH0) = 1 for 0 < y < 1: (17)

Therefore, testing H0 is equivalent to testing whether the random variable Y has a uniform

distribution in the interval (0; 1) ; irrespective of the speci�cation of the density f (:) :

�t into a series of more or less disconnected problems.

However, this diÆculty can be easily avoided by substituting for any particular form of the

hypothesis H0, that may be presented for test, another hypothesis, say h0, which is equivalent to

H0 and which has always the same analytical form. The word equivalent, as used here, means that

whenever H0 is true, h0 must be true also and inversely, if H0 is not correct then h0 must be false."
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Figure 3. Distribution of the probability integral transform when H0 is true.

Figure 3 drawn following Pearson (1938 [84], Figure 1) illustrates the relationship between x and

y; when f (:) is taken to be N(0; 1) and n = 20. Let us denote f (xjH1) as the distribution under

the alternative hypothesis H1. Then, Neyman (1937 [76]) pointed out [see also Pearson (1938

[84], p. 138)] that the distribution of Y under H1 is given by

f (yjH1) = f (xjH1) :
dx

dy
=
f (xjH1)

f (xjH0)

����
x=p(y)

; for 0 < y < 1; (18)

where x = p (y) means a solution to the equation (14). This looks more like a likelihood-ratio

and will be di�erent from 1 when H0 is not true. As an illustration, in Figure 4 we plot values

of Y when Xs are drawn from N(2; 1) instead of N(0; 1), and we can immediately see that these

y values [probability integral transforms of values from N(2; 1) using the N(0; 1) density] are not

uniformly distributed.
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Figure 4. Distribution of the probability integral transform when H0 is false.

Neyman (1937 [76], p. 164) considered the following smooth alternative to the uniform

density:

h (y) = c (�) exp

"
kX

j=1

�j�j (y)

#
; (19)

where c (�) is the constant of integration depending only on (�1; :::; �k) ; �j (y)'s are orthonormal

polynomials of order j satisfyingZ 1

0

�i (y)�j (y) dy = Æij; where Æij = 1 if i = j

0 if i 6= j:

(20)

Under H0 : �1 = �2 = ::: = �k = 0, since c (�) = 1; h (y) in (19) reduces to the uniform density in

(17).

Using the generalized Neyman-Pearson (N-P) lemma, Neyman (1937 [76]) derived the locally

most powerful symmetric test for H0 : �1 = �2 = ::: = �k = 0 against the alternative H1 : at least

one �i 6= 0 ,for small values of �0
i
s. The test is symmetric in the sense that the asymptotic power

of the test depends only on the distance,

� =
�
�21 + :::+ �2

k

�1
2 ; (21)
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between H0 and H1. The test statistic is

	2
k
=

kX
j=1

1

n

"
nX
i=1

�j (yi)

#2
; (22)

which under H0 asymptotically follows a central �
2
k
and under H1 follows a non-central �

2
k
with

non-centrality parameter �2. Neyman's approach requires the computation of the probability

integral transform (14) in terms of Y . It is, however, easy to recast the testing problem in terms

of the original observations on X and pdf, say, f (x; 
). Writing (14) as y = F (x; 
) and de�ning

�i (y) = �i(F (x; 
)) = qi (x; 
) ; we can express the orthogonality condition (20) asZ 1

0

f�i (F (x; 
))g f�j (F (x; 
))g dF (x; 
) =

Z 1

0

fqi (x; 
)g fqj (x; 
)g f (x; 
) dx = Æij: (23)

Then, from (19) the alternative density in terms of X takes the form

g (x; 
; �) = h (F (x; 
))
dy

dx

= c (�; 
) exp

"
kX

j=1

�jqj (x; 
)

#
f (x; 
) : (24)

Under this formulation the test statistic 	2
k
reduces to

	2
k
=

kX
j=1

1

n

"
nX
i=1

qj (xi; 
)

#2
; (25)

which has the same asymptotic distribution as before. In order to implement this we need

to replace the nuisance parameter 
 by an eÆcient estimate 
̂; and that will not change the

asymptotic distribution of the the test statistic [see Thomas and Pierce (1979 [111])], although

there could be some possible change in the variance of the test statistic [see for example, Boulerice

and Ducharme (1995 [19])]. Later we will relate this test statistic to a variety of di�erent tests

and discuss its properties.

2.3 Interpretation of Neyman's (1937) results and its relation to some

later works

Egon Pearson (1938 [84]) provided an excellent account of Neyman's ideas, and he emphasized the

need for consideration of the possible alternatives to the hypothesis tested. He discussed both

the cases of testing goodness-of-�t and combining results of independent tests of signi�cance.
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Another issue that he addressed is whether the upper or the lower tail probabilities (or p-values)

should be used for combing di�erent tests. The upper tail probability [see equation (2)]

y
0

i
=

Z 1

xi

f (!) d! = 1� yi; (26)

under H0, is also uniformly distributed in (0; 1) ; and, hence, �2
P

n

i=1 ln y
0
i
is distributed as �2

2n

following our derivations in equations (11) and (12). Therefore, the tests based on yi and y
0

i

will be the same as far as their size is concerned but will, in general, di�er in terms of power.

Regarding other aspects of the Neyman's smooth test for goodness-of-�t, as Egon Pearson (1938

[84], pp. 140 and 148) pointed out, the greatest bene�t that it has over other tests is that it can

detect the direction of the alternative when the null hypothesis of correct speci�cation is rejected.

The divergence can come from any combination of location, scale, shape etc. By selecting the

orthogonal polynomials �j's in equation (20) judiciously, we can seek power of the smooth test in

speci�c directions. We think that is one of the most important advantages of Neyman's smooth

test over Fisher and Karl Pearson's suggestion of using only one function of yi values, namelyP
n

i=1 ln yi. Pearson (1938 [84], p. 139) plotted the function f (yjH1) [see equation (18)] for

various speci�cations of H1 when f (xjH0) is N (0; 1) and demonstrated that f (yjH1) can take a

variety of non-linear shapes depending on the nature of the departures, such as the mean being

di�erent from zero, the variance being di�erent from 1, and the shape being non-normal. It is

easy to see that a single function like ln y cannot capture all of the non-linearities. However, as

Neyman himself argued, a linear combination of orthogonal polynomials might do the job.

Neyman's use of the density function (19) as an alternative to the uniform distribution is

also of fundamental importance. Fisher (1922 [40], p. 356) used this type of exponential distri-

bution to demonstrate the equivalence of the method of moments and the maximum likelihood

estimator in special cases. We can also derive (19) analytically by maximizing the entropy

�E [lnh (y)] subject to the moment conditions E [�j (y)] = �j (say), j = 1; 2; :::; k; with param-

eters �j; j = 1; 2; :::; k; as the Lagrange multipliers determined by k moment constraints [for

more on this see, for example, Bera and Bilias (2001c [13])]. In the information theory literature,

such densities are known as minimum discrimination information models in the sense that the

density h (y) in (19) has the minimum distance from the uniform distributions satisfying the

above k moment conditions [see Soo� (2000 [107])].4 We can say that while testing the density

f (x; 
), the alternative density function g (x; 
; �) in equation (24), has a minimum distance

from f (x; 
) satisfying the moment conditions like E [qj (x)] = �j; j = 1; :::; k: From that point

4For small values of �j (j = 1; 2; :::; k) ; h (y) will be a smooth density close to uniform when k is moderate, say

equal to 3 or 4. However, if k is large then h (y) will present particularities which would not correspond to the

intuitive idea of smoothness (Neyman 1937 [76], p. 165). From maximum entropy point of view, each additional

moment condition, add some more roughness and possibly some peculiarities of the data to the density.
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of view, g (x; 
; �) is \truely" a smooth alternative to the density f (x; 
) : Looking from another

perspective, we can see from (19) that lnh (y) is essentially a linear combination of several poly-

nomials in y. Similar densities have been used in the log-spline model literature [see, for instance,

Stone and Koo (1986 [109]) and Stone (1990 [108])].

2.4 Formulation and derivation of the smooth test

Neyman (1937 [76]) derived a locally most powerful symmetric (regular) unbiased test (crit-

ical region) for H0 : �1 = �2 = ::: = �k = 0 in (19), and he called it an unbiased critical region of

type-C. This type-C critical region is an extension of the locally most powerful unbiased (LMPU)

test (type-A region) of Neyman and Pearson (1936 [81]) from a single parameter case to a multi-

parameter situation. We �rst brie
y describe the type-A test for testing H0 : � = �0 (where � is a

scalar) for local alternatives of the form � = �0+
Æp
n
; 0 < Æ <1: Let � (�) be the power function

of the test. Then, assuming di�erentiability at � = �0 and expanding � (�) around � = �0; we

have

� (�) = � (�0) + (� � �0)�
0 (�0) +

1

2
(� � �0)

2
� 00 (�0) + o

�
n�1
�

= � +
1

2
(� � �0)

2
� 00 (�0) + o

�
n�1
�
; (27)

where � is the size of the test, and unbiasedness requires that the \power" should be minimum

at � = �0; and, hence, �
0 (�0) = 0: Therefore, to maximize the local power we need to maximize

� 00 (�0). This leads to the well-known LMPU test or the type-A critical region. In other words,

we can maximize � 00 (�0) subject to two side conditions, namely, � (�0) = � and � 0 (�0) = 0:

These ideas are illustrated in Figure 5. For a locally optimal test, the power curve should have

maximum curvature at the point C (where � = �0); which is equivalent to minimizing the distance

like the chord AB.
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Figure 5. Power curve for one parameter unbiased test.

