Singapore Management University
Institutional Knowledge at Singapore Management University

A Nonparametric Hellinger Metric Test for Conditional Independence

Liangjun SU
Singapore Management University, ljsu@smu.edu.sg
Halbert WHITE
University of California - San Diego

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research
Part of the Econometrics Commons

Citation

SU, Liangjun and WHITE, Halbert. A Nonparametric Hellinger Metric Test for Conditional Independence. (2008). Econometric Theory. 24, (4), 829-864. Research Collection School Of Economics.

Available at: https://ink.library.smu.edu.sg/soe_research/248

This Journal Article is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For more information, please email library@smu.edu.sg.

A Nonparametric Hellinger Metric Test for Conditional Independence*

Liangjun Su
Guanghua School of Management
Peking University
Beijing 100871, China

Halbert White
Department of Economics, UCSD
La Jolla, CA 92093-0508

October, 2005

Abstract

We propose a nonparametric test of conditional independence based on the weighted Hellinger distance between the two conditional densities, $f(y \mid x, z)$ and $f(y \mid x)$, which is identically zero under the null. We use the functional delta method to expand the test statistic around the population value and establish asymptotic normality under β-mixing conditions. We show that the test is consistent and has power against alternatives at distance $n^{-1 / 2} h^{-d / 4}$. The cases for which not all random variables of interest are continuously valued or observable are also discussed. Monte Carlo simulation results indicate that the test behaves reasonably well in finite samples and significantly outperforms some earlier tests for a variety of DGPs. We apply our procedure to test for Granger non-causality in exchange rates.

Keywords: β-mixing, Conditional independence, Functional delta method, Granger non-causality, Hellinger distance, Local bootstrap, Sample selection bias, U-statistics.

JEL Classification: C12, C14, C22.

[^0]
1 Introduction

We investigate a nonparametric test of the conditional independence of Y and Z given X, i.e.

$$
\begin{equation*}
Y \perp Z \mid X \tag{1.1}
\end{equation*}
$$

This is related to the more familiar hypothesis that Y is independent of Z, but neither implies the other in general (see Phillips, 1988). Moreover, this hypothesis is important in both econometrics and statistics, in that many important concepts can be formalized using conditional independence (see Dawid, 1979).

Our first motivation is testing Granger non-causality. As Florens and Mouchart (1982) and Florens and Fougere (1996) show, Granger non-causality is a form of conditional independence. The hypothesis of distributional Granger (1980) non-causality for two stationary ergodic time series $\left\{Y_{t}\right\}$ and $\left\{Z_{t}\right\}$ is as follows. Given lags p and $q,\left\{Z_{t}\right\}$ does not Granger cause $\left\{Y_{t}\right\}$ if

$$
\begin{equation*}
Y_{t} \perp\left(Z_{t-1}, \ldots, Z_{t-q}\right) \mid\left(Y_{t-1}, \ldots, Y_{t-p}\right) \tag{1.2}
\end{equation*}
$$

To test Granger non-causality, early studies often specified linear vector auto-regressive (VAR) models. A serious problem with a linear approach is that such tests have low power in detecting nonlinear alternatives. Bell et al. (1996) propose a procedure using nonparametric additive models but do not provide distribution theory. In contrast, Baek and Brock (1992) use the correlation integral to detect nonlinear alternatives in i.i.d. data. Hiemstra and Jones (1994) modify Baek and Brock's approach to allow weak stochastic dependence.

Our second motivation concerns specifying the semiparametric binary choice model

$$
\begin{equation*}
Y=1\{G(X, \beta) \geq \varepsilon\} \tag{1.3}
\end{equation*}
$$

with $1\{\cdot\}$ the indicator function, G a function known up to a parameter β (e.g., $G(X, \beta)=X^{\prime} \beta$), and ε an unobservable error. The literature divides according to whether ε is assumed independent of X or only median independent. The latter condition, imposed by Manski (1975) and Horowitz (1992), accommodates conditional heteroskedasticity of unknown form, but precludes estimating β at the usual \sqrt{n} rate. In contrast, if ε is independent of X, one can estimate at the \sqrt{n} rate; see Klein and Spady (1993). As independence between X and ε implies conditional independence of observables,

$$
\begin{equation*}
Y \perp X \mid G(X, \beta) \tag{1.4}
\end{equation*}
$$

we can assume the weaker condition (1.4) when specifying model (1.3). This permits the dispersion of ε to depend on X and still permits a \sqrt{n}-consistent estimator. This approach holds generally for transformation models, including binary choice, duration, and censored regression models. It also extends to panel models. (See Linton and Gozalo, 1997.)

The next example concerns sample selection. A huge literature has developed from the work of Heckman (1974) and Gronau (1974), who consider the following selection problem: each population member has a triple (X, Y, Z), with vectors X and Y and $Z=1$ or 0 (e.g., Y is \log offered wage, X is worker attributes, and $Z=1$ if the worker has a job and $Z=0$ otherwise). A researcher always observes (X, Z), but observes Y only when $Z=1$. The researcher is interested in

$$
P(Y \mid X)=P(Y \mid X, Z=1) P(Z=1 \mid X)+P(Y \mid X, Z=0) P(Z=0 \mid X)
$$

The sample is uninformative about $P(Y \mid X, Z=0)$, so early researchers often assumed

$$
\begin{equation*}
Y \perp Z \mid X \tag{1.5}
\end{equation*}
$$

Given that $P(Y \mid X, Z=1)$ is identified, (1.5) identifies $P(Y \mid X)$. Since the 1970 s, economists have used latent-variable models of the form

$$
\left\{\begin{array}{l}
Y=g_{1}(X)+\varepsilon_{1} \\
Z=1\left\{g_{2}(X)+\varepsilon_{2}>0\right\}
\end{array}\right.
$$

with g_{1} and g_{2} real-valued functions, and ε_{1} and ε_{2} unobserved errors. The early literature assumes $\varepsilon_{1} \perp \varepsilon_{2} \mid X$, implying (1.5) and the absence of selection bias. For more, see Angrist (1997).

In each of these three examples it is of interest to test whether the conditional independence hypothesis is true. This brings us to our contribution. There are many nonparametric tests of independence for continuous random variables, starting with Hoeffding (1948), including empirical distribution-based methods such as Blum et al. (1961) or Skaug and Tjostheim (1993), smoothing-based methods like Rosenblatt (1975), Robinson (1991), and Hong and White (2005), and others, such as Brock et al. (1996). Nevertheless, practical nonparametric tests for conditional independence are not as well developed. ${ }^{1}$ Using empirical process theory, Linton and Gozalo (1997, "LG") give a nonparametric test of conditional independence using a generalized empirical distribution, and Delgado and González-Manteiga (2001, "DG") give an omnibus test of conditional independence using the weighted difference of the estimated conditional distributions under the null and the alternative. Nevertheless, both tests are for the i.i.d. case, and neither is asymptotically pivotal. In contrast, we build on the large literature on kernel-based omnibus testing of restrictions on nonparametric curves, initiated by Bickel and Rosenblatt (1973) and Rosenblatt (1975). We give a test for conditional independence based on a weighted version of Hellinger distance under weak data dependence. A main advantage is that our statistic is asymptotically pivotal. Despite its inability to detect local alternatives at rate $n^{-1 / 2}$ like the tests of LG and DG, it turns out to be more efficient in the direction of certain high frequency alternatives like those of Rosenblatt (1975) and Horowitz and Spokoiny (2001).

Among other things, our test applies to test for Granger non-causality with no need to specify a linear or non-linear model. Also, it applies to cases where not all variables are continuous or observable.

The paper is organized as follows. In section 2, we give the basic framework, assuming no parameter estimation and that all random variables are continuous. Section 3 studies the asymptotic null distribution of our statistic and global and local power properties. Section 4 treats discrete variables, parameter estimation, and bootstrap approximation. We report a Monte Carlo study and an application in Section 5 and conclude in Section 6. We relegate technical details to Appendices A-C.

2 Basic framework

We wish to know if Y and Z are independent given X, where X, Y, and Z are $d_{1^{-}}, d_{2^{-}}$, and $d_{3^{-}}$-vectors, respectively. We have n identically distributed, weakly dependent observations $\left(X_{t}, Y_{t}, Z_{t}\right), t=1, \ldots, n$.

The joint density (resp. cumulative distribution function) of $\left(X_{t}, Y_{t}, Z_{t}\right)$ is f (resp. F). We reference marginal densities of $f(x, y, z)$ simply using the list of their arguments - for example $f(x, y)=\int f(x, y, z) d z$, $f(x, z)=\int f(x, y, z) d y$ and $f(x)=\int f(x, y, z) d y d z$, where \int integrates on the full range of its arguments. This notation is compact, and, we hope, sufficiently unambiguous.

Let $f(\cdot \mid \cdot)$ be the conditional density of one random vector given another. Formally, the null is

$$
\begin{equation*}
H_{0}: \operatorname{Pr}\{f(y \mid X, Z)=f(y \mid X)\}=1 \forall y \in \mathbb{R}^{d_{2}} \tag{2.1}
\end{equation*}
$$

equivalent to $f(x, y, z) f(x)=f(x, y) f(x, z)$, for all (x, y, z) in the support of f. The alternative is

$$
\begin{equation*}
H_{1}: \operatorname{Pr}\{f(y \mid X, Z)=f(y \mid X)\}<1 \text { for some } y \in \mathbb{R}^{d_{2}} \tag{2.2}
\end{equation*}
$$

[^1]Our test statistic is based on the weighted Hellinger distance between $f(x, y, z) f(x)$ and $f(x, y) f(x, z)$:

$$
\begin{equation*}
\Gamma(f, F) \equiv \int\left\{1-\sqrt{\frac{f(x, y) f(x, z)}{f(x, y, z) f(x)}}\right\}^{2} a(x, y, z) d F(x, y, z) \tag{2.3}
\end{equation*}
$$

with $a(\cdot)$ a specified nonnegative weighting function with compact support $A \subset \mathbb{R}^{d}, d \equiv d_{1}+d_{2}+d_{3}$.
The weighting function is crucial. It truncates integration at the extremes, where precise estimation of densities is quite hard. Thus, we only detect deviations between $f(x, y, z) f(x)$ and $f(x, y) f(x, z)$ on A. One can also assume compact support for (X, Y, Z) and use Hellinger distance ($a \equiv 1$).

Other statistics can be constructed using entropy (e.g., Robinson, 1991, Fernandes, 2000, Hong and White, 2005), or using the L^{2} distance between $f(x, y, z) f(x)$ and $f(x, y) f(x, z)$. It is well known that entropy- or Hellinger- based statistics have better small sample performance than L^{2}-based statistics when testing serial independence. Theoretically, Hellinger distance has some advantages over distances based on the L^{q} norm, e.g., $q=1,2$, or ∞. Let f_{1} and f_{2} be densities. Then: (1) The L^{1} or L^{2} norm of $f_{1}-f_{2}$ equally weights identical differences between f_{1} and f_{2} regardless of whether the smaller of the two is large or small, whereas L^{∞} only weighs the extreme difference between f_{1} and f_{2}. (2) Like L^{∞}, L^{1} is analytically awkward. (3) None of the L^{q} norms, $q=1,2$, or ∞, are invariant to continuous monotonic transformation. In contrast, like Shannon entropy, Hellinger distance does not have these problems. In particular, it is invariant to continuous monotonic transformation, which is important in applications. We use Hellinger distance instead of entropy as only the former yields a second-order theory a la White and Hong (1999) in the presence of the weighting function a. See Pitman (1979, Chapter 2) for more on distances between probability measures.

To define our test statistic, we first introduce kernel estimators for the unknown densities. For a kernel function ${ }^{2} K$ and bandwidth $h \equiv h(n)$, we define

$$
\begin{equation*}
K_{h}(u) \equiv h^{-d} K(u / h) \tag{2.4}
\end{equation*}
$$

where u has dimension d. We use the standard Nadaraya-Watson (NW) density estimator,

$$
\begin{equation*}
\widehat{f}(x, y, z) \equiv \frac{1}{n} \sum_{t=1}^{n} K_{h}\left(x-X_{t}, y-Y_{t}, z-Z_{t}\right) \tag{2.5}
\end{equation*}
$$

estimators for $f(x, y), f(x, z)$, and $f(x)$ are analogous. Let \widehat{F} be the empirical cdf of (X, Y, Z). Our test statistic is a sample analog of (2.3),

$$
\begin{aligned}
\widehat{\Gamma} & \equiv \Gamma(\widehat{f}, \widehat{F}) \equiv \int_{A}\left\{1-\sqrt{\frac{\widehat{f}(x, y) \widehat{f}(x, z)}{\widehat{f}(x, y, z) \widehat{f}(x)}}\right\}^{2} a(x, y, z) d \widehat{F}(x, y, z) \\
& =\frac{1}{n} \sum_{t=1}^{n}\left\{1-\sqrt{\frac{\widehat{f}\left(X_{t}, Y_{t}\right) \widehat{f}\left(X_{t}, Z_{t}\right)}{\widehat{f}\left(X_{t}, Y_{t}, Z_{t}\right) \hat{f}\left(X_{t}\right)}}\right\}^{2} a\left(X_{t}, Y_{t}, Z_{t}\right) .
\end{aligned}
$$

We show that the properties of $\widehat{\Gamma}$ follow from the properties of Γ. Two observations are important: (a) the first order terms in the expansion of $\Gamma(\widehat{f}, F)$ around $\Gamma(f, F)$ degenerate under the null; ${ }^{3}$ and (b) the distance between $\Gamma(\widehat{f}, \widehat{F})$ and $\Gamma(\widehat{f}, F)$ is asymptotically negligible. The latter is important as it is

[^2]easier to study the asymptotic behavior of $\Gamma(\widehat{f}, F)$. The former is important as it implies that the usual \sqrt{n}-asymptotics (e.g., Robinson, 1991) do not apply; different normalizations must be used (e.g., White and Hong, 1999, Hong and White, 2005).

3 The asymptotic distribution of the test statistic

We now treat testing conditional independence for a continuously distributed stochastic process.

3.1 Asymptotic null distribution

Our assumptions are as follows. See Appendix A for definitions and other technical material.
Assumption A. 1 (Stochastic Process) $(i)\left\{W_{t} \equiv\left(X_{t}^{\prime}, Y_{t}^{\prime}, Z_{t}^{\prime}\right)^{\prime} \in \mathbb{R}^{d_{1}+d_{2}+d_{3}} \equiv \mathbb{R}^{d}, t \geq 0\right\}$ is a strictly stationary β-mixing process with coefficients $\beta_{m}^{n}=O\left(\rho^{m}\right)$ for some $0<\rho<1$.
(ii) $W_{t} \equiv\left(X_{t}^{\prime}, Y_{t}^{\prime}, Z_{t}^{\prime}\right)^{\prime}$ has joint distribution F and joint density f such that f has continuous partial derivatives of order $r \geq 4$, bounded and integrable on $\mathbb{R}^{d} . f$ is bounded away from zero on the compact support A of $a(\cdot)$, i.e., $\inf _{w \in A} f(w) \equiv b>0$, and satisfies a Lipschitz condition: $|f(w+u)-f(w)| \leq D(w)\|u\|$, where D has finite $(2+\eta)$ th moment for some $\eta>0$ and $\|\cdot\|$ is Euclidean norm.
(iii) The joint density function (pdf) $f_{t_{1}, \ldots, t_{l}}(\cdot, \cdots, \cdot)$ of $\left(W_{0}, W_{t_{1}}, \ldots, W_{t_{l}}\right)(1 \leq l \leq 5)$ is bounded and satisfies a Lipschitz condition: $\left|f_{t_{1}, \ldots, t_{l}}\left(w_{0}+u_{0}, \cdots, w_{l}+u_{l}\right)-f_{t_{1}, \ldots, t_{l}}\left(w_{0}, \cdots, w_{l}\right)\right| \leq D_{t_{1}, \ldots, t_{l}}\left(w_{0}, \ldots, w_{l}\right)\|u\| \|$, where $u \equiv\left(u_{0}, \ldots, u_{l}\right)$ and $D_{t_{1}, \ldots, t_{l}}$ is integrable and satisfies $\int D_{t_{1}, \ldots, t_{l}}\left(w_{0}, \ldots, w_{l}\right)\|w\|^{2 \xi} d w<\bar{M}<\infty$ and $\int D_{t_{1}, \ldots, t_{l}}\left(w_{0}, \ldots, w_{l}\right) f_{t_{1}, \ldots, t_{l}}\left(w_{0}, \cdots, w_{l}\right) d w<\bar{M}<\infty$ for some $\xi>1$.

Assumption A. 2 (Kernel) For some even integer $r \geq 4$, the kernel K is a product kernel of the bounded symmetric kernel $k: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\int_{\mathbb{R}} u^{i} k(u) d u=\delta_{i 0} \quad(i=0,1, \ldots, r-1), C_{0} \equiv \int_{\mathbb{R}} u^{r} k(u) d u<\infty$, $\int_{\mathbb{R}} u^{2} k(u)^{2} d u<\infty$, and $k(u)=O\left(\left(1+|u|^{r+1+\delta}\right)^{-1}\right)$ for some $\delta>0$, where $\delta_{i j}$ is Kronecker's delta.

Assumption A. 3 (Bandwidth) As $n \rightarrow 0$, the bandwidth sequence $h \rightarrow 0$, such that $(i) n h^{2 d} /(\ln n)^{\gamma} \rightarrow$ ∞ for some $\gamma>0$; (ii) $n h^{d / 2+2 r} \rightarrow 0$.

Remark 1. Assumption A.1(i) is standard for application of a central limit theorem for U-statistics for weakly dependent data (e.g., Fan and Li, 1999a). It is satisfied by many well-known processes such as linear stationary ARMA processes and a large class of processes implied by numerous nonlinear models, including bilinear, NLAR, and ARCH-type models (see Fan and Li, 1999b). A.1(ii) and (iii) are primarily smoothness conditions like those imposed by Li (1999). Assumption A. 2 requires a higher order kernel, which is common in the literature (see Robinson, 1988, Fan and Li, 1996, and Li, 1999). Assumption A. 3 restricts the bandwidth sequence. Although we allow different bandwidths for different kernel density estimators, we in fact use the same bandwidth h. This makes certain bias terms cancel each other under the null. For more on bandwidth choice, see Chen et al. (2001). Assumption A.3(i) is explicitly used in the proof of Lemma B.7. It is stronger than the common assumption $n h^{d} /(\ln n)^{\gamma} \rightarrow 0$ for some $\gamma>0$, which suffices for Lemmas B.2-B.6. We conjecture that one can use the weaker assumption at the expense of highly technical argument to show asymptotic negligibility of the remainder in Lemma B.7. If so, as a referee comments, one can use a second order positive kernel $(r=2)$ for the important case $d=3 .{ }^{4}$

To state the result and give the derivation, $\operatorname{let}^{5} w=(x, y, z)$, and define the following notation:

[^3]\[

$$
\begin{array}{ll}
B_{1} \equiv\left(C_{1}\right)^{d} \int_{A} a(w) d w, & B_{2} \equiv\left(C_{1}\right)^{d-1} C_{2} \sum_{i=1}^{d} \int_{A} \frac{1}{2}\left(\partial^{2} f(w) / \partial w_{i}^{2}\right) a(w) / f(w) d w, \\
B_{3} \equiv\left(C_{1}\right)^{d_{1}+d_{2}} \int_{A} a(w) f(w) / f(x, y) d w, & B_{4} \equiv\left(C_{1}\right)^{d_{1}+d_{3}} \int_{A} a(w) f(w) / f(x, z) d w, \\
B_{5} \equiv\left(C_{1}\right)^{d_{1}} \int_{A} a(w) f(w) / f(x) d w, & \sigma^{2} \equiv\left(C_{3}\right)^{d} \int_{A} a(w)^{2} d w
\end{array}
$$
\]

where $C_{1} \equiv \int_{\mathbb{R}} k(u)^{2} d u, C_{2} \equiv \int_{\mathbb{R}} u^{2} k(u)^{2} d u$, and $C_{3} \equiv \int_{\mathbb{R}}\left(\int_{\mathbb{R}} k(u+v) k(u) d u\right)^{2} d v$. For a kernel satisfying A.2, the C_{i} 's can be calculated explicitly; e.g., when $k(u)=\left(3-u^{2}\right) \varphi(u) / 2$ with $\varphi(u)$ the standard normal pdf, we have: $C_{1}=27 /(32 \sqrt{\pi}), C_{2}=15 /(64 \sqrt{\pi})$, and $C_{3}=7881 /(8192 \sqrt{2 \pi})$. We can now state our first result.

