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Abstract

We propose a nonparametric test of conditional independence based on the weighted Hellinger distance

between the two conditional densities, f(y|x, z) and f(y|x), which is identically zero under the null. We
use the functional delta method to expand the test statistic around the population value and establish
asymptotic normality under β-mixing conditions. We show that the test is consistent and has power
against alternatives at distance n−1/2h−d/4. The cases for which not all random variables of interest are
continuously valued or observable are also discussed. Monte Carlo simulation results indicate that the test
behaves reasonably well in finite samples and significantly outperforms some earlier tests for a variety of
DGPs. We apply our procedure to test for Granger non-causality in exchange rates.
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1 Introduction

We investigate a nonparametric test of the conditional independence of Y and Z given X, i.e.

Y ⊥ Z | X. (1.1)

This is related to the more familiar hypothesis that Y is independent of Z, but neither implies the other
in general (see Phillips, 1988). Moreover, this hypothesis is important in both econometrics and statistics,
in that many important concepts can be formalized using conditional independence (see Dawid, 1979).
Our first motivation is testing Granger non-causality. As Florens and Mouchart (1982) and Florens

and Fougere (1996) show, Granger non-causality is a form of conditional independence. The hypothesis
of distributional Granger (1980) non-causality for two stationary ergodic time series {Yt} and {Zt} is as
follows. Given lags p and q, {Zt} does not Granger cause {Yt} if

Yt ⊥ (Zt−1, ..., Zt−q) | (Yt−1, ..., Yt−p). (1.2)

To test Granger non-causality, early studies often specified linear vector auto-regressive (VAR) models. A
serious problem with a linear approach is that such tests have low power in detecting nonlinear alternatives.
Bell et al. (1996) propose a procedure using nonparametric additive models but do not provide distribution
theory. In contrast, Baek and Brock (1992) use the correlation integral to detect nonlinear alternatives
in i.i.d. data. Hiemstra and Jones (1994) modify Baek and Brock’s approach to allow weak stochastic
dependence.
Our second motivation concerns specifying the semiparametric binary choice model

Y = 1 {G(X,β) ≥ ε} , (1.3)

with 1{.} the indicator function, G a function known up to a parameter β (e.g., G(X,β) = X 0β), and ε

an unobservable error. The literature divides according to whether ε is assumed independent of X or only
median independent. The latter condition, imposed by Manski (1975) and Horowitz (1992), accommodates
conditional heteroskedasticity of unknown form, but precludes estimating β at the usual

√
n rate. In

contrast, if ε is independent of X, one can estimate at the
√
n rate; see Klein and Spady (1993). As

independence between X and ε implies conditional independence of observables,

Y ⊥ X | G(X,β), (1.4)

we can assume the weaker condition (1.4) when specifying model (1.3). This permits the dispersion of ε to

depend on X and still permits a
√
n-consistent estimator. This approach holds generally for transformation

models, including binary choice, duration, and censored regression models. It also extends to panel models.
(See Linton and Gozalo, 1997.)
The next example concerns sample selection. A huge literature has developed from the work of Heckman

(1974) and Gronau (1974), who consider the following selection problem: each population member has a
triple (X, Y , Z), with vectors X and Y and Z = 1 or 0 (e.g., Y is log offered wage, X is worker attributes,
and Z = 1 if the worker has a job and Z = 0 otherwise). A researcher always observes (X,Z), but observes
Y only when Z = 1. The researcher is interested in

P (Y |X) = P (Y |X,Z = 1)P (Z = 1|X) + P (Y |X,Z = 0)P (Z = 0|X).

The sample is uninformative about P (Y |X,Z = 0), so early researchers often assumed

Y ⊥ Z | X. (1.5)
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Given that P (Y |X,Z = 1) is identified, (1.5) identifies P (Y |X). Since the 1970s, economists have used
latent-variable models of the form (

Y = g1(X) + ε1,

Z = 1{g2(X) + ε2 > 0},
with g1 and g2 real-valued functions, and ε1 and ε2 unobserved errors. The early literature assumes
ε1 ⊥ ε2|X, implying (1.5) and the absence of selection bias. For more, see Angrist (1997).
In each of these three examples it is of interest to test whether the conditional independence hypothesis

is true. This brings us to our contribution. There are many nonparametric tests of independence for contin-
uous random variables, starting with Hoeffding (1948), including empirical distribution-based methods such
as Blum et al. (1961) or Skaug and Tjostheim (1993), smoothing-based methods like Rosenblatt (1975),

Robinson (1991), and Hong and White (2005), and others, such as Brock et al. (1996). Nevertheless, prac-
tical nonparametric tests for conditional independence are not as well developed.1 Using empirical process
theory, Linton and Gozalo (1997, “LG”) give a nonparametric test of conditional independence using a
generalized empirical distribution, and Delgado and Gonz

0
alez-Manteiga (2001, “DG”) give an omnibus test

of conditional independence using the weighted difference of the estimated conditional distributions under
the null and the alternative. Nevertheless, both tests are for the i.i.d. case, and neither is asymptotically
pivotal. In contrast, we build on the large literature on kernel-based omnibus testing of restrictions on
nonparametric curves, initiated by Bickel and Rosenblatt (1973) and Rosenblatt (1975). We give a test for
conditional independence based on a weighted version of Hellinger distance under weak data dependence.
A main advantage is that our statistic is asymptotically pivotal. Despite its inability to detect local al-

ternatives at rate n−1/2 like the tests of LG and DG, it turns out to be more efficient in the direction of
certain high frequency alternatives like those of Rosenblatt (1975) and Horowitz and Spokoiny (2001).
Among other things, our test applies to test for Granger non-causality with no need to specify a linear

or non-linear model. Also, it applies to cases where not all variables are continuous or observable.
The paper is organized as follows. In section 2, we give the basic framework, assuming no parameter

estimation and that all random variables are continuous. Section 3 studies the asymptotic null distribu-
tion of our statistic and global and local power properties. Section 4 treats discrete variables, parameter
estimation, and bootstrap approximation. We report a Monte Carlo study and an application in Section 5
and conclude in Section 6. We relegate technical details to Appendices A-C.

2 Basic framework

We wish to know if Y and Z are independent given X, where X, Y, and Z are d1-, d2-, and d3-vectors,

respectively. We have n identically distributed, weakly dependent observations (Xt, Yt, Zt), t = 1, ..., n.

The joint density (resp. cumulative distribution function) of (Xt, Yt, Zt) is f (resp. F ). We reference
marginal densities of f(x, y, z) simply using the list of their arguments — for example f(x, y) =

R
f(x, y, z)dz,

f(x, z) =
R
f(x, y, z)dy and f(x) =

R
f(x, y, z) dy dz, where

R
integrates on the full range of its arguments.

This notation is compact, and, we hope, sufficiently unambiguous.
Let f(.|.) be the conditional density of one random vector given another. Formally, the null is

H0 : Pr{f(y|X,Z) = f(y|X)} = 1 ∀y ∈ Rd2 , (2.1)

equivalent to f(x, y, z) f(x) = f(x, y)f(x, z), for all (x, y, z) in the support of f. The alternative is

H1 : Pr{f(y|X,Z) = f(y|X)} < 1 for some y ∈ Rd2 . (2.2)
1For categorical data there are numerous tests of independence and conditional independence; see Rosenbaum (1984) and

Yao and Tritchler (1993), among others.
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Our test statistic is based on the weighted Hellinger distance between f(x, y, z)f(x) and f(x, y)f(x, z):

Γ(f, F ) ≡
Z (

1−
s

f(x, y)f(x, z)

f(x, y, z)f(x)

)2
a(x, y, z) dF (x, y, z), (2.3)

with a(.) a specified nonnegative weighting function with compact support A ⊂ Rd, d ≡ d1 + d2 + d3.
The weighting function is crucial. It truncates integration at the extremes, where precise estimation

of densities is quite hard. Thus, we only detect deviations between f(x, y, z)f(x) and f(x, y)f(x, z) on A.

One can also assume compact support for (X,Y,Z) and use Hellinger distance (a ≡ 1).
Other statistics can be constructed using entropy (e.g., Robinson, 1991, Fernandes, 2000, Hong and

White, 2005), or using the L2 distance between f(x, y, z)f(x) and f(x, y)f(x, z). It is well known that
entropy- or Hellinger- based statistics have better small sample performance than L2-based statistics when
testing serial independence. Theoretically, Hellinger distance has some advantages over distances based on
the Lq norm, e.g., q = 1, 2, or ∞. Let f1 and f2 be densities. Then: (1) The L1 or L2 norm of f1− f2

equally weights identical differences between f1 and f2 regardless of whether the smaller of the two is large
or small, whereas L∞ only weighs the extreme difference between f1 and f2. (2) Like L∞, L1 is analytically
awkward. (3) None of the Lq norms, q = 1, 2, or∞, are invariant to continuous monotonic transformation.
In contrast, like Shannon entropy, Hellinger distance does not have these problems. In particular, it is

invariant to continuous monotonic transformation, which is important in applications. We use Hellinger
distance instead of entropy as only the former yields a second-order theory a la White and Hong (1999)
in the presence of the weighting function a. See Pitman (1979, Chapter 2) for more on distances between
probability measures.
To define our test statistic, we first introduce kernel estimators for the unknown densities. For a kernel

function2 K and bandwidth h ≡ h(n), we define

Kh(u) ≡ h−dK(u/h), (2.4)

where u has dimension d. We use the standard Nadaraya-Watson (NW) density estimator,

bf(x, y, z) ≡ 1

n

nX
t=1

Kh(x−Xt, y − Yt, z − Zt); (2.5)

estimators for f(x, y), f(x, z), and f(x) are analogous. Let bF be the empirical cdf of (X,Y,Z). Our test
statistic is a sample analog of (2.3),

bΓ ≡ Γ( bf, bF ) ≡ Z
A

(
1−

s bf(x, y) bf(x, z)bf(x, y, z) bf(x)
)2

a(x, y, z) d bF (x, y, z)
=
1

n

nX
t=1

(
1−

s bf(Xt, Yt) bf(Xt, Zt)bf(Xt, Yt, Zt) bf(Xt)

)2
a(Xt, Yt, Zt).