Using the generalized Neyman-Pearson (N-P) lemma, the optimal (type-A) critical region is

given by
d2L (�0)

d�2
> k1

dL (�0)

d�
+ k2L (�0) ; (28)

where L (�) =
nQ
i=1

f (xi; �) is the likelihood function, while the constants k1 and k2 are determined

through the side conditions of size and local unbiasedness. The critical region in (28) can be

expressed in terms of the derivatives of the log-likelihood function l (�) = ln (L (�)) as

d2l (�0)

d�2
+

�
dl (�0)

d�

�2
> k1

dl (�0)

d�
+ k2: (29)

If we denote the score function as s (�) =
dl(�)

d�
and its derivative as s0 (�) ; then (29) can be

written as

s0 (�0) + [s (�0)]
2
> k1s (�0) + k2: (30)

Neyman (1937 [76]) faced a diÆcult problem since his test of H0 : �1 = �2 = ::: = �k = 0 in

(19) involved testing a parameter vector, namely, � = (�1; �2; :::; �k)
0
: Let us now denote the

power function as � (�1; �2; :::; �k) = � (�) � �: Assuming, that the power power function � (�)

is twice di�erentiable in the neighborhood of H0 : � = �0; Neyman (1937 [76], pp. 166-167)

formally required that an unbiased critical region of type-C of size � should satisfy the following

conditions :
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1: � (0; 0; :::0) = �: (31)

2: �j =
@�

@�j

����
�=0

= 0; j = 1; :::k: (32)

3: �ij =
@2�

@�i@�j

����
�=0

= 0; i; j = 1; :::k; i 6= j: (33)

4: �jj =
@2�

@�2
j

����
�=0

=
@2�

@�21

����
�=0

; j = 2; :::k: (34)

And �nally, over all such critical regions satisfying the conditions (31)-(34), the common value

of @
2
�

@�2j

���
�=0

is the maximum.

To interpret the above conditions it is instructive to look at the k = 2 case. Here, we

will follow the more accessible exposition of Neyman and Pearson (1938 [82]).5

By taking the Taylor series expansion of the power function � (�1; �2) around �1 = �2 = 0;

we have

� (�1; �2) = � (0; 0) + �1�1 + �2�2 +
1

2

�
�21�11 + 2�1�2�12 + �22�22

�
+ o

�
n�1
�
: (35)

The type-C regular unbiased critical region has the following properties, (i) �1 = �2 = 0;

which is the condition for any unbiased test; (ii) �12 = 0 to ensure that a small positive and

a small negative deviations in the �'s should be controlled equally by the test; (iii) �11 = �22;

so that equal departures from �1 = �2 = 0 have the same power in all directions; and (iv) the

common value of �11 (or �22) is maximized over all critical regions satisfying the conditions (i)

to (iii). If a critical region satis�es only (i) and (iv), it is called a non-regular unbiased critical

region of type-C. Therefore, for a type-C regular unbiased critical region, the power function is

given by

� (�1; �2) = � +
1

2
�11
�
�21 + �22

�
: (36)

As we can see from Figure 6 , maximization of power is equivalent to the minimization of the

exposed top circle in the �gure. In order to �nd out whether we really have a LMPU test, we need

to look at the second-order condition, i.e., the Hessian matrix of the power function � (�1; �2) in

5After the publication of Neyman (1937 [76]), Neyman in collaboration with Egon Pearson wrote another

paper, Neyman and Pearson (1938 [82]) that included a detailed account of the unbiased critical region of type-C.

This paper belongs to the famous Neyman-Pearson series on the Contribution to the Theory of Testing Statistical

Hypotheses. For historical sidelights on their collaboration see Pearson (1966 [85]).
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(35) evaluated at � = 0;

B2 =

"
�11 �12

�12 �22

#
(37)

should be positive de�nite, i.e., �11�22 � �2
12 > 0 should be satis�ed.
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Figure 6. Power surface for two-parameter unbiased test.

We should also note from (35) that, for the unbiased test,

�21�11 + 2�1�2�12 + �22�
2
2 = constant (38)

represents what Neyman and Pearson (1938 [82], p. 39) termed the ellipse of equidetectability.

Once we impose the further restriction of \regularity," namely, the conditions (ii) and (iii) above,

the concentric ellipses of equidetectability becomes concentric circles of the form (see Figure 6),

�11
�
�21 + �22

�
= constant. (39)

Therefore, the resulting power of the test will be a function of the distance measure, (�21 + �22) ;

Neyman (1937 [76]) called this the symmetry property of the test.

Using generalized N-P lemma, Neyman and Pearson (1938 [82], p. 41) derived the type-C

unbiased critical region as

L11 (�0) � k1 [L11 (�0)� L22 (�0)] + k2L12 (�0) + k3L1 (�0) + k4L2 (�0) + k5L (�0) ; (40)
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where Li (�) =
@L(�)

@�i
; i = 1; 2; Lij (�) =

@
2
L(�)

@�i@�j
; i; j = 1; 2 and ki (i = 1; 2; :::; 5) are constants

determined from the size and the three side conditions (i)� (iii) :

The critical region (40) can also be expressed in terms of the derivatives of the log-likelihood

function l (�) = lnL (�) : Let us denote si (�) =
@l(�)

@�i
; i = 1; 2 and sij (�) =

@
2
l(�)

@�i@�j
; i; j = 1; 2:

Then, it is easy to see that

Li (�) = si (�)L (�) ; (41)

Lij (�) = [sij (�) + si (�) sj (�)]L (�) ; (42)

where i; j = 1; 2: Using these, (40) can be written as

(1� k1) s11 (�0) + k1s22 (�0)� k2s12 (�0) + (1� k1) s
2
1 (�0)+

k1s
2
2 (�0)� k2s1 (�0) s2 (�0)� k3s1 (�0)� k4s2 (�0) + k5 � 0

)
�
s11 (�0)� s21 (�0)

�
� k1

�
s11 (�0)� s22 (�0) + s21 (�0)

�
�

k2 [s1 (�0) s2 (�0) + s12 (�0)]� k3s1 (�0)� k4s2 (�0) + k5 � 0: (43)

When we move to the general multiple parameter case (k > 2) ; the analysis remains essentially

the same. We will then need to satisfy Neyman's conditions (31)-(34). In the general case, the

Hessian matrix of the power function evaluated at � = �0 in equation (37) has the form

Bk =

266664
�11 �12 ::: �1k

�12 �22 ::: �2k

::: ::: ::: :::

�1k �2k ::: �kk

377775 : (44)

Now for the LMPU test Bk should be positive de�nite i.e., all the principle cofactors of this

matrix should be positive. For this general case, it is hard to express the type-C critical region

in a simple way as in (40) or (43). However, as Neyman (1937 [76]) derived, the resulting test

procedure takes a very simple form given in the next theorem.

Theorem 2 (Neyman (1937)) For large n; the type-C regular unbiased test (critical region)

is given by,

	2
k
=

kX
j=1

u2
j
� C�; (45)

where uj =
1p
n

P
n

i=1 �j (yi) and the critical point C� is determined from P [�2
k
� C�] = �.
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Neyman (1937 [76], pp. 186-190) further proved that the limiting form of the power function

of this test is given by�
1
p
2�

�k Z
� � �
Z
P

u2i�C�

e�
1

2

Pk
j=1(uj��j)

2

du1du2:::duk: (46)

In other words, under the alternative hypothesis H1 : �j 6= 0; at least for some j = 1; 2; :::k;

the test statistic 	2
k
approaches a non-central �2

k
distribution with the non-centrality parameter

� =
P

k

j=1 �
2
j
. From (36), we can also see that the power function for this general k case is

� (�1; �2; :::; �k) = � +
1

2
�11

kX
j=1

�2
j
= �+ �11�: (47)

Since, the power depends only on the \distance"
P

k

j=1 �
2
j
between H0 and H1; Neyman called

this test symmetric.

Unlike Neyman's earlier work with Egon Pearson on general hypothesis testing, the smooth

test went unnoticed in the statistics literature for quite some time. It is quite possible that

Neyman's idea of explicitly deriving a test statistic from the very �rst principles under a very

general framework was well ahead of its time, and its usefulness in practice was not immediately

apparent.6 Isaacson (1951 [56]) was the �rst notable paper that referred to Neyman's work while

proposing the type-D unbiased critical region based on Gaussian or total curvature of the power

hypersurface. However, D.E. Barton was probably the �rst to do a serious analysis of Neyman's

smooth test. In a series of papers (1953 [3], 1955 [5], 1956 [6]), he discussed its small sample

distribution, applied the test to discrete data and generalized the test to some extent to the

composite null hypothesis situation [see also Hamdan (1962 [48], 1964 [49])]. In the next section

we demonstrate that the smooth tests are closely related to some of the other more popular

tests. For example, the Pearson �2 goodness-of-�t statistic can be derived as a special case of

the smooth test. We can also derive Neyman's smooth test statistic 	2 in a simple way using

Rao's (1948) score test principle.

6Reid (1982 [100], p. 149) described an amusing anecdote. In 1937, W. E. Deming was preparing publication

of Neyman's lectures by the United States Department of Agriculture. In his lecture notes Neyman misspelled

smooth when referring to the smooth test. \I don't understand the reference to `Smouth'," Deming wrote Neyman,

\ Is that name of a statistician?".
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3 The Relationship of Neyman's Smooth Test with Rao's

Score and Other Locally Optimal Tests

Rayner and Best (1989 [99]) provided an excellent review of smooth tests of various categorized

and uncategorized data and related procedures. They also elaborated on many interesting,

little-known results. For example, Pearson's (1900 [86]) P�2 statistic in (1) can be obtained as a

Neyman's smooth test for a categorized hypothesis. To see this result let us write the probability

of the jth class in terms of our density (24) under the alternative hypothesis as

pj = c (�) exp

"
rX

i=1

�ihij

#
�j0; (48)

where �j0 is the value pj under the null hypothesis, j = 1; 2; :::; q. In (48), hij are values taken

by a random variable Hi with P (Hi = hij) = �j0; j = 1; 2; :::; q; i = 1; 2; :::; r. These hij are also

orthonormal with respect to the probabilities �j0. Rayner and Best (1989 [99], pp. 57-60) showed

that the smooth test for testing H0 : �1 = �2 = ::: = �r = 0 is the same as the Pearson's P�2

in (1) with r = q � 1. Smooth-type tests can be viewed as a compromise between an omnibus

test procedure such as Pearson's �2; which generally has low power in all directions, and more

speci�c tests with power directed only towards certain alternatives.