Theorem 3.1 Under Assumptions A.1-A.3 and under H_{0}, if $d \leq 7$ and $d_{1}-4<d_{3}-d_{2}<4-d_{1}$, then $n h^{d / 2}\left\{4 \widehat{\Gamma}-n^{-1} h^{-d} B_{1}-n^{-1} h^{-d+2} B_{2}+n^{-1} h^{-\left(d_{1}+d_{2}\right)} B_{3}+n^{-1} h^{-\left(d_{1}+d_{3}\right)} B_{4}-n^{-1} h^{-d_{1}} B_{5}\right\} \xrightarrow{d} N\left(0,2 \sigma^{2}\right)$.

The proof relies on a functional expansion of $\Gamma(\cdot, F)$, as in Ait-Sahalia et al. (2001), and some preliminary U-statistic results in Tenreiro (1997). In studying goodness-of-fit tests for kernel regression, Ait-Sahalia et al. derive the functional expansion for the sum-of-squared departures between restricted and unrestricted regressions. Similarly, we take a second order expansion, as the first order term vanishes under the null.

Not all the bias correction terms, $B_{i}, i=1, \ldots, 5$, may be necessary. For example, if $d=3$ (implying $d_{1}=d_{2}=d_{3}=1$), both B_{2} and B_{5} are asymptotically negligible. If $d_{2}+d_{3}>d_{1}, B_{5}$ is not needed. If $d_{3}>d_{1}+d_{2}$ (resp. $d_{2}>d_{1}+d_{3}$) then $B_{3}\left(\right.$ resp. $\left.B_{4}\right)$ is unnecessary. If $d \leq 5$, as the "curse of dimensionality" requires for realistic applications, the restriction $d_{1}-4<d_{3}-d_{2}<4-d_{1}$ is redundant.

To implement, we consistently estimate the last four bias terms at certain rates as

$$
\begin{array}{ll}
\widehat{B}_{2} \equiv \frac{\left(C_{1}\right)^{d-1} C_{2}}{n} \sum_{t=1}^{n} \sum_{i=1}^{d} \frac{1}{2}\left\{\widehat{f}_{i}^{(2)}\left(W_{t}\right) a\left(W_{t}\right) / \widehat{f}^{(0)}\left(W_{t}\right)^{2}\right\}, & \widehat{B}_{3} \equiv \frac{\left(C_{1}\right)^{d_{1}+d_{2}}}{n} \sum_{t=1}^{n}\left\{a\left(W_{t}\right) / \widehat{f}\left(X_{t}, Y_{t}\right)\right\}, \\
\widehat{B}_{4} \equiv \frac{\left(C_{1}\right)^{d_{1}+d_{3}}}{n} \sum_{t=1}^{n}\left\{a\left(W_{t}\right) / \widehat{f}\left(X_{t}, Z_{t}\right)\right\}, & \widehat{B}_{5} \equiv \frac{\left(C_{1}\right)^{d_{1}}}{n} \sum_{t=1}^{n}\left\{a\left(W_{t}\right) / \widehat{f}\left(X_{t}\right)\right\},
\end{array}
$$

where, e.g., $\widehat{f}_{i}^{(2)}(w) \equiv n^{-1} h_{1}^{-(d+2)} \sum_{t=1}^{n} k_{(2)}\left(\left(w_{i}-W_{t, i}\right) / h_{1}\right) \Pi_{j \neq i}^{d} k_{(0)}\left(\left(w_{j}-W_{t, j}\right) / h_{1}\right), \widehat{f}^{(0)}(w) \equiv n^{-1} h_{1}^{-d}$ $\sum_{t=1}^{n} \Pi_{j=1}^{d} k_{(0)}\left(\left(w_{j}-W_{t, j}\right) / h_{1}\right), k_{(v)}$ is the kernel of order (v, p) for estimating the v th partial derivative of a univariate density, h_{1} is a bandwidth sequence, and $W_{t, i}$ is the i^{\prime} th element of $W_{t}, i=1,2, \ldots, d$. Following Gasser et al. (1985), we assume $0 \leq v \leq p-2$, where $v=0$, or 2 and p is even. The choice of $k_{(v)}(v=0,2)$ is crucial to estimate the second order partial derivatives effectively. For brevity, we refer the reader to Gasser et al. (1985) and Singh (1987). ${ }^{6}$ It is not hard to show that $h^{\left(d_{3}-d_{1}-d_{2}\right) / 2}\left(\widehat{B}_{3}-B_{3}\right), h^{\left(d_{2}-d_{1}-d_{3}\right) / 2}\left(\widehat{B}_{4}-B_{4}\right)$, and $h^{\left(d_{2}+d_{3}-d_{1}\right) / 2}\left(\widehat{B}_{5}-B_{5}\right)$ are $o_{p}(1)$ by Assumptions A.1-A.3. We show in Appendix C that, for $i=1, \ldots, d$,

$$
\begin{equation*}
h^{2-d / 2}\left\{\frac{1}{n} \sum_{t=1}^{n} \frac{\widehat{f}_{i}^{(2)}\left(W_{t}\right) a\left(W_{t}\right)}{\widehat{f}^{(0)}\left(W_{t}\right)}-\int_{A} \frac{\partial^{2} f(w)}{\partial w_{i}^{2}} \frac{a(w)}{f(w)} d w\right\}=o_{p}(1) \tag{3.1}
\end{equation*}
$$

given $h^{2-d / 2} h_{1}^{-2} v_{n}=o(1)$, with $v_{n} \equiv n^{-1 / 2} h_{1}^{-d / 2}(\ln n)^{\gamma}+h_{1}^{p}$ for $\gamma>0$, so $h^{2-d / 2}\left(\widehat{B}_{2}-B_{2}\right)=o_{p}(1)$.
Then the estimation errors for the bias terms are asymptotically negligible and we can compare

$$
\begin{equation*}
T_{n} \equiv n h^{d / 2}\left\{4 \widehat{\Gamma}-n^{-1} h^{-d} B_{1}-n^{-1} h^{-d+2} \widehat{B}_{2}+n^{-1} h^{-\left(d_{1}+d_{2}\right)} \widehat{B}_{3}+n^{-1} h^{-\left(d_{1}+d_{3}\right)} \widehat{B}_{4}-n^{-1} h^{-d_{1}} \widehat{B}_{5}\right\} / \sqrt{2 \sigma^{2}} \tag{3.2}
\end{equation*}
$$

to the critical value z_{α} from the $N(0,1)$ distribution, i.e., $z_{0.05}=1.645$ and $z_{0.10}=1.282$, as the test is one-sided, and we reject the null when $T_{n}>z_{\alpha}$.

3.2 Consistency and local power properties

We now study the consistency and local power properties of our test. Our consistency result is as follows.
Proposition 3.2 Suppose that $d \leq 7, d_{1}-4<d_{3}-d_{2}<4-d_{1}$, and $h^{2-d / 2} h_{1}^{-2} v_{n}=o(1)$. Under Assumptions A.1-A.3, the test based on the statistic (3.2) is consistent for F such that $\Gamma(f, F) \geq \varepsilon>0$.

[^4]Note that the above proposition is equivalent to saying that the test is consistent when $a(x, y, z)\{1-$ $\sqrt{f(x, y) f(x, z) /[f(x, y, z) f(x)]}\} \neq 0$ in a region of positive density mass. In theory, we should require the support A of $a(\cdot)$ to be as large as possible. In practice, we often have that $A=A_{1} \times A_{2} \times A_{3} \subset$ $\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}} \times \mathbb{R}^{d_{3}}, A_{1}=\left\{x \in \mathbb{R}^{d_{1}}: x \in\left[\bar{X}-2 \widehat{S}_{X}, \bar{X}+2 \widehat{S}_{X}\right]\right\}$, with \bar{X} and \widehat{S}_{X} the sample average and standard deviation of X, respectively; and A_{2} and A_{3} are defined analogously. ${ }^{7}$ Note that the support A chosen in this way is dependent on n but this has no asymptotic impact on the distribution of our statistic.

To define local alternatives we follow the notation of Gourieroux and Tenreiro (2001) and consider a sequence of d-dimensional strictly stationary processes $\left(W_{n t}, t \geq 0\right)$.

Assumption A.1* $(i)\left\{W_{n t} \equiv\left(X_{n t}^{\prime}, Y_{n t}^{\prime}, Z_{n t}^{\prime}\right)^{\prime} \in \mathbb{R}^{d_{1}+d_{2}+d_{3}} \equiv \mathbb{R}^{d}, t=1, \ldots, n ; n=1,2, \ldots\right\}$ is a strictly stationary β-mixing process with coefficients β_{m}^{n} satisfying

$$
\beta_{m}^{n} \equiv \sup _{n \in \mathbb{N}} \beta_{m}^{n}=O\left(\rho^{m}\right) \text { for some } 0<\rho<1
$$

Let $f^{[n]}(x, y, z)$ be the joint density of $X_{n t}, Y_{n t}$, and $Z_{n t}$. Let $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. We first examine the power of our test against the sequence of local alternatives

$$
\begin{equation*}
H_{1}\left(\alpha_{n}\right): f^{[n]}(y \mid x, z)=f^{[n]}(y \mid x)\left[1+\alpha_{n} \Delta(w)+o\left(\alpha_{n}\right) \Delta_{n}(w)\right] \tag{3.3}
\end{equation*}
$$

where $f^{[n]}(y \mid x, z)$ and $f^{[n]}(y \mid x)$ are conditional densities derived from $f^{[n]}(x, y, z)$, and $\Delta(w)$ and $\Delta_{n}(w)$ are specified in Assumption A.4.

Assumption A. 4 (Local alternatives)
(i) $1+\alpha_{n} \Delta(w)+o\left(\alpha_{n}\right) \Delta_{n}(w) \geq 0$ for all $w \in \mathbb{R}^{d}$ and all $n \in \mathbb{N}$.
(ii) $\int_{\mathbb{R}^{d}} \Delta(w) f^{[n]}(x, y) f^{[n]}(z \mid x) d w=0$ and $\int_{\mathbb{R}^{d}} \Delta_{n}(w) f^{[n]}(x, y) f^{[n]}(z \mid x) d w=0$ for all $n \in \mathbb{N}$.
(iii) $\int_{A}|\Delta(w)|^{2} f^{[n]}(w) a(w) d w<\bar{M}$ and $\int_{A}\left|\Delta_{n}(w)\right|^{2} f^{[n]}(w) a(w) d w<\bar{M}$ for some $\bar{M}<\infty$ for all $n \in \mathbb{N}$.
(iv) $\lim _{n \rightarrow \infty} f^{[n]}(\cdot)$ exists and $f(w)=\lim _{n \rightarrow \infty} f^{[n]}(w)$.

Assumptions A.4(i)-(ii) ensure that $f^{[n]}(x, y, z)$ is a valid pdf for all $n \in \mathbb{N}$. Assumption A.4(iii) ensures that the remainder term $o\left(\alpha_{n}\right) \Delta_{n}(w)$ has no impact on the asymptotic distribution of the statistic T_{n} and $\alpha_{n} \Delta(w)$ is at distance $O\left(\alpha_{n}\right)$ from the null. Also, we modify Assumption A.1(ii)-(iii) to be:

Assumption A.1* ${ }^{*}$ (ii) - (iii) Assumptions A.1(ii)-(iii) hold with $f^{[n]}$ and $F^{[n]}$ replacing f and F respectively.

Proposition 3.3 Suppose that $d \leq 7$, $d_{1}-4<d_{3}-d_{2}<4-d_{1}, h^{2-d / 2} h_{1}^{-2} v_{n}=o(1)$ and that $\alpha_{n}=$ $n^{-1 / 2} h^{-d / 4}$ in $H_{1}\left(\alpha_{n}\right)$. Then under Assumptions A.1*, A.2-A.4, $\operatorname{Pr}\left(T_{n} \geq z_{\alpha} \mid H_{1}\left(\alpha_{n}\right)\right) \rightarrow 1-\Phi\left(z_{\alpha}-\right.$ $\delta /(\sqrt{2} \sigma))$, where $\delta \equiv \int_{A} a(w) \Delta(w)^{2} f(w) d w$.

Remark 2. Proposition 3.3 says that our test statistic T_{n} has nontrivial power against $H_{1}\left(\alpha_{n}\right)$ with $\alpha_{n}=n^{-1 / 2} h^{-d / 4}$ whenever $\delta \neq 0$. The rate $n^{-1 / 2} h^{-d / 4}$ is slower than $n^{-1 / 2}$, as $h \rightarrow 0$. In contrast, the LG and and DG tests have nontrivial power in the direction of alternatives converging to the null at rate $n^{-1 / 2}$. Thus, the latter tests would be more powerful than ours against local alternatives like (3.3).

Next, consider the following high frequency alternatives of the type considered by Rosenblatt (1975) and, more recently, by Horowitz and Spokoiny (2001):

$$
\begin{equation*}
H_{1, h}\left(\beta_{n}, \gamma_{n}\right): f^{[n]}(y \mid x, z)=f^{[n]}(y \mid x)\left[1+\beta_{n} \Lambda\left(\left(w-w_{0}\right) / \gamma_{n}\right)+o\left(\beta_{n}\right) \Lambda_{n}\left(\left(w-w_{0}\right) / \gamma_{n}\right)\right] \tag{3.4}
\end{equation*}
$$

[^5]where $w_{0} \in A \subset \mathbb{R}^{d_{1}+d_{2}+d_{3}}$ with $a\left(w_{0}\right)>0, \beta_{n}$ and $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Assumption A.4* (Local alternatives)
(i) $1+\beta_{n} \Lambda\left(\left(w-w_{0}\right) / \gamma_{n}\right)+o\left(\beta_{n}\right) \Lambda_{n}\left(\left(w-w_{0}\right) / \gamma_{n}\right) \geq 0$ for all $w \in \mathbb{R}^{d}$ and all $n \in \mathbb{N}$.
(ii) $\int_{\mathbb{R}^{d}} \Lambda\left(\left(w-w_{0}\right) / \gamma_{n}\right) f^{[n]}(x, y) f^{[n]}(z \mid x) d w=0$ and $\int_{\mathbb{R}^{d}} \Lambda_{n}\left(\left(w-w_{0}\right) / \gamma_{n}\right) f^{[n]}(x, y) f^{[n]}(z \mid x) d w=0$ for all $n \in \mathbb{N}$.
(iii) $\int_{A}|\Lambda(w)|^{2} d w<\bar{M}$ and $\int_{A}\left|\Lambda_{n}(w)\right|^{2} d w<\bar{M}$ for some $\bar{M}<\infty$ for all $n \in \mathbb{N}$.
(iv) $f^{[n]}(\cdot)$ is bounded $\mathbb{R}^{d}, \lim _{n \rightarrow \infty} f^{[n]}(\cdot)$ exists, and $f(w)=\lim _{n \rightarrow \infty} f^{[n]}(w)$.

Proposition 3.4 Suppose that $d \leq 7, d_{1}-4<d_{3}-d_{2}<4-d_{1}, h^{2-d / 2} h_{1}^{-2} v_{n}=o(1)$. Suppose $H_{1, h}\left(\beta_{n}, \gamma_{n}\right)$ holds with $n h^{d / 2} \beta_{n}^{2} \gamma_{n} \rightarrow C \in(0, \infty]$. Then under Assumptions A.1*, A.2-A.3, A.4*, $\operatorname{Pr}\left(T_{n} \geq z_{\alpha} \mid H_{1, h}\left(\beta_{n}, \gamma_{n}\right)\right)$ $\rightarrow 1-\Phi\left(z_{\alpha}-\bar{\delta} /(\sqrt{2} \sigma)\right)$, where $\bar{\delta} \equiv C a\left(w_{0}\right) f\left(w_{0}\right) \int \Lambda(w)^{2} d w$.

Remark 3. Proposition 3.4 says that our test statistic T_{n} has nontrivial power against $H_{1, h}\left(\beta_{n}, \gamma_{n}\right)$ for certain sequences of β_{n} and γ_{n}. For example, if we choose $\beta_{n}=\left(n h^{d / 2}\right)^{-1 / 3}$ and $\gamma_{n}=\left(n h^{d / 2}\right)^{-1 / 3}(\ln \ln n)^{\gamma}$ for some $\gamma \geq 0$, one can easily see that the condition on β_{n} and γ_{n} in the above proposition is met. Noticing that $\beta_{n} \gamma_{n}=o\left(n^{-1 / 2}\right)$, it is known that in this case the powers of the LG and DG tests converge to zero as $n \rightarrow \infty$. Therefore, our test is more powerful than the latter tests for certain high frequency alternatives of the form (3.4).

4 Extensions and discussion

Above we treat a stochastic process that has continuously-valued realizations. While this case suffices for many empirical applications (e.g. nonparametric testing of Granger non-causality), our testing procedure is applicable to a much wider range of situations. We now discuss two cases that generalize the above basic results. Also, we propose a bootstrap approximation to the distribution of our statistic.

4.1 Discrete random variable

Our test can be modified to incorporate the case in which one of the random variables in (X, Y, Z) is discretely valued. For notational convenience, we explicitly assume that Z is a binary variable. ${ }^{8}$

Let $f_{1}(x, y) \equiv f(x, y) P(Z=1 \mid x, y)$ be the joint density of (X, Y, Z) with respect to the product of Lebesgue measure on $\mathbb{R}^{d_{1}+d_{2}}$ and counting measure. Similarly, $f_{1}(x) \equiv f(x) P(Z=1 \mid x), f_{0}(x) \equiv$ $f(x) P(Z=0 \mid x)$ and $f_{0}(x, y) \equiv f(x, y) P(Z=0 \mid x, y)$. The test is based on the functional

$$
\begin{equation*}
\Gamma_{1}(f, F) \equiv \int\left\{1-\sqrt{\frac{f(x, y) f_{1}(x)}{f_{1}(x, y) f(x)}}\right\}^{2} a(x, y) d F_{1}(x, y)+\int\left\{1-\sqrt{\frac{f(x, y) f_{0}(x)}{f_{0}(x, y) f(x)}}\right\}^{2} a(x, y) d F_{0}(x, y), \tag{4.1}
\end{equation*}
$$

where $a(x, y)$ is a nonnegative weighting function that can be understood as our previous $a(x, y, z)$ restricted to $\mathbb{R}^{d_{1}+d_{2}}, d F_{1}(x, y) \equiv f(x, y) P(Z=1 \mid x, y) d x d y$, and $d F_{0}(x, y) \equiv f(x, y) P(Z=0 \mid x, y) d x d y$. Clearly, under the null that $Y \perp Z \mid X, \Gamma(f, F)=0$. It is easy to show that under suitable conditions, a normalized version of the sample analog of $\Gamma_{1}(f, F)$ is asymptotically normally distributed, and the dimension d_{3} does not affect the convergence rate. For brevity, we don't report the theoretical result here, which is available in the working paper version of this paper at http://www.econ.ucsd.edu/ - Isu/ch1.pdf.