We show that the properties of bΓ follow from the properties of Γ. Two observations are important:
(a) the first order terms in the expansion of Γ( bf, F ) around Γ(f, F ) degenerate under the null;3 and (b)
the distance between Γ( bf, bF ) and Γ( bf, F ) is asymptotically negligible. The latter is important as it is

2We adopt the same notational convention for the kernel K as for the density f , namely to indicate the kernel by the list
of its arguments or by specifying the dimension of its arguments.

3Fernandes and Flores (2000) employ a generalized entropy measure that includes Hellinger distance as a special case to
test conditional independence. The first order terms of their functional expansion are also degenerate so they use a weight
function to avoid the degeneracy, which unfortunately results in poor small sample performance.
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easier to study the asymptotic behavior of Γ( bf, F ). The former is important as it implies that the usual√
n-asymptotics (e.g., Robinson, 1991) do not apply; different normalizations must be used (e.g., White

and Hong, 1999, Hong and White, 2005).

3 The asymptotic distribution of the test statistic

We now treat testing conditional independence for a continuously distributed stochastic process.

3.1 Asymptotic null distribution

Our assumptions are as follows. See Appendix A for definitions and other technical material.
Assumption A.1 (Stochastic Process) (i) {Wt ≡ (X 0

t, Y
0
t , Z

0
t)
0 ∈ Rd1+d2+d3 ≡ Rd, t ≥ 0} is a strictly

stationary β-mixing process with coefficients βnm =O(ρm) for some 0 < ρ < 1.

(ii) Wt ≡ (X 0
t, Y

0
t , Z

0
t)
0 has joint distribution F and joint density f such that f has continuous partial

derivatives of order r ≥ 4, bounded and integrable on Rd. f is bounded away from zero on the compact
support A of a(.), i.e., inf

w∈A
f(w) ≡ b > 0, and satisfies a Lipschitz condition: |f(w+u)−f(w)| ≤ D(w)||u||,

where D has finite (2+η)th moment for some η > 0 and ||.|| is Euclidean norm.
(iii) The joint density function (pdf) ft1,...,tl(

.,... ,. ) of (W0,Wt1 , ...,Wtl) (1 ≤ l ≤ 5) is bounded and
satisfies a Lipschitz condition: |ft1,...,tl(w0 + u0,

... , wl + ul)− ft1,...,tl(w0,
... , wl)| ≤ Dt1,...,tl(w0, ..., wl)||u||,

where u ≡ (u0, ..., ul) and Dt1,...,tl
is integrable and satisfies

R
Dt1,...,tl(w0, ..., wl)||w||2ξdw < M < ∞ andR

Dt1,...,tl(w0, ..., wl)ft1,...,tl(w0,
... , wl) dw < M <∞ for some ξ > 1.

Assumption A.2 (Kernel) For some even integer r ≥ 4, the kernelK is a product kernel of the bounded
symmetric kernel k : R → R satisfying

R
R u

ik(u)du = δi0 (i = 0, 1, ..., r − 1), C0 ≡
R
R u

rk(u)du < ∞,R
R u

2k(u)2du <∞, and k(u) = O
¡
(1 + |u|r+1+δ)−1¢ for some δ > 0, where δij is Kronecker’s delta.

Assumption A.3 (Bandwidth) As n→ 0, the bandwidth sequence h→ 0, such that (i) nh2d/(lnn)γ →
∞ for some γ > 0; (ii) nhd/2+2r → 0.
Remark 1. Assumption A.1(i) is standard for application of a central limit theorem for U -statistics

for weakly dependent data (e.g., Fan and Li, 1999a). It is satisfied by many well-known processes such as

linear stationary ARMA processes and a large class of processes implied by numerous nonlinear models,
including bilinear, NLAR, and ARCH-type models (see Fan and Li, 1999b). A.1(ii) and (iii) are primarily
smoothness conditions like those imposed by Li (1999). Assumption A.2 requires a higher order kernel,
which is common in the literature (see Robinson, 1988, Fan and Li, 1996, and Li, 1999). Assumption
A.3 restricts the bandwidth sequence. Although we allow different bandwidths for different kernel density
estimators, we in fact use the same bandwidth h. This makes certain bias terms cancel each other under
the null. For more on bandwidth choice, see Chen et al. (2001). Assumption A.3(i) is explicitly used in
the proof of Lemma B.7. It is stronger than the common assumption nhd/(lnn)γ → 0 for some γ > 0,

which suffices for Lemmas B.2-B.6. We conjecture that one can use the weaker assumption at the expense
of highly technical argument to show asymptotic negligibility of the remainder in Lemma B.7. If so, as a

referee comments, one can use a second order positive kernel (r = 2) for the important case d = 3.4

To state the result and give the derivation, let5 w = (x, y, z), and define the following notation:

4 In simulations we find that for some DGPs, there is about a 0.1% chance that f(x, y)f(x, z)/[f(x, y, z)f(x)] takes negative
values when (x, y, z) lies two standard deviation from the sample mean of (X,Y, Z). To avoid negative density estimates, we
recommend replacing f(.) by max(f(.), 0.1/n) 1 f(.) ≤ 0 + f(.)1 f(.) > 0 ; this change does not affect the asymptotic
theory.

5For the vector argument in a function, we find it convenient to assume every vector is a row vector to avoid proliferation
of transposes.
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B1 ≡ (C1)d
R
A
a(w)dw, B2 ≡ (C1)d−1C2

Pd
i=1

R
A
1
2

¡
∂2f(w)/∂w2i

¢
a(w)/f(w)dw,

B3 ≡ (C1)d1+d2
R
A
a(w)f(w)/f(x, y)dw, B4 ≡ (C1)d1+d3

R
A
a(w)f(w)/f(x, z)dw,

B5 ≡ (C1)d1
R
A
a(w)f(w)/f(x)dw, σ2 ≡ (C3)d

R
A
a(w)2dw,

where C1 ≡
R
R k(u)

2du, C2 ≡
R
R u

2k(u)2du, and C3 ≡
R
R
¡R
R k(u+ v)k(u)du

¢2
dv. For a kernel satisfying

A.2, the Ci’s can be calculated explicitly; e.g., when k(u) = (3−u2)ϕ(u)/2 with ϕ(u) the standard normal
pdf, we have: C1 = 27/(32

√
π), C2 = 15/(64

√
π), and C3 = 7881/(8192

√
2π). We can now state our first

result.

Theorem 3.1 Under Assumptions A.1-A.3 and under H0, if d ≤ 7 and d1 − 4 < d3 − d2 < 4− d1, then

nhd/2{4bΓ− n−1h−dB1 − n−1h−d+2B2 + n−1h−(d1+d2)B3 + n−1h−(d1+d3)B4 − n−1h−d1B5} d→ N(0, 2σ2).

The proof relies on a functional expansion of Γ(., F ), as in Ait-Sahalia et al. (2001), and some preliminary
U -statistic results in Tenreiro (1997). In studying goodness-of-fit tests for kernel regression, Ait-Sahalia et
al. derive the functional expansion for the sum-of-squared departures between restricted and unrestricted

regressions. Similarly, we take a second order expansion, as the first order term vanishes under the null.
Not all the bias correction terms, Bi, i = 1, ..., 5, may be necessary. For example, if d = 3 (implying

d1 = d2 = d3 = 1), both B2 and B5 are asymptotically negligible. If d2 + d3 > d1, B5 is not needed.
If d3 > d1 + d2 (resp. d2 > d1 + d3) then B3 (resp. B4) is unnecessary. If d ≤ 5, as the “curse of
dimensionality” requires for realistic applications, the restriction d1 − 4 < d3 − d2 < 4− d1 is redundant.
To implement, we consistently estimate the last four bias terms at certain rates asbB2 ≡ (C1)

d−1C2
n

Pn
t=1

Pd
i=1

1
2{ bf (2)i (Wt)a(Wt)/ bf (0)(Wt)

2}, bB3 ≡ (C1)
d1+d2

n

Pn
t=1{a(Wt)/ bf(Xt, Yt)},bB4 ≡ (C1)

d1+d3

n

Pn
t=1{a(Wt)/ bf(Xt, Zt)}, bB5 ≡ (C1)

d1

n

Pn
t=1{a(Wt)/ bf(Xt)},

where, e.g., bf (2)i (w) ≡ n−1h−(d+2)1

Pn
t=1 k(2)((wi −Wt,i)/h1)Π

d
j 6=ik(0)((wj −Wt,j)/h1), bf (0)(w) ≡ n−1h−d1Pn

t=1Π
d
j=1k(0)((wj −Wt,j)/h1), k(v) is the kernel of order (v, p) for estimating the vth partial derivative of

a univariate density, h1 is a bandwidth sequence, andWt,i is the i0th element ofWt, i = 1, 2, ..., d. Following
Gasser et al. (1985), we assume 0 ≤ v ≤ p−2, where v = 0, or 2 and p is even. The choice of k(v) (v = 0, 2) is
crucial to estimate the second order partial derivatives effectively. For brevity, we refer the reader to Gasser

et al. (1985) and Singh (1987).6 It is not hard to show that h(d3−d1−d2)/2( bB3−B3), h(d2−d1−d3)/2( bB4−B4),
and h(d2+d3−d1)/2( bB5−B5) are op(1) by Assumptions A.1-A.3. We show in Appendix C that, for i = 1, ..., d,

h2−d/2
(
1

n

nX
t=1

bf (2)i (Wt)a(Wt)bf (0)(Wt)
−
Z
A

∂2f(w)

∂w2i

a(w)

f(w)
dw

)
= op(1), (3.1)

given h2−d/2h−21 υn = o(1), with υn ≡ n−1/2h−d/21 (lnn)γ + hp1 for γ > 0, so h2−d/2( bB2 −B2) = op(1).