Rao and Poti (1946 [98]) suggested a locally most powerful (LMP) one-sided test for the

one-parameter problem. This test criterion is the precursor to Rao's (1948 [93]) celebrated score

test in which the basic idea of Rao and Poti (1946 [98]) is generalized to the multiparameter and

composite hypothesis cases. Suppose the null hypothesis is composite, like H0 : Æ (�) = 0; where

Æ (�) is an r� 1 vector function of � = (�1; �2; :::; �k) with r � k: Then, the general form of Rao's

score (RS) statistic is given by

RS = s
�
~�
�0
I
�
~�
��1

s
�
~�
�
; (49)

where s (�) is the score function
@l(�)

@�
; I (�) is the information matrix E

h
�@2l(�)

@�@�0

i
and ~� is the re-

stricted maximum likelihood estimator (MLE) of �: Asymptotically, under H0, RS is distributed

as �2
r
. Let us derive the RS test statistic for testing H0 : �1 = �2 = ::: = �k = 0 in (24); so that

the number of restrictions are r = k and ~� = 0: We can write the log likelihood function as

l (�) =

nX
i=1

ln g (xi; �) =

nX
i=1

ln c (�) +

nX
i=1

kX
j=1

�jqj (xi) +

nX
i=1

ln f (x) : (50)

For the time being we ignore the nuisance parameter 
; and later we will adjust the variance of

the RS test when 
 is replaced by an eÆcient estimator ~
.
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The score vector and the information matrix under H0, are given by

s
�
~�
�
= n

@ ln c (�)

@�

����
�=0

+

kX
j=1

nX
i=1

qj (xi) ; (51)

and

I
�
~�
�
= �n

@2 ln c (�)

@�@�0

����
�=0

; (52)

respectively. Following Rayner and Best (1989 [99], pp. 77-80) and di�erentiating the identityR1
�1 g (x; �) dx = 1 twice, we see that

@ ln c (�)

@�j
= �Eg [qj (x)] ; (53)

@2 ln c (�)

@�j@�l
= �

Z 1

�1
qj (x)

@g (x; �)

@�l
dx; j; l = 1; 2; :::; k; (54)

where Eg [:] is expectation taken with respect to the density under the alternative hypothesis,

namely, g (x; �). For the RS test we need to evaluate everything at � = 0: From (53) it is easy

to see that
@ ln c (�)

@�j

����
�=0

= 0; (55)

and, thus, the score vector given in equation (51) simpli�es to

s
�
~�
�
=

kX
j=1

nX
i=1

qj (xi) : (56)

From (24) we have

@ ln g (x; �)

@�l
=

1

g (x; �)

@g (x; �)

@�l
=
@ ln c (�)

@�l
+ ql (x) ; (57)

i.e.,
@g (x; �)

@�l
=

�
@ ln c (�)

@�l
+ ql (x)

�
g (x; �) : (58)

Hence, we can rewrite (54) and evaluate under H0 as

20



@2 ln c (�)

@�j@�l
= �

Z 1

�1
qj (x)

�
@ ln c (�)

@�l
+ ql (x)

�
g (x; �) dx

= �
Z 1

�1
qj (x) [�Eg [ql (x)] + ql (x)] g (x; �) dx

=

Z 1

�1
qj (x) qi (x) g (x; �) dx

= �Covg (qj (x) ; ql (x))

= Æjl; (59)

where Æjl = 1 when j = l; = 0 otherwise. Then, from (52), I
�
~�
�

= nIk; where Ik is a

k�dimensional identity matrix. This also means that the asymptotic variance-covariance matrix
of 1p

n
s
�
~�
�
will be

V

�
1
p
n
s
�
~�
��

= Ik: (60)

Therefore, using (49) and (56), the RS test can be simply expressed as

RS =

kX
i=1

1

n

"
nX
i=1

qj (xi)

#2
; (61)

which is the \same" as 	2
k
in (25), the test statistic for Neyman's smooth test. To see clearly

why this result holds, let us go back to the expression of Neyman's type-C unbiased critical

region in equation (40). Consider the case k = 2; then, using (56) and (59) we can put sj (�0) =P
n

i=1 qj (xi) ; sjj (�0) = 1; j = 1; 2 and s12 (�0) = 0: It is quite evident that the second-order

derivatives of the log-likelihood function do not play any role. Therefore, Neyman's test must

be based only on score functions s1 (�) and s2 (�) evaluated at the null hypothesis � = �0 = 0:

From the above facts, we can possibly assert that Neyman's smooth test is the �rst formally

derived RS test. Given this connection between the smooth and the score tests, it is not surprising

that Pearson's goodness-of-�t test is nothing but a categorized version of the smooth test as noted

earlier. Pearson's test is also a special case of the RS test [see Bera and Bilias (2001a [11])]. To

see the impact of estimation of the nuisance parameter 
 [see equation (24)] on the RS statistic,

let us use the result of Pierce (1982 [91]). Pierce established that for a statistic U (:) depending on

parameter vector 
; the asymptotic variances of U (
) and U (~
), where ~
 is an eÆcient estimator

of 
; is related by

V ar
�p
nU (~
)

�
= V ar

�p
nU (
)

�
� lim

n�!1
E

�
@U (
)

@


�0
V ar

�p
n~

�
lim

n�!1
E

�
@U (
)

@


�
: (62)
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Here,
p
nU (~
) = 1p

n
s
�
~�; ~

�
= 1p

n

P
k

j=1

P
n

i=1 qj (xi; ~
) ; V ar [
p
nU (
)] = Ik as in (60), and, �-

nally, V ar (
p
n~
) is obtained from maximum likelihood estimation of 
 under the null hypothesis.

Furthermore, Neyman (1959 [77]) showed that

lim
n�!1

E

�
@U (
)

@


�
= �Cov

�
p
nU (
) ;

1
p
n

@ ln f (x; 
)

@


�
= B (
) ; say, (63)

and this can be computed for the given density f (x; 
) under the null hypothesis. Therefore,

from (62), the adjusted formula for the score function is

V

�
1
p
n
s
�
~�; ~

��

= Ik � B0 (
)V ar
�p

n~

�
B (
) = V (
) (say), (64)

which can be evaluated simply by replacing 
 by ~
. From (60) and (62), we see that in some

sense the variance \decreases" when the nuisance parameter is replaced by its eÆcient estimator.

Hence, the �nal form of the score or the smooth test will be

RS = 	2 =
1

n
s
�
~�; ~

�0
V (~
)

�1
s
�
~�; ~

�

=
1

n
s (~
)

0
V (~
)

�1
s (~
) ; (65)

since for our case under the null ~� = 0. In practical applications, V (~
) may not be of full rank.

In that case a generalized inverse of V (~
) could be used, and then the degree of freedom of the

RS statistic will be the rank of V (~
) instead of k: Rayner and Best (1989 [99], pp. 78-80) also

derived the same statistic [see also Boulerice and Ducharme (1995 [19])]; however, our use of

Pierce (1982 [91]) makes the derivation of the variance formula a lot simpler.

Needless to say, since it is based on the score principle, Neyman's smooth test will share the

optimal properties of the RS test procedure and will be asymptotically locally most powerful.7

However, we should keep in mind all the restrictions that conditions (33) and (34) imposed while

deriving the test procedure. The result is not as straightforward as testing the single parameter

case for which we obtained the LMPU test in (28) by maximizing the power function. In the

multiparameter case, the problem is that, instead of a power function, we have a power surface (or

a power hypersurface). An ideal test would be one that has a power surface that has a maximum

curvature along every cross-section at the point H0 : � = (0; 0; :::; 0)
0
= �0, say, subject to the

conditions of size and unbiasedness. Such a test, however, rarely exists even for the simple cases.

As Isaacson (1951 [56], p. 218) explained, if we maximize the curvature along one cross-section, it

7Recent work in higher order asymptotics support [see Chandra and Joshi (1983 [21]), Ghosh (1991 [44]) and

Mukerjee (1994 [74])] the validity of Rao's conjecture about the optimality of the score test over its competitors

under local alternatives particularly in locally asymptotically unbiased setting.
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will generally cause the curvature to diminish along some other cross-section, and, consequently,

the curvature cannot be maximized along all cross-sections simultaneously. In order to overcome

this kind of problem Neyman (1937 [76]) required the type-C critical region to have constant

power in the neighborhood of H0 : � = �0 along a given family of concentric ellipsoids. Neyman

and Pearson (1938 [82]) called these the ellipsoids of equidetectability. However, one can only

choose this family of ellipsoids if one knows the relative importance of power in di�erent directions

in an in�nitesimal neighborhood of �0. Isaacson (1951 [56]) overcame this objection to the type-C

critical region by developing a natural generalization of the Neyman-Pearson type-A region [see

equations (28)-(30)] to the multiparameter case. He maximized the Gaussian (or total) curvature

of the power surface at �0 subject to the conditions of size and unbiasedness, and called it the

type-D region. Gaussian curvature of a function z = f (x; y) at a point (x0; y0) is de�ned as [see

Isaacson (1951 [56]), p. 219]

G =

@
2
z

@x2

���
(x0;y0)

@
2
z

@y2

���
(x0;y0)

�
�

@
2
z

@x@y

���
(x0;y0)

�2
"
1 +

h
@z

@x

��
(x0;y0)

i2
+

�
@z

@y

���
(x0;y0)

�2#2 : (66)

Hence, for the two-parameter case, from (35) we can write the total curvature of the power

hypersurface as

G =
�11�22 � �12

2

[1 + 0 + 0]
2

= det (B2) ; (67)

where B2 is de�ned by (37). The Type-D unbiased critical region for testing H0 : � = 0 against

the two sided alternative for a level � test is de�ned by the following conditions [see Isaacson

(1951 [56], p. 220)]:

1: � (0; 0) = �: (68)

2: �i (0; 0) = 0; i = 1; 2: (69)

3: B2 is positive de�nite. (70)

4: And, �nally, over all such critical regions satisfying the conditions

(68)-(70), det (B2) is maximized.
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Note that for the type-D critical region restrictive conditions like �12 = 0; �11 = �22 [see

equations (33)-(34)] are not imposed. The type-D critical region maximizes the total power,

� (�j!) ' � +
1

2

�
�21�11 + 2�1�2�12 + �22�22

�
; (71)

among all locally unbiased (LU) tests, whereas the type-C test maximizes power only in \limited"

directions. Therefore, for �nding the type-D unbiased critical region we minimize the area of the

ellipse (for k > 2 case, it will be the volume of an ellipsoid)

�21�11 + 2�1�2�12 + �22�22 = Æ; (72)

which is given by
�Ævuut����� �11 �12

�12 �22

�����
=

�Æp
det (B2)

: (73)

Hence, maximizing the determinant of B2 as in condition 4 above, is same as minimizing the

volume of the ellipse shown in equation (73). Denoting !0 as the type-D unbiased critical region

we can show that inside !0 the following is true [see Isaacson (1951 [56])]

k11L11 + k12L12 + k21L21 + k22L22 � k1L+ k2L1 + k3L2; (74)

where k11 =
R
!0
L22 (�) dx; k22 =

R
!0
L11 (�) dx; k12 = k21 = �

R
!0
L12 (�) dx; x =(x1; x2; :::; xn)

0

denotes the sample, k1; k2 and k3 are constants satisfying the conditions for size and unbiasedness

(68) and (69).