[^6]
4.2 Conditional independence testing with estimated variables

Now consider the case in which $W=\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)^{\prime}$ is not observed directly but can be estimated. Asymptotic results for this case are useful when a conditional independence test is conducted using residuals or other estimated random variables. Let $\left\{M_{t} \in \mathbb{R}^{k}, t \geq 0\right\}$ be the observed process. Of interest are certain functions calculated from M, that is, $W(M, \theta) \equiv\left(X(M, \theta)^{\prime}, Y(M, \theta)^{\prime}, Z(M, \theta)^{\prime}\right)^{\prime} \in \mathbb{R}^{d_{1}+d_{2}+d_{3}} \equiv \mathbb{R}^{d}$, where the parameter $\theta \in \Theta \subset \mathbb{R}^{p}$. The null is, for some unknown $\theta_{0} \in \Theta$,

$$
\begin{equation*}
H_{0}: Y\left(M, \theta_{0}\right) \perp Z\left(M, \theta_{0}\right) \mid X\left(M, \theta_{0}\right) \tag{4.2}
\end{equation*}
$$

Denote the pdf's of $W(M, \theta)$ and its subvectors by $f(w ; \theta), f(x, y ; \theta), f(x, z ; \theta)$ and $f(x ; \theta)$, respectively. Let $F(w ; \theta)$ be the cdf of $W(M, \theta)$. Under the null, we have

$$
\begin{equation*}
\Gamma_{2}\left(f, F ; \theta_{0}\right) \equiv \int\left\{1-\sqrt{\frac{f\left(x, y ; \theta_{0}\right) f\left(x, z ; \theta_{0}\right)}{f\left(w ; \theta_{0}\right) f\left(x ; \theta_{0}\right)}}\right\}^{2} a\left(w ; \theta_{0}\right) d F\left(w ; \theta_{0}\right)=0 \tag{4.3}
\end{equation*}
$$

where $a(w ; \theta) \equiv a(w(\theta))$ is a nonnegative weighting function which depends on θ only through w and is otherwise the same as $a(w)$ used in Section 3. We suppose that there exist estimates $\widehat{\theta}$ of θ_{0} that are \sqrt{n}-consistent under the null. To implement the test, we replace $\Gamma_{2}\left(f, F ; \theta_{0}\right)$ by its sample analogue

$$
\Gamma_{2}(\widehat{f}, \widehat{F} ; \widehat{\theta})=\frac{1}{n} \sum_{t=1}^{n}\left\{1-\sqrt{\frac{\widehat{f}\left(X_{t}(\widehat{\theta}), Y_{t}(\widehat{\theta})\right) \widehat{f}\left(X_{t}(\widehat{\theta}), Z_{t}(\widehat{\theta})\right)}{\widehat{f}\left(W_{t}(\widehat{\theta})\right) \widehat{f}\left(X_{t}(\widehat{\theta})\right)}}\right\}^{2} a\left(W_{t}(\widehat{\theta})\right)
$$

where, for example, $W_{t}(\widehat{\theta}) \equiv W\left(M_{t}, \widehat{\theta}\right)$ and $\widehat{f}(w ; \theta)$ is the standard NW density estimator of $f(w ; \theta)$ that uses "observations" $\left\{W_{t}(\theta), 1 \leq t \leq n\right\}$. Under mild regularity conditions, we can show by applying results of Andrews (1995) that estimation of $\widehat{\theta}$ does not affect the asymptotics, as

$$
\begin{equation*}
\Gamma_{2}(\widehat{f}, \widehat{F} ; \widehat{\theta})=\Gamma_{2}\left(\widehat{f}, \widehat{F} ; \theta_{0}\right)+o_{p}\left(n^{-1} h^{-d / 2}\right) \tag{4.4}
\end{equation*}
$$

4.3 Smoothed Local Bootstap

The basic problems for the bootstrap are how to impose the null in the resampling scheme and accommodate the dependence structure in the data. Simple resampling from the empirical distribution of $W_{t}=$ $\left(X_{t}^{\prime}, Y_{t}^{\prime}, Z_{t}^{\prime}\right)^{\prime}$ will not impose the null restriction. Paparoditis and Politis (2000, "PP") propose a local bootstrap procedure for nonparametric kernel estimators under general dependence conditions. We essentially do the same thing here, except that our conditioning variables are not necessarily lagged dependent variables. Let $\mathcal{W} \equiv\left\{W_{t}\right\}_{t=1}^{n}$. We draw bootstrap resamples $\left\{X_{t}^{*}, Y_{t}^{*}, Z_{t}^{*}\right\}_{t=1}^{n}$ based on the following smoothed local bootstrap procedure: (i) Draw a bootstrap sample $\mathcal{X}^{*} \equiv\left\{X_{t}^{*}\right\}_{t=1}^{n}$ from the smoothed kernel density $\tilde{f}(x)=n^{-1} \sum_{t=1}^{n} L_{b}\left(X_{t}-x\right)$, where $L_{b}(x)=b^{-d_{1}} L(x / b)$ with $L(\cdot)$ a product kernel of a univariate density l, and $b>0$ the resampling bandwidth; (ii) For $t=1, \ldots, n$, given X_{t}^{*}, draw Y_{t}^{*} and Z_{t}^{*} independently from the smoothed conditional density $\tilde{f}\left(y \mid X_{t}^{*}\right)=\sum_{s=1}^{n} L_{b}\left(Y_{s}-y\right) L_{b}\left(X_{s}-X_{t}^{*}\right) / \sum_{r=1}^{n} L_{b}\left(X_{r}-X_{t}^{*}\right)$ and $\tilde{f}\left(z \mid X_{t}^{*}\right)=\sum_{s=1}^{n} L_{b}\left(Z_{s}-z\right) L_{b}\left(X_{s}-X_{t}^{*}\right) / \sum_{r=1}^{n} L_{b}\left(X_{r}-X_{t}^{*}\right)$, respectively, and denote $W_{t}^{*} \equiv\left(X_{t}^{* \prime}, Y_{t}^{* \prime}\right.$, $\left.Z_{t}^{* \prime}\right)^{\prime}$, and $\mathcal{W}^{*} \equiv\left\{W_{t}^{*}\right\}_{t=1}^{n}$; (iii) Compute a bootstrap statistic T_{n}^{*} in the same way as T_{n}, with \mathcal{W}^{*} replacing \mathcal{W}; (iv) repeat steps (i) and (ii) B times to obtain B bootstrap test statistics $\left\{T_{n j}^{*}\right\}_{j=1}^{B}$. PP (Remark 2.1) explain how to generate the bootstrap replicates computationally.

Let Pr^{*} denote probability conditional on the sample \mathcal{W}. The level α critical values \widetilde{c}_{α} are computed as an approximate solution to $\operatorname{Pr}^{*}\left[T_{n}^{*}>\widetilde{c}_{\alpha}\right]=\alpha$. The bootstrap p-value is then given by $p^{*} \equiv$ $B^{-1} \sum_{j=1}^{B} 1\left(T_{n j}^{*}>T_{n}\right)$. Several facts are worth mentioning: (i) Conditionally on \mathcal{W}, the bootstrap replicates W_{t}^{*} and W_{s}^{*} are independent for $t \neq s$, and they have the same distributions; (ii) conditionally on \mathcal{W}, Y_{t}^{*} and Z_{t}^{*} are independent given X_{t}^{*}. We shall use these facts repeatedly in the proof of Theorem 4.1.

To show that the smoothed local bootstrap procedure is consistent, we impose the following conditions on $L(\cdot)$ and b.

Assumption A.5 (Bootstrap kernel and bandwidth) (i) The kernel L is a product kernel of a bounded symmetric kernel density $l: \mathbb{R} \rightarrow \mathbb{R}^{+}$such that $\int_{\mathbb{R}} u^{i} l(u) d u=\delta_{i 0}(i=0,1)$. (ii) l is r times continuously differentiable such that $\int_{\mathbb{R}} u^{j} l^{(r)}(u) d u=0$ for $j=0,1, \ldots, r-1$ and $\int_{\mathbb{R}} u^{r} l^{(r)}(u) d u<\infty$. (iii) As $n \rightarrow \infty$, $b \rightarrow 0$, and $n b^{d+2 r} /(\ln n)^{\gamma} \rightarrow C \in(0, \infty]$ for some $\gamma>0$.

Theorem 4.1 Suppose Assumptions A.1-A.3 and A.5 and H_{0} hold, if $d \leq 7$ and $d_{1}-4<d_{3}-d_{2}<4-d_{1}$, then $T_{n}^{*} \xrightarrow{d} N(0,1)$ conditionally on \mathcal{W}.

Assumption A. 5 (i) is standard. We impose A. 5 (ii)-(iii) to ensure that the smoothed kernel densities $\widetilde{f^{\prime}} s$ are well behaved, e.g., the r th derivatives of $\widetilde{f}(x)$ are bounded uniformly on a compact set with probability approaching 1 as $n \rightarrow \infty$. When $r=4, l=\varphi$, the standard normal density, satisfies A.5(ii). Theorem 4.1 shows that the smoothed local bootstrap procedure provides an asymptotically valid approximation to the normal limit under H_{0}. It implies that $T_{n}^{*} \xrightarrow{d} N(0,1)$ unconditionally. We will compare the finite sample performance of the smoothed local bootstrap with that of the asymptotic normal approximation in our simulation.

5 Numerical results

5.1 Monte Carlo simulations

We now present Monte Carlo experiment results that illustrate the finite sample performance of our test. First, we consider the following data generating processes (DGPs):

DGP1s: $W_{t}=\left(\varepsilon_{1, t}, \varepsilon_{2, t}, \varepsilon_{3, t}\right)^{\prime}$, where $\left\{\varepsilon_{1, t}, \varepsilon_{2, t}, \varepsilon_{3, t}\right\}$ are i.i.d. $N\left(0, I_{3}\right)$.
For DGPs 2s-4s and DGPs 1p-5p below, $W_{t}=\left(Y_{t-1}, Y_{t}, Z_{t-1}\right)^{\prime}$, where $Z_{t}=0.5 Z_{t-1}+\varepsilon_{2, t},\left\{\varepsilon_{1, t}, \varepsilon_{2, t}\right\}$ are i.i.d. $N\left(0, I_{2}\right)$, and

DGP2s: $Y_{t}=0.5 Y_{t-1}+\varepsilon_{1, t}$;
DGP3s: $Y_{t}=\sqrt{h_{t}} \varepsilon_{1, t}, h_{t}=0.01+0.5 Y_{t-1}^{2}$;
DGP4s: $Y_{t}=\sqrt{h_{1, t}} \varepsilon_{1, t}, Z_{t}=\sqrt{h_{2, t}} \varepsilon_{2, t}, h_{1, t}=0.01+0.9 h_{1, t-1}+0.05 Y_{t-1}^{2}, h_{2, t}=0.01+0.9 h_{2, t-1}+$ $0.05 Z_{t-1}^{2}$;

DGP1p: $Y_{t}=0.5 Y_{t-1}+0.5 Z_{t-1}+\varepsilon_{1, t} ;$
DGP2p: $Y_{t}=0.5 Y_{t-1}+0.5 Z_{t-1}^{2}+\varepsilon_{1, t} ;$
DGP3p: $Y_{t}=0.5 Y_{t-1} Z_{t-1}+\varepsilon_{1, t}$;
DGP4p: $Y_{t}=0.5 Y_{t-1}+0.5 Z_{t-1} \varepsilon_{1, t}$;
DGP5p: $Y_{t}=\sqrt{h_{t}} \varepsilon_{1, t}, h_{t}=0.01+0.5 Y_{t-1}^{2}+0.25 Z_{t-1}^{2}$.
DGP6p: $W_{t}=\left(Y_{t-1}, Y_{t}, Z_{t-1}\right)^{\prime}$, where $Y_{t}=\sqrt{h_{1, t}} \varepsilon_{1, t}, Z_{t}=\sqrt{h_{2, t}} \varepsilon_{2, t}, h_{1, t}=0.01+0.1 h_{1, t-1}+0.4 Y_{t-1}^{2}+$ $0.5 Z_{t-1}^{2}, h_{2, t}=0.01+0.9 h_{2, t-1}+0.05 Z_{t-1}^{2}$, and $\left\{\varepsilon_{1, t}, \varepsilon_{2, t}\right\}$ are i.i.d. $N\left(0, I_{2}\right)$.

DGPs $1 \mathrm{~s}-4 \mathrm{~s}$ allow us to examine the level of the test, whereas DGPs $1 \mathrm{p}-6 \mathrm{p}$ are used to study power properties. These DGPs cover a variety of linear and nonlinear stochastic processes commonly studied in time series analysis. In particular, we have Granger-causality in the mean (resp. variance) in DGPs 1p-3p (resp. DGPs 4p-6p). DGPs 3s-4s and 5p-6p specify processes of (G)ARCH type.

We use a fourth order kernel in estimating all required densities: $k(u)=\left(3-u^{2}\right) \varphi(u) / 2$. The weighting function $a(w)$ is given in Footnote 7. Thus, $\int_{\mathbb{R}^{3}} a(w) d w=1$ and $\int_{\mathbb{R}^{3}} a(w)^{2} d w=1 / 27$. As it is difficult to specify the optimal bandwidth sequence, we take $h=c n^{-\frac{1}{8.5}}$ for a variety of $c^{\prime} s$.

To implement our test, we re-scale the data so that each variable has sample mean zero and variance 1. For each of DGPs $1 \mathrm{~s}-4 \mathrm{~s}$, we choose $c=1$ in calculating T_{n} and make a comparison between the
asymptotic normal and bootstrap approximations to the distribution of T_{n}, with $n=100$. For the bootstrap approximation, we choose $B=1000, b=n^{-1 / 5}$, and l the standard normal pdf. In Figure 1, the solid line (Hel) denotes the sample distribution of T_{n} obtained over 2000 simulations. The dashed line (Normal) denotes the normal approximation and the dotted line $\left(\mathrm{Hel}_{b}\right)$ the bootstrap approximation. For each of DGPs $1 \mathrm{~s}-4 \mathrm{~s}$, the bootstrap approximation is better than the normal approximation in the right tail. As Härdle and Mammen (1993) remark, the inaccuracy of the normal approximation increases with the dimension of (X, Y, Z) so we recommend the use of the bootstrap in applications.

LG base their tests of conditional independence on the functional $A_{n}(w)=\left\{n^{-1} \sum_{t=1}^{n} 1\left(W_{t} \leq w\right)\right\}$ $\times\left\{n^{-1} \sum_{t=1}^{n} 1\left(X_{t} \leq x\right)\right\}-\left\{n^{-1} \sum_{t=1}^{n} 1\left(X_{t} \leq x\right) 1\left(Y_{t} \leq y\right)\right\}\left\{n^{-1} \sum_{t=1}^{n} 1\left(X_{t} \leq x\right) 1\left(Z_{t} \leq z\right)\right\}$, where $w=$ (x, y, z). Specifically, their test statistics are of the Cramér von-Mises and Kolmogorov-Smirnov types: $C M_{n}=\sum_{t=1}^{n} A_{n}^{2}\left(W_{t}\right), K S_{n}=\sqrt{n} \max _{1 \leq t \leq n}\left|A_{n}\left(W_{t}\right)\right|$. DG base their tests of conditional independence on the functional $L_{n}(w)=n^{-1} \sum_{t=1}^{n}\left\{1\left(Y_{t} \leq y\right)-\widetilde{F}_{n}\left(y \mid X_{t}\right)\right\} \widetilde{f}\left(X_{t}\right) 1\left(X_{t} \leq x\right) 1\left(Z_{t} \leq z\right)$, where for bandwidth h_{2} and kernel $K_{2}, \widetilde{F}_{n}\left(y \mid X_{t}\right) \equiv n^{-1} h_{2}^{-d_{1}} \sum_{s=1}^{n} 1\left(Y_{s} \leq y\right) K_{2}\left(\left(X_{t}-X_{s}\right) / h_{2}\right) / \widetilde{f}\left(X_{t}\right)$ and $\widetilde{f}\left(X_{t}\right) \equiv$ $n^{-1} h_{2}^{-d_{1}} \sum_{s=1}^{n} K_{2}\left(\left(X_{t}-X_{s}\right) / h_{2}\right)$. We denote their two test statistics as $S C M_{n}=\sum_{t=1}^{n} L_{n}^{2}\left(W_{t}\right)$, and $S K S_{n}=\sqrt{n} \max _{1 \leq t \leq n}\left|L_{n}\left(W_{t}\right)\right|$. We choose K_{2} to be the standard normal pdf and let $h_{2}=n^{-1 / 3}$ in our simulation. Note that both the LG and DG tests were developed for i.i.d. data. To implement their tests here, we replace their bootstrap procedures by the above local bootstrap to account for data dependence. To compare the performance of these tests with ours, we implement our test with $c=1,1.5$, and 2 . To save computation time, we use $B=200$ and 250 repetitions unless otherwise stated.

Figure 1. Comparison of asymptotic and bootstrap approximations to the distribution of T_{n} [Insert Table 1 around here]

Tables 1 and 2 report the estimated levels and powers in the 5% and 10% tests. Also reported in the tables are the standard linear Granger causality results $\left(\operatorname{LIN}_{n}\right)$ with 1000 repetitions, where we examine whether Z_{t-1} should enter the regression of Y_{t} on Y_{t-1} linearly. From Table 1, we see that the levels of all tests behave reasonably well despite the fact that the both the DG test and our test (for small values of c) tend to be over-sized for small sample sizes. From Table 2, we see that except for DGP1p where the linear Granger causal relation is true, the standard linear Granger causality test performs worse than all other tests but SKS_{n}. It is not surprising that the CM_{n} and SCM_{n} tests beat the KS_{n} and SKS_{n} tests respectively, as this has been seen in several other studies. Also, the CM_{n} test tends to complement the SCM_{n} test whereas the KS_{n} test tends to dominate the SKS_{n} test in power. As far as our test is concerned, the CM_{n} and SCM_{n} tests are more powerful than our test in detecting linear Granger causality in the mean for small values of c whereas for other cases, our test outperforms.
[Insert Table 2 around here]
Next, we consider high-frequency alternatives of the form:
$Y_{t}=0.5 X_{t}+4 \tau \phi\left(Z_{t} / \tau\right)+0.5 \varepsilon_{t}$
where $\left\{X_{t}, Z_{t}, \varepsilon_{t}\right\}$ are i.i.d. $N\left(0, I_{3}\right)$ and as before ϕ is the standard normal pdf. We consider $\tau \in$ $\{0,0.5,1,2\}$, where $Y_{t}=0.5 X_{t}+0.5 \varepsilon_{t}$ for $\tau=0$, and denote the corresponding DGPs as DGP1h through DGP4h. In this case, $W_{t}=\left(X_{t}, Y_{t}, Z_{t}\right)^{\prime}$. We also check whether Z_{t} should enter the regression of Y_{t} on X_{t} linearly and denote the resulting t-test statistic as LIN_{n}.
[Insert Table 3 around here]
Table 3 reports the rejection frequency for various tests. For $\tau=0$ (DGP1h), the null hypothesis is true and all tests tend to be undersized for small n. When $\tau \neq 0$, the powers of the LG and DG tests are significantly lower than the power of our test, as expected. Also, for some values of τ, the LG and DG tests are beaten even by the simple test LIN_{n}.

5.2 Application to exchange rate data

Over the last two decades many studies have reported that foreign exchange rates exhibit nonlinear dependence, but researchers often neglect this when testing Granger causality. One exception is Hong (2001) who proposes a test for volatility spillover and applies it to study the volatility spillover between two weekly nominal U.S. dollar exchange rates, Deutschemark (DM) and Japanese yen (YEN).