Then the estimation errors for the bias terms are asymptotically negligible and we can compare

Tn ≡ nhd/2{4bΓ−n−1h−dB1−n−1h−d+2 bB2+n−1h−(d1+d2) bB3+n−1h−(d1+d3) bB4−n−1h−d1 bB5}/√2σ2 (3.2)
to the critical value zα from the N(0, 1) distribution, i.e., z0.05 = 1.645 and z0.10 = 1.282, as the test is

one-sided, and we reject the null when Tn > zα.

3.2 Consistency and local power properties

We now study the consistency and local power properties of our test. Our consistency result is as follows.

Proposition 3.2 Suppose that d ≤ 7, d1 − 4 < d3 − d2 < 4 − d1, and h2−d/2h−21 υn = o(1). Under
Assumptions A.1-A.3, the test based on the statistic (3.2) is consistent for F such that Γ(f, F ) ≥ ε > 0.

6We thank a referee who kindly brought to our attention these two references.
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Note that the above proposition is equivalent to saying that the test is consistent when a(x, y, z){1−p
f(x, y)f(x, z)/[f(x, y, z)f(x)]} 6= 0 in a region of positive density mass. In theory, we should require

the support A of a(·) to be as large as possible. In practice, we often have that A = A1 × A2 × A3 ⊂
Rd1 × Rd2 × Rd3 , A1 = {x ∈ Rd1 : x ∈ [X − 2 bSX , X + 2 bSX ]}, with X and bSX the sample average and
standard deviation of X, respectively; and A2 and A3 are defined analogously.7 Note that the support A

chosen in this way is dependent on n but this has no asymptotic impact on the distribution of our statistic.
To define local alternatives we follow the notation of Gouri

0
eroux and Tenreiro (2001) and consider a

sequence of d-dimensional strictly stationary processes (Wnt, t ≥ 0).
Assumption A.1∗ (i) {Wnt ≡ (X 0

nt, Y
0
nt, Z

0
nt)

0 ∈ Rd1+d2+d3 ≡ Rd, t = 1, ..., n; n = 1, 2, ...} is a strictly
stationary β-mixing process with coefficients βnm satisfying

βnm ≡ sup
n∈N

βnm = O(ρm) for some 0 < ρ < 1.

Let f [n](x, y, z) be the joint density of Xnt, Ynt, and Znt. Let αn → 0 as n→∞. We first examine the
power of our test against the sequence of local alternatives

H1(αn) : f
[n](y|x, z) = f [n](y|x)[1 + αn∆(w) + o(αn)∆n(w)], (3.3)

where f [n](y|x, z) and f [n](y|x) are conditional densities derived from f [n](x, y, z), and ∆(w) and ∆n(w)

are specified in Assumption A.4.
Assumption A.4 (Local alternatives)
(i) 1 + αn∆(w) + o(αn)∆n(w) ≥ 0 for all w ∈ Rd and all n ∈ N.
(ii)

R
Rd ∆(w)f

[n](x, y)f [n](z|x)dw = 0 and RRd ∆n(w)f
[n](x, y)f [n](z|x)dw = 0 for all n ∈ N.

(iii)
R
A
|∆(w)|2f [n](w)a(w)dw < M and

R
A
|∆n(w)|2f [n](w)a(w)dw < M for some M < ∞ for all

n ∈ N.
(iv) limn→∞f [n](.) exists and f(w) =limn→∞f [n](w).
Assumptions A.4(i)-(ii) ensure that f [n](x, y, z) is a valid pdf for all n ∈ N. Assumption A.4(iii) ensures

that the remainder term o(αn)∆n(w) has no impact on the asymptotic distribution of the statistic Tn and
αn∆(w) is at distance O(αn) from the null. Also, we modify Assumption A.1(ii)-(iii) to be:
Assumption A.1∗ (ii) − (iii) Assumptions A.1(ii)-(iii) hold with f [n] and F [n] replacing f and F

respectively.

Proposition 3.3 Suppose that d ≤ 7, d1 − 4 < d3 − d2 < 4 − d1, h
2−d/2h−21 υn = o(1) and that αn =

n−1/2h−d/4 in H1(αn). Then under Assumptions A.1∗, A.2-A.4, Pr(Tn ≥ zα|H1(αn)) → 1 − Φ(zα −
δ/(
√
2σ)), where δ ≡ R

A
a(w)∆(w)2f(w)dw.

Remark 2. Proposition 3.3 says that our test statistic Tn has nontrivial power against H1(αn) with
αn = n−1/2h−d/4 whenever δ 6= 0. The rate n−1/2h−d/4 is slower than n−1/2, as h → 0. In contrast, the
LG and and DG tests have nontrivial power in the direction of alternatives converging to the null at rate
n−1/2. Thus, the latter tests would be more powerful than ours against local alternatives like (3.3).
Next, consider the following high frequency alternatives of the type considered by Rosenblatt (1975)

and, more recently, by Horowitz and Spokoiny (2001):

H1,h(βn, γn) : f
[n](y|x, z) = f [n](y|x)[1 + βnΛ((w − w0) /γn) + o(βn)Λn((w − w0) /γn)], (3.4)

7Alternatively, one can use the Bartlett kernel function (or other density-form function) as the weighting function a. For
example, if the ith element of W, Wi, has mean zero and standard deviation one (perhaps after being recentered and rescaled),
for i = 1, ..., d, one can use a(w) = Πd

i=1[(1/2 + 1/4wi)1{−2 ≤ wi ≤ 0}+ (1/2− 1/4wi)1{0 < wi ≤ 2}].
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where w0 ∈ A ⊂ Rd1+d2+d3 with a(w0) > 0, βn and γn → 0 as n→∞.

Assumption A.4∗ (Local alternatives)
(i) 1 + βnΛ((w − w0) /γn) + o(βn)Λn((w − w0) /γn) ≥ 0 for all w ∈ Rd and all n ∈ N.
(ii)

R
Rd Λ((w − w0) /γn)f

[n](x, y)f [n](z|x)dw = 0 and RRd Λn((w − w0) /γn)f
[n](x, y)f [n](z|x)dw = 0 for

all n ∈ N.
(iii)

R
A
|Λ(w)|2dw < M and

R
A
|Λn(w)|2dw < M for some M <∞ for all n ∈ N.

(iv) f [n](.) is bounded Rd, limn→∞f [n](.) exists, and f(w) =limn→∞f [n](w).

Proposition 3.4 Suppose that d ≤ 7, d1−4 < d3−d2 < 4−d1, h2−d/2h−21 υn = o(1). Suppose H1,h(βn, γn)

holds with nhd/2β2nγn → C ∈ (0,∞]. Then under Assumptions A.1∗, A.2-A.3, A.4∗, Pr(Tn ≥ zα|H1,h(βn, γn))

→ 1− Φ(zα − δ/(
√
2σ)), where δ ≡ Ca (w0) f (w0)

R
Λ(w)2dw.

Remark 3. Proposition 3.4 says that our test statistic Tn has nontrivial power against H1,h(βn, γn) for
certain sequences of βn and γn. For example, if we choose βn = (nh

d/2)−1/3 and γn = (nhd/2)−1/3 (ln lnn)
γ

for some γ ≥ 0, one can easily see that the condition on βn and γn in the above proposition is met. Noticing
that βnγn = o(n−1/2), it is known that in this case the powers of the LG and DG tests converge to zero as
n→∞. Therefore, our test is more powerful than the latter tests for certain high frequency alternatives of
the form (3.4).

4 Extensions and discussion

Above we treat a stochastic process that has continuously-valued realizations. While this case suffices for
many empirical applications (e.g. nonparametric testing of Granger non-causality), our testing procedure
is applicable to a much wider range of situations. We now discuss two cases that generalize the above basic
results. Also, we propose a bootstrap approximation to the distribution of our statistic.

4.1 Discrete random variable

Our test can be modified to incorporate the case in which one of the random variables in (X,Y,Z) is
discretely valued. For notational convenience, we explicitly assume that Z is a binary variable.8

Let f1(x, y) ≡ f(x, y)P (Z = 1|x, y) be the joint density of (X,Y,Z) with respect to the product
of Lebesgue measure on Rd1+d2 and counting measure. Similarly, f1(x) ≡ f(x)P (Z = 1|x), f0(x) ≡
f(x)P (Z = 0|x) and f0(x, y) ≡ f(x, y)P (Z = 0|x, y). The test is based on the functional

Γ1(f, F ) ≡
Z (

1−
s

f(x, y)f1(x)

f1(x, y)f(x)

)2
a(x, y)dF1(x, y) +

Z (
1−

s
f(x, y)f0(x)

f0(x, y)f(x)

)2
a(x, y)dF0(x, y), (4.1)

where a(x, y) is a nonnegative weighting function that can be understood as our previous a(x, y, z) restricted
to Rd1+d2 , dF1(x, y) ≡ f(x, y)P (Z = 1|x, y)dxdy, and dF0(x, y) ≡ f(x, y)P (Z = 0|x, y)dxdy. Clearly, under
the null that Y ⊥ Z | X, Γ(f, F ) = 0. It is easy to show that under suitable conditions, a normalized
version of the sample analog of Γ1(f, F ) is asymptotically normally distributed, and the dimension d3 does
not affect the convergence rate. For brevity, we don’t report the theoretical result here, which is available

in the working paper version of this paper at http://www.econ.ucsd.edu/˜lsu/ch1.pdf.