However, one major problem with this approach, despite its geometric attractiveness, is that

one has to guess the critical region and then verify it. As Isaacson (1951 [56], p. 223) himself

noted, \...we must know our region !0 in advance so that we can calculate k11 and k22 and thus

verify whether !0 has the structure required by the lemma or not." The type-E test suggested

by Lehmann (1959 [71], p. 342) is same as the type-D test for testing composite hypothesis.

Given the diÆculties in �nding the type-D and type-E tests in actual applications, SenGupta

and Vermeire ([102]) suggested a locally most mean powerful unbiased (LMMPU) test that

maximizes the mean (instead of total) curvature of the power hypersurface at the null hypothesis

among all LU level � tests. This average power criterion maximizes the trace of the matrix B2

in (37) [or Bk in (44) for k > 2 case]. If we take an eigenvalue decomposition of the matrix Bk

relating to the power function, the eigenvalues, �i, give the principal power curvatures while the

eigenvectors corresponding to that gives the principal power directions. Isaacson (1951 [56]) used

the determinant, which is the product of the eigenvalues, while SenGupta and Vermeire (1986
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[102]) used their sum as a measure of curvature. Thus, LMMPU critical regions are more easily

constructed using just the generalized N-P lemma. For testing H0 : � = �0 against H1 : � 6= �0;

an LMMPU critical region for the K = 2 case is given by

s11 (�0) + s22 (�0) + s21 (�0) + s22 (�0) � k + k1s1 (�0) + k2s2 (�0) ; (75)

where k; k1 and k2 are constants satisfying the size and unbiasedness conditions (68) and (69).

It is easy to see that (75) is very close to Neyman's type-C region given in (43). It would be

interesting to derive the LMMPU test and also the type-D and type-E regions (if possible) for

testing H0 : � = 0 in (24) and to compare that with Neyman's smooth test. We leave that

topic for future research. After this long discussion of theoretical developments, we now, turn to

possible applications of Neyman's smooth test.

4 Applications

We can probably credit Lawrence Klein (Klein 1991 [62], pp. 325-326) for making the �rst

attempt to introduce Neyman's smooth test to econometrics. He gave a seminar on \Neyman's

Smooth Test" at the 1942-43 MIT statistics seminar series.8 However, Klein's e�ort failed, and

we do not see any direct use of the smooth test in econometrics. This is particularly astonishing

as testing for possible misspeci�cation is central to econometrics. The particular property of

Neyman's smooth test that makes it remarkable is the fact that it can be used very e�ectively

both as an omnibus test for detecting departures from the null in several directions as well as a

more directional test aimed at �nding out the exact nature of the departure from H0 of correct

speci�cation of the model.

Neyman (1937 [76], p. 180-185) himself illustrated a practical application of his test using

Mahalanobis (1934 [73]) data on normal deviates with n = 100. When mentioning this applica-

tion, Rayner and Best (1989 [99], pp. 46-47) stressed that Neyman also reported the individual

components of the 	2
k
statistic [see equation (45)]. This shows that Neyman (1937 [76]) believed

that more speci�c directional tests identifying the cause and nature of deviation from H0 can be

obtained from these components.

8Klein joined the MIT graduate program in September 1942 after studying with Neyman's group in statistics

at Berkeley, and he wanted to draw the attention of econometricians to Neyman's paper since it was published in

a rather recondite journal. This may not be out of place to mention that Trygve Haavelmo was also very much

in
uenced by Jerzy Neyman, as he mentioned in his Nobel prize lecture (see Haavelmo 1997 [47])

\...I was lucky enough to be able to visit the United States in 1939 on a scholarship...I then had

the privilege of studying with the world famous statistician Jerzy Neyman in California for a couple

of months."

Haavelmo (1944 [46]) contains a seven page account of the Neyman-Pearson theory.
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4.1 Orthogonal polynomials and Neyman's smooth test

Orthogonal polynomials have been widely used in estimation problems, but their use in hypothe-

sis testing has been very limited at best. Neyman's smooth test, in that sense, pioneered the use

of orthogonal polynomials for specifying the density under the alternative hypothesis. However,

there are two very important concerns that need to be addressed before we can start a full-
edged

application of Neyman's smooth test. First, Neyman used normalized Legendre polynomials to

design the \smooth" alternatives; however, he did not justify the use of those over other orthogo-

nal polynomials such as the truncated Hermite polynomials or the Laguerre polynomials (Barton

1953 [4], Kiefer 1985 [60]) or Charlier Type B polynomials (Lee 1986 [70]). Second, he also did

not discuss how to choose the number of orthogonal polynomials to be used.9 We start by brie
y

discussing a general model based on orthonormal polynomials and the associated smooth test.

This would lead us to the problem of choosing the optimal value of k; and, �nally, we discuss a

method of choosing an alternate sequence of orthogonal polynomials.

We can design a smooth-type test in the context of regression model (Hart 1997 [52], Ch. 5)

Yi = r (xi) + "i; i = 1; 2; :::; n; (76)

where Yi is the dependent variable and x
0
i
s are �xed design points 0 < x1 < x2 < � � � < xn < 1;

and "0
i
s are IID (0, �2). We are interested in testing the \constant regression" or \no-e�ect"

hypothesis, i.e., r (x) = �0; where �0 is an unknown constant. In analogy with Neyman's test,

we consider an alternative of the form (Hart 1997 [52], p. 141)

r (x) = �0 +

kX
j=1

�j�j;n (x) ; (77)

where �1;n (x) ; :::; �k;n (x) are orthonormal over the domain of x;

1

n

nX
q=1

�i;n (xq)�j;n (xq) =

(
1; if i = j

0; if i 6= j;
(78)

and �0;n � 1: Hence, a test for H0 : �1 = �2 = ::: = �k = 0 against H1 : �i 6= 0; for some

i = 1; 2; :::; k can be done by testing the overall signi�cance of the model given in (76). The least

9Neyman (1937 [76], p. 194) did not discuss in detail the choice of the value k and simply suggested:

\My personal feeling is that in most practical cases, there will be no need to go beyond the

fourth order test. But this is only an opinion and not any mathematical result."

However, from their experience in using the smooth test, Thomas and Pierce (1979 [111], p. 442) thought that

for the case of composite hypothesis k = 2 would be a better choice.
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square estimators of �0
j
s are given by

�̂j =
1

n

nX
i=1

Yi�j;n (xi) ; j = 0; :::; k: (79)

A test, which is asymptotically true even if the errors are not exactly Gaussian (so long as they

have the same distribution and have a constant variance �2), is given by

Reject H0 if TN;k =
n
P

k

j=1 �̂
2
j

�̂2
� c; (80)

where �̂ is an estimate of �; the standard deviation of the error terms. We can use any set of

orthonormal polynomials in the above estimator including, for example, the normalized Fourier

series �j;n (x) =
p
2n cos (�jx) with Fourier coeÆcients

�j =

Z 1

0

r (x)
p
2n cos (�jx) dx: (81)

Observing the obvious similarity in the hypothesis tested, the test procedure in (80) can be

termed as a Neyman smooth test for regression (Hart 1997 [52], p. 142).

The natural question that springs to mind at this point is what the value of k should be.

Given a sequence of orthogonal polynomials, we can also test for the number of orthogonal

polynomials, say k; that would give a desired level of \goodness-of-�t" for the data. Suppose

now, the sample counterpart of �j; de�ned above, is given by �̂j =
1
n

P
n

i=1 Yi
p
2n cos (�jxi). If

we have an IID sample of size n, then, given that E
�
�̂j

�
= 0 and V

�
�̂j

�
= �2

2n
, let us normalize

the sample Fourier coeÆcients using �̂, a consistent estimator of �. Appealing to the central

limit theorem for suÆciently large n; we have the test statistic

Sk =

kX
j=1

 p
2n�̂j

�̂

!2

a� �2
k
; (82)

for �xed k � n � 1; this is nothing but the Neyman smooth statistic in equation (45) for the

Fourier series polynomials.

The optimal choice of k has been studied extensively in the literature of data-driven smooth

tests �rst discussed by Ledwina (1994 [68]) among others. In order to reduce the subjectivity of

the choice of k we can use a criterion like the Schwarz information criterion (SIC) or the Bayesian

information criterion (BIC). Ledwina (1994 [68]) proposed a test that rejects the null hypothesis

that k is equal to 1 for large values of S~k = max1�k�n�1 fSk � k ln(n)g ; where Sk is de�ned in

(82). She also showed that the test statistic S~k asymptotically converges to a �
2
1 random variable
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[for further insight into data-driven smooth tests see, for example, Hart (1997 [52]), pp. 185-187].

For testing uniformity, Solomon and Stephens (1985 [105]) and Stephens (1986 [31], p. 352)

found that k = 2 is optimal in most cases where the location-scale family is used; but k = 4

might be a better choice when higher-order moments are required. As mentioned earlier, other

papers, including Neyman (1937 [76]) and Thomas and Pierce (1979 [111]), suggested using

small values of k: It has been suggested in the literature that for heavier-tailed alternative

distributions, it is better to have more classes for Pearson's P�2 test in (1) or equivalently, in

the case of Neyman's smooth test, more orthogonal polynomials (see, for example, Kallenberg,

Oosterho�, Schriever 1985 [59]). However, they claimed that too many class intervals, can be a

potential problem for lighter-tailed distributions like normal and some other exponential family

distributions (Kallenberg et al. 1985 [59], p. 959). Several studies have discussed cases where

increasing the order of the test k slowly to 1 would have better power for alternative densities

having heavier tails [Kallenberg et al. (1985 [59]), Inglot, Jurlewicz, Ledwina (1990 [54]) and

Eubank and LaRiccia (1992 [38])].

Some other tests like the Cram�er-von Mises (CvM) and the Kolmogorov-Smirnov (KS) ap-

proaches are examples of omnibus test procedures that have power against various directions,

and, hence, those tests will be consistent against many alternatives (see Eubank and LaRiccia

1992 [38]). However, to test against a speci�c kind of alternative, one would have to use a

more directional alternative geared towards detecting speci�c types of departures from the null.

Neyman's smooth test serves as a compromise between the two criteria. The smooth test statis-

tic gives equal weight to all k components in equation (45) unlike the KS and the CvM type

statistics, which severely down-weight the terms with the higher-order moments (see Eubank

and LaRiccia 1992 [38], p. 2072). The procedure for selecting the truncation point k in Neyman

(1937 [76]) smooth test is similar to the choice of the number of classes in the Pearson �2 test

and has been discussed in Kallenberg et al. (1985 [59]) and Fan (1996 [39]).