In this application, we apply our nonparametric test to examine the causal relationship between DM and YEN and that between DM and the British pound (PD), and compare this to some previous tests. The data are obtained from Datastream for the sample period from January 19th, 1994 to January 19th, 2004, with 2609 observations total. The exchange rates are the local currency against the US dollar. As is standard, we let DM, YEN, and PD stand for the natural logarithm of the above three exchange rates multiplied by 100. The augmented Dickey-Fuller test indicates that there is a unit root in all three level series but not in the first differenced series, $\triangle \mathrm{DM}, \triangle \mathrm{YEN}$, and $\triangle \mathrm{PD}$. Johansen's likelihood test indicates that DM is not cointegrated with YEN or PD. Therefore, both the linear and nonlinear Granger causality tests will be conducted on the first differenced data.

For concisesness, we only consider the dynamic interaction between exchange rates at the one day lag. For example, for testing whether YEN Granger-causes DM linearly, we check whether $\beta=0$ in $\Delta \mathrm{DM}_{t}=\alpha_{0}+\alpha \Delta \mathrm{DM}_{t-1}+\beta \Delta \mathrm{YEN}_{t-1}+\epsilon_{t}$; for testing whether YEN Granger-causes DM nonlinearly, we check $H_{0, N L}: \Delta \mathrm{DM}_{t} \perp \Delta \mathrm{YEN}_{t-1} \mid \Delta \mathrm{DM}_{t-1}$.
[Insert Table 4 around here]
The results are summarized in Table 4. The linear Granger causality test (LIN) does not reveal a Granger-causal relationship between DM and YEN or PD at a one day lag, similar to the LG and DG tests. In contrast, our nonparametric test reveals unidirectional Granger causality from DM to YEN and from PD to DM. This suggests that at a one day lag, the exchange rates across countries interact strongly with each other. One obvious reason for the failure of the linear Granger causality test and the LG and DG tests in detecting such causal linkages is that exchange rates exhibit unambiguously nonlinear dependence across markets. The volatility spillover between exchange rates is a special case of such nonlinear dependence.

6 Conclusion

This paper develops asymptotic distribution theory for a nonparametric test of conditional independence under weak dependence conditions. The test is directly applicable to testing Granger non-causality. It also applies to cases where not all variables are continuous or observable. Monte Carlo experiments indicate that the our test outperforms the LG and DG tests significantly in a variety of DGPs. An application to exchange rate data demonstrates the power of our test in detecting nonlinear Granger causal relationships.

To improve the asymptotic approximation to the finite sample distribution of our test statistic, one can consider higher order refinements. If the distributions of our test statistic and its bootstrap analogue admit Edgeworth expansion, we conjecture that the bootstrap distribution approximates the null distribution of the test statistic with an error rate that can be arbitrarily close to $O\left(n^{-1 / 2}\right)$, and this will significantly improve the normal approximation rate of $O\left(h^{d_{2}}+h^{d_{3}}\right)$. Recently, Nishiyama and Robinson (2000) and Linton (2002) establish the validity of Edgeworth expansion for a degenerate U-statistic with variable kernel. This suggests that a rigorous proof establishing the validity of Edgeworth expansion in our context should be possible. Also, such an expansion will offer a solution to the choice of optimal bandwidth; we leave this for future research.

Other interesting directions for future research are to accommodate non-stationary processes, and to extend our test to the case in which some of the random variables are nonparametrically estimated.

REFERENCES

Ait-Sahalia, Y., P. J. Bickel, and T. M. Stoker (2001), Goodness-of-fit for Kernel Regression with an Application to Option Implied Volatilities, Journal of Econometrics 105, 363-412.

Andrews, D. W. K. (1995), Nonparametric Kernel Estimation for Semiparametric Models, Econometric Theory 11, 560-596.

Angrist J. D. (1997), Conditional Independence in Sample Selection Models, Economics Letters 54, 103112.

Baek, E. and W. Brock (1992), A General Test for Nonlinear Granger Causality: Bivariate Model, Working Paper, Iowa State University and University of Wisconsin, Madison.

Bell, D., J. Kay, and J. Malley (1996), A Non-parametric Approach to Non-linear Causality Testing, Economics Letters 51, 7-18.

Bickel, P. J. and M. Rosenblatt (1973), On Some Global Measures of the Deviations of Density Function Estimates, Annals of Statistics 1, 1071-1095.

Blum, J. R., J. Kiefer, and M. Rosenblatt (1961), Distribution Free Tests of Independence Based on the Sample Distribution Function, Annals of Mathematical Statistics 32, 485-498.

Brock, W., W. Dechert, J. Scheinkman, and B. LeBaron (1996), A Test for Independence Based on the Correlation Dimension, Econometric Reviews 15, 197-235.

Chen, X., O. Linton, P. M. Robinson (2001), The Estimation of Conditional Densities, STICERD Econometrics Discussion Paper, London School of Economics and Political Science.

Dawid, A. D. (1979), Conditional Independence in Statistical Theory, Journal of the Royal Statistical Society, Series B 41, 1-31.

Delgado, M. A. and W. González-Manteiga (2001), Significance Testing in Nonparametric Regression Based on the Bootstrap, Annals of Statistics 29, 1469-1507.

Fan, Y. and Q. Li (1996), Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms, Econometrica 64, 865-890.

Fan, Y. and Q. Li (1999a), Central Limit Theorem for Degenerate U-statistics of Absolutely Regular Processes with Applications to Model Specification Testing, Journal of Nonparametric Statistics 10, 245-271.

Fan, Y. and Q. Li (1999b), Root-N-consistent Estimation of Partially Linear Time Series Models, Journal of Nonparametric Statistics 11, 251-269.

Fernandes, M. (2000), Nonparametric Entropy-Based Tests of Independence between Stochastic Processes, Discussion Paper, European University Institute.

Fernandes, M. and R. G. Flores (2000), Tests for Conditional Independence, Markovian Dynamics, and Noncausality, Discussion Paper, European University Institute.

Florens, J. P. and D. Fougere (1996), Noncausality in Continuous Time, Econometrica 64, 1195-1212.
Florens, J. P. and M. Mouchart (1982), A Note on Causality, Econometrica 50, 583-591.
Gasser, T., H-G. Müller, and V. Mammitzsch (1985), Kernels for Nonparametric Curve Estimation, Journal of the Royal Statistical Society B47, 238-252.

Gourieroux. C., and C. Tenreiro (2001), Local Power Properties of Kernel Based Goodness of Fit Tests, Journal of Multivariate Analysis 78, 161-190.

Granger, C. W. J. (1980), Testing for Causality: A Personal Viewpoint, Journal of Economic Dynamics and Control 2, 1980, 329-352.

Gronau, R. (1974), Wage Comparisons : A Selectivity Bias, Journal of Political Economy 82, 1119-1144.
Hall, P. (1984), Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric Density Estimators, Journal of Multivariate Analysis 14, 1-16.

Härdle, W. and E. Mammen (1993), Comparing Nonparametric versus Parametric Regression Fits, Annals of Statistics 21, 1926-1947.

Heckman, J. J. (1974), Shadow Prices, Market Wages, and Labor Supply, Econometrica 42, 679-694.

Hiemstra, C. and J. D. Jones (1994), Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation, Journal of Finance 49, 1639-1664.

Hoeffding, W. (1948), A Nonparametric Test of Independence, Annals of Mathematical Statistics 58, 546-55\%.

Hong, Y. (2001), A Test for Volatility Spillover with Application to Exchange Rates, Journal of Econometrics 103, 183-224.

Hong, Y. and H. White (2005), Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence, Econometrica 73, 837-901.

Horowitz, J. L. (1992), A Smoothed Maximum Score Estimator for the Binary Response Model, Econometrica 60, 505-531.

Horowitz, J. L. and V. G. Spokoiny (2001), An Adaptive, Rate-Optimal Test of a Parametric MeanRegression Model Against a Nonparametric Alternative, Econometrica 69, 599-631.

Klein, R. W. and R. H. Spady (1993), A Efficient Semiparametric Estimator for Discrete Choice Models, Econometrica 61, 387-421.

Li, Q. (1999), Consistent Model Specification Tests for Time Series Econometric Models, Journal of Econometrics 92, 101-147.

Liebscher, E. (1996), Strong Convergence of Sums of α-mixing Random Variables with Applications to Density Estimation, Stochastic Process and their Applications 65, 69-80.

Linton, O. (2002), Edgeworth Approximations for Semiparametric Instrumental Variable Estimators and Test Statistics, Journal of Econometrics 106, 325-368.

Linton, O. and P. Gozalo (1997), Conditional Independence Restrictions: Testing and Estimation, Discussion Paper, Cowles Foundation for Research in Economics, Yale University.

Manski, C. F. (1975), The Maximum Score Estimation of the Stochastic Utility Model of Choice, Journal of Econometrics 3, 205-228.

Masry, E. (1996), Multivariate Local Polynomial Regression for Time Series: Uniform Strong Consistency Rates, Journal of Time Series Analysis 17, 571-599.

Nishiyama, Y. and P. M. Robinson (2000), Edgeworth Expansions for Semiparametric Averaged Derivatives, Econometrica 68, 931-980.

Paparoditis, E. and D. N. Politis (2000), The Local Bootstrap for Kernel Estimators under General Dependence Conditions, Annals of the Institute of Statistical Mathematics 52, 139-159.

Phillips, P. C. B. (1988), Conditional and Unconditional Statistical Independence, Journal of Econometrics 38, 341-348.

Pitman, E. J. G. (1979), Some Basic Theory for Statistical Inference, John Wiley \& Sons, New York.
Politis, D. N., J. P. Romano and M. Wolf (1999), Subsampling, Springer-Verlag, New York.
Robinson, P. M. (1988), Root- N-Consistent Semiparametric Regression, Econometrica 56, 931-954.

Robinson P. M. (1991), Consistent Nonparametric Entropy-Based Testing, Review of Economic Studies 58, 437-453.

Rosenbaum, P. R. (1984), Testing the Conditional Independence and Monotonicity Assumptions of Item Response Theory, Psychometrika 49, 425-435.

Rosenblatt, M. (1975), A Quadratic Measure of Deviation of Two-Dimensional Density Estimates and a Test of Independence, Annals of Statistics 3, 1-14.

Singh, R. S. (1987), MISE of Kernel Estimates of a Density and Its Derivatives, Statistics and Probability Letters 5, 153-159.

Skaug, H. J., and D. Tjostheim (1993), A Nonparametric Test of Serial Independence Based on the Empirical Distribution Function, Biometrika 80, 591-602.

Tenreiro, C. (1997), Loi Asymptotique des Erreurs Quadratiques Integrees des Estimateurs a Noyau de la Densite et de la Regression sous des Conditions de Dependance, Portugaliae Mathematica 54, 197-213.

White, H. and Y. Hong (1999), M-testing Using Finite and Infinite Dimensional Parameter Estimators, In R. Engle and H. White (eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W.J. Granger, Oxford: Oxford University Press, 326-345.

Yao, Q. and D. Tritchler (1993), An Exact Analysis of Conditional Independence in Several 2×2 Contingency Tables, Biometrics 49, 233-236.

Yoshihara, K. (1976), Limiting Behavior of U-statistics for Stationary, Absolutely Regular Processes, Z. Wahrsch. Verw. Gebiete 35, 237-252.

Yoshihara, K. (1989), Limiting Behavior of Generalized Quadratic Forms Generated by Absolutely Regular Processes, In Proceedings of the Fourth Prague Conference on Asymptotic Statistics, 539-547.

Appendix

A Some Useful Definitions, Lemmas and Theorems

Here we provide a definition, two lemmas, and one theorem that are used in the proof of the main theorems and propositions in the text.

Definition A. 1 Let $\left\{U_{t}, t \in \mathbb{Z}\right\}$ be a d-dimensional strictly stationary stochastic process, and let \mathcal{F}_{s}^{t} denote the σ-algebra generated by $\left(U_{s}, \ldots, U_{t}\right)$ for $s \leq t$. The process is called β-mixing or absolutely regular, if as $m \rightarrow \infty$,

$$
\beta_{m}^{n}=\sup _{s \in N} E\left[\sup _{A \in \mathcal{F}_{s+m}^{\infty}}\left\{\left|P\left(A \mid \mathcal{F}_{-\infty}^{s}\right)-P(A)\right|\right\}\right] \rightarrow 0
$$

For a sequence of d-dimensional strictly stationary processes $\left(U_{n t}, t \in \mathbb{Z}\right)$, denote by β_{m}^{n} the β-mixing coefficient of process $\left(W_{n t}, t \in \mathbb{Z}\right)$:

$$
\beta_{m}^{n}=E\left[\sup _{A \in \mathcal{F}_{n, m}^{\infty}}\left\{\left|P\left(A \mid \mathcal{F}_{n,-\infty}^{0}\right)-P(A)\right|\right\}\right]
$$

where $\mathcal{F}_{n, m}^{\infty}\left(\right.$ resp. $\left.\mathcal{F}_{n,-\infty}^{0}\right)$ is the σ-algebra generated by $U_{n t}, t \geq m\left(\right.$ resp. $\left.U_{n t}, t \leq 0\right)$.

Lemma A. 2 (Yoshihara, 1976) Let $\left\{U_{t}, t \geq 0\right\}$ be a d-dimensional stochastic process satisfying Assumption $A .1(i)$ in the text. Let $h\left(v_{1}, \ldots, v_{k}\right)$ be a Borel measurable function on $\mathbb{R}^{k d}$ such that for some $\delta>0$ and given $j, M \equiv \max \left\{\int_{\mathbb{R}^{k d}}\left|h\left(v_{1}, \ldots, v_{k}\right)\right|^{1+\delta} d F\left(v_{1}, \ldots, v_{k}\right), \iint_{\mathbb{R}^{k d}}\left|h\left(v_{1}, \ldots, v_{k}\right)\right|^{1+\delta} d F^{(1)}\left(v_{1}, \ldots, v_{j}\right) d F^{(2)}\left(v_{j+1}\right.\right.$, $\left.\ldots, v_{k}\right)$ exists. Then $\left|\int_{\mathbb{R}^{k d}} h\left(v_{1}, \ldots, v_{k}\right) d F\left(v_{1}, \ldots, v_{k}\right)-\iint_{\mathbb{R}^{k d}} h\left(v_{1}, \ldots, v_{k}\right) d F^{(1)}\left(v_{1}, \ldots, v_{j}\right) d F^{(2)}\left(v_{j+1}, \ldots, v_{k}\right)\right|$ $\leq 4 M^{1 /(1+\delta)} \beta_{m}^{\delta /(1+\delta)}$, where $m \equiv i_{j+1}-i_{j}, F, F^{(1)}$ and $F^{(2)}$ are distributions of random vectors $\left(U_{i_{1}}, \ldots, U_{i_{k}}\right)$, $V_{1} \equiv\left(U_{i_{1}}, \ldots, U_{i_{j}}\right)$ and $V_{2} \equiv\left(U_{i_{j+1}}, \ldots, U_{i_{k}}\right)$, respectively; and $i_{1}<i_{2}<\ldots<i_{k}$.

Lemma A. 3 (Yoshihara, 1989) Let h be defined as above; then $E\left|E\left[h\left(V_{1}, V_{2}\right) \mid V_{1}\right]-E_{V_{1}} h\left(V_{1}, V_{2}\right)\right| \leq$ $4 M^{1 /(1+\delta)} \beta_{m}^{\delta /(1+\delta)}$, where $E_{V_{1}} h\left(V_{1}, V_{2}\right) \equiv H\left(V_{1}\right)$ with $H\left(v_{1}\right) \equiv E\left[h\left(v_{1}, V_{2}\right)\right]$.

Now let $g_{n}(\cdot)$ and $h_{n}(\cdot, \cdot)$ be Borel measurable functions on \mathbb{R}^{d} and $\mathbb{R}^{d} \times \mathbb{R}^{d}$, respectively. Suppose $E\left[g_{n}\left(U_{0}\right)\right]=0, E\left[h_{n}\left(U_{0}, v\right)\right]=0$, and $h_{n}(u, v)=h_{n}(v, u)$ for all $(u, v) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$. Define $\mathcal{G}_{n} \equiv$ $n^{-1 / 2} \sum_{i=1}^{n} g_{n}\left(U_{i}\right)$, and $\mathcal{H}_{n} \equiv n^{-1} \sum_{1 \leq i<j \leq n}\left[h_{n}\left(U_{i}, U_{j}\right)-E h_{n}\left(U_{i}, U_{j}\right)\right]$. Clearly, \mathcal{G}_{n} and \mathcal{H}_{n} are degenerate U-statistics of respective orders 1 and 2 . Let $p>0$ and let $\left\{\bar{U}_{t}, t \geq 0\right\}$ be an $i . i . d$. sequence where \bar{U}_{0} is an independent copy of U_{0}. Define

$$
\begin{aligned}
& u_{n}(p) \equiv \max \left\{\max _{1 \leq i \leq n}\left\|h_{n}\left(U_{i}, U_{0}\right)\right\|_{p},\left\|h_{n}\left(U_{0}, \bar{U}_{0}\right)\right\|_{p}\right\} \\
& v_{n}(p) \equiv \max \left\{\max _{1 \leq i \leq n}\left\|G_{n 0}\left(U_{i}, U_{0}\right)\right\|_{p},\left\|G_{n 0}\left(U_{0}, \bar{U}_{0}\right)\right\|_{p}\right\} \\
& w_{n}(p) \equiv\left\|G_{n 0}\left(U_{0}, U_{0}\right)\right\|_{p} \\
& z_{n}(p) \equiv \max _{0 \leq i \leq n} \max _{1 \leq j \leq n}\left\{\left\|G_{n j}\left(U_{i}, U_{0}\right)\right\|_{p},\left\|G_{n j}\left(U_{0}, U_{i}\right)\right\|_{p},\left\|G_{n j}\left(U_{0}, \bar{U}_{0}\right)\right\|_{p}\right\}
\end{aligned}
$$

where $G_{n, i}(u, v) \equiv E\left[h_{n}\left(U_{i}, u\right) h_{n}\left(U_{0}, v\right)\right]$, and $\|\cdot\|_{p} \equiv\left\{E|\cdot|^{p}\right\}^{1 / p}$.
Theorem A. 4 (Tenreiro, 1997) Using the above notation, suppose there exist $\delta_{0}>0, \gamma_{0}<1 / 2$, and $\gamma_{1}>0$ such that $(i)\left\|g_{n}\left(U_{0}\right)\right\|_{4}=O(1) ;(i i) E\left[g_{n}\left(U_{i}\right) g_{n}\left(U_{0}\right)\right]=c_{i}+o(1), i=0,1,2, \ldots ;(i i i) u_{n}\left(4+\delta_{0}\right)=$ $O\left(n^{\gamma_{0}}\right) ;(i v) v_{n}(2)=o(1) ;(v) w_{n}\left(2+\delta_{0} / 2\right)=o\left(n^{1 / 2}\right) ;(v i) z_{n}(2) n^{\gamma_{1}}=O(1) ;(v i i) E\left[h_{n}\left(U_{0}, \bar{U}_{0}\right)\right]^{2}=$ $2 \widetilde{\sigma}_{2}^{2}+o(1)$. Then $\left(\mathcal{G}_{n}, \mathcal{H}_{n}\right)$ is asymptotically normally distributed with mean zero and covariance matrix $\left[\begin{array}{cc}\widetilde{\sigma}_{1}^{2} & 0 \\ 0 & \widetilde{\sigma}_{2}^{2}\end{array}\right]$, where $\widetilde{\sigma}_{1}^{2} \equiv c_{0}+2 \sum_{i=1}^{\infty} c_{i}$.