8 If Y is a binary variable, one can exchange the role of Y and Z because Y ⊥ Z | X if and only if Z ⊥ Y | X. The case
for which both Y and Z are discretely valued is treated in Rosenbaum (1984).
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4.2 Conditional independence testing with estimated variables

Now consider the case in whichW = (X 0, Y 0, Z0)0 is not observed directly but can be estimated. Asymptotic
results for this case are useful when a conditional independence test is conducted using residuals or other

estimated random variables. Let {Mt ∈ Rk, t ≥ 0} be the observed process. Of interest are certain
functions calculated from M, that is, W (M, θ) ≡ (X(M, θ)0, Y (M, θ)0, Z(M, θ)0)0 ∈ Rd1+d2+d3 ≡ Rd, where
the parameter θ ∈ Θ ⊂ Rp. The null is, for some unknown θ0 ∈ Θ,

H0 : Y (M, θ0) ⊥ Z(M,θ0) | X(M, θ0). (4.2)

Denote the pdf’s ofW (M, θ) and its subvectors by f(w; θ), f(x, y; θ), f(x, z; θ) and f(x; θ), respectively.
Let F (w; θ) be the cdf of W (M, θ). Under the null, we have

Γ2(f, F ; θ0) ≡
Z (

1−
s

f(x, y; θ0)f(x, z; θ0)

f(w; θ0)f(x; θ0)

)2
a(w; θ0)dF (w; θ0) = 0, (4.3)

where a(w; θ) ≡ a(w(θ)) is a nonnegative weighting function which depends on θ only through w and is
otherwise the same as a(w) used in Section 3. We suppose that there exist estimates bθ of θ0 that are√
n-consistent under the null. To implement the test, we replace Γ2(f, F ; θ0) by its sample analogue

Γ2( bf, bF ;bθ) = 1

n

nX
t=1

(
1−

s bf(Xt(bθ), Yt(bθ)) bf(Xt(bθ), Zt(bθ))bf(Wt(bθ)) bf(Xt(bθ))
)2

a(Wt(bθ)),
where, for example, Wt(bθ) ≡ W (Mt,bθ) and bf(w; θ) is the standard NW density estimator of f(w; θ) that
uses “observations” {Wt(θ), 1 ≤ t ≤ n}. Under mild regularity conditions, we can show by applying results
of Andrews (1995) that estimation of bθ does not affect the asymptotics, as

Γ2( bf, bF ;bθ) = Γ2( bf, bF ; θ0) + op(n
−1h−d/2). (4.4)

4.3 Smoothed Local Bootstap

The basic problems for the bootstrap are how to impose the null in the resampling scheme and accom-
modate the dependence structure in the data. Simple resampling from the empirical distribution of Wt =

(X 0
t, Y

0
t , Z

0
t)
0 will not impose the null restriction. Paparoditis and Politis (2000, “PP”) propose a local boot-

strap procedure for nonparametric kernel estimators under general dependence conditions. We essentially
do the same thing here, except that our conditioning variables are not necessarily lagged dependent vari-
ables. Let W ≡ {Wt}nt=1 . We draw bootstrap resamples {X∗t , Y ∗t , Z∗t }nt=1 based on the following smoothed
local bootstrap procedure: (i) Draw a bootstrap sample X ∗ ≡ {X∗t }nt=1 from the smoothed kernel densityef (x) = n−1

Pn
t=1 Lb (Xt − x), where Lb (x) = b−d1L (x/b) with L (.) a product kernel of a univariate density

l, and b > 0 the resampling bandwidth; (ii) For t = 1, ..., n, given X∗t , draw Y ∗t and Z∗t independently from
the smoothed conditional density ef (y|X∗t ) = Pn

s=1 Lb (Ys − y)Lb (Xs −X∗t ) /
Pn

r=1 Lb (Xr −X∗t ) andef (z|X∗t ) =Pn
s=1 Lb (Zs − z)Lb (Xs −X∗t ) /

Pn
r=1 Lb (Xr −X∗t ) , respectively, and denoteW ∗t ≡ (X∗0t , Y ∗0t ,

Z∗0t )
0
, andW∗ ≡ {W ∗t }nt=1 ; (iii) Compute a bootstrap statistic T ∗n in the same way as Tn, withW∗ replacing

W; (iv) repeat steps (i) and (ii) B times to obtain B bootstrap test statistics
©
T ∗nj
ªB
j=1

. PP (Remark 2.1)
explain how to generate the bootstrap replicates computationally.
Let Pr∗ denote probability conditional on the sample W. The level α critical values ecα are com-

puted as an approximate solution to Pr∗[T ∗n > ecα] = α. The bootstrap p-value is then given by p∗ ≡
B−1

PB
j=1 1

¡
T ∗nj > Tn

¢
. Several facts are worth mentioning: (i) Conditionally on W, the bootstrap repli-

cates W ∗t and W ∗s are independent for t 6= s, and they have the same distributions; (ii) conditionally on
W, Y ∗t and Z∗t are independent given X∗t . We shall use these facts repeatedly in the proof of Theorem 4.1.
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To show that the smoothed local bootstrap procedure is consistent, we impose the following conditions
on L (.) and b.

Assumption A.5 (Bootstrap kernel and bandwidth) (i) The kernel L is a product kernel of a bounded
symmetric kernel density l : R → R+ such that

R
R u

il(u)du = δi0 (i = 0, 1). (ii) l is r times continuously
differentiable such that

R
R u

jl(r)(u)du = 0 for j = 0, 1, ..., r − 1 and RR url(r)(u)du < ∞. (iii) As n →∞,

b→ 0, and nbd+2r/(lnn)γ → C ∈ (0,∞] for some γ > 0.

Theorem 4.1 Suppose Assumptions A.1-A.3 and A.5 and H0 hold, if d ≤ 7 and d1−4 < d3−d2 < 4−d1,
then T ∗n

d→ N(0, 1) conditionally on W.
Assumption A.5 (i) is standard. We impose A.5 (ii)-(iii) to ensure that the smoothed kernel densities ef 0s

are well behaved, e.g., the rth derivatives of ef(x) are bounded uniformly on a compact set with probability
approaching 1 as n→∞. When r = 4, l = ϕ, the standard normal density, satisfies A.5(ii). Theorem 4.1
shows that the smoothed local bootstrap procedure provides an asymptotically valid approximation to the
normal limit under H0. It implies that T ∗n

d→ N(0, 1) unconditionally. We will compare the finite sample
performance of the smoothed local bootstrap with that of the asymptotic normal approximation in our
simulation.

5 Numerical results

5.1 Monte Carlo simulations

We now present Monte Carlo experiment results that illustrate the finite sample performance of our test.
First, we consider the following data generating processes (DGPs):
DGP1s: Wt = (ε1,t, ε2,t, ε3,t)

0, where {ε1,t, ε2,t, ε3,t} are i.i.d. N(0, I3).
For DGPs 2s-4s and DGPs 1p-5p below, Wt = (Yt−1, Yt, Zt−1)0, where Zt = 0.5Zt−1 + ε2,t, {ε1,t, ε2,t}

are i.i.d. N(0, I2), and
DGP2s: Yt = 0.5Yt−1 + ε1,t;

DGP3s: Yt =
√
htε1,t, ht = 0.01 + 0.5Y

2
t−1;

DGP4s: Yt =
p
h1,tε1,t, Zt =

p
h2,tε2,t, h1,t = 0.01 + 0.9h1,t−1 + 0.05Y 2

t−1, h2,t = 0.01+ 0.9h2,t−1 +
0.05Z2t−1;
DGP1p: Yt = 0.5Yt−1 + 0.5Zt−1 + ε1,t;

DGP2p: Yt = 0.5Yt−1 + 0.5Z2t−1 + ε1,t;

DGP3p: Yt = 0.5Yt−1Zt−1 + ε1,t;

DGP4p: Yt = 0.5Yt−1 + 0.5Zt−1ε1,t;
DGP5p: Yt =

√
htε1,t, ht = 0.01 + 0.5Y

2
t−1 + 0.25Z2t−1.

DGP6p: Wt = (Yt−1, Yt, Zt−1)0, where Yt =
p
h1,tε1,t, Zt =

p
h2,tε2,t, h1,t = 0.01+0.1h1,t−1+0.4Y 2

t−1+
0.5Z2t−1, h2,t = 0.01 + 0.9h2,t−1 + 0.05Z2t−1, and {ε1,t, ε2,t} are i.i.d. N(0, I2).
DGPs 1s-4s allow us to examine the level of the test, whereas DGPs 1p-6p are used to study power

properties. These DGPs cover a variety of linear and nonlinear stochastic processes commonly studied in

time series analysis. In particular, we have Granger-causality in the mean (resp. variance) in DGPs 1p-3p
(resp. DGPs 4p-6p). DGPs 3s-4s and 5p-6p specify processes of (G)ARCH type.
We use a fourth order kernel in estimating all required densities: k(u) = (3−u2)ϕ(u)/2. The weighting

function a(w) is given in Footnote 7. Thus,
R
R3 a(w)dw = 1 and

R
R3 a(w)

2dw = 1/27. As it is difficult to
specify the optimal bandwidth sequence, we take h = cn−

1
8.5 for a variety of c0s.

To implement our test, we re-scale the data so that each variable has sample mean zero and variance
1. For each of DGPs 1s-4s, we choose c = 1 in calculating Tn and make a comparison between the
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asymptotic normal and bootstrap approximations to the distribution of Tn, with n = 100. For the bootstrap
approximation, we choose B = 1000, b = n−1/5, and l the standard normal pdf. In Figure 1, the solid
line (Hel) denotes the sample distribution of Tn obtained over 2000 simulations. The dashed line (Normal)
denotes the normal approximation and the dotted line (Helb) the bootstrap approximation. For each
of DGPs 1s-4s, the bootstrap approximation is better than the normal approximation in the right tail.