Let us now revisit the problem of a choosing an optimal sequence of orthogonal polynomials

around the density f (x; 
) under H0. The following discussion closely follows Smith (1989

[103]) and Cameron and Trivedi (1990 [20]). They used the score test after setting up the

alternative in terms of orthogonal polynomials with the baseline density f (x; 
) under the null

hypothesis. Expanding the density g (x; 
; �) using an orthogonal polynomial sequence with

respect to f (x; 
), we have

g (x; 
; �) = f (x; 
)

1X
j=0

aj (
; �) pj (x; 
) ; (83)
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where

a0 (
; �) � 1; p0 (x; 
) � 1; pj (x; 
) =

jX
i=0

�ijx
i. (84)

The polynomials p0
j
s are orthonormal with respect to the density f (x; 
) :

We can construct orthogonal polynomials through the moments. Suppose we have a sequence

of moments f�ng of the random variable X, then a necessary and suÆcient condition for the

existence of a unique orthogonal polynomial sequence is that det(Mn) > 0; where Mn = [Mij] =

[�i+j�2], for n = 0; 1; : : :. We can write det(Mn) as

jMnj =

����� Mn�1 m

m0 �2n

����� = �2n jMn�1j �m0Adj (Mn�1)m; (85)

where m0=(�n; �n+1; :::; �2n�1), jM�1j = jM0j = 1 and \Adj" means the adjugate of a matrix.

The nth order orthogonal polynomial can be constructed from

Pn (x) = [jMn�1j]
�1 jDn (x)j ;

where jDn (x)j =

"
Mn�1 m

x0(�n) xn

#
and x0(�n) =

�
1 x x2:::xn�1

�
: (86)

This gives us a whole system of orthogonal polynomials Pn(x) [see Cram�er (1946 [28]), pp.

131-132, Cameron and Trivedi (1990 [20]), pp. 4-5 and Appendix A].

Smith (1989 [103]) performed a test of H0 : g (x; 
; �) = f (x; 
) (i.e., aj (
; �) = 0; j =

1; 2; :::; k or ak = faj (
; �)g
k

j=1
= 0) using a truncated version of the expression for the alternative

density,

g (x; 
; �) = f (x; 
)

(
1 +

kX
j=1

aj (
; �)

jX
i=1

�ij (
)
�
xi � �fi (
)

�)
; (87)

where

�fi (
) =

Z
xif (x; 
) dx = Ef

�
xi
�
: (88)

However, the expression g (x; 
; �) in (87) may not be a proper density function. Because of the

truncation, it may not be non-negative for all values of x nor will it integrate to unity. Smith

referred to g (x; 
; �) as a pseudo-density function.

If we consider y to be the probability integral transform of the original data in x; then

de�ning Eh (y
ijH0) = �h0i; we can rewrite the above density in (87), in the absence of any

nuisance parameter 
, as
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h (y; �) = 1 +

kX
j=1

�j

jX
i=1

�ij
�
yi � �h0i

�
: (89)

From this we can get the Neyman smooth test as proposed by Thomas and Pierce (1979 [111]).

Here we test H0 : � = 0 against H1 : � 6= 0 where � = (�1; �2; :::; �k)
0
: From the equation (89), we

can get the score function as
@ lnh(y;�)

@a
= Akmk where Ak = [�ij (�)] is a k � k lower triangular

matrix (with non-zero diagonal elements) and mk is a vector of deviations whose i
th component

is (yi � �h0i). The score test statistic will have the form

Sn = nm0
kn
[Vn]

�
mkn; (90)

where mkn is the vector of the sample mean of deviations, Vn = Imm�Im�I�1��
I�m; with Imm =

E� [mkm
0
k
] ; Im� = E� [mks

0
�
] ; Im� = E� [s�s

0
�
] and s� = E�

h
@ lnh(y;�)

@�

i
; is the conditional variance-

covariance matrix and [Vn]
�
is its g-inverse (see Smith 1989 [103], pp. 184-185 for details).

Here E� [:] denotes expectation taken with respect to the true distribution of y; but eventually

evaluated under H0 : � = 0: Test statistic (90) can also be computed using an arti�cial regression

of the vector of 1's on the vector of score functions of the nuisance parameters and the deviations

from the moments. It can be shown that Sn follows an asymptotic �2 distribution with degrees

of freedom = rank (Vn). Possible uses could be in limited dependent variable models like the

binary response model and models for duration such as unemployment spells (Smith 1989 [103]).

Cameron and Trivedi (1990 [20]) derived an analogous test using moment conditions of the

exponential family. For testing exponentiality in the context of duration models, Lee (1984

[69]) transformed the \exponentially distributed" random variable X by z = ��1 [F (x)] ; where

F is the exponential distribution function and ��1 is the inverse normal probability integral

transform. Lee then proposed testing normality of z using the score test under a Pearson family

of distributions as the alternative density for z: If we restrict to �rst four moments in Smith

(1989 [103]), then the approaches of Lee and Smith are identical.

4.2 Density forecast evaluation and calibration

The importance of density forecast evaluation in economics has been aptly depicted by Crnkovic

and Drachman (1997 [30], p. 47) as follows: \At the heart of market risk measurement is

the forecast of the probability density functions (PDFs) of the relevant market variables ... a

forecast of a PDF is the central input into any decision model for asset allocation and/or hedging

... therefore, the quality of risk management will be considered synonymous with the quality of

PDF forecasts." Suppose that we have time series data (say, the daily returns to the S. & P.

500 Index) given by fxtg
m

t=1. One of the most important questions that we would like to answer
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is, what is the sequence of the true density functions fgt (xt)g
m

t=1 that generated this particular

realization of the data? Since this is time series data, at time t we know all the past values of xt

up to time t or the information set at time t; namely, 
t = fxt�1; xt�2; :::g : Let us denote the one-
step-ahead forecast of the sequence of densities as fft (xt)g conditional on 
t. Our objective is to

determine how much the forecast density fftg depicts the true density fgtg : The main problem

in performing such a test is that both the actual density gt (:) and the one-step-ahead predicted

density ft (:) could depend on the time t and, thus, on the information set 
t: This problem is

unique, since, on one hand, it is a classical goodness-of-�t problem but, on the other, it is also

a combination of several di�erent, possibly dependent, goodness-of-�t tests. One approach to

handling this particular problem would be to reduce it to a more tractable one in which we have

the same, or similar, hypotheses to test, rather than a host of di�erent hypotheses. Following

Neyman (1937 [76]) this is achieved using the probability integral transform

yt =

Z
xt

�1
ft (u) du: (91)

Using equations (3), (6) and (17), the density function of the transformed variable yt is given by

ht (yt) = 1; 0 < yt < 1; (92)

under the null hypothesis that our forecasted density is the true density for all t, i.e., H0 : gt (:) =

ft (:).

If we are only interested in performing a goodness-of-�t test that the variable yt follows a

uniform distribution, we can use a parametric test like Pearson's �2 on grouped data or non-

parametric tests like the KS or the CvM or a test using the Kuiper statistics (see Crnkovic and

Drachman 1997 [30], p. 48). Any of those suggested tests would work as a good omnibus test of

goodness-of-�t. If we fail to reject the null hypothesis we can conclude that there is not enough

evidence that the data is not generated from the forecasted density ft (:) ; however, a rejection

would not throw any light on the possible form of the true density function.

Diebold, Gunther and Tay (1998 [33]) used Theorem 1, discussed in Subsection 2.1, and

tested H0 : gt (:) = ft (:) by checking whether the probability integral transform yt in (91)

follows IID U (0; 1) : They employed a graphical (visual) approach to decide on the structure

of the alternative density function by a two-step procedure. First, they visually inspected the

histogram of yt to see if it comes from U (0; 1) distribution. Then, they looked at the individual

correlograms of each of the �rst four powers of the variable zt = yt � 0:5 in order to check

for any residual e�ects of bias, variance or higher-order moments. In the absence of a more

analytical test of goodness-of-�t, this graphical method has also been used in Diebold, Tay and

Wallis (1999 [36]) and Diebold, Hahn and Tay (1999 [34]). For reviews on density forecasting
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and forecast evaluation methods, see Tay and Wallis (2000 [110]) and Diebold and Lopez (1996

[35]). The procedure suggested is very attractive due to its simplicity of execution and intuitive

justi�cation; however, the resulting size and power of the procedure is unknown. Also, we are not

sure about the optimality of such a diagnostic method. Berkowitz (2000 [17], p. 4) commented

on the Diebold et al.(1998 [33]) procedure: \Because their interest centers on developing tools

for diagnosing how models fail, they do not pursue formal testing." Neyman's smooth test (1937

[76]) provides an analytic tool to determine the structure of the density under the alternative

hypothesis using orthonormal polynomials (normalized Legendre polynomials) �j (y) de�ned in

(20).10 While, on one hand, the smooth test provides a basis for a classical goodness-of-�t test

(based on the generalized N-P lemma), on the other hand, it can also be used to determine the

sensitivity of the power of the test to departures from the null hypothesis in di�erent directions,

for example, deviations in variance, skewness and kurtosis (see Bera and Ghosh 2001 [14]). We

can see that the 	2
k
statistic for Neyman's smooth test de�ned in equation (22) is comprised

of k components of the form 1
n
(
P

n

i=1 �j (yi))
2
; j = 1; ::k; which are nothing but the squares of

the eÆcient score functions. Using Rao and Poti (1946 [98]), Rao(1948 [93]) and Neyman (1959

[77]) one can risk the \educated speculation" that an optimal test should be based on the score

function [for more on this, see Bera and Billias (2001a [11], 2001b [12])]. From that point of view

we achieve optimality using the smooth test.