B Proof of Theorem 3.1

We begin by expanding the functional $\Gamma(\widehat{f}, F)$ using the functional delta method. The only difference between $\Gamma(\widehat{f}, F)$ and $\widehat{\Gamma} \equiv \Gamma(\widehat{f}, \widehat{F})$ is that the latter is an average over the empirical distribution function \widehat{F} instead of F. We will show in Lemma B. 6 that this difference is asymptotically inconsequential. To bound the remainder term in the functional expansion of $\Gamma(\widehat{f}, F)$, we define the sup norm, $\|g\| \equiv \sup _{u \in A \cap \mathbb{R}^{p}}|g(u)|$. In the sequel, the dimension p of u will be $d, d_{1}+d_{2}, d_{1}+d_{3}$ or d_{1}, depending on which subset of $w \equiv(x, y, z)$ we are referring to (in this appendix all vectors are row vectors). Define $\Omega_{i} \equiv\left\{g: \mathbb{R}^{p_{i}} \rightarrow \mathbb{R}, g\right.$ is bounded, $\int g=0$, and $\left.\|g\|<b / 2\right\}$, with $p_{i}=d, d_{1}+d_{2}, d_{1}+d_{3}$ and d_{1}, for $i=1, \ldots, 4$, respectively. Throughout this appendix, C denotes a generic constant which may vary from one place to another. The bar notation denotes an i.i.d. copy of the corresponding processes, independent of that process. For example, $\left\{\bar{W}_{t}, t \geq 0\right\}$ is an i.i.d. sequence having the same marginal distributions as $\left\{W_{t}, t \geq 0\right\}$. See Lemmas B. 4 and B. 6 for details.

One of the main ingredients in the proof is the functional expansion of Γ, summarized as follows.
Lemma B. 1 Let F be a cdf on \mathbb{R}^{d}. Let $g_{x y z}, g_{x y}, g_{x z}$ and g_{x} belong to $\Omega_{i}, i=1,2,3$ and 4, respectively. Then under Assumption $A .1(i i)$ and $H_{0}, \Gamma(\cdot, F)$ has the following expansion:

$$
\Gamma(f+g ; F)=\frac{1}{4} \int\left\{\frac{g_{x y z}}{f(x, y, z)}-\frac{g_{x y}}{f(x, y)}-\frac{g_{x z}}{f(x, z)}+\frac{g_{x}}{f(x)}\right\}^{2} a(w) d F(w)+R(g, F)
$$

where $\sup \left\{|R(g, F)| /\left(\left\|g_{x y z}\right\|^{3}+\left\|g_{x y}\right\|^{3}+\left\|g_{x z}\right\|^{3}+\left\|g_{x}\right\|^{3}\right):\left(g_{x y z}, g_{x y}, g_{x z}, g_{x}\right) \in \Omega_{1} \times \Omega_{2} \times \Omega_{3} \times \Omega_{4}\right\}<\infty$.
Proof. Define

$$
\Psi(\tau)=\int\left\{1-\sqrt{\frac{\left(f(x, y)+\tau g_{x y}\right)\left(f(x, z)+\tau g_{x z}\right)}{\left(f(x, y, z)+\tau g_{x y z}\right)\left(f(x)+\tau g_{x}\right)}}\right\}^{2} a(w) d F(w),
$$

where ($g_{x y z}, g_{x y}, g_{x z}, g_{x}$) are such that ($\left.\tau g_{x y z}, \tau g_{x y}, \tau g_{x z}, \tau g_{x}\right) \in \Omega_{1} \times \Omega_{2} \times \Omega_{3} \times \Omega_{4}$ for all $0 \leq \tau \leq 1$. From the explicit expression for $\Psi(\tau)$ and the properties of the f 's and g 's, it follows that Ψ is three times continuously differentiable in τ on $[0,1]$. Applying Taylor's formula with Lagrange remainder to Ψ, we get

$$
\Psi(\tau)=\Psi(0)+\tau \Psi^{\prime}(0)+\tau^{2} \Psi^{\prime \prime}(0) / 2+\tau^{3} \Psi^{\prime \prime \prime}\left(\tau^{*}\right) / 6,
$$

where $0 \leq \tau^{*} \leq \tau$. Note that $\Psi(0)=0$ under H_{0}. Define $\varphi_{1}(\tau, w) \equiv\left[f(x, y)+\tau g_{x y}\right]\left[f(x, z)+\tau g_{x z}\right]$, $\varphi_{2}(\tau, w) \equiv\left[f(x, y, z)+\tau g_{x y z}\right]\left[f(x)+\tau g_{x}\right]$. It is immediate that

$$
\begin{equation*}
\Psi^{\prime}(\tau)=\int\left\{1-\sqrt{\frac{\varphi_{2}(\tau, w)}{\varphi_{1}(\tau, w)}}\right\}\left\{\frac{\partial \varphi_{1}(\tau, w) / \partial \tau}{\varphi_{2}(\tau, w)}-\frac{\varphi_{1}(\tau, w) \partial \varphi_{2}(\tau, w) / \partial \tau}{\varphi_{2}(\tau, w)^{2}}\right\} a(w) d F(w) . \tag{B.1}
\end{equation*}
$$

Under the null, $\Psi^{\prime}(0)=0$. That is, the first order term vanishes in the expansion of $\Psi(\tau)$ around $\tau=0$.
Next, we have

$$
\begin{aligned}
\Psi^{\prime \prime}(\tau)= & \frac{1}{2} \int \sqrt{\frac{\varphi_{1}(\tau, w)}{\varphi_{2}(\tau, w)}}\left\{\frac{\varphi_{2}(\tau, w) \partial \varphi_{1}(\tau, w) / \partial \tau}{\varphi_{1}(\tau, w)^{2}}-\frac{\partial \varphi_{2}(\tau, w) / \partial \tau}{\varphi_{1}(\tau, w)}\right\} \\
& \times\left\{\frac{\partial \varphi_{1}(\tau, w) / \partial \tau}{\varphi_{2}(\tau, w)}-\frac{\varphi_{1}(\tau, w) \partial \varphi_{2}(\tau, w) / \partial \tau}{\varphi_{2}(\tau, w)^{2}}\right\} a(w) d F(w) \\
& +\int\left\{1-\sqrt{\left.\frac{\varphi_{2}(\tau, w)}{\varphi_{1}(\tau, w)}\right\}\left\{\frac{\partial^{2} \varphi_{1}(\tau, w) / \partial \tau^{2}}{\varphi_{2}(\tau, w)}-\frac{2 \partial \varphi_{1}(\tau, w) / \partial \tau \partial \varphi_{2}(\tau, w) / \partial \tau}{\varphi_{2}(\tau, w)^{2}}\right.}\right. \\
& \left.-\frac{\varphi_{1}(\tau, w) \partial^{2} \varphi_{2}(\tau, w) / \partial \tau^{2}}{\varphi_{2}(\tau, w)^{2}}+\frac{2 \varphi_{1}(\tau, w)\left(\partial \varphi_{2}(\tau, w) / \partial \tau\right)^{2}}{\varphi_{2}(\tau, w)^{3}}\right\} a(w) d F(w) .
\end{aligned}
$$

Note that under H_{0}, at $\tau=0$, the second term in the last expression vanishes and that $\partial \varphi_{1}(0, w) / \partial \tau=$ $g_{x y} f(x, z)+g_{x z} f(x, y), \partial \varphi_{2}(0, w) / \partial \tau=g_{x y z} f(x)+g_{x} f(x, y, z)$, so we can easily obtain that under H_{0},

$$
\Psi^{\prime \prime}(0)=\frac{1}{2} \int\left\{\frac{g_{x y z}}{f(x, y, z)}-\frac{g_{x y}}{f(x, y)}-\frac{g_{x z}}{f(x, z)}+\frac{g_{x}}{f(x)}\right\}^{2} a(w) d F(w) .
$$

Further, notice that $\partial^{2} \varphi_{1}(\tau, w) / \partial \tau^{2}=2 g_{x y} g_{x z}$ and $\partial^{2} \varphi_{2}(\tau, w) / \partial \tau^{2}=2 g_{x y z} g_{x}$, both of which are free of τ. One can characterize the remainder term by first computing $\Psi^{\prime \prime \prime}(\tau)$. The explicit formula for $\Psi^{\prime \prime \prime}(\tau)$ is lengthy. By the Cauchy-Schwartz inequality and Assumption A.1(ii), we can bound this remainder by a factor of $\left(\left\|g_{x y z}\right\|^{3}+\left\|g_{x y}\right\|^{3}+\left\|g_{x z}\right\|^{3}+\left\|g_{x}\right\|^{3}\right)$. Consequently, for $\tau=1$, we obtain that under H_{0}
$\Psi(1)=\frac{1}{4} \int\left\{\frac{g_{x y z}}{f(x, y, z)}-\frac{g_{x y}}{f(x, y)}-\frac{g_{x z}}{f(x, z)}+\frac{g_{x}}{f(x)}\right\}^{2} a(w) d F(w)+O\left(\left\|g_{x y z}\right\|^{3}+\left\|g_{x y}\right\|^{3}+\left\|g_{x z}\right\|^{3}+\left\|g_{x}\right\|^{3}\right)$, and the lemma follows.

Lemma B. 2 Under Assumptions A.1, A.2, A.3(i) and H_{0}, we have for any cdf F,

$$
\begin{aligned}
& \Gamma(\widehat{f}, F)=\frac{1}{4} \int\left\{\frac{\widehat{f}(x, y, z)}{f(x, y, z)}-\frac{\widehat{f}(x, y)}{f(x, y)}-\frac{\widehat{f}(x, z)}{f(x, z)}+\frac{\widehat{f}(x)}{f(x)}\right\}^{2} a(w) d F(w)+O_{p}\left(\|\widehat{f}(x, y, z)-f(x, y, z)\|_{\infty}^{3}\right), \\
& \text { where }\|\widehat{f}(x, y, z)-f(x, y, z)\|_{\infty} \equiv \sup _{(x, y, z) \in A}|\widehat{f}(x, y, z)-f(x, y, z)| .
\end{aligned}
$$

Proof. We apply Lemma B. 1 with $g_{x y z}=\widehat{f}(x, y, z)-f(x, y, z), g_{x y}=\widehat{f}(x, y)-f(x, y), g_{x z}=\widehat{f}(x, z)-$ $f(x, z)$ and $g_{x}=\widehat{f}(x)-f(x)$. First note that the β-mixing condition in Assumption A. 1 implies α-mixing. One can modify the proof of Theorem 4.3 in Liebscher (1996) with Assumption A. 2 in place of his condition on the kernel function K and get

$$
\begin{equation*}
\|\widehat{f}(w)-f(w)\|_{\infty}=O_{p}\left(n^{-1 / 2} h^{-d / 2}(\ln n)^{\gamma / 6}+h^{r}\right)=o_{p}(1) \tag{B.2}
\end{equation*}
$$

for some $\gamma>0$. Similar expressions hold for $\|\widehat{f}(u)-f(u)\|_{\infty}$, with $u=(x, y),(x, z)$, or x. Let $S \equiv$ $\left\{\|\widehat{f}(w)-f(w)\|_{\infty} \geq b / 2,\|\widehat{f}(x, y)-f(x, y)\|_{\infty} \geq b / 2,\|\widehat{f}(x, z)-f(x, z)\|_{\infty} \geq b / 2\right.$, and $\left.\|\widehat{f}(x)-f(x)\|_{\infty} \geq b / 2\right\}$. Then $\operatorname{Pr}[S] \rightarrow 0$ so that $\operatorname{Pr}\left[\left(g_{x y z}, g_{x y}, g_{x z}, g_{x}\right) \in \Omega_{1} \times \Omega_{2} \times \Omega_{3} \times \Omega_{4}\right] \rightarrow 1$. Lastly, notice that $\|\widehat{f}(w)-f(w)\|_{\infty}$ dominates $\|\widehat{f}(u)-f(u)\|_{\infty}$ for $u=(x, y),(x, z)$, or x. The result follows.

To facilitate the presentation, we introduce some new notation. Let

$$
I_{n} \equiv \int\left\{\frac{\widehat{f}(x, y, z)}{f(x, y, z)}-\frac{\widehat{f}(x, y)}{f(x, y)}-\frac{\widehat{f}(x, z)}{f(x, z)}+\frac{\widehat{f}(x)}{f(x)}\right\}^{2} a(w) d F(w) \equiv \int r_{n}(w)^{2} a(w) d F(w)
$$

Then $I_{n}=\int\left[r_{n}(w)-E r_{n}(w)\right]^{2} a(w) d F(w)+2 \int\left[r_{n}(w)-E r_{n}(w)\right] E r_{n}(w) a(w) d F(w)+\int\left[E r_{n}(w)\right]^{2} a(w)$ $d F(w)$, and $I_{n}-E\left[I_{n}\right]=2 \int\left[r_{n}(w)-E r_{n}(w)\right] E r_{n}(w) a(w) d F(w)+\int\left\{\left[r_{n}(w)-E r_{n}(w)\right]^{2}-E\left[r_{n}(w)-\right.\right.$ $\left.\left.E r_{n}(w)\right]^{2}\right\} a(w) d F(w)$. Throughout the rest of this appendix, we let $w \equiv(x, y, z) \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}} \times \mathbb{R}^{d_{3}}$, $u \equiv\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}} \times \mathbb{R}^{d_{3}}$, and $v \equiv(\widetilde{x}, \widetilde{y}, \widetilde{z}) \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}} \times \mathbb{R}^{d_{3}}$. Define

$$
R(w, u) \equiv \frac{K_{h}(w-u)}{f(w)}-\frac{K_{h}\left(x-x^{\prime}\right) K_{h}\left(y-y^{\prime}\right)}{f(x, y)}-\frac{K_{h}\left(x-x^{\prime}\right) K_{h}\left(z-z^{\prime}\right)}{f(x, z)}+\frac{K_{h}\left(x-x^{\prime}\right)}{f(x)} \equiv \sum_{i=1}^{4} R_{i}(w, u)
$$

$\widetilde{R}(w, u) \equiv \sum_{i=1}^{4}\left[R_{i}(w, u)-E R_{i}(w, W)\right] \equiv \sum_{i=1}^{4} \widetilde{R}_{i}(w, u), G_{n}(u) \equiv \int \widetilde{R}(w, u) h^{-r} E r_{n}(w) a(w) d F(w)$, and $H_{n}(u, v) \equiv h^{d / 2} \int \widetilde{R}(w, u) \widetilde{R}(w, v) a(w) d F(w)$. Note that we have suppressed the dependence of $R(\cdot, \cdot)$, $R_{i}(\cdot, \cdot), \widetilde{R}(\cdot, \cdot)$, and $\widetilde{R}_{i}(\cdot, \cdot)$ on n. Then we can write

$$
\begin{align*}
I_{n}-E\left[I_{n}\right]= & 2 n^{-1 / 2} h^{r}\left\{n^{-1 / 2} \sum_{i=1}^{n} G_{n}\left(W_{i}\right)\right\}+2 n^{-1} h^{-d / 2}\left\{n^{-1} \sum_{1 \leq i<j \leq n}\left[H_{n}\left(W_{i}, W_{j}\right)-E H_{n}\left(W_{i}, W_{j}\right)\right]\right\} \\
& +n^{-1} h^{-d / 2}\left\{n^{-1} \sum_{i=1}^{n}\left[H_{n}\left(W_{i}, W_{i}\right)-E H_{n}\left(W_{i}, W_{i}\right)\right]\right\} \\
\equiv & 2 n^{-1 / 2} h^{r} U_{n, 1}+2 n^{-1} h^{-d / 2} U_{n, 2}+n^{-1} h^{-d / 2} U_{n, 3} \tag{B.3}
\end{align*}
$$

It is easy to verify that $U_{n, 3}=O_{p}\left(n^{-1 / 2} h^{-d / 2}\right)=o_{p}(1)$ under Assumptions A.1-A.3. We shall use Theorem A. 4 to study the asymptotic normality of $U_{n, 1}$ and $U_{n, 2}$ with $G_{n}(\cdot)$ and $H_{n}(\cdot$,$) in place of g_{n}(\cdot)$ and $h_{n}(\cdot$,$) in the theorem, respectively. Moreover, the term involving U_{n, 1}$ is asymptotically negligible given our restrictions on bandwidth and kernel (Lemma B.3). To get the asymptotic distribution of our test statistic, we need to calculate both asymptotic variance (Lemma B.4) and bias correction terms (Lemma B.5).

Lemma B. 3 Let $h \rightarrow 0$. Under Assumptions A.1-A.2 and $H_{0}, U_{n, 1} \xrightarrow{d} N\left(0, \widetilde{\sigma}^{2}\right)$, where $\widetilde{\sigma}^{2} \equiv \operatorname{Var}\left(\gamma\left(W_{0}\right)\right)+$ $2 \sum_{t=1}^{\infty} \operatorname{Cov}\left(\gamma\left(W_{t}\right), \gamma\left(W_{0}\right)\right)$ and $\gamma(\cdot)$ is defined below in Equation (B.4).

Proof. First, $h^{-r} E r_{n}(w)=h^{-r} E[R(w, W)]=\triangle_{n}^{r} f(w) / f(w)-\triangle_{n}^{r} f(x, y) / f(x, y)-\triangle_{n}^{r} f(x, z) / f(x, z)+$ $\triangle_{n}^{r} f(x) / f(x) \equiv \widetilde{\gamma}_{n}(w)$, where

$$
\triangle_{n}^{r} f(w) \equiv \frac{(-1)^{r}}{(r-1)!} \sum_{i_{1}, \ldots, i_{r}=1}^{d} \int_{\mathbb{R}^{d}} u_{i_{1}} \ldots u_{i_{r}} K(u) \int_{0}^{1} \frac{\partial^{r} f(w-h u t)}{\partial w_{i_{1}} \ldots \partial w_{i_{r}}}(1-t)^{r-1} d t d u
$$

and $\triangle_{n}^{r} f(x, y), \triangle_{n}^{r} f(x, z)$, and $\triangle_{n}^{r} f(x)$ are defined analogously. Since $h \rightarrow 0$, by the dominated convergence theorem and Assumptions A.2, $\lim _{n \rightarrow \infty} \widetilde{\gamma}_{n}(w)=\triangle^{r} f(w) / f(w)-\triangle^{r} f(x, y) / f(x, y)-\triangle^{r} f(x, z) / f(x, z)+$ $\triangle^{r} f(x) / f(x) \equiv \widetilde{\gamma}(w)$, where $\triangle^{r} f(w) \equiv\left((-1)^{r} / r!\right) C_{0} \sum_{i=1}^{d} \partial^{r} f(w) / \partial w_{i}^{r}, C_{0}$ is defined in Assumption A.2, and $\triangle^{r} f(x, y), \triangle^{r} f(x, z)$, and $\triangle^{r} f(x)$ are defined analogously.