As H
..
ardle and Mammen (1993) remark, the inaccuracy of the normal approximation increases with the

dimension of (X,Y,Z) so we recommend the use of the bootstrap in applications.
LG base their tests of conditional independence on the functional An(w) =

©
n−1

Pn
t=1 1(Wt ≤ w)

ª
×©n−1Pn

t=1 1(Xt ≤ x)
ª − ©n−1Pn

t=1 1(Xt ≤ x) 1(Yt ≤ y)
ª©

n−1
Pn

t=1 1(Xt ≤ x)1(Zt ≤ z)
ª
, where w =

(x, y, z). Specifically, their test statistics are of the Cram 0er von-Mises and Kolmogorov-Smirnov types:
CMn =

Pn
t=1A

2
n(Wt), KSn =

√
nmax1≤t≤n |An(Wt)|. DG base their tests of conditional independence

on the functional Ln(w) = n−1
Pn

t=1

n
1(Yt ≤ y)− eFn(y|Xt)

o ef(Xt)1(Xt ≤ x)1(Zt ≤ z), where for band-

width h2 and kernel K2, eFn(y|Xt) ≡ n−1h−d12

Pn
s=1 1(Ys ≤ y)K2((Xt − Xs)/h2)/ ef(Xt) and ef(Xt) ≡

n−1h−d12

Pn
s=1K2((Xt − Xs)/h2). We denote their two test statistics as SCMn =

Pn
t=1 L

2
n(Wt), and

SKSn =
√
nmax1≤t≤n |Ln(Wt)|. We choose K2 to be the standard normal pdf and let h2 = n−1/3 in our

simulation. Note that both the LG and DG tests were developed for i.i.d. data. To implement their tests
here, we replace their bootstrap procedures by the above local bootstrap to account for data dependence.
To compare the performance of these tests with ours, we implement our test with c = 1, 1.5, and 2. To
save computation time, we use B = 200 and 250 repetitions unless otherwise stated.
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Figure 1. Comparison of asymptotic and bootstrap approximations to the distribution of Tn

[Insert Table 1 around here]
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Tables 1 and 2 report the estimated levels and powers in the 5% and 10% tests. Also reported in the
tables are the standard linear Granger causality results (LINn) with 1000 repetitions, where we examine
whether Zt−1 should enter the regression of Yt on Yt−1 linearly. From Table 1, we see that the levels of
all tests behave reasonably well despite the fact that the both the DG test and our test (for small values
of c) tend to be over-sized for small sample sizes. From Table 2, we see that except for DGP1p where the

linear Granger causal relation is true, the standard linear Granger causality test performs worse than all
other tests but SKSn. It is not surprising that the CMn and SCMn tests beat the KSn and SKSn tests
respectively, as this has been seen in several other studies. Also, the CMn test tends to complement the
SCMn test whereas the KSn test tends to dominate the SKSn test in power. As far as our test is concerned,
the CMn and SCMn tests are more powerful than our test in detecting linear Granger causality in the mean
for small values of c whereas for other cases, our test outperforms.

[Insert Table 2 around here]

Next, we consider high-frequency alternatives of the form:
Yt = 0.5Xt + 4τφ(Zt/τ) + 0.5εt

where {Xt, Zt, εt} are i.i.d. N(0, I3) and as before φ is the standard normal pdf. We consider τ ∈
{0, 0.5, 1, 2}, where Yt = 0.5Xt + 0.5εt for τ = 0, and denote the corresponding DGPs as DGP1h through
DGP4h. In this case, Wt = (Xt, Yt, Zt)

0. We also check whether Zt should enter the regression of Yt on Xt

linearly and denote the resulting t-test statistic as LINn.

[Insert Table 3 around here]

Table 3 reports the rejection frequency for various tests. For τ = 0 (DGP1h), the null hypothesis is
true and all tests tend to be undersized for small n. When τ 6= 0, the powers of the LG and DG tests are
significantly lower than the power of our test, as expected. Also, for some values of τ , the LG and DG tests

are beaten even by the simple test LINn.

5.2 Application to exchange rate data

Over the last two decades many studies have reported that foreign exchange rates exhibit nonlinear depen-
dence, but researchers often neglect this when testing Granger causality. One exception is Hong (2001) who
proposes a test for volatility spillover and applies it to study the volatility spillover between two weekly
nominal U.S. dollar exchange rates, Deutschemark (DM) and Japanese yen (YEN).
In this application, we apply our nonparametric test to examine the causal relationship between DM

and YEN and that between DM and the British pound (PD), and compare this to some previous tests.
The data are obtained from Datastream for the sample period from January 19th, 1994 to January 19th,
2004, with 2609 observations total. The exchange rates are the local currency against the US dollar. As
is standard, we let DM, YEN, and PD stand for the natural logarithm of the above three exchange rates
multiplied by 100. The augmented Dickey-Fuller test indicates that there is a unit root in all three level
series but not in the first differenced series, ∆DM, ∆YEN, and ∆PD. Johansen’s likelihood test indicates
that DM is not cointegrated with YEN or PD. Therefore, both the linear and nonlinear Granger causality
tests will be conducted on the first differenced data.
For concisesness, we only consider the dynamic interaction between exchange rates at the one day

lag. For example, for testing whether YEN Granger-causes DM linearly, we check whether β = 0 in

∆DMt = α0 + α∆DMt−1 + β∆YENt−1 + t; for testing whether YEN Granger-causes DM nonlinearly, we
check H0,NL: ∆DMt ⊥ ∆YENt−1|∆DMt−1.
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[Insert Table 4 around here]

The results are summarized in Table 4. The linear Granger causality test (LIN) does not reveal a
Granger-causal relationship between DM and YEN or PD at a one day lag, similar to the LG and DG tests.
In contrast, our nonparametric test reveals unidirectional Granger causality from DM to YEN and from

PD to DM. This suggests that at a one day lag, the exchange rates across countries interact strongly with
each other. One obvious reason for the failure of the linear Granger causality test and the LG and DG tests
in detecting such causal linkages is that exchange rates exhibit unambiguously nonlinear dependence across
markets. The volatility spillover between exchange rates is a special case of such nonlinear dependence.

6 Conclusion

This paper develops asymptotic distribution theory for a nonparametric test of conditional independence
under weak dependence conditions. The test is directly applicable to testing Granger non-causality. It also
applies to cases where not all variables are continuous or observable. Monte Carlo experiments indicate
that the our test outperforms the LG and DG tests significantly in a variety of DGPs. An application to

exchange rate data demonstrates the power of our test in detecting nonlinear Granger causal relationships.
To improve the asymptotic approximation to the finite sample distribution of our test statistic, one can

consider higher order refinements. If the distributions of our test statistic and its bootstrap analogue admit
Edgeworth expansion, we conjecture that the bootstrap distribution approximates the null distribution of
the test statistic with an error rate that can be arbitrarily close to O(n−1/2), and this will significantly
improve the normal approximation rate of O(hd2 + hd3). Recently, Nishiyama and Robinson (2000) and
Linton (2002) establish the validity of Edgeworth expansion for a degenerate U -statistic with variable
kernel. This suggests that a rigorous proof establishing the validity of Edgeworth expansion in our context
should be possible. Also, such an expansion will offer a solution to the choice of optimal bandwidth; we
leave this for future research.

Other interesting directions for future research are to accommodate non-stationary processes, and to
extend our test to the case in which some of the random variables are nonparametrically estimated.
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Appendix

A Some Useful Definitions, Lemmas and Theorems

Here we provide a definition, two lemmas, and one theorem that are used in the proof of the main theorems
and propositions in the text.

Definition A.1 Let {Ut, t ∈ Z} be a d-dimensional strictly stationary stochastic process, and let F t
s denote

the σ-algebra generated by (Us, ..., Ut) for s ≤ t. The process is called β-mixing or absolutely regular, if as
m→∞,

βnm = sup
s∈N

E[ sup
A F∞s+m

{|P (A|Fs
−∞)− P (A)|}]→ 0.

For a sequence of d-dimensional strictly stationary processes (Unt, t ∈ Z) , denote by βnm the β-mixing coef-
ficient of process (Wnt, t ∈ Z):

βnm = E[ sup
A F∞n,m

{|P (A|F0n,−∞)− P (A)|}],

where F∞n,m (resp. F0n,−∞) is the σ-algebra generated by Unt, t ≥ m (resp. Unt, t ≤ 0).
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Lemma A.2 (Yoshihara, 1976) Let {Ut, t ≥ 0} be a d-dimensional stochastic process satisfying As-
sumption A.1(i) in the text. Let h(v1, ..., vk) be a Borel measurable function on Rkd such that for some δ > 0
and given j, M ≡ max{RRkd |h(v1, ..., vk)|1+δdF (v1, ..., vk), R RRkd |h(v1, ..., vk)|1+δdF (1)(v1, ..., vj)dF (2)(vj+1,
..., vk) exists. Then

¯̄R
Rkd h(v1, ..., vk)dF (v1, ..., vk)−

R R
Rkd h(v1, ..., vk)dF

(1)(v1, ..., vj)dF
(2)(vj+1, ..., vk)

¯̄
≤ 4M1/(1+δ)βδ/(1+δ)m , wherem ≡ ij+1−ij , F, F (1) and F (2) are distributions of random vectors (Ui1 , ..., Uik),
V1 ≡ (Ui1 , ..., Uij ) and V2 ≡ (Uij+1 , ..., Uik), respectively; and i1 < i2 < ... < ik.

Lemma A.3 (Yoshihara, 1989) Let h be defined as above; then E|E[h(V1, V2)|V1] − EV1h(V1, V2)| ≤
4M1/(1+δ)βδ/(1+δ)m , where EV1h(V1, V2) ≡ H(V1) with H(v1) ≡ E[h(v1, V2)].

Now let gn(·) and hn(·, ·) be Borel measurable functions on Rd and Rd × Rd, respectively. Sup-
pose E[gn(U0)] = 0, E[hn(U0,v)] = 0, and hn(u, v) = hn(v, u) for all (u, v) ∈ Rd × Rd. Define Gn ≡
n−1/2

Pn
i=1 gn(Ui), and Hn ≡ n−1

P
1≤i<j≤n[hn(Ui, Uj)−Ehn(Ui, Uj)]. Clearly, Gn and Hn are degenerate

U -statistics of respective orders 1 and 2. Let p > 0 and let {U t, t ≥ 0} be an i.i.d. sequence where U0 is
an independent copy of U0. Define

un(p) ≡ max{ max
1≤i≤n

||hn(Ui, U0)||p, ||hn(U0, U0)||p},
vn(p) ≡ max{ max

1≤i≤n
||Gn0(Ui, U0)||p, ||Gn0(U0, U0)||p},

wn(p) ≡ ||Gn0(U0, U0)||p,
zn(p) ≡ max

0≤i≤n
max
1≤j≤n

{||Gnj(Ui, U0)||p, ||Gnj(U0, Ui)||p, ||Gnj(U0, U0)||p},
where Gn,i(u, v) ≡ E[hn(Ui, u)hn(U0, v)], and || · ||p ≡ {E| · |p}1/p.
Theorem A.4 (Tenreiro, 1997) Using the above notation, suppose there exist δ0 > 0, γ0 < 1/2, and
γ1 > 0 such that (i) ||gn(U0)||4 = O(1); (ii) E[gn(Ui)gn(U0)] = ci + o(1), i = 0, 1, 2, ...; (iii) un(4 + δ0) =

O(nγ0); (iv) vn(2) = o(1); (v) wn(2 + δ0/2) = o(n1/2); (vi) zn(2)n
γ1 = O(1); (vii) E[hn(U0, U0)]

2 =

2eσ22 + o(1). Then (Gn,Hn) is asymptotically normally distributed with mean zero and covariance matrix" eσ21 0

0 eσ22
#
, where eσ21 ≡ c0 + 2

P∞
i=1 ci.