Neyman's smooth-type test can also be used in other areas of macroeconomics such as eval-

uating the density forecasts of realized in
ation rates. Diebold, Tay and Wallis (1999 [36]) used

a graphical technique as did Diebold et al. (1998 [33]) on the density forecasts of in
ation from

the Survey of Professional Forecasters. Neyman's smooth test in its original form was intended

mainly to provide an asymptotic test of signi�cance for testing goodness-of-�t for \smooth" al-

ternatives. So, one can argue that although we have large enough data in the daily returns of

the S. & P. 500 Index, we would be hard pressed to �nd similar size data for macroeconomic

series such as GNP, in
ation. This might make the test susceptible to signi�cant small-sample


uctuations, and the results of the test might not be strictly valid. In order to correct for size or

10Neyman (1937 [76]) used �j (y)
0

s as the orthogonal polynomials which can be obtained by using the following

conditions,

�j (y) = aj0 + aj1y + :::+ ajjy
j
; ajj 6= 0;

given the restrictions of orthogonality given in Subsection 2.2. Solving these the �rst �ve �j (y) are (Neyman

1937 [76], pp. 163-164)

�0 (y) = 1;

�1 (y) =
p
12

�
y � 1

2

�
;

�2 (y) =
p
5
�
6
�
y � 1

2

�2 � 1

2

�
;

�3 (y) =
p
7
�
20

�
y � 1

2

�3 � 3
�
y � 1

2

��
;

�4 (y) = 210
�
y � 1

2

�4 � 45
�
y � 1

2

�2
+ 9

8
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power problems due to small sample size, we can either do a size correction [similar to other score

tests, see Harris (1985 [50]), Harris (1987 [51]), Cordeiro and Ferrari (1991 [25]), Cribari-Neto

and Ferrari (1995 [29]) and Bera and Ullah (1991 [16]) for applications in econometrics] or use

a modi�ed version of the \smooth test" based on Pearson's P� test discussed in Subsection 2.1.

This promises to be an interesting direction for future research.

We can easily extend Neyman's smooth test to a multivariate setup of dimension N for m

time periods, by taking a combination of Nm sequences of univariate densities as discussed by

Diebold, Hahn and Tay (1999 [34]). This could be particularly useful in �elds like �nancial

risk management to evaluate densities for high-frequency �nancial data like stock or derivative

(options) prices and foreign exchange rates. For example, if we have a sequence of the joint

density forecasts of more than one, say 3, daily foreign exchange rates over a period of 1; 000

days, we can evaluate its accuracy using the smooth test for 3; 000 univariate densities. One thing

that must be mentioned here, there could be both temporal and contemporaneous dependencies

in these observations, we are assuming that taking conditional distribution both with respect to

time and across-variables is feasible (see, for example, Diebold, Hahn and Tay 1999 [34], p. 662).

Another important area of the literature on the evaluation of density forecasts is the concept

of calibration. Let us consider this in the light of our formulation of Neyman's smooth test in

the area of density forecasts. Suppose that the actual density of the process generating our data,

gt (xt) ; is di�erent from the forecasted density, ft (xt) ; say,

gt (xt) = ft (xt) rt (yt) ; (93)

where rt (yt) is a function depending on the probability integral transforms and can be used

to calibrate the forecasted densities, ft (xt), recursively. This procedure of calibration might

be needed if the forecasts are o� in a consistent way, that is to say, the probability integral

transforms fytg
m

t=1 are not U (0; 1) but are independent and identically distributed with some

other distribution (see, for example, Diebold, Hahn and Tay 1999 [34]).

If we compare equation (93) with the formulation of the smooth test given by equation

(24), where ft (x), the density under H0; is embedded in gt (x) (in the absence of the nuisance

parameter 
), the density under H1, we can see that

rt (yt+1) = c (�) exp

"
kX

j=1

�j�j (yt+1)

#

, ln rt (yt+1) = ln c (�) +

kX
j=1

�j�j (yt+1) : (94)

Hence, we can actually estimate the calibrating function from (94). It might be worthwhile to
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compare the method of calibration suggested by Diebold, Hahn and Tay (1999 [34]) using non-

parametric (kernel) density estimation with the one suggested here coming from a parametric

setup [also see Thomas and Pierce (1979 [111]) and Rayner and Best (1989 [99], p. 77) for a

formulation of the alternative hypothesis].

So far, we have discussed only one aspect of the use of Neyman's smooth test, namely,

how it can be used for evaluating (and calibrating) density forecast estimation in �nancial risk

management and macroeconomic time-series data such as in
ation. Let us now discuss another

example that recently has received substantial attention, namely the Value-at-Risk (VaR) model

in �nance. VaR is generally de�ned as an extreme quantile of the value distribution of a �nancial

portfolio. It measures the maximum allowable value the portfolio can lose over a period of time

at, say, the 95% level. This is a widely used measure of portfolio risk or exposure to risk for

corporate portfolios or asset holdings [for further discussion see Smithson and Minton (1997

[104])]. A common method of calculating VaR is to �nd the proportion of times the upper limit

of interval forecasts have been exceeded. Although this method is very simple to compute, it

requires a large sample size (see Kupiec 1995 [65], p. 83). For smaller sample size, which is

common in risk models, it is often advisable to look at the entire probability density function

or a map of quantiles. Hypothesis tests on the goodness-of-�t of VaRs could be based on the

tail probabilities or tail expected loss of risk models in terms of measures of \exceedence" or the

number of times that the total loss has exceeded the forecasted VaR. The tail probabilities are

often of more concern than the interiors of the density of the distribution of asset returns.

Berkowitz (2000 [17]) argued that in some applications highly speci�c testing guidelines are

necessary, and, in order to give a more formal test for the graphical procedure suggested by

Diebold et al. (1998 [33]), he proposed a formal likelihood ratio test on the VaR model. An

advantage of his proposed test is that it gives some indication of the nature of the violation

when the goodness-of-�t test is rejected. Berkowitz followed Lee's (1984 [69]) approach but

used the likelihood ratio test (instead of the score test) based on the inverse standard normal

transformation of the probability integral transforms of the data. The main driving forces behind

the proposed test are its tractability and the properties of the normal distribution. Let us de�ne

the inverse standard normal transform zt = ��1
�
F̂ (yt)

�
and consider the following model

zt � � = � (zt�1 � �) + "t: (95)

To test for independence, we can test H0 : � = 0 in the presence of nuisance parameters � and �2

(the constant variance of the error term "t). We can also perform a joint test for the parameters

� = 0; � = 0 and �2 = 1 using the likelihood ratio test statistic

LR = �2
�
l (0; 1; 0)� l

�
�̂; �̂2; �̂

��
; (96)
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that is distributed as a �2 with three degrees of freedom, where l (�) = lnL (�) is the log-likelihood

function. The above test can be considered a test based on the tail probabilities. Berkowitz (2000

[17]) reported Monte Carlo simulations for the Black-Scholes model and demonstrated superiority

of his test with respect to the KS, CvM and a test based on the Kuiper statistic. It is evident that

there is substantial similarity between the test suggested by Berkowitz and the smooth test; the

former explicitly puts in the conditions of higher-order moments through the inverse standard

Gaussian transform, while the latter looks at a more general exponential family density of the

form given by equation (19). Berkowitz exploits the properties of the normal distribution to get

a likelihood ratio test, while Neyman's smooth test is a special case of Rao's score test, and,

therefore, asymptotically they should give similar results.

To further elaborate, let us point out that �nding the distributions of VaR is equivalent to

�nding the distribution of quantiles of the asset returns. LaRiccia (1991 [67]) proposed a quantile

function-based analog of Neyman's smooth test. Suppose, we have a sample (y1; y2; :::; yn) from a

fully speci�ed cumulative distribution function (cdf) of a location-scale family G (:;�; �) and de-

�ne the order statistics as fy1n; y2n; :::; ynng. We want to test the null hypothesis that G (:;�; �) �
F (:) is the true data-generating process. Hence, under the null hypothesis, for large sample size

n, the expected value of the ith order statistic, Yin; is given by E (Yin) = �+ �Q0

h
i

(n+1)

i
; where

Q0 (u) = inf fy : F (y) � ug for 0 < u < 1: The covariance matrix under the null hypothesis is

approximated by

�ij = Cov (Yin; Yjn) t ��2
�
fQ0

�
i

n + 1

�
fQ0

�
j

n+ 1

��
�
�
min

�
i

n+ 1
;

j

n+ 1

�
�

ij

(n+ 1)
2

�
; (97)

where fQ0 (:) � f(Q0 (:)) is the density of the quantile function under H0. LaRiccia took the

alternative model as

E (Yin) ' �+ �Q0

�
i

(n + 1)

�
+

kX
j=1

Æjpj

�
i

(n+ 1)

�
; (98)

with Cov (Yin; Yjn) as given in (97) and p1 (:) ; p2 (:) ; : : : ; pk (:) are functions for some �xed value

of k: LaRiccia (1991 [67]) proposed a likelihood ratio test for H0 : Æ = (Æ1; Æ2; :::; Æk)
0
= 0, which

turns out to be analogous to the Neyman smooth test.
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4.3 Smooth tests in survival analysis with censoring and truncation

One of the important questions econometricians often face is whether there are one or more

unobserved variables that have a signi�cant in
uence on the outcome of a trial or experiment.

Social scientists like economists have to rely mainly on observational data. Although, in some

other disciplines, it is possible to control for unobserved variables to a great extent through

experimental design, econometricians are not that fortunate most of the time. This gives rise to

misspeci�cation in the model through unobserved heterogeneity (for example, ability, expertise,

genetical traits, inherent resistance to diseases), which, in turn, could signi�cantly in
uence

outcomes like income or survival times. In this Subsection we look at the e�ect of misspeci�cation

on distribution of survival times through a random multiplicative heterogeneity in the hazard

function (Lancaster 1985 [66]) utilizing Neyman's smooth test with generalized residuals.

Suppose now that we observe survival times t1; t2; :::; tn; which are independently distributed

(for the moment, without any censoring) with a density function g (t; 
; �) and cdf G (t; 
; �) ;

where 
 are parameters. Let us de�ne the hazard function � (t; 
; �) by

P (t < T < t+ dtjT > t) = � (t; 
; �) dt; t > 0; (99)

which is the conditional probability of death or failure over the next in�nitesimal period dt

given that the subject has survived till time t. There could be several di�erent speci�cations

of the hazard function � (t; 
; �) such as the proportional hazards models. If the survival time

distribution is Weibull then the hazard function is given by

� (t;�; �) = �t��1 exp (x0�) : (100)

It can be shown (for example, see Cox and Oakes 1984 [27], p. 14) that if we de�ne the survival

function as �G (t; 
; �) = 1�G (t; 
; �) ; then we would have

� (t; 
; �) =
g (t; 
; �)
�G (t; 
; �)

) g (t; 
; �) = � (t; 
; �) �G (t; 
; �) : (101)

We can also obtain the survival function as

�G (t; 
; �) = exp

�
�
Z

t

0

� (s; 
; �) ds

�
= exp (�H (t; 
; �)) : (102)

H (t; 
; �) is known as the integrated hazard function. Suppose we have the function, ti =

Ti (Æ; "i) ; where Æ = (
0; �0)
0
; and also let Ri be uniquely de�ned so that, "i = Ri (Æ; ti). Then,

the functional "i is called a generalized error, and we can estimate it by "̂i = Ri

�
Æ̂; ti

�
.