Notice that $E G_{n}(W)=0$ by construction and $\sup _{n \in \mathbb{N}} \sup _{w \in A}\left|G_{n}(w)\right|<\infty$ under Assumptions A.1(ii) and A.2. Now $\lim _{n \rightarrow \infty} E\left[G_{n}\left(W_{i}\right) G_{n}\left(W_{0}\right)\right]=\int \widetilde{\gamma}\left(w_{i}\right) a\left(w_{i}\right) \widetilde{\gamma}\left(w_{0}\right) a\left(w_{0}\right)\left\{\left(1+f\left(y_{i}, z_{i} \mid x_{i}\right)-f\left(z_{i} \mid x_{i}, y_{i}\right)-f\left(y_{i} \mid x_{i}, z_{i}\right)\right\}\{(1+\right.$ $\left.f\left(y_{0}, z_{0} \mid x_{0}\right)-f\left(z_{0} \mid x_{0}, y_{0}\right)-f\left(y_{0} \mid x_{0}, z_{0}\right)\right\} f_{i}\left(w_{0}, w_{i}\right) d w_{i} d w_{0}-\left\{\int \widetilde{\gamma}(w) a(w)[(1+f(y, z \mid x)-f(z \mid x, y)-f(y \mid x, z)]\right.$ $f(w) d w\}^{2}=\operatorname{Cov}\left(\gamma\left(W_{i}\right), \gamma\left(W_{0}\right)\right)$, where

$$
\begin{equation*}
\gamma(w) \equiv a(w) \widetilde{\gamma}(w)[1+f(y, z \mid x)-f(y \mid x, z)-f(z \mid x, y)] . \tag{B.4}
\end{equation*}
$$

Consequently, Conditions (i)-(ii) in Theorem A. 4 are satisfied and thus $U_{n, 1} \xrightarrow{d} N\left(0, \widetilde{\sigma}^{2}\right)$.
Lemma B. 4 Under Assumptions A.1, A.2 and A.3(i) and $H_{0}, U_{n, 2} \xrightarrow{d} N\left(0, \sigma^{2} / 2\right)$, where σ^{2} is as defined in the text.

Proof. Note that $U_{n, 2}=n^{-1} \sum_{1 \leq i<j \leq n}\left[H_{n}\left(W_{i}, W_{j}\right)-E H_{n}\left(W_{i}, W_{j}\right)\right]$. By construction, $H_{n}(u, v)=$ $H_{n}(v, u)$, and $E H_{n}\left(W_{0}, v\right)=0$. We verify conditions (iii)-(vii) in Theorem A.4. First, $H_{n}\left(W_{i}, W_{0}\right)=$ $h^{d / 2} \int \widetilde{R}\left(w, W_{i}\right) \times \widetilde{R}\left(w, W_{0}\right) a(w) d F(w)=\sum_{j=1}^{4} \sum_{k=1}^{4} h^{d / 2} \int \widetilde{R}_{j}\left(w, W_{i}\right) \widetilde{R}_{k}\left(w, W_{0}\right) a(w) d F(w)$, so for $p \geq 1$, $\left\|H_{n}\left(W_{i}, W_{0}\right)\right\|_{p} \leq \sum_{j=1}^{4} \sum_{k=1}^{4}\left\|h^{d / 2} \int \widetilde{R}_{j}\left(w, W_{i}\right) \widetilde{R}_{k}\left(w, W_{0}\right) a(w) d F(w)\right\|_{p} \leq C \| h^{d / 2} \int \widetilde{R}_{1}\left(w, W_{i}\right) \widetilde{R}_{1}\left(w, W_{0}\right)$ $a(w) d F(w)\left\|_{p} \equiv C\right\| H_{n 1}\left(W_{i}, W_{0}\right) \|_{p}$, where the first inequality is due to the triangle inequality for the L_{p} norm and the second follows from the fact that $\left\|H_{n 1}\left(W_{i}, W_{0}\right)\right\|_{p}$ is the dominant term in the double summation. Notice that $H_{n 1}(u, v)=h^{d / 2} \int_{A} K_{h}(w-u) K_{h}(w-v) a(w) / f(w) d w+O\left(h^{d / 2}\right)$, and by Assumptions A.1(ii)-(iii)

$$
\begin{aligned}
& E\left|\int_{A} K_{h}\left(w-W_{i}\right) K_{h}\left(w-W_{0}\right) \frac{a(w)}{f(w)} d w\right|^{p} \\
= & h^{-d p} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left|\int_{A} K(w) K\left(w+\frac{u-v}{h}\right) \frac{a(u+h w)}{f(u+h w)} d w\right|^{p} f_{i}(u, v) d u d v \\
\leq & h^{-d(p-1)} \sup _{w \in A}\left(\frac{a(w)}{b}\right)^{p} \sup _{i \in \mathcal{N}} \sup _{u, v \in A} f_{i}(u, v) \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|K(u) K(u+v)|^{p} d u d v,
\end{aligned}
$$

so we have $\left\|H_{n}\left(W_{i}, W_{0}\right)\right\|_{p} \leq C h^{d / 2} h^{-d(p-1) / p}=C\left(h^{d}\right)^{(1 / p-1 / 2)}$.
Letting \bar{W}_{0} be an independent copy of W_{0}, one can show by similar argument that $\left\|H_{n}\left(W_{0}, \bar{W}_{0}\right)\right\|_{p} \leq$ $C\left(h^{d}\right)^{(1 / p-1 / 2)}$. Consequently, $u_{n}(p) \leq C\left(h^{d}\right)^{(1 / p-1 / 2)}$ for some $C>0$. Now we show $v_{n}(p) \leq C\left(h^{d}\right)^{1 / p}$. Note that $G_{n 0}(u, v) \equiv E\left[H_{n}\left(W_{0}, u\right) H_{n}\left(W_{0}, v\right)\right]=G_{n 0,1}(u, v)(1+o(1))$, where $G_{n 0,1}(u, v)=h^{d} E\left\{\iint \widetilde{R}_{1}(w\right.$, $\left.\left.W_{0}\right) \widetilde{R}_{1}(w, u) \widetilde{R}_{1}\left(w^{\prime}, W_{0}\right) \widetilde{R}_{1}\left(w^{\prime}, v\right) a(w) a\left(w^{\prime}\right) d F(w) d F\left(w^{\prime}\right)\right\} \leq C \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(w) K\left(w+w^{\prime}\right) K(\widetilde{w}) K\left(\widetilde{w}+w^{\prime}+\right.$ $(u-v) / h) d w d w^{\prime} d \widetilde{w}+O\left(h^{d}\right)$, so $\left\|G_{n 0,1}\left(W_{i}, W_{0}\right)\right\|_{p} \leq C\left(h^{d / p}+h^{d}\right)$, and $\left\|G_{n 0}\left(W_{i}, W_{0}\right)\right\|_{p} \leq C h^{d / p}$. Similarly, one can show $\left\|G_{n 0}\left(W_{0}, \bar{W}_{0}\right)\right\|_{p} \leq C h^{d / p}$, and thus $v_{n}(p) \leq C\left(h^{d}\right)^{1 / p}$.

By the same argument, we have $w_{n}(p) \equiv\left\|G_{n 0}\left(W_{0}, W_{0}\right)\right\|_{p} \leq C$ and $z_{n}(p) \leq C h^{d}$. For some fixed $\delta_{0}>0$, Conditions (iv) and (v) in Theorem A. 4 are satisfied by Assumption A.3(i). By Assumption A.3(i), $n^{\gamma_{1}} h^{d}<\infty$ for some $\gamma_{1} \in(0,1)$ so Condition (vi) in Theorem A. 4 is satisfied. Now take $\gamma_{0}=(2+$ $\left.\delta_{0}\right) /\left(8+2 \delta_{0}\right) \in(0,1 / 2)$; then Condition (iii) in Theorem A. 4 is satisfied again by Assumption A.3(i). Finally, $E\left[H_{n}\left(W_{0}, \bar{W}_{0}\right)^{2}\right]=\int_{A} a(w)^{2} d w \int_{\mathbb{R}^{d}}\left[\int_{\mathbb{R}^{d}} K(u+v) K(u) d u\right]^{2} d v+o(1)=\sigma^{2}+o(1)$. It follows that $U_{n, 2} \xrightarrow{d} N\left(0, \sigma^{2} / 2\right)$.

Lemma B. 5 Under Assumptions A.1-A. 3 and H_{0}, if $d \leq 7$ and $d_{1}-4<d_{3}-d_{2}<4-d_{1}$, then

$$
n h^{d / 2} E I_{n}=h^{-d / 2} B_{1}+h^{-d / 2+2} B_{2}-h^{\left(d_{2}-d_{1}-d_{3}\right) / 2} B_{3}-h^{\left(d_{3}-d_{1}-d_{2}\right) / 2} B_{4}+h^{\left(d_{2}+d_{3}-d_{1}\right) / 2} B_{5}+o(1)
$$

Proof. $E I_{n}=\int_{A}\left[E r_{n}(w)\right]^{2} a(w) d F(w)+E \int_{A}\left[r_{n}(w)-E r_{n}(w)\right]^{2} a(w) d F(w) \equiv A_{n, 1}+A_{n, 2}$. From the proof of Lemma B.3, we obtain

$$
\begin{equation*}
n h^{d / 2} A_{n, 1}=n h^{d / 2+2 r} \int_{A} \widetilde{\gamma}(w)^{2} a(w) d F(w)+o\left(n h^{d / 2+2 r}\right)=o(1) \tag{B.5}
\end{equation*}
$$

where the last equality follows from Assumptions A.1(ii) and A.3(ii). Now write

$$
\begin{aligned}
A_{n, 2} & =n^{-2} \sum_{t=1}^{n} E\left\{\int_{A} \widetilde{R}\left(w, W_{t}\right)^{2} a(w) d F(w)\right\}+2 n^{-2} \sum_{1 \leq i<j \leq n} E\left\{\int_{A} \widetilde{R}\left(w, W_{i}\right) \widetilde{R}\left(w, W_{j}\right) a(w) d F(w)\right\} \\
& =n^{-1} h^{-d / 2}\left\{E H_{n}\left(W_{0}, W_{0}\right)+2 n^{-1} \sum_{1 \leq i<j \leq n} E H_{n}\left(W_{i}, W_{j}\right)\right\}
\end{aligned}
$$

We want to show

$$
\begin{align*}
E H_{n}\left(W_{0}, W_{0}\right)= & h^{-d / 2} B_{1}+h^{-d / 2+2} B_{2}-h^{\left(d_{2}-d_{1}-d_{3}\right) / 2} B_{3}-h^{\left(d_{3}-d_{1}-d_{2}\right) / 2} B_{4}+h^{\left(d_{2}+d_{3}-d_{1}\right) / 2} B_{5} \\
& +O\left(h^{d / 2}+h^{-d / 2+4}+h^{\left(d_{3}-d_{1}-d_{2}+4\right) / 2}+h^{\left(d_{2}-d_{1}-d_{3}+4\right) / 2}+h^{\left(d_{2}+d_{3}-d_{1}+4\right) / 2}\right) \tag{B.6}
\end{align*}
$$

and

$$
\begin{equation*}
D_{n} \equiv 2 n^{-1} \sum_{1 \leq i<j \leq n} E H_{n}\left(W_{i}, W_{j}\right)=o_{p}(1) \tag{B.7}
\end{equation*}
$$

Now $E H_{n}\left(W_{0}, W_{0}\right)=E\left[h^{d / 2} \int \widetilde{R}\left(w, W_{0}\right) \widetilde{R}\left(w, W_{0}\right) a(w) d F(w)\right]=\sum_{i, j=1}^{4} h^{d / 2} E\left\{\int R_{i}\left(w, W_{0}\right) R_{j}\left(w, W_{0}\right)\right.$ $a(w) d F(w)\}+O\left(h^{d / 2}\right) \equiv \sum_{i=1}^{10} B_{n, i}+O\left(h^{d / 2}\right)$, where $B_{n, i}=h^{d / 2} E \int R_{i}\left(w, W_{0}\right)^{2} a(w) d F(w)$ for $1 \leq i \leq 4$, $B_{n, i}=h^{d / 2} E \int 2 R_{1}\left(w, W_{0}\right) R_{i-3}\left(w, W_{0}\right) a(w) d F(w)$ for $5 \leq i \leq 7, B_{n, i}=h^{d / 2} E \int 2 R_{2}\left(w, W_{0}\right) R_{i-5}\left(w, W_{0}\right)$ $a(w) d F(w)$ for $8 \leq i \leq 9$, and $B_{n, 10}=h^{d / 2} E \int 2 R_{3}\left(w, W_{0}\right) R_{4}\left(w, W_{0}\right) a(w) d F(w)$. We can expand each term to the order of negligible asymptotic effects to obtain (B.6). For example,

$$
B_{n, 1}=h^{-d / 2} \int_{\mathbb{R}^{d}} K(u)^{2} d u \int_{A} a(w) d w+h^{-d / 2+2} \int_{\mathbb{R}^{d}} K(u)^{2} u_{1}^{2} d u \sum_{i=1}^{d} \int_{A} \frac{1}{2} \frac{\partial^{2} f(w)}{\partial w_{i}^{2}} \frac{a(w)}{f(w)} d w+O\left(h^{-d / 2+4}\right)
$$

To show $D_{n}=o_{p}(1)$, let $m=[L \log n]$ (the integer part of $L \log n$), where L is a large positive constant so that $n^{4} \beta_{m}^{\delta /(1+\delta)}=o(1)$ for some $\delta>0$ by Assumption A.1(i). ${ }^{9}$ We consider two different cases for $D_{n}:(a) j-i>m$ and $(b) 0<j-i \leq m$. We use $D_{n, a}$ and $D_{n, b}$ to denote these two cases. For case (a), we use Lemma A. 2 and the bound $u_{n}(p) \leq C\left(h^{d}\right)^{1 / p-1 / 2}$ with $p=1+\delta$ (see the proof of Lemma B.4) to obtain $D_{n, a}=n^{-1} \sum_{j-i>m} E H_{n}\left(W_{i}, W_{j}\right) \leq C n^{-1} n^{2}\left(h^{d}\right)^{1 /(1+\delta)-1 / 2} \beta_{m}^{\delta /(1+\delta)}=o\left(n h^{-d / 2} \beta_{m}^{\delta /(1+\delta)}\right)=o(1)$. For case (b), use the bound $u_{n}(1) \leq C h^{d / 2}$ to obtain $D_{n, b}=n^{-1} \sum_{j-i \leq m} E H_{n}\left(W_{i}, W_{j}\right) \leq C n^{-1} n m h^{d / 2}$ $=O\left(m h^{d / 2}\right)=o(1)$. Consequently, (B.7) holds.

Last, given $h=o(1)$ and the restrictions on $d_{i}, i=1,2,3$, it is easy to verify

$$
\begin{equation*}
O\left(h^{d / 2}+h^{-d / 2+4}+h^{\left(d_{3}-d_{1}-d_{2}+4\right) / 2}+h^{\left(d_{2}-d_{1}-d_{3}+4\right) / 2}+h^{\left(d_{2}+d_{3}-d_{1}+4\right) / 2}\right)=o(1), \tag{B.8}
\end{equation*}
$$

where, for example, $h^{\left(d_{2}+d_{3}-d_{1}+4\right) / 2}=o(1)$ because $d \leq 7$ implies $d_{1} \leq 5$. Combining (B.5), (B.6), (B.7) and (B.8), the conclusion follows.

Lemma B. 6 Let $\widetilde{\Delta}_{n}=\Gamma(\widehat{f}, \widehat{F})-\Gamma(\widehat{f}, F)$. Then under Assumptions A.1-A.3 and $H_{0}, n h^{d / 2} \widetilde{\Delta}_{n}=o_{p}(1)$.
Proof. By the same argument used to obtain the expansion of $\Gamma(\widehat{f}, F)$, we obtain that under H_{0},

$$
\Gamma(\widehat{f}, \widehat{F})=\frac{1}{4} \int\left\{\frac{\widehat{f}(x, y, z)}{f(x, y, z)}-\frac{\widehat{f}(x, y)}{f(x, y)}-\frac{\widehat{f}(x, z)}{f(x, z)}+\frac{\widehat{f}(x)}{f(x)}\right\}^{2} a(w) d \widehat{F}(w)+O_{p}\left(\|\widehat{f}(x, y, z)-f(x, y, z)\|_{\infty}^{3}\right)
$$

[^7]It thus suffices to show that

$$
\Delta_{n} \equiv \int\left\{\frac{\widehat{f}(x, y, z)}{f(x, y, z)}-\frac{\widehat{f}(x, y)}{f(x, y)}-\frac{\widehat{f}(x, z)}{f(x, z)}+\frac{\widehat{f}(x)}{f(x)}\right\}^{2} a(w) d[\widehat{F}(w)-F(w)]=o_{p}\left(n^{-1} h^{-d / 2}\right)
$$

Write $\Delta_{n}=\int_{A} r_{n}(w)^{2} a(w) d[\widehat{F}(w)-F(w)]=n^{-3} \sum_{j, k, l=1}^{n}\left\{R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right)-\int R\left(w, W_{j}\right) R(w\right.$, $\left.\left.W_{k}\right) a(w) d F(w)\right\}=\sum_{i=1}^{4} \Delta_{n, i}$, where $\Delta_{n, 1} \equiv n^{-3} \sum_{l \neq j, k}^{n}\left\{R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right)-\int R\left(w, W_{j}\right) R\left(w, W_{k}\right)\right.$ $a(w) d F(w)\}$ is the summation of the centered terms with $l \neq j, l \neq k$ and $j \neq k, \Delta_{n, 2} \equiv 2 n^{-3} \sum_{j \neq k}^{n} R\left(W_{j}\right.$, $\left.W_{j}\right) R\left(W_{j}, W_{k}\right) a\left(W_{j}\right)$ is the summation of the terms with $l=j \neq k, \Delta_{n, 3} \equiv n^{-3} \sum_{j=1}^{n} R\left(W_{j}, W_{j}\right)^{2} a\left(W_{j}\right)$ is the summation of the terms with $l=j=k$, and $\Delta_{n, 4} \equiv-n^{-3} \sum_{j, k=1}^{n} \int R\left(w, W_{j}\right) R\left(w, W_{k}\right) a(w) d F(w)$ is the summation of the centering terms for $\Delta_{n, 2}$ and $\Delta_{n, 3}$.

Dispensing with the simpler terms first, we have by Assumption A.3(i), (B.3), the remarks following (B.3), and Lemmas B.3-B.4,

$$
\begin{align*}
-\Delta_{n, 4} & =n^{-1} I_{n}=n^{-1}\left(I_{n}-E I_{n}\right)+n^{-1} E I_{n}=n^{-2} h^{-d / 2}\left\{n h^{d / 2}\left(I_{n}-E I_{n}\right)\right\}+n^{-1}\left(h^{2 r}+n^{-1} h^{-d}\right) \\
& =O_{p}\left(n^{-2} h^{-d / 2}\right)+O\left(n^{-1} h^{-d / 2} h^{d / 2+2 r}\right)+O\left(n^{-2} h^{-d}\right)=o_{p}\left(n^{-1} h^{-d / 2}\right) \tag{B.9}
\end{align*}
$$

and $E\left|\Delta_{n, 3}\right|=n^{-3} \sum_{j=1}^{n} E\left[R\left(W_{j}, W_{j}\right)^{2} a\left(W_{j}\right)\right]=O\left(n^{-2} h^{-2 d}\right)=o\left(n^{-1} h^{-d / 2}\right)$. Consequently, by the Markov inequality,

$$
\begin{equation*}
\Delta_{n, 3}=o_{p}\left(n^{-1} h^{-d / 2}\right) . \tag{B.10}
\end{equation*}
$$

It is difficult to show that the other two terms are small. Our strategy is to use Lemmas A.2-A.3 repeatedly and show these terms are asymptotically negligible in that $\Delta_{n, i}=o_{p}\left(n^{-1} h^{-d / 2}\right), i=1$ and 2 . For $j \neq k$, we can show that (recall the bar notation previously defined)

$$
\begin{equation*}
E\left[R\left(W_{j}, W_{j}\right) R\left(W_{j}, W_{k}\right) a\left(W_{j}\right)\right]=O\left(h^{-d}\right) \tag{B.11}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left[R\left(\bar{W}_{j}, \bar{W}_{j}\right) R\left(\bar{W}_{j}, \bar{W}_{k}\right) a\left(\bar{W}_{j}\right)\right]=O\left(h^{r-d}\right) \tag{B.12}
\end{equation*}
$$

To bound $D_{n, 1} \equiv E\left(\Delta_{n, 2}\right)=2 n^{-3} \sum_{j \neq k}^{n} E\left[R\left(W_{j}, W_{j}\right) R\left(W_{j}, W_{k}\right) a\left(W_{j}\right)\right]$, we consider two different cases for $D_{n, 1}:(a)|j-k|>m$ and $(b)|j-k| \leq m$. We use $D_{n, 1 a}$ and $D_{n, 1 b}$ to denote these two cases. By Lemma A. 2 and (B.12), $D_{n, 1 a}=2 n^{-3} \sum_{|j-k|>m} E\left[R\left(W_{j}, W_{j}\right) R\left(W_{j}, W_{k}\right) a\left(W_{j}\right)\right] \leq C\left\{n^{-1} h^{r-d}+\right.$ $\left.n^{-3} n^{2}\left(h^{-d}\right)^{(1+2 \delta) /(1+\delta)} \beta_{m}^{\delta /(1+\delta)}\right\}=O\left(n^{-1} h^{-d / 2} h^{r-d / 2}\right)+o\left(n^{-1} h^{-d} \beta_{m}^{\delta /(1+\delta)}\right)=o\left(n^{-1} h^{-d / 2}\right)$. By (B.11), $D_{n, 1 b}=2 n^{-3} \sum_{|j-k| \leq m} E\left[R\left(W_{j}, W_{j}\right) R\left(W_{j}, W_{k}\right) a\left(W_{j}\right)\right] \leq C n^{-3} n m h^{-d}=O\left(n^{-2} m h^{-d}\right)=o\left(n^{-1} h^{-d / 2}\right)$. So $D_{n, 1}=o\left(n^{-1} h^{-d / 2}\right)$.