B Proof of Theorem 3.1

We begin by expanding the functional Γ( bf, F ) using the functional delta method. The only difference
between Γ( bf, F ) and bΓ ≡ Γ( bf, bF ) is that the latter is an average over the empirical distribution function bF
instead of F. We will show in Lemma B.6 that this difference is asymptotically inconsequential. To bound
the remainder term in the functional expansion of Γ( bf, F ), we define the sup norm, ||g||≡ sup

u∈A∩Rp
|g(u)|. In

the sequel, the dimension p of u will be d, d1+d2, d1+d3 or d1, depending on which subset of w ≡ (x, y, z)
we are referring to (in this appendix all vectors are row vectors). Define Ωi ≡ {g : Rpi → R, g is bounded,R
g = 0, and ||g|| < b/2}, with pi = d, d1 + d2, d1 + d3 and d1, for i = 1, ..., 4, respectively. Throughout

this appendix, C denotes a generic constant which may vary from one place to another. The bar notation
denotes an i.i.d. copy of the corresponding processes, independent of that process. For example, {W t, t ≥ 0}
is an i.i.d. sequence having the same marginal distributions as {Wt, t ≥ 0}. See Lemmas B.4 and B.6 for
details.
One of the main ingredients in the proof is the functional expansion of Γ, summarized as follows.

Lemma B.1 Let F be a cdf on Rd. Let gxyz, gxy, gxz and gx belong to Ωi, i = 1, 2, 3 and 4, respectively.

Then under Assumption A.1(ii) and H0, Γ(·, F ) has the following expansion:

Γ(f + g;F ) =
1

4

Z ½
gxyz

f(x, y, z)
− gxy

f(x, y)
− gxz

f(x, z)
+

gx
f(x)

¾2
a(w)dF (w) +R(g, F ),
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where sup{|R(g, F )|/(||gxyz||3 + ||gxy||3 + ||gxz||3 + ||gx||3) : (gxyz, gxy, gxz, gx) ∈ Ω1 ×Ω2 ×Ω3 ×Ω4} <∞.

Proof. Define

Ψ(τ) =

Z (
1−

s
(f(x, y) + τgxy)(f(x, z) + τgxz)

(f(x, y, z) + τgxyz)(f(x) + τgx)

)2
a(w)dF (w),

where (gxyz, gxy, gxz, gx) are such that (τgxyz, τgxy, τgxz, τgx) ∈ Ω1 × Ω2 × Ω3 × Ω4 for all 0 ≤ τ ≤ 1.

From the explicit expression for Ψ(τ) and the properties of the f ’s and g’s, it follows that Ψ is three times
continuously differentiable in τ on [0,1]. Applying Taylor’s formula with Lagrange remainder to Ψ, we get

Ψ(τ) = Ψ(0) + τΨ0(0) + τ2Ψ00(0)/2 + τ3Ψ
000
(τ∗)/6,

where 0 ≤ τ∗ ≤ τ . Note that Ψ(0) = 0 under H0. Define ϕ1(τ ,w) ≡ [f(x, y) + τgxy][f(x, z) + τgxz],

ϕ2(τ , w) ≡ [f(x, y, z) + τgxyz][f(x) + τgx]. It is immediate that

Ψ0(τ) =
Z (

1−
s

ϕ2(τ , w)

ϕ1(τ , w)

)½
∂ϕ1(τ , w)/∂τ

ϕ2(τ ,w)
− ϕ1(τ ,w)∂ϕ2(τ , w)/∂τ

ϕ2(τ , w)
2

¾
a(w)dF (w). (B.1)

Under the null, Ψ0(0) = 0. That is, the first order term vanishes in the expansion of Ψ(τ) around τ = 0.

Next, we have

Ψ
00
(τ) =

1

2

Z s
ϕ1(τ ,w)

ϕ2(τ ,w)

½
ϕ2(τ , w)∂ϕ1(τ ,w)/∂τ

ϕ1(τ , w)
2

− ∂ϕ2(τ , w)/∂τ

ϕ1(τ ,w)

¾
×
½
∂ϕ1(τ , w)/∂τ

ϕ2(τ , w)
− ϕ1(τ , w)∂ϕ2(τ ,w)/∂τ

ϕ2(τ , w)
2

¾
a(w)dF (w)

+

Z (
1−

s
ϕ2(τ ,w)

ϕ1(τ ,w)

)½
∂2ϕ1(τ , w)/∂τ

2

ϕ2(τ , w)
− 2∂ϕ1(τ , w)/∂τ∂ϕ2(τ , w)/∂τ

ϕ2(τ ,w)
2

−ϕ1(τ , w)∂
2ϕ2(τ , w)/∂τ

2

ϕ2(τ ,w)
2

+
2ϕ1(τ , w)(∂ϕ2(τ ,w)/∂τ)

2

ϕ2(τ , w)
3

¾
a(w)dF (w).

Note that under H0, at τ = 0, the second term in the last expression vanishes and that ∂ϕ1(0, w)/∂τ =
gxyf(x, z) + gxzf(x, y), ∂ϕ2(0, w)/∂τ = gxyzf(x) + gxf(x, y, z), so we can easily obtain that under H0,

Ψ
00
(0) =

1

2

Z ½
gxyz

f(x, y, z)
− gxy

f(x, y)
− gxz

f(x, z)
+

gx
f(x)

¾2
a(w)dF (w).

Further, notice that ∂2ϕ1(τ , w)/∂τ
2 = 2gxygxz and ∂2ϕ2(τ , w)/∂τ

2 = 2gxyzgx, both of which are free of
τ . One can characterize the remainder term by first computing Ψ

000
(τ). The explicit formula for Ψ

000
(τ) is

lengthy. By the Cauchy-Schwartz inequality and Assumption A.1(ii), we can bound this remainder by a
factor of (||gxyz||3 + ||gxy||3 + ||gxz||3 + ||gx||3). Consequently, for τ = 1, we obtain that under H0

Ψ(1) =
1

4

Z ½
gxyz

f(x, y, z)
− gxy

f(x, y)
− gxz

f(x, z)
+

gx
f(x)

¾2
a(w)dF (w)+O(||gxyz||3+ ||gxy||3+ ||gxz||3+ ||gx||3),

and the lemma follows.

Lemma B.2 Under Assumptions A.1, A.2, A.3(i) and H0, we have for any cdf F,

Γ( bf, F ) = 1

4

Z ( bf(x, y, z)
f(x, y, z)

−
bf(x, y)
f(x, y)

−
bf(x, z)
f(x, z)

+
bf(x)
f(x)

)2
a(w)dF (w) +Op(|| bf(x, y, z)− f(x, y, z)||3∞),

where
°°° bf(x, y, z)− f(x, y, z)

°°°
∞
≡ sup

(x,y,z)∈A

¯̄̄ bf(x, y, z)− f(x, y, z)
¯̄̄
.
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Proof. We apply Lemma B.1 with gxyz = bf(x, y, z)− f(x, y, z), gxy = bf(x, y)− f(x, y), gxz = bf(x, z)−
f(x, z) and gx = bf(x)− f(x). First note that the β-mixing condition in Assumption A.1 implies α-mixing.
One can modify the proof of Theorem 4.3 in Liebscher (1996) with Assumption A.2 in place of his condition
on the kernel function K and get

|| bf(w)− f(w)||∞ = Op(n
−1/2h−d/2 (lnn)γ/6 + hr) = op(1) (B.2)

for some γ > 0. Similar expressions hold for || bf(u) − f(u)||∞, with u = (x, y), (x, z), or x. Let S ≡
{|| bf(w)−f(w)||∞ ≥ b/2, || bf(x, y)−f(x, y)||∞ ≥ b/2, || bf(x, z)−f(x, z)||∞ ≥ b/2, and || bf(x)−f(x)||∞ ≥ b/2}.
Then Pr[S]→ 0 so that Pr[(gxyz, gxy, gxz, gx) ∈ Ω1×Ω2×Ω3×Ω4]→ 1. Lastly, notice that || bf(w)−f(w)||∞
dominates || bf(u)− f(u)||∞ for u = (x, y), (x, z), or x. The result follows.
To facilitate the presentation, we introduce some new notation. Let

In ≡
Z ( bf(x, y, z)

f(x, y, z)
−
bf(x, y)
f(x, y)

−
bf(x, z)
f(x, z)

+
bf(x)
f(x)

)2
a(w)dF (w) ≡

Z
rn(w)

2a(w)dF (w).