For example, a generalized residual could be the integrated hazard function such as "̂i =
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H
�
ti; 
̂; �̂

�
=
R
ti

0
�
�
s; 
̂; �̂

�
ds (Lancaster 1985 [66]), or it could be the distribution function

such as "̂i = G
�
ti; 
̂; �̂

�
=
R
ti

0
g
�
s; 
̂; �̂

�
ds (Gray and Pierce 1985 [45]).

Let us consider a model with hazard function given by �z (t) = z� (t) ; where z = eu is the

multiplicative heterogeneity and � (t) is the hazard function with no multiplicative heterogeneity

(ignoring the dependence on parameters and covariates, for the sake of simplicity). Hence the

survivor function given z is

�Gz (tjz) = exp(�z"): (103)

Let us further de�ne �2
z
as the variance of z, F (t) = E [exp (�")] is the survival function and

" is the integrated hazard function evaluated at t; under the hypothesis of no unobserved het-

erogeneity. Then, using the integrated hazard function as the generalized residual, the survival

function is given by (see Lancaster 1985 [66], pp. 164-166)

�Gz (t) ' �F (t)

�
1 +

�2
z

2
"2
�
: (104)

Di�erentiating with respect to t and after some algebraic manipulation of (104), we get for small

enough values of �2
z

gz (t) ' f (t)

�
1 +

�2
z

2

�
"2 � 2"

��
; (105)

where gz is the density function with multiplicative heterogeneity z; f is the density with z = 1:

We can immediately see that if we used normalized Legendre polynomials to expand gz; we would

get a setup very similar to that of Neyman's (1937 [76]) smooth test with nuisance parameters 


(see also Thomas and Pierce, 1979 [111]). Further, the score test for the existence of heterogeneity

(H0 : � = 0 i.e., H0 : �
2
z
= 0) is based on the sample counterpart of the score function, 1

2
("2� 2")

for z = 1: If s2 is the estimated variance of the generalized residuals "̂; then the score test,

which is also White's (1982 [114]) information matrix (IM) test of speci�cation, is based on the

the expression, s2 � 1; divided by its estimated standard error (Lancaster 1985 [66]). This is a

particular case of the result that the IM test is a score test for neglected heterogeneity when the

variance of the heterogeneity is small, as pointed out in Cox (1983 [26]) and Chesher (1984 [22]).

Although the procedure outlined by Lancaster (1985 [66]) shows a lot of promise for applying

Neyman's smooth test to survival analysis, there are two major drawbacks. First, it is diÆcult,

if not impossible, to obtain real life survival data without the problem of censoring or truncation;

second, Lancaster (1985 [66]) worked within the framework of the Weibull model, and the impact

of model misspeci�cation needs to be considered. Gray and Pierce (1985 [45]) focused on the

second issue of misspeci�cation in the model for survival times and also tried to answer the �rst

question of censoring in some special cases.
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Suppose the observed data is of the form(
Yi = min fTi; Vig
Zi = I fTi � Vig ;

(106)

where I fAg is an indicator function for event A and Vi are random censoring times generated

independently of the data from cdfs Ci; i = 1; 2; :::; n. Gray and Pierce (1985 [45]) wanted to test

the validity of the function �G rather than the e�ect of the covariates xi on Ti. We can look at

any survival analysis problem (with or without censoring or truncation) in two parts. First, we

want to verify the functional form of the cdf Gi i.e., to answer the question whether the survival

times are generated from a particular distribution like Gi (t; �) = 1� exp (� exp (x0
i
�) t); second,

we want to test the e�ect of the covariates xi on the survival time Ti. The second problem

has been discussed quite extensively in the literature. However, there has been relatively less

attention given to the �rst problem. This is probably because there could be an in�nite number

of choices of the functional form of the survival function. Techniques based on Neyman's smooth

test provide an opportunity to address the problem of misspeci�cation in a more concrete way.11

The main problem discussed by Gray and Pierce (1985 [45]) is to test H0 which states that

the generalized error Ui = Gi (Ti; 
; � = 0) = Fi (Ti; 
) is IID U (0; 1) against the alternative H1,

which is characterized by the pdf

gi (t; 
; �) = fi (t; 
) exp

(
kX
l=1

�l l (Fi (t; 
))

)
exp f�K (�; 
)g ; (107)

where fi (t; 
) is the pdf under H0. Thomas and Pierce (1979 [111]) chose  l (u) = ul, but one

could use any system of orthonormal polynomials such as the normalized Legendre polynomials.

In order to perform a score test as discussed in Thomas and Pierce (1979 [111]), which is an

extension of Neyman's smooth test in presence of nuisance parameters, one must determine the

asymptotic distribution of the score statistic. In the case of censored data, the information matrix

under the null hypothesis will depend on the covariates, the estimated nuisance parameters and

also on the generally unknown censoring distribution, even in the simplest location-scale setup.

In order to solve this problem, Gray and Pierce (1979 [45]) used the distribution conditional

11We should mention here that a complete separation of the misspeci�cation problem and the problem of the

e�ect of covariates is not always possible to a satisfactory level. In their introduction, Gray and Pierce (1985

[45]), pointed out:

\Although, it is diÆcult in practice to separate the issues, our interest is in testing the adequacy

of the form of F, rather than in aspects related to the adequacy of the covariables."

This sentiment has also been re
ected in Pe~na (1998 [89]) as he demonstrated that the issue of the

e�ect of covariates is \... highly intertwined with the goodness-of-�t problem concerning � (:) :"
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on observed values in the same spirit as the EM algorithm (Dempster, Laird and Rubin 1977

[32]). When there is censoring, the true cdf or the survival function can be estimated using a

method like the Kaplan-Meier or the Nelson-Aalen estimators (Hollander and Pe~na 1992 [53], p.

99). Gray and Pierce (1985 [45]) reported limited simulation results where they looked at data

generated by exponential distribution with Weibull waiting time. They obtained encouraging

results using Neyman's smooth test over the standard likelihood ratio test.

In the survival analysis problem, a natural function to use is the hazard function rather than

the density function. Pe~na (1998 [89]) proposed the smooth goodness-of-�t test obtained by

embedding the baseline hazard function � (:) in a larger family of hazard functions developed

through smooth, and possibly random, transformations of �0 (:) using the Cox proportional

hazard model � (tjX (t)) = � (t) exp (� 0X (t)) where X (t) is a vector of covariates. Pe~na used

an approach based on generalized residuals within a counting process framework as described

in Anderson, Borgan, Gill and Keiding (1982 [1], 1991 [2]) and reviewed in Hollander and Pe~na

(1992 [53]).

Suppose now, we consider the same data as given in (106), (Yi; Zi) : In order to facilitate our

discussion on analyzing for censored data for survival analysis, we de�ne:

1. The number of actual failure times observed without censoring before time t :

N (t) =
P

n

i=1 I (Yi � t; Zi = 1) :

2. The number of individuals who are still surviving at time t : R (t) =
P

n

i=1 I (Yi � t) :

3. The indicator function for any survivors at time t : J (t) = I (R (t) > 0) :

4. The conditional mean number of survivors at risk at any time s 2 (0; t), given that they

survived till time s : A (t) =
R
t

0
R (s)� (s) ds:

5. The di�erence between the observed and the expected (conditional) numbers of failure

times at time t :M (t) = N (t)� A (t) :12

Let F = fFt : t 2 Tg be the history or the information set (�ltration) or the predictable

process at time t: Then, for the Cox proportional hazards model the long-run smooth \averages"

of N are given by A = fA (t) : t 2 Tg ; where

A (t) =

Z
t

0

R (s)� (s) exp f� 0X (s)g ds; i = 1; :::; n (108)

12In some sense, we can interpret M (t) to be the residual or error in the number of deaths or failures over

the smooth conditional average of the number of individuals who would die given that they survived till time

s 2 (0; t) : Hence, M (t) would typically be a martingale di�erence process. The series A (t), also known as the

compensator process, is absolutely continuous with respect to the Lebesgue measure and is predetermined at

time t; since it is the de�nite integral upto time t of the predetermined intensity process given by R (s)� (s) (for

details see Hollander and Pe~na 1992 [53], pp. 101-102).
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and � is a q � 1 vector of regression coeÆcients and X (s) is a q � 1 vector of predictable (or

predetermined) covariate processes.

The test developed by Pe~na (1998 [89]) is for H0 : � (t) = �0 (t) ; where �0 (t) is a completely

speci�ed baseline hazard rate function associated with the integrated hazard given by H0 (t) =R
t

0
�0 (s) ds, which is assumed to be strictly increasing. Following Neyman (1937 [76]) and Thomas

and Pierce (1979 [111]), the smooth class of alternatives for the hazard function is given by

� (t; �; �) = �0 (t) exp f�0 (t; �)g ; (109)

where � 2 Rk ,k = 1; 2:::, and  (t; �) is a vector of locally bounded predictable (predetermined)

processes that are twice continuously di�erentiable with respect to �. So, as in the case of the

traditional smooth test, we can rewrite the null as, H0 : � = 0: This gives the score statistic

process under H0 as

UF

�
(t; �; �)

��
�=0

=

Z
t

0

�
@

@�
log� (s; �; �)

�
dM (s; �; �)

����
�=0

=

Z
t

0

 (s; �) dM (s; 0; �) ; (110)

where M (t; �; �) = N (t) � A (t; �; �) ; i = 1; : : : ; n: To obtain a workable score test statistic

one has to replace the nuisance parameter � by its MLE under H0: The eÆcient score function
1p
n
UF

�

�
t; 0; �̂

�
process has an asymptotic normal distribution with 0 mean [see Pe~na (1998 [89]),

p. 676 for the variance-covariance matrix � (�; �; �)].
The proposed smooth test statistic is given by

s
�
� ; �̂
�
=

1

n
UF

�

�
� ; 0; �̂

�0
�
�
�; � ; �̂

��
UF

�

�
� ; 0; �̂

�
; (111)

which has an asymptotic �2
k�

distribution, bk� = rank
h
�
�
�; � ; �̂

�i
, where �

�
�; � ; �̂

�
is the

asymptotic variance of the score function.13

Pe~na (1998 [89]) also proposed a procedure to combine the di�erent choices of  to get

an omnibus smooth test that will have power against several possible alternatives. Consis-

tent with the original idea of Neyman (1937 [76]) and as later proposed by Gray and Pierce

(1985 [45]) and Thomas and Pierce (1979 [111]), Pe~na considered the polynomial  (t; �) =�
1; H0 (t) ; :::; H0 (t)

k�1
�0
, where, H0 (t) is the integrated hazard function under the null [for de-

tails of the test see Pe~na (1998 [89])]. Finally, Pe~na (1998a [90]) using a similar counting-process

13Pe~na (1998 [89], p. 676) claimed that we cannot get the same asymptotic results in terms of the nominal

size of the test if we replace � by any other consistent estimator under H0. The test statistic might not even be

asymptotically �
2.
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approach suggested a smooth goodness-of-�t test for the composite hypothesis (see Thomas and

Pierce 1979 [111], Rayner and Best 1989 [99] and Section 3).