Let $D_{n, 2} \equiv E\left(\Delta_{n, 2}\right)^{2}=4 n^{-6} \sum_{t_{1} \neq t_{2}} \sum_{t_{3} \neq t_{4}} E\left\{R\left(W_{t_{1}}, W_{t_{1}}\right) R\left(W_{t_{1}}, W_{t_{2}}\right) a\left(W_{t_{1}}\right) R\left(W_{t_{3}}, W_{t_{3}}\right) R\left(W_{t_{3}}, W_{t_{4}}\right)\right.$ $\left.a\left(W_{t_{3}}\right)\right\}$. We consider two cases: (a) for all $i \in\{1,2,3,4\},\left|t_{i}-t_{j}\right|>m$ for all $j \neq i$; and (b) all the other remaining cases. We will use $D_{n, 2 s}$ to denote these cases $(s=a, b)$. Observe that by Lemma A. 2 and (B.11), $D_{n, 2 a} \leq\left(D_{n, 1 a}\right)^{2}+C\left(n^{-2}\left(h^{-d}\right)^{(2+4 \delta) /(1+\delta)} \beta_{m}^{\delta /(1+\delta)}\right)=o\left(n^{-2} h^{-d}\right)$. For all the other remaining cases, there exists at least one $i \in\{1,2,3,4\}$, such that $\left|t_{i}-t_{j}\right| \leq m$ for some $j \neq i$. The number of such terms is of the or$\operatorname{der} O\left(n^{3} m\right)$. For $t_{1} \neq t_{2}$ and $t_{3} \neq t_{4}$, one can bound $E \mid R\left(W_{t_{1}}, W_{t_{1}}\right) R\left(W_{t_{1}}, W_{t_{2}}\right) a\left(W_{t_{1}}\right) R\left(W_{t_{3}}, W_{t_{3}}\right) R\left(W_{t_{3}}\right.$, $\left.W_{t_{4}}\right) a\left(W_{t_{3}}\right) \mid$ by $C h^{-2 d}$ if $\left\{t_{1}, t_{2}\right\} \cap\left\{t_{3}, t_{4}\right\} \neq\left\{t_{1}, t_{2}\right\}$ and by $C h^{-3 d}$ otherwise. Consequently, $D_{n, 2 b} \leq$ $C\left(n^{-6} n^{3} m h^{-2 d}+n^{-6} n^{2} h^{-3 d}\right)=o\left(n^{-2} h^{-d}\right)$. So $E\left(\Delta_{n, 2}\right)^{2}=o\left(n^{-2} h^{-d}\right)$, and by the Chebyshev inequality, we have

$$
\begin{equation*}
\Delta_{n, 2}=o_{p}\left(n^{-1} h^{-d / 2}\right) \tag{B.13}
\end{equation*}
$$

Now, we want to show

$$
\begin{equation*}
\Delta_{n, 1}=o_{p}\left(n^{-1} h^{-d / 2}\right) \tag{B.14}
\end{equation*}
$$

Write $\left.\Delta_{n, 1}=n^{-3} \sum_{l \neq j, k}^{n}\left\{R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right)-E\left[R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right) \mid W_{j}, W_{k}\right)\right]\right\}+n^{-3} \sum_{l \neq j, k}^{n}$ $\left.\left\{E\left[R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right) \mid W_{j}, W_{k}\right)\right]-\int R\left(w, W_{j}\right) R\left(w, W_{k}\right) a(w) d F(w)\right\} \equiv \Delta_{n, 1,1}+\Delta_{n, 1,2}$. By Lemma A.3,

$$
\begin{aligned}
E\left|\Delta_{n, 1,2}\right| & \left.\leq n^{-3} \sum_{l \neq j, k}^{n} E \mid E\left[R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right) \mid W_{j}, W_{k}\right)\right]-\int R\left(w, W_{j}\right) R\left(w, W_{k}\right) a(w) d F(w) \mid \\
& \leq C\left\{\left[\left(h^{-d}\right)^{2 \delta /(1+\delta)}+n^{-1}\left(h^{-d}\right)^{(1+2 \delta) /(1+\delta)}\right] \beta_{m}^{\delta /(1+\delta)}+\left(n^{-1} m+n^{-2} m h^{-d}\right)\right\}=o\left(n^{-1} h^{-d / 2}\right)
\end{aligned}
$$

and by the Markov inequality

$$
\begin{equation*}
\Delta_{n, 1,2}=o_{p}\left(n^{-1} h^{-d / 2}\right) \tag{B.15}
\end{equation*}
$$

Now let $\left.S_{j, k, l} \equiv R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right)-E\left[R\left(W_{l}, W_{j}\right) R\left(W_{l}, W_{k}\right) a\left(W_{l}\right) \mid W_{j}, W_{k}\right)\right] ;$ then $\Delta_{n, 1,1}=$ $n^{-3} \sum_{l \neq j, k}^{n} S_{j, k, l}$ with $E\left(\Delta_{n, 1,1}\right)=0$ because $E\left(S_{j, k, l}\right)=0$ for all $l \neq j$ and $l \neq k$. Denote

$$
D_{n, 3} \equiv E\left(\Delta_{n, 1,1}\right)^{2}=n^{-6} \sum_{t_{1} \neq t_{3}, t_{2} \neq t_{3}, t_{3}} \sum_{t_{4} \neq t_{6}, t_{5} \neq t_{6}, t_{6}} E\left\{S_{t_{1}, t_{2}, t_{3}} S_{t_{4}, t_{5}, t_{6}}\right\}
$$

We consider four different cases: (a) for all $i^{\prime} s,\left|t_{i}-t_{j}\right|>m$ for all $j \neq i$; b) for exactly four different $i^{\prime} s,\left|t_{i}-t_{j}\right|>m$ for all $j \neq i$; (c) for exactly three different $i^{\prime} s,\left|t_{i}-t_{j}\right|>m$ for all $j \neq i$; (d) all the other remaining cases. Using $D_{n, 3 s}$ to denote these cases $(s=a, b, c, d)$, by Lemma A.2, one can show that $\left|D_{n, 3 s}\right|=o\left(n^{-2} h^{-d}\right)$ for $s=a, b, c, d$. In sum, $D_{n, 3}=o\left(n^{-2} h^{-d}\right)$ and thus by the Chebyshev inequality

$$
\begin{equation*}
\Delta_{n, 1,1}=o_{p}\left(n^{-1} h^{-d / 2}\right) \tag{B.16}
\end{equation*}
$$

Combining (B.15) and (B.16), we have (B.14). The conclusion follows.
Lemma B. 7 Under Assumptions A.1-A.3, $n h^{d / 2}\|\widehat{f}(x, y, z)-f(x, y, z)\|_{\infty}^{3}=o_{p}(1)$.
Proof. By (B.2) and Assumption A.3, $n h^{d / 2}\|\widehat{f}(x, y, z)-f(x, y, z)\|_{\infty}^{3}=n h^{d / 2} O_{p}\left(n^{-3 / 2} h^{-3 d / 2}(\ln n)^{\gamma / 2}+\right.$ $\left.h^{3 r}\right)=O_{p}\left(n^{-1 / 2} h^{-d}(\ln n)^{\gamma / 2}+n h^{d / 2+3 r}\right)=o_{p}(1)$.

Putting Lemmas B.2-B. 7 together, we have proved Theorem 3.1.

C Proof of Theorem 4.1

Let $\widehat{f}^{*}(x), \widehat{f}^{*}(x, y), \widehat{f}^{*}(x, z)$, and $\widehat{f}^{*}(x, y, z)$ be defined as $\widehat{f}(x), \widehat{f}(x, y), \widehat{f}(x, z)$, and $\widehat{f}(x, y, z)$ with \mathcal{W}^{*} replacing \mathcal{W}. Let $\tilde{f}(w) \equiv \widetilde{f}(x, y, z)$ denote the pdf of $W_{t}^{*}=\left(X_{t}^{* \prime}, Y_{t}^{* \prime}, Z_{t}^{* \prime}\right)^{\prime}$, i.e., $\widetilde{f}(x, y, z) \equiv$ $\widetilde{f}(y \mid x) \widetilde{f}(z \mid x) \widetilde{f}(x)$; and denote the corresponding cdf as $\widetilde{F}(w)$. Let $\widehat{F}^{*}(w)$ denote the empirical distribution of W_{t}^{*}. We first state a lemma that is proven in Appendix D.

Lemma C. 1 Suppose Assumptions A.1-A.3, and A.5 hold. Then (a) $\sup _{x \in A \cap \mathbb{R}^{d_{1}}}\left|\widehat{f}^{*}(x)-\widetilde{f}(x)\right|=O_{p}\left(n^{-1 / 2}\right.$ $\left.h^{-d_{1} / 2}(\ln n)^{\gamma / 2}+h^{r}\right) ;(b) \sup _{x \in A \cap \mathbb{R}^{d_{1}+d_{2}}}\left|\widehat{f}^{*}(x, y)-\widetilde{f}(x, y)\right|=O_{p}\left(n^{-1 / 2} h^{-\left(d_{1}+d_{2}\right) / 2}(\ln n)^{\gamma / 2}+h^{r}\right) ;(c) \sup _{x \in A \cap \mathbb{R}^{d_{1}+d_{3}}}$ $\left|\widehat{f}^{*}(x, z)-\widetilde{f}(x, z)\right|=O_{p}\left(n^{-1 / 2} h^{-\left(d_{1}+d_{3}\right) / 2}(\ln n)^{\gamma / 2}+h^{r}\right) ;(d) \sup _{x \in A \cap \mathbb{R}^{d}}\left|\widehat{f}^{*}(x, y, z)-\widetilde{f}(x, y, z)\right|=O_{p}\left(n^{-1 / 2}\right.$ $\left.h^{-d / 2}(\ln n)^{\gamma / 2}+h^{r}\right)$.

Define $\widehat{\Gamma}^{*} \equiv \Gamma\left(\widehat{f}^{*}, \widehat{F}^{*}\right)=n^{-1} \sum_{t=1}^{n}\left\{1-\sqrt{\frac{\widehat{f}^{*}\left(X_{t}^{*}, Y_{t^{*}}\right) \widehat{f}^{*}\left(X_{t}^{*}, Z_{t}^{*}\right)}{\hat{f}^{*}\left(X_{t}^{*}, Y_{t}^{*}, Z_{t}^{*}\right) \widehat{f}\left(X_{t}^{*}\right)}}\right\}^{2} a\left(X_{t}^{*}, Y_{t}^{*}, Z_{t}^{*}\right)$. One can modify the proofs of Lemmas B. 1 and B. 2 to obtain $\Gamma\left(\widehat{f^{*}}, \widetilde{F}\right)=\frac{1}{4} \int\left\{\frac{\widehat{f}^{*}(x, y, z)}{\hat{f}(x, y, z)}-\frac{\widehat{f}^{*}(x, y)}{\widehat{f}(x, y)}-\frac{\widehat{f}^{*}(x, z)}{\hat{f}(x, z)}+\frac{\widehat{f}^{*}(x)}{\widehat{f}(x)}\right\}^{2} a(w) d \widetilde{F}(w)+$ $O_{p}\left(\left\|\widehat{f}^{*}(x, y, z)-\tilde{f}(x, y, z)\right\|_{\infty}^{3}\right)$, where $\left\|\widehat{f}^{*}(x, y, z)-\widetilde{f}(x, y, z)\right\|_{\infty} \equiv \sup _{(x, y, z) \in A}\left|\widehat{f^{*}}(x, y, z)-\widetilde{f}(x, y, z)\right|$.

Let $r_{n}^{*}(w), R^{*}(w, u), \widetilde{R}^{*}(w, u), I_{n}^{*}, G_{n}^{*}(u), H_{n}^{*}(u, v)$ be defined as $r_{n}(w), R(w, u), \widetilde{R}(w, u), I_{n}$, $G_{n}(u), H_{n}(u, v)$ with $\widehat{f}^{*}, \widetilde{f}$, and \widetilde{F} replacing \widehat{f}, f, and F. Throughout, let E^{*} denote the expectation with respect to the smoothed kernel density $\widetilde{f}(x, y, z)$ conditional on \mathcal{W}. Noticing that $E^{*} G_{n}^{*}\left(W_{i}^{*}\right)=0$ and $E^{*} H_{n}^{*}\left(W_{i}^{*}, W_{j}^{*}\right)=0$ for $i \neq j$, we have

$$
\begin{align*}
I_{n}^{*}-E^{*}\left[I_{n}^{*}\right]= & 2 n^{-1 / 2} h^{r}\left\{n^{-1 / 2} \sum_{i=1}^{n} G_{n}^{*}\left(W_{i}^{*}\right)\right\}+2 n^{-1} h^{-d / 2}\left\{n^{-1} \sum_{1 \leq i<j \leq n} H_{n}^{*}\left(W_{i}^{*}, W_{j}^{*}\right)\right\} \\
& +n^{-1} h^{-d / 2}\left\{n^{-1} \sum_{i=1}^{n}\left[H_{n}^{*}\left(W_{i}^{*}, W_{i}^{*}\right)-E^{*} H_{n}^{*}\left(W_{i}^{*}, W_{i}^{*}\right)\right]\right\} \\
\equiv & 2 n^{-1 / 2} h^{r} U_{n, 1}^{*}+2 n^{-1} h^{-d / 2} U_{n, 2}^{*}+n^{-1} h^{-d / 2} U_{n, 3}^{*} \tag{C.1}
\end{align*}
$$

Conditional on $\mathcal{W},\left\{W_{i}^{*}\right\}$ forms a triangular array of independent random variables, and so do $\left\{G_{n}^{*}\left(W_{i}^{*}\right)\right\}$ and $\left\{H_{n}^{*}\left(W_{i}^{*}, W_{i}^{*}\right)\right\}$. It is easy to verify that $U_{n, 1}^{*}=O_{p}(1)$ and $U_{n, 3}^{*}=O_{p}\left(n^{-1 / 2} h^{-d / 2}\right)=o_{p}(1)$ following the proof of Lemma 5.2 in Paparoditis and Politis (2000). By construction, $H_{n}^{*}(u, v)=H_{n}^{*}(v, u)$, and $E^{*} H_{n}^{*}\left(W_{i}^{*}, v\right)=0$. Let $G_{n}^{*}(u, v)=E^{*}\left\{H_{n}^{*}\left(W_{1}^{*}, u\right) H_{n}^{*}\left(W_{1}^{*}, v\right)\right\}$. We verify that $E^{*}\left[H_{n}^{* 2}\left(W_{1}^{*}, W_{2}^{*}\right)\right]=$ $\sigma^{2}+o(1), E^{*}\left[H_{n}^{* 4}\left(W_{1}^{*}, W_{2}^{*}\right)\right] \leq C h^{-d}$, and $E^{*}\left[G_{n}^{* 2}\left(W_{1}^{*}, W_{2}^{*}\right)\right] \leq C h^{d}$, and thus $\left\{E^{*}\left[G_{n}^{* 2}\left(W_{1}^{*}, W_{2}^{*}\right)\right]+\right.$ $\left.n^{-1} E^{*}\left[H_{n}^{* 4}\left(W_{1}^{*}, W_{2}^{*}\right)\right]\right\} /\left\{E^{*}\left[H_{n}^{* 2}\left(W_{1}^{*}, W_{2}^{*}\right)\right]\right\}^{2} \rightarrow 0$. Consequently, $U_{n, 2}^{*} \xrightarrow{d} N\left(0, \sigma^{2} / 2\right)$ conditional on \mathcal{W} by Theorem 1 of Hall (1984).

Next, we can show that $n h^{d / 2} E^{*}\left[I_{n}^{*}\right]=E^{*} H_{n}^{*}\left(W_{1}^{*}, W_{1}^{*}\right)=h^{-d / 2} B_{1}+h^{-d / 2+2} B_{2}^{*}-h^{\left(d_{2}-d_{1}-d_{3}\right) / 2} B_{3}^{*}-$ $h^{\left(d_{3}-d_{1}-d_{2}\right) / 2} B_{4}^{*}+h^{\left(d_{2}+d_{3}-d_{1}\right) / 2} B_{5}^{*}+o(1)$, where for $i=2,3,4,5, B_{i}^{*}$ is defined as B_{i} with $\tilde{f}^{\prime} s$ replacing $f^{\prime} s$, e.g., $B_{5}^{*}=C_{1}^{d_{1}} \int_{A} a(w) \widetilde{f}(w) / \widetilde{f}(x) d w$. Let $\widetilde{\Delta}_{n}^{*}=\widehat{\Gamma}^{*}-\Gamma\left(\widehat{f}^{*}, \widetilde{F}\right)$. We can show conditional on \mathcal{W} that $\widetilde{\Delta}_{n}^{*}=o_{p}\left(n^{-1} h^{-d / 2}\right)$ with arguments similar to but simpler than those used in the proof of Lemma B. 6 because $\left\{W_{t}^{*}\right\}$ is an i.i.d. sequence given \mathcal{W}. Let $\widehat{B}_{i}^{*}, i=2,3,4,5$, be defined as \widehat{B}_{i} with $\left\{\mathcal{W}^{*}, \widehat{f}^{*}\right\}$ replacing $\left\{\mathcal{W}, \widehat{f}^{*}\right\}$, e.g., $\widehat{B}_{5}^{*} \equiv\left(C_{1}\right)^{d_{1}} n^{-1} \sum_{t=1}^{n}\left\{a\left(W_{t}^{*}\right) / \widehat{f}^{*}\left(X_{t}^{*}\right)\right\}$. Applying Lemma C.1, we can show $h^{2-d / 2}\left(\widehat{B}_{2}^{*}-\right.$ $\left.B_{2}^{*}\right), h^{\left(d_{3}-d_{1}-d_{2}\right) / 2}\left(\widehat{B}_{3}^{*}-B_{3}^{*}\right), h^{\left(d_{2}-d_{1}-d_{3}\right) / 2}\left(\widehat{B}_{4}^{*}-B_{4}^{*}\right), h^{\left(d_{2}+d_{3}-d_{1}\right) / 2}\left(\widehat{B}_{5}^{*}-B_{5}^{*}\right)$, and $n h^{d / 2} \| \widehat{f^{*}}(x, y, z)-$ $\widetilde{f}(x, y, z) \|_{\infty}^{3}$ are $o_{p}(1)$. The completes the proof of Theorem 4.1.