Then In =
R
[rn(w) − Ern(w)]

2a(w)dF (w) + 2
R
[rn(w) − Ern(w)]Ern(w)a(w)dF (w) +

R
[Ern(w)]

2a(w)

dF (w), and In − E[In] = 2
R
[rn(w) − Ern(w)]Ern(w)a(w)dF (w) +

R {[rn(w) − Ern(w)]
2 − E[rn(w) −

Ern(w)]
2}a(w)dF (w). Throughout the rest of this appendix, we let w ≡ (x, y, z) ∈ Rd1 × Rd2 × Rd3 ,

u ≡ (x0, y0, z0) ∈ Rd1 ×Rd2 ×Rd3 , and v ≡ (ex, ey, ez) ∈ Rd1 ×Rd2 ×Rd3 . Define
R(w, u) ≡ Kh(w − u)

f(w)
− Kh(x− x0)Kh(y − y0)

f(x, y)
− Kh(x− x0)Kh(z − z0)

f(x, z)
+

Kh(x− x0)
f(x)

≡
4X

i=1

Ri(w,u),

eR(w, u) ≡ P4
i=1[Ri(w, u) − ERi(w,W )] ≡ P4

i=1
eRi(w, u), Gn(u) ≡

R eR(w, u)h−rErn(w)a(w)dF (w), and
Hn(u, v) ≡ hd/2

R eR(w,u) eR(w, v)a(w)dF (w). Note that we have suppressed the dependence of R(·, ·),
Ri(·, ·), eR(·, ·), and eRi(·, ·) on n. Then we can write

In −E[In] = 2n−1/2hr
(
n−1/2

nX
i=1

Gn(Wi)

)
+ 2n−1h−d/2

⎧⎨⎩n−1
X

1≤i<j≤n
[Hn(Wi,Wj)−EHn(Wi,Wj)]

⎫⎬⎭
+n−1h−d/2

(
n−1

nX
i=1

[Hn(Wi,Wi)−EHn(Wi,Wi)]

)
≡ 2n−1/2hrUn,1 + 2n−1h−d/2Un,2 + n−1h−d/2Un,3. (B.3)

It is easy to verify that Un,3 = Op

¡
n−1/2h−d/2

¢
= op(1) under Assumptions A.1-A.3. We shall use

Theorem A.4 to study the asymptotic normality of Un,1 and Un,2 with Gn(
.) and Hn(

.,. ) in place of gn(.)
and hn(

.,. ) in the theorem, respectively. Moreover, the term involving Un,1 is asymptotically negligible
given our restrictions on bandwidth and kernel (Lemma B.3). To get the asymptotic distribution of our test

statistic, we need to calculate both asymptotic variance (Lemma B.4) and bias correction terms (Lemma
B.5).

Lemma B.3 Let h→ 0. Under Assumptions A.1- A.2 and H0, Un,1
d→ N(0, eσ2), where eσ2 ≡ V ar(γ(W0))+

2
P∞

t=1Cov(γ(Wt), γ(W0)) and γ(.) is defined below in Equation (B.4).

Proof. First, h−rErn(w) = h−rE[R(w,W )] = 4r
nf(w)/f(w)−4r

nf(x, y)/f(x, y)−4r
nf(x, z)/f(x, z)+

4r
nf(x)/f(x) ≡ eγn(w), where

4r
nf(w) ≡

(−1)r
(r − 1)!

dX
i1,...,ir=1

Z
Rd

ui1 ...uirK(u)

Z 1

0

∂rf(w − hut)

∂wi1 ...∂wir

(1− t)r−1dtdu,
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and4r
nf(x, y),4r

nf(x, z), and4r
nf(x) are defined analogously. Since h→ 0, by the dominated convergence

theorem and Assumptions A.2, lim
n→∞eγn(w) = 4rf(w)/f(w) − 4rf(x, y)/f(x, y) − 4rf(x, z)/f(x, z) +

4rf(x)/f(x) ≡ eγ(w), where 4rf(w) ≡ ((−1)r/r!)C0
Pd

i=1 ∂
rf(w)/∂wr

i , C0 is defined in Assumption A.2,
and 4rf(x, y),4rf(x, z), and 4rf(x) are defined analogously.
Notice that EGn(W ) = 0 by construction and sup

n∈N
sup
w∈A

|Gn(w)| <∞ under Assumptions A.1(ii) and A.2.

Now lim
n→∞E[Gn(Wi)Gn(W0)] =

R eγ(wi)a(wi)eγ(w0)a(w0){(1 + f(yi, zi|xi)− f(zi|xi, yi)− f(yi|xi, zi)}{(1 +
f(y0, z0|x0)−f(z0|x0, y0)−f(y0|x0, z0)}fi(w0, wi)dwidw0−{

R eγ(w)a(w)[(1+f(y, z|x)−f(z|x, y)−f(y|x, z)]
f(w)dw}2 = Cov(γ(Wi), γ(W0)), where

γ(w) ≡ a(w)eγ(w)[1 + f(y, z|x)− f(y|x, z)− f(z|x, y)]. (B.4)

Consequently, Conditions (i)-(ii) in Theorem A.4 are satisfied and thus Un,1
d→ N(0, eσ2).

Lemma B.4 Under Assumptions A.1, A.2 and A.3(i) and H0, Un,2
d→ N(0, σ2/2), where σ2 is as defined

in the text.

Proof. Note that Un,2 = n−1
P

1≤i<j≤n[Hn(Wi,Wj) − EHn(Wi,Wj)]. By construction, Hn(u, v) =

Hn(v, u), and EHn(W0, v) = 0. We verify conditions (iii)-(vii) in Theorem A.4. First, Hn(Wi,W0) =

hd/2
R eR(w,Wi)× eR(w,W0)a(w)dF (w) =

P4
j=1

P4
k=1 h

d/2
R eRj(w,Wi) eRk(w,W0)a(w)dF (w), so for p ≥ 1,

||Hn(Wi,W0)||p ≤
P4

j=1

P4
k=1 ||hd/2

R eRj(w,Wi) eRk(w,W0)a(w)dF (w)||p ≤ C||hd/2 R eR1(w,Wi) eR1(w,W0)

a(w)dF (w)||p ≡ C||Hn1(Wi,W0)||p, where the first inequality is due to the triangle inequality for the Lp
norm and the second follows from the fact that ||Hn1(Wi,W0)||p is the dominant term in the double sum-
mation. Notice that Hn1(u, v) = hd/2

R
A
Kh(w−u)Kh(w−v)a(w)/f(w)dw+O(hd/2), and by Assumptions

A.1(ii)-(iii)

E

¯̄̄̄Z
A

Kh(w −Wi)Kh(w −W0)
a(w)

f(w)
dw

¯̄̄̄p
= h−dp

Z
Rd

Z
Rd

¯̄̄̄Z
A

K(w)K(w +
u− v

h
)
a(u+ hw)

f(u+ hw)
dw

¯̄̄̄p
fi(u, v)dudv

≤ h−d(p−1) sup
w∈A

µ
a(w)

b

¶p
sup
i∈N

sup
u,v∈A

fi(u, v)

Z
Rd

Z
Rd
|K(u)K(u+ v)|pdudv,

so we have ||Hn(Wi,W0)||p ≤ Chd/2h−d(p−1)/p = C(hd)(1/p−1/2).
Letting W 0 be an independent copy of W0, one can show by similar argument that ||Hn(W0,W 0)||p ≤

C(hd)(1/p−1/2). Consequently, un(p) ≤ C(hd)(1/p−1/2) for some C > 0. Now we show vn(p) ≤ C(hd)1/p.

Note that Gn0(u, v) ≡ E[Hn(W0, u)Hn(W0, v)] = Gn0,1(u, v)(1+o(1)), where Gn0,1(u, v) = hdE{R R eR1(w,
W0) eR1(w, u) eR1(w0,W0) eR1(w0, v)a(w)a(w0)dF (w)dF (w0)} ≤ C

R
Rd
R
Rd
R
Rd K(w)K(w+w

0)K( ew)K( ew+w0+
(u−v)/h)dwdw0d ew+O(hd), so ||Gn0,1(Wi,W0)||p ≤ C(hd/p+hd), and ||Gn0(Wi,W0)||p ≤ Chd/p. Similarly,
one can show ||Gn0(W0,W 0)||p ≤ Chd/p, and thus vn(p) ≤ C(hd)1/p.

By the same argument, we have wn(p) ≡ ||Gn0(W0,W0)||p ≤ C and zn(p) ≤ Chd. For some fixed
δ0 > 0, Conditions (iv) and (v) in Theorem A.4 are satisfied by Assumption A.3(i). By Assumption A.3(i),
nγ1hd < ∞ for some γ1 ∈ (0, 1) so Condition (vi) in Theorem A.4 is satisfied. Now take γ0 = (2+

δ0)/(8+ 2δ0) ∈ (0, 1/2); then Condition (iii) in Theorem A.4 is satisfied again by Assumption A.3(i).
Finally, E[Hn(W0,W 0)

2] =
R
A
a(w)2dw

R
Rd
£R
Rd K(u+ v)K(u)du

¤2
dv + o(1) = σ2 + o(1). It follows that

Un,2
d→ N(0, σ2/2).

Lemma B.5 Under Assumptions A.1-A.3 and H0, if d ≤ 7 and d1 − 4 < d3 − d2 < 4− d1, then

nhd/2EIn = h−d/2B1 + h−d/2+2B2 − h(d2−d1−d3)/2B3 − h(d3−d1−d2)/2B4 + h(d2+d3−d1)/2B5 + o(1).
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Proof. EIn =
R
A
[Ern(w)]

2a(w)dF (w) + E
R
A
[rn(w) − Ern(w)]

2a(w)dF (w) ≡ An,1 + An,2. From the
proof of Lemma B.3, we obtain

nhd/2An,1 = nhd/2+2r
Z
A

eγ(w)2a(w)dF (w) + o(nhd/2+2r) = o(1), (B.5)

where the last equality follows from Assumptions A.1(ii) and A.3(ii). Now write

An,2 = n−2
nX
t=1

E

½Z
A

eR(w,Wt)
2a(w)dF (w)

¾
+ 2n−2

X
1≤i<j≤n

E

½Z
A

eR(w,Wi) eR(w,Wj)a(w)dF (w)

¾

= n−1h−d/2

⎧⎨⎩EHn(W0,W0) + 2n
−1 X

1≤i<j≤n
EHn(Wi,Wj)

⎫⎬⎭ .