4.4 Posterior predictive p-values and related tests in Bayesian statis-

tics and econometrics

In several areas of research p-value might well be the single most reported statistic. However,

it has been widely criticized because of its indiscriminate use and relatively unsatisfactory in-

terpretation in the empirical literature. Fisher (1945 [42], pp. 130-131), while criticizing the

axiomatic approach to the test, pointed out that setting up �xed probabilities of Type I error

a priori could yield misleading conclusions about the data or the problem at hand. Recently,

this issue gained attention in some �elds of medical research. Donahue (1999 [37]) discussed the

information content in the p-value of a test. If we consider F (tjH0) = F (t) to be the cdf of a

test statistic T under H0 and F (tjH1) = G (t) be the cdf of T under the alternative, the p-value

de�ned as P (t) = P fT > tg = 1� F (t) is a sample statistic. Under H0; the p-value has a cdf

given by

Fp (pjH0) = 1� F
�
F�1 (1� p) jH0

�
= p; (112)

while under the alternative H1 we have

Fp (pjH1) = Pr fP � pjH1g = 1�G
��
F�1 (1� p) jH0

��
: (113)

Hence, the density function of the p-value (if it exists) is given by

fp (pjH1) =
@

@p
Fp (pjH1)

= �g
�
F�1 (1� p)

�
:

�1
f (F�1 (1� p))

=
g (F�1 (1� p))

f (F�1 (1� p))
: (114)

This is nothing but the \likelihood ratio" as discussed by Egon Pearson (1938 [84], p. 138) and

given in equation (18). If we reject H0 if the sample statistic T > k; then the probability of Type

I error is given by � = Pr fT > kjH0g = 1� F (k) while the power of the test is given by

� = Pr fT > kjH1g = 1�G (k) = 1�G
�
F�1 (1� �)

�
: (115)

Hence, the main point of Donahue (1999 [37]) is that, if we have a small p-value, we can say that

the test is signi�cant, and we can also refer to the strength of the signi�cance of the test. This,

41



however, is usually not the case when we fail to reject the null hypothesis. In that case, we do

not have any indication about the probability of Type II error that is being committed. This is

re
ected by the power and size relationship given in (115).

The p-value and its generalization, however, are �rmly embedded in Bayes theory as the

tail probability of a predictive density. In order to calculate the p-value, Meng (1994 [74]) also

considered having a nuisance parameter in the likelihood function or predictive density. We

can see that the classical p-value is given by p = P fT (X) � T (x) jH0g, where T (:) is a sample

statistic and x is a realization of the random sampleX that is assumed to follow a density function

f (Xj�) ; where � = (Æ0; 
0)
0 2 �: Suppose now, we have to test H0 : Æ = Æ0 against H1 : Æ 6= Æ0:

In Bayesian terms, we can replace X by a future replication of x; call it xrep; which is like a

\future observation." Hence, we de�ne the predictive p-value as pB = P fT (xrep) � T (x) jx;H0g
calculated under the posterior predictive density

f (xrepjx;H0) =

Z
�

f (xrepj�)�0 (d�jx) =
Z
�0

f (xrepjÆ0; 
)�0 (�jx) d�; (116)

where �0 (�jx) and �0 (�jx) are respectively the posterior predictive distribution and density

functions of �, given x; and under H0. Simpli�cation in (116) is obtained by assuming �0 =

f� : H0 is trueg =
�
(Æ0; 
) : 
 2 A; A � R

d ; d � 1
	
and de�ning �� (
jÆ0) = � (Æ; 
jÆ = Æ0) ; which

gives

�0 (�jx) =
f (xj�;H0) � (�jH0)R

�0
f (xj�;H0) � (�jH0) d�

; � 2 �0; (117)

=
f (xjÆ = Æ0; 
)� (Æ; 
jÆ = Æ0)R

�0
f (xjÆ = Æ0; 
)� (Æ; 
jÆ = Æ0) d�

;

=
f (xjÆ0; 
) �� (
jÆ0)R

A
f (xjÆ0; 
) �� (
jÆ0) d


; 
 2 A:

This can also be generalized to the case of a composite hypothesis by taking the integral

over all possible values of Æ 2 �0; the parameter space under H0. An alternative formulation of

the p-value, which makes it clearer that the distribution of the p-value depends on the nuisance

parameter 
; is given by p (
) � P fD (X; �) � D (x; �) jÆ0; 
g ; where the probability is taken

over the sampling distribution f (XjÆ0; 
) ; and D (X; �) is a test statistic in the classical sense

that can be taken as a measure of discrepancy. In order to estimate the p-value p (
) given that


 is unknown, the obvious Bayesian approach is to take the mean of p (
) over the posterior

distribution of 
 under H0, i.e., E [p (
) jx;H0] = pB .

The above procedure of �nding the distribution of the p-value can be used in diagnostic

procedures in a Markov chain Monte Carlo setting discussed by Kim, Shephard and Chib (1998
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[61]). Following Kim et al. (1998 [61], pp. 361-362), let us consider the simple stochastic

volatility model

yt = �eht=2"t; t � 1;

ht+1 = �+ � (ht � �) + ���t;

ht � N

�
�;

�2
�

1� �2

�
; (118)

where yt is the mean corrected return on holding an asset at time t, ht is the log volatility which

is assumed to be stationary (i.e., j�j < 1 ) and h1 is drawn from a stationary distribution and,

�nally, "t and �t are uncorrelated standard normal white noise terms. Here, � can be interpreted

as the modal instantaneous volatility and � is a measure of the persistence of volatility and ��

is the volatility of log volatility ht.
14

Our main interest is handling of model diagnostics under the Markov chain Monte Carlo

method. De�ning � =
�
�; �; �2

�

�0
; the problem is to sample from the distribution of htjYt; �, given

a sample of draws h1
t�1; h

2
t�1; :::; h

M

t�1 from ht�1jYt�1; �; where we can assume � to be �xed. Using

the Bayes rule discussed in equations (116) and (117), the one-step-ahead prediction density is

given by

f (yt+1jYt; �) =
Z
f (yt+1jYt; ht+1; �) f (ht+1jYt; ht; �) f (htjYt; �) dht+1dht; (119)

and for each value of h
j

t (j = 1; 2; : : : ;M) ; we sample h
j

t+1 from the conditional distribution h
j

t+1

given h
j

t . Based on M such draws, we can estimate the probability that y2
t+1 would be less than

the observed yo2
t+1 is given by

P
�
y2
t+1 � yo2

t+1jYt; �
� �= uM

t+1 =
1

M

MX
j=1

P
�
y2
t+1 � yo2

t+1jh
j

t+1; �
�
; (120)

which is the sample equivalent of the posterior mean of the probabilities discussed in Meng (1994

[74]). Hence, uM
t+1 under the correctly speci�ed model will be IID U (0; 1) distribution asM !1.

This result is an extension of Karl Pearson (1933 [87], 1934 [88]), Egon Pearson (1938 [84]) and

Rosenblatt (1952 [101]) discussed earlier and is very much in the spirit of the goodness-of-�t test

suggested by Neyman (1937 [76]). Kim et al. (1998 [61]) also discussed a procedure similar to

the one followed by Berkowitz (2000 [17]), where instead of looking at the just uM
t+1; they look

at the inverse Gaussian transformation, then carry out tests on normality, autocorrelation and

14As Kim, Shepherd and Chib (1998 [61], p. 362) noted that the parameters � and � are related in the true

model by � = exp (�=2) ; however when estimating the model they set � = 1 and left � unrestricted. Finally,

they reported the estimated value of � from the estimated model as exp (�=2) :
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heteroscedasticity. A more comprehensive test could be performed on the validity of forecasted

density based on Neyman's smooth test techniques that we discussed in Subsection 4.2 in con-

nection to the forecast density evaluation literature (Diebold et al. 1998 [33]). We believe that

the smooth test provide a more constructive procedure instead of just checking uniformity of an

average empirical distribution function uM
t+1 on the square of the observed values yo2

t+1 given in

(120) and other graphical techniques like the Q-Q plots and correlograms as suggested by Kim

et al. (1998 [61], pp. 380-382).

5 Epilogue

Once in a great while a paper is written that is truly fundamental. Neyman's (1937 [76]) is

one that seem impossible to compare with anything but oneself given the statistical scene in

the 1930s. Starting from the very �rst principles of testing, Neyman derived an optimal test

statistic and discussed its applications along with its possible drawbacks. Earlier tests, such

as Karl Pearson's (1900 [86]) goodness-of-�t and Jerzy Neyman and Egon Pearson's (1928 [79])

likelihood ratio tests are also fundamental, but those test statistics were mainly based on intuitive

grounds and had no claim for optimality when they were proposed. In terms of its signi�cance

in the history of hypothesis testing, Neyman (1937 [76]) is comparable only to the later papers

by the likes of Wald (1943 [113]), Rao (1948 [93]) and Neyman (1959 [77]), each of which also

proposed fundamental test principles that satis�ed certain optimality criteria.

Although econometrics is a separate discipline, it is safe to say that the main fulcrum of

advances in econometrics is, as it always has been, the statistical theory. From that point of

view, there is much to gain from borrowing suitable statistical techniques and adapting them for

econometric applications. Given the fundamental nature of Neyman's (1937 [76]) contribution,

we are surprised that the smooth test has not been formally used in econometrics, to the best

of our knowledge. And this paper is our modest attempt to bring Neyman's smooth test to

mainstream econometric research.
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