D Other Proofs

Proof of Proposition 3.2. The analysis is similar to that of Lemmas B. 1 and B.6, now keeping the additional terms that don't vanish under the alternative. First, $\Psi(\tau)=\Psi(0)+\tau \Psi^{\prime}(0)+o\left(\Psi^{\prime}(0)\right)$, where $\Psi(0)=\Gamma(f, F)$, and $\Psi^{\prime}(0)$ is obtained from (B.1). So $\Gamma(\widehat{f}, F)=\Gamma(f, F)+\Psi^{\prime}(0)+o\left(\Psi^{\prime}(0)\right)$. Noticing that Lemma B. 6 also holds under the alternative, i.e., $\Gamma(\widehat{f}, \widehat{F})=\Gamma(\widehat{f}, F)+o_{p}\left(n^{-1} h^{-d / 2}\right)$, we have $\Gamma(\widehat{f}, \widehat{F})=\Gamma(f, F)+\Psi^{\prime}(0)+o\left(\Psi^{\prime}(0)\right)+o_{p}(1)$. It is easy to show that $n^{1 / 2} \Psi^{\prime}(0)=O_{p}(1)$ when $\Gamma(f, F)>0$. Thus $T_{n}=4 n h^{d / 2} \Gamma(f, F) / \sqrt{2 \sigma^{2}}+n^{1 / 2} h^{d / 2} O_{p}(1) \xrightarrow{p} \infty$ if $\Gamma(f, F)>0$.

Proof of Proposition 3.3. First, for the double array stochastic process $\left\{W_{n t}, 0 \leq t \leq n\right\}$, the functional expansion of $\Gamma\left(\widehat{f^{[n]}}, F^{[n]}\right)$ and subsequent lemmas in Appendix B continue to hold when accommodating the additional terms arising under the local alternative. Under $H_{1}\left(\alpha_{n}\right), T_{n}-4 n h^{d / 2} \Gamma\left(f^{[n]}, F^{[n]}\right) / \sqrt{2 \sigma^{2}} \xrightarrow{d}$ $N(0,1)$. Moreover, under $H_{1}\left(\alpha_{n}\right), \Gamma\left(f^{[n]}, F^{[n]}\right)=\frac{\alpha_{n}^{2}}{4} \int \triangle(w)^{2} a(w) d F^{[n]}(w)+o\left(\alpha_{n}^{2}\right)$. For $\alpha_{n}=n^{-1 / 2} h^{-d / 4}$, $4 n h^{d / 2} \Gamma\left(f^{[n]}, F^{[n]}\right)=\int \triangle(w)^{2} a(w) d F^{[n]}(w) \rightarrow \int \triangle(w)^{2} a(w) d F(w) \equiv \delta$ as $n \rightarrow \infty$. Consequently, $\operatorname{Pr}\left(T_{n} \geq\right.$ $\left.z_{\alpha} \mid H_{1}\left(\alpha_{n}\right)\right) \rightarrow 1-\Phi\left(z_{\alpha}-\delta /(\sqrt{2} \sigma)\right)$.

Proof of Proposition 3.4. Under $H_{1, h}\left(\beta_{n}, \gamma_{n}\right), T_{n}-4 n h^{d / 2} \Gamma\left(f^{[n]}, F^{[n]}\right) / \sqrt{2 \sigma^{2}} \xrightarrow{d} N(0,1)$, and $4 n h^{d / 2} \Gamma\left(f^{[n]}, F^{[n]}\right)=n h^{d / 2} \beta_{n}^{2} \int \Lambda\left(\left(w-w_{0}\right) / \gamma_{n}\right)^{2} a(w) d F^{[n]}(w)\{1+o(1)\}=n h^{d / 2} \beta_{n}^{2} \gamma_{n} a\left(w_{0}\right) f\left(w_{0}\right)$
$\int \Lambda(w)^{2} d w\{1+o(1)\} \rightarrow C a\left(w_{0}\right) f\left(w_{0}\right) \int \Lambda(w)^{2} d w \equiv \bar{\delta}$ as $n \rightarrow \infty$. Consequently, $\operatorname{Pr}\left(T_{n} \geq z_{\alpha} \mid H_{1}\left(\alpha_{n}\right)\right) \rightarrow$ $1-\Phi\left(z_{\alpha}-\bar{\delta} /(\sqrt{2} \sigma)\right)$.

Proof of (3.1). To sketch the proof, we first note that $\left\|\widehat{f}^{(0)}(w)-f(w)\right\|_{\infty}=O_{p}\left(v_{n}\right)$ and $\| \widehat{f}_{i}^{(2)}(w)-$ $\partial^{2} f(w) / \partial w_{i}^{2} \|_{\infty}=O_{p}\left(h_{1}^{-2} v_{n}\right)$, where $v_{n} \equiv n^{-1 / 2} h_{1}^{-d / 2}(\ln n)^{\gamma}+h_{1}^{p}$ for some $\gamma>0$. So

$$
\frac{1}{n} \sum_{t=1}^{n} \frac{\widehat{f}_{i}^{(2)}\left(W_{t}\right) a\left(W_{t}\right)}{\widehat{f}_{h_{1}}\left(W_{t}\right)^{2}}=\frac{1}{n} \sum_{t=1}^{n} \frac{\partial^{2} f\left(W_{t}\right)}{\partial w_{i}^{2}} \frac{a\left(W_{t}\right)}{f\left(W_{t}\right)^{2}}\left\{1+h_{1}^{-2} v_{n}\right\}
$$

By Assumption A.1(ii), $\xi_{t} \equiv\left(\partial^{2} f\left(W_{t}\right) / \partial w_{i}^{2}\right) a\left(W_{t}\right) / f\left(W_{t}\right)^{2}$ is a bounded random variable with compact support A and $\left\{\xi_{t}\right\}$ is a mixing process with the same mixing coefficients as $\left\{W_{t}\right\}$. One can thus apply a CLT for mixing processes to obtain

$$
\frac{1}{n} \sum_{t=1}^{n} \frac{\partial^{2} f\left(W_{t}\right)}{\partial w_{i}^{2}} \frac{a\left(W_{t}\right)}{f\left(W_{t}\right)^{2}}-\int_{A}\left(\frac{\partial^{2} f(w)}{\partial w_{i}^{2}}\right) \frac{a(w)}{f(w)} d w=O_{p}\left(n^{-1 / 2}\right)
$$

It then suffices to ensure that $h^{2-d / 2} h_{1}^{-2} v_{n}=o(1)$, which holds by assumption.
Proof of Lemma C.1. We only prove part (a), since the proof of parts (b) and (c) is analogous and part (d) follows from (a)-(c). Let $A_{1}=A \cap \mathbb{R}^{d_{1}}$. Then $\sup _{x \in A_{1}}\left|\widehat{f}^{*}(x)-\widetilde{f}(x)\right| \leq \sup _{x \in A_{1}} \mid n^{-1} \sum_{t=1}^{n}\left[K_{h}\left(X_{t}^{*}-x\right)-\right.$ $\left.E^{*} K_{h}\left(X_{t}^{*}-x\right)\right]\left|+\sup _{x \in A_{1}}\right| E^{*} K_{h}\left(X_{t}^{*}-x\right)-\widetilde{f}(x) \mid$. The first term is $O_{p}\left(n^{-1 / 2} h^{-d_{1} / 2}(\ln n)^{\gamma / 2}\right)$ following from a standard argument (e.g., Masry, 1996). $E^{*} K_{h}\left(X_{t}^{*}-x\right)-\widetilde{f}(x)=\left(h^{r} / r!\right) \int_{\mathbb{R}^{d_{1}}} K(u) \sum_{i=1}^{d_{1}} u_{i}^{r} \partial^{r} \widetilde{f}(x+$ $\lambda h u) / \partial x_{i}^{r} d u$ for some $\lambda \in[0,1]$. By Assumption A5, $\sup _{x \in A_{1}}\left|E\left[\partial^{r} \widetilde{f}(x) / \partial x_{i}^{r}\right]\right|=O(1)$ and $\sup _{x \in A_{1}} \mid \partial^{r} \widetilde{f}(x) / \partial x_{i}^{r}-$ $E\left[\partial^{r} \widetilde{f}(x) / \partial x_{i}^{r}\right] \mid=O_{p}\left(n^{-1 / 2} b^{-d_{1} / 2-r}(\ln n)^{\gamma / 2}\right)=O_{p}(1)$. Consequently, $\sup _{x \in A_{1}}\left|\partial^{r} \widetilde{f}(x) / \partial x_{i}^{r}\right|=O_{p}(1)$ by the triangle inequality, and the desired result follows.

Table 1: Level comparison of the tests

	DGP1s	DGP2s	DGP3s	DGP4s	DGP1s	DGP2s	DGP3s	DGP4s
	$n=100,5 \%$							
LIN_{n}	0.044	0.061	0.050	0.060	0.095	0.121	0.110	0.106
CM_{n}	0.054	0.058	0.060	0.048	0.094	0.100	0.132	0.120
KS_{n}	0.042	0.056	0.056	0.040	0.100	0.112	0.140	0.108
SCM_{n}	0.076	0.060	0.084	0.064	0.108	0.080	0.156	0.116
SKS_{n}	0.064	0.056	0.088	0.068	0.128	0.108	0.124	0.148
$\mathrm{~T}_{n}, c=1$	0.096	0.060	0.048	0.072	0.176	0.152	0.120	0.148
$\mathrm{~T}_{n}, c=1.5$	0.068	0.056	0.052	0.056	0.124	0.120	0.120	0.124
$\mathrm{~T}_{n}, c=2$	0.072	0.036	0.072	0.048	0.136	0.072	0.120	0.084
	$n=200,5 \%$							
LIN_{n}	0.043	0.053	0.042	0.050	0.840	0.109	0.101	0.090
CM_{n}	0.044	0.056	0.060	0.048	0.095	0.100	0.108	0.112
KS_{n}	0.068	0.053	0.048	0.084	0.096	0.088	0.104	0.124
SCM_{n}	0.048	0.060	0.064	0.068	0.092	0.100	0.124	0.140
SKS_{n}	0.056	0.028	0.064	0.072	0.092	0.084	0.112	0.132
$\mathrm{~T}_{n}, c=1$	0.064	0.052	0.080	0.080	0.100	0.140	0.136	0.140
$\mathrm{~T}_{n}, c=1.5$	0.064	0.056	0.048	0.036	0.120	0.128	0.120	0.092
$\mathrm{~T}_{n}, c=2$	0.044	0.060	0.056	0.048	0.092	0.144	0.084	0.096

Table 2: Power comparison of the tests

	$n=100,5 \%$					DGP6p
LIN_{n}	0.999	0.337	0.213	0.126	0.163	0.153
CM_{n}	0.920	0.548	0.504	0.412	0.384	0.188
KS_{n}	0.780	0.404	0.380	0.288	0.292	0.156
SCM_{n}	0.924	0.464	0.352	0.500	0.224	0.196
SKS_{n}	0.728	0.236	0.288	0.340	0.120	0.112
$\mathrm{T}_{n}, c=1$	0.668	0.756	0.388	0.860	0.828	0.680
$\mathrm{T}_{n}, c=1.5$	0.888	0.940	0.512	0.924	0.952	0.812
$\mathrm{T}_{n}, c=2$	0.952	0.944	0.576	0.940	0.988	0.912
	$n=200,5 \%$					
LIN_{n}	1.000	0.354	0.250	0.113	0.172	0.143
CM_{n}	0.992	0.748	0.788	0.680	0.476	0.360
KS_{n}	0.952	0.552	0.660	0.532	0.336	0.284
SCM_{n}	0.980	0.648	0.620	0.720	0.352	0.280
SKS_{n}	0.964	0.324	0.512	0.552	0.148	0.136
$\mathrm{T}_{n}, c=1$	0.900	0.960	0.596	0.992	0.968	0.880
$\mathrm{T}_{n}, c=1.5$	0.980	1.000	0.808	0.992	0.972	0.972
$\mathrm{T}_{n}, c=2$	1.000	1.000	0.864	1.000	1.000	0.996
	$n=100,10 \%$					
LIN_{n}	1.000	0.436	0.284	0.175	0.239	0.233
CM_{n}	0.964	0.652	0.644	0.480	0.472	0.304
KS_{n}	0.868	0.492	0.496	0.428	0.408	0.232
SCM_{n}	0.960	0.564	0.488	0.612	0.324	0.300
SKS_{n}	0.876	0.372	0.400	0.436	0.176	0.212
$\mathrm{T}_{n}, c=1$	0.772	0.840	0.532	0.932	0.912	0.776
$\mathrm{T}_{n}, c=1.5$	0.948	0.972	0.692	0.964	0.972	0.896
$\mathrm{T}_{n}, c=2$	0.976	0.988	0.712	0.964	0.992	0.928
	$n=200,10 \%$					
LIN_{n}	1.000	0.442	0.327	0.176	0.253	0.209
CM_{n}	1.000	0.856	0.904	0.752	0.592	0.508
KS_{n}	0.988	0.676	0.756	0.676	0.484	0.404
SCM_{n}	0.988	0.732	0.728	0.812	0.480	0.424
SKS_{n}	0.984	0.468	0.604	0.664	0.276	0.232
$\mathrm{T}_{n}, c=1$	0.944	0.984	0.712	0.996	0.976	0.936
$\mathrm{T}_{n}, c=1.5$	0.984	1.000	0.896	0.992	0.984	0.996
$\mathrm{T}_{n}, c=2$	1.000	1.000	0.936	1.000	1.000	0.996

Table 3: Comparison of tests for high frequency alternatives

	DGP1h	DGP2h	DGP3h	DGP4h	DGP1h	DGP2h	DGP3h	DGP4h
	$n=100,5 \%$				$n=100,10 \%$			
LIN_{n}	0.045	0.055	0.133	0.190	0.100	0.115	0.187	0.267
CM_{n}	0.020	0.160	0.280	0.128	0.064	0.276	0.428	0.248
KS_{n}	0.024	0.128	0.176	0.112	0.072	0.256	0.316	0.172
SCM_{n}	0.012	0.088	0.180	0.080	0.036	0.168	0.288	0.120
SKS_{n}	0.036	0.156	0.196	0.116	0.072	0.220	0.292	0.152
$\mathrm{~T}_{n}, c=1$	0.028	0.696	0.948	0.764	0.072	0.808	0.968	0.876
$\mathrm{~T}_{n}, c=1.5$	0.044	0.828	0.980	0.892	0.068	0.916	0.984	0.948
$\mathrm{~T}_{n}, c=2$	0.020	0.596	0.976	0.936	0.044	0.708	0.992	0.968
	$n=200,5 \%$							
LIN_{n}	0.047	0.059	0.124	0.202	0.094	0.115	0.207	0.286
CM_{n}	0.068	0.444	0.708	0.332	0.100	0.580	0.816	0.536
KS_{n}	0.056	0.284	0.524	0.220	0.104	0.448	0.680	0.336
SCM_{n}	0.024	0.196	0.356	0.104	0.036	0.272	0.488	0.196
SKS_{n}	0.044	0.204	0.356	0.140	0.096	0.336	0.476	0.236
$\mathrm{~T}_{n}, c=1$	0.040	0.980	1.000	0.964	0.072	0.988	1.000	0.988
$\mathrm{~T}_{n}, c=1.5$	0.028	0.988	0.992	0.996	0.064	0.996	0.992	0.996
$\mathrm{~T}_{n}, c=2$	0.020	0.972	1.000	0.996	0.080	0.988	1.000	0.996

Table 4: Applications to Deutschemark (DM), Japanese yen (YEN) and British pound (PD)
DM and YEN DM and PD

	DM and YEN		DM and PD	
Tests $\backslash \mathrm{H}_{0}$	$\Delta \mathrm{YEN} \nRightarrow \Delta \mathrm{DM}$	$\Delta \mathrm{DM} \nRightarrow \Delta \mathrm{YEN}$	$\Delta \mathrm{PD} \nRightarrow \Delta \mathrm{DM}$	$\Delta \mathrm{DM} \nRightarrow \Delta \mathrm{PD}$
LIN_{n}	0.219	0.431	0.997	0.234
CM_{n}	0.915	0.790	0.900	0.320
KS_{n}	0.915	0.625	0.785	0.365
SCM_{n}	0.710	0.865	0.925	0.340
SKS_{n}	0.620	0.905	0.770	0.635
$\mathrm{~T}_{n}, c=1$	0.185	0.020	0.005	0.105
$\mathrm{~T}_{n}, c=1.5$	0.385	0.025	0.020	0.110
$\mathrm{~T}_{n}, c=2$	0.450	0.020	0.065	0.200

NOTE: The notation \nRightarrow means "does not Granger cause". The central entries are the p-values for each test. Bandwidth sequences and kernels are chosen as in the simulations.

[^0]: ${ }^{*}$ We gratefully thank Graham Elliott, Clive W. J. Granger, and three anonymous referees for valuable comments on an earlier version of this paper. The first author acknowledges financial support from the National Natural Science Foundation of China (Project 70501001). The usual disclaimers apply.

[^1]: ${ }^{1}$ For categorical data there are numerous tests of independence and conditional independence; see Rosenbaum (1984) and Yao and Tritchler (1993), among others.

[^2]: ${ }^{2}$ We adopt the same notational convention for the kernel K as for the density f, namely to indicate the kernel by the list of its arguments or by specifying the dimension of its arguments.
 ${ }^{3}$ Fernandes and Flores (2000) employ a generalized entropy measure that includes Hellinger distance as a special case to test conditional independence. The first order terms of their functional expansion are also degenerate so they use a weight function to avoid the degeneracy, which unfortunately results in poor small sample performance.

[^3]: ${ }^{4}$ In simulations we find that for some DGPs, there is about a 0.1% chance that $\widehat{f}(x, y) \widehat{f}(x, z) /[\widehat{f}(x, y, z) \widehat{f}(x)]$ takes negative values when (x, y, z) lies two standard deviation from the sample mean of (X, Y, Z). To avoid negative density estimates, we recommend replacing $\widehat{f}(\cdot)$ by $\max (\widehat{f}(\cdot), 0.1 / n) 1\{\widehat{f}(\cdot) \leq 0\}+\widehat{f}(\cdot) 1\{\widehat{f}(\cdot)>0\}$; this change does not affect the asymptotic theory.
 ${ }^{5}$ For the vector argument in a function, we find it convenient to assume every vector is a row vector to avoid proliferation of transposes.

[^4]: ${ }^{6}$ We thank a referee who kindly brought to our attention these two references.

[^5]: ${ }^{7}$ Alternatively, one can use the Bartlett kernel function (or other density-form function) as the weighting function a. For example, if the i th element of W, W_{i}, has mean zero and standard deviation one (perhaps after being recentered and rescaled), for $i=1, \ldots, d$, one can use $a(w)=\Pi_{i=1}^{d}\left[\left(1 / 2+1 / 4 w_{i}\right) 1\left\{-2 \leq w_{i} \leq 0\right\}+\left(1 / 2-1 / 4 w_{i}\right) 1\left\{0<w_{i} \leq 2\right\}\right]$.

[^6]: ${ }^{8}$ If Y is a binary variable, one can exchange the role of Y and Z because $Y \perp Z \mid X$ if and only if $Z \perp Y \mid X$. The case for which both Y and Z are discretely valued is treated in Rosenbaum (1984).

[^7]: ${ }^{9}$ For example, for fixed $\delta>0$, if $\rho<1 / 2.71828$ in Assumption $A .1(i), B=4(1+\delta) / \delta$ would suffice.