We want to show

EHn(W0,W0) = h−d/2B1 + h−d/2+2B2 − h(d2−d1−d3)/2B3 − h(d3−d1−d2)/2B4 + h(d2+d3−d1)/2B5

+O(hd/2 + h−d/2+4 + h(d3−d1−d2+4)/2 + h(d2−d1−d3+4)/2 + h(d2+d3−d1+4)/2), (B.6)

and
Dn ≡ 2n−1

X
1≤i<j≤n

EHn(Wi,Wj) = op(1). (B.7)

Now EHn(W0,W0) = E[hd/2
R eR(w,W0) eR(w,W0)a(w)dF (w)] =

P4
i,j=1 h

d/2E{R Ri(w,W0)Rj(w,W0)

a(w)dF (w)}+O(hd/2) ≡P10
i=1Bn,i+O(hd/2), where Bn,i = hd/2E

R
Ri(w,W0)

2a(w)dF (w) for 1 ≤ i ≤ 4,
Bn,i = hd/2E

R
2R1(w,W0)Ri−3(w,W0)a(w)dF (w) for 5 ≤ i ≤ 7, Bn,i = hd/2E

R
2R2(w,W0)Ri−5(w,W0)

a(w)dF (w) for 8 ≤ i ≤ 9, and Bn,10 = hd/2E
R
2R3(w,W0)R4(w,W0)a(w)dF (w). We can expand each

term to the order of negligible asymptotic effects to obtain (B.6). For example,

Bn,1 = h−d/2
Z
Rd

K(u)2du

Z
A

a(w)dw + h−d/2+2
Z
Rd

K(u)2u21du
dX
i=1

Z
A

1

2

∂2f(w)

∂w2i

a(w)

f(w)
dw +O(h−d/2+4).

To show Dn = op(1), let m = [L logn] (the integer part of L logn), where L is a large positive constant
so that n4βδ/(1+δ)m = o(1) for some δ > 0 by Assumption A.1(i).9 We consider two different cases for
Dn : (a) j − i > m and (b) 0 < j − i ≤ m. We use Dn,a and Dn,b to denote these two cases. For case (a),
we use Lemma A.2 and the bound un(p) ≤ C(hd)1/p−1/2 with p = 1 + δ (see the proof of Lemma B.4) to
obtain Dn,a = n−1

P
j−i>mEHn(Wi,Wj) ≤ Cn−1n2(hd)1/(1+δ)−1/2βδ/(1+δ)m = o(nh−d/2βδ/(1+δ)m ) = o(1).

For case (b), use the bound un(1) ≤ Chd/2 to obtain Dn,b = n−1
P

j−i≤mEHn(Wi,Wj) ≤ Cn−1nmhd/2

= O(mhd/2) = o(1). Consequently, (B.7) holds.
Last, given h = o(1) and the restrictions on di, i = 1, 2, 3, it is easy to verify

O(hd/2 + h−d/2+4 + h(d3−d1−d2+4)/2 + h(d2−d1−d3+4)/2 + h(d2+d3−d1+4)/2) = o(1), (B.8)

where, for example, h(d2+d3−d1+4)/2 = o(1) because d ≤ 7 implies d1 ≤ 5. Combining (B.5), (B.6), (B.7)
and (B.8), the conclusion follows.

Lemma B.6 Let e∆n = Γ( bf, bF )− Γ( bf, F ). Then under Assumptions A.1-A.3 and H0, nh
d/2 e∆n = op(1).

Proof. By the same argument used to obtain the expansion of Γ( bf, F ), we obtain that under H0,

Γ( bf, bF ) = 1

4

Z ( bf(x, y, z)
f(x, y, z)

−
bf(x, y)
f(x, y)

−
bf(x, z)
f(x, z)

+
bf(x)
f(x)

)2
a(w)d bF (w) +Op(|| bf(x, y, z)− f(x, y, z)||3∞).

9For example, for fixed δ > 0, if ρ < 1/2.71828 in Assumption A.1(i), B = 4(1 + δ)/δ would suffice.
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It thus suffices to show that

∆n ≡
Z ( bf(x, y, z)

f(x, y, z)
−
bf(x, y)
f(x, y)

−
bf(x, z)
f(x, z)

+
bf(x)
f(x)

)2
a(w)d[ bF (w)− F (w)] = op(n

−1h−d/2).

Write ∆n =
R
A
rn(w)

2a(w)d[ bF (w)− F (w)] = n−3
Pn

j,k,l=1{R(Wl,Wj)R(Wl,Wk)a(Wl) −
R
R(w,Wj)R(w,

Wk)a(w)dF (w)} =
P4

i=1∆n,i, where∆n,1 ≡ n−3
Pn

l 6=j,k{R(Wl,Wj)R(Wl,Wk)a(Wl)−
R
R(w,Wj)R(w,Wk)

a(w)dF (w)} is the summation of the centered terms with l 6= j, l 6= k and j 6= k, ∆n,2 ≡ 2n−3
Pn

j 6=k R(Wj ,

Wj)R(Wj ,Wk)a(Wj) is the summation of the terms with l = j 6= k, ∆n,3 ≡ n−3
Pn

j=1R(Wj ,Wj)
2a(Wj)

is the summation of the terms with l = j = k, and ∆n,4 ≡ −n−3
Pn

j,k=1

R
R(w,Wj)R(w,Wk)a(w)dF (w) is

the summation of the centering terms for ∆n,2 and ∆n,3.
Dispensing with the simpler terms first, we have by Assumption A.3(i), (B.3), the remarks following

(B.3), and Lemmas B.3-B.4,

−∆n,4 = n−1In = n−1(In − EIn) + n−1EIn = n−2h−d/2{nhd/2(In −EIn)}+ n−1(h2r + n−1h−d)

= Op(n
−2h−d/2) +O(n−1h−d/2hd/2+2r) +O(n−2h−d) = op(n

−1h−d/2), (B.9)

and E|∆n,3| = n−3
Pn

j=1E[R(Wj ,Wj)
2a(Wj)] = O(n−2h−2d) = o(n−1h−d/2). Consequently, by the

Markov inequality,
∆n,3 = op(n

−1h−d/2). (B.10)

It is difficult to show that the other two terms are small. Our strategy is to use Lemmas A.2-A.3
repeatedly and show these terms are asymptotically negligible in that ∆n,i = op(n

−1h−d/2), i = 1 and 2.
For j 6= k, we can show that (recall the bar notation previously defined)

E[R(Wj ,Wj)R(Wj ,Wk)a(Wj)] = O(h−d), (B.11)

and
E[R(W j ,W j)R(W j ,W k)a(W j)] = O(hr−d). (B.12)

To bound Dn,1 ≡ E(∆n,2) = 2n−3
Pn

j 6=k E[R(Wj ,Wj)R(Wj ,Wk)a(Wj)], we consider two different
cases for Dn,1 : (a) |j − k| > m and (b) |j − k| ≤ m. We use Dn,1a and Dn,1b to denote these two
cases. By Lemma A.2 and (B.12), Dn,1a = 2n

−3P
|j−k|>mE[R(Wj ,Wj)R(Wj ,Wk)a(Wj)] ≤ C{n−1hr−d+

n−3n2(h−d)(1+2δ)/(1+δ) βδ/(1+δ)m } = O(n−1h−d/2hr−d/2) + o(n−1h−dβδ/(1+δ)m ) = o(n−1h−d/2). By (B.11),
Dn,1b = 2n−3

P
|j−k|≤m E[R(Wj ,Wj)R(Wj ,Wk)a(Wj)] ≤ Cn−3nmh−d = O(n−2mh−d) = o(n−1h−d/2).

So Dn,1 = o(n−1h−d/2).
LetDn,2 ≡ E(∆n,2)

2 = 4n−6
P

t1 6=t2
P

t3 6=t4 E{R(Wt1 ,Wt1)R(Wt1 ,Wt2)a(Wt1)R(Wt3 ,Wt3)R(Wt3 ,Wt4)

a(Wt3)}. We consider two cases: (a) for all i ∈ {1, 2, 3, 4}, |ti − tj | > m for all j 6= i; and (b) all the other
remaining cases. We will useDn,2s to denote these cases (s = a, b). Observe that by Lemma A.2 and (B.11),
Dn,2a ≤ (Dn,1a)

2
+C(n−2(h−d)(2+4δ)/(1+δ)βδ/(1+δ)m ) = o(n−2h−d). For all the other remaining cases, there

exists at least one i ∈ {1, 2, 3, 4}, such that |ti−tj | ≤ m for some j 6= i. The number of such terms is of the or-
der O(n3m). For t1 6= t2 and t3 6= t4, one can bound E|R(Wt1 ,Wt1)R(Wt1 ,Wt2)a(Wt1)R(Wt3 ,Wt3)R(Wt3 ,

Wt4)a(Wt3)| by Ch−2d if {t1, t2} ∩ {t3, t4} 6= {t1, t2} and by Ch−3d otherwise. Consequently, Dn,2b ≤
C(n−6n3mh−2d + n−6n2h−3d) = o(n−2h−d). So E(∆n,2)

2 = o(n−2h−d), and by the Chebyshev inequality,
we have

∆n,2 = op(n
−1h−d/2). (B.13)

Now, we want to show
∆n,1 = op(n

−1h−d/2). (B.14)
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Write∆n,1 = n−3
Pn

l6=j,k{R(Wl,Wj)R(Wl,Wk)a(Wl)−E[R(Wl,Wj)R(Wl,Wk)a(Wl)|Wj ,Wk)]}+n−3
Pn

l6=j,k
{E[R(Wl,Wj)R(Wl,Wk)a(Wl)|Wj ,Wk)]−

R
R(w,Wj)R(w,Wk)a(w)dF (w)} ≡ ∆n,1,1+∆n,1,2. By Lemma

A.3,

E|∆n,1,2| ≤ n−3
nX

l6=j,k
E

¯̄̄̄
E[R(Wl,Wj)R(Wl,Wk)a(Wl)|Wj ,Wk)]−

Z
R(w,Wj)R(w,Wk)a(w)dF (w)

¯̄̄̄
≤ C{[(h−d)2δ/(1+δ) + n−1(h−d)(1+2δ)/(1+δ)]βδ/(1+δ)m + (n−1m+ n−2mh−d)} = o(n−1h−d/2),

and by the Markov inequality
∆n,1,2 = op(n

−1h−d/2). (B.15)

Now let Sj,k,l ≡ R(Wl,Wj)R(Wl,Wk)a(Wl) − E[R(Wl,Wj)R(Wl,Wk)a(Wl)|Wj ,Wk)]; then ∆n,1,1 =

n−3
Pn

l 6=j,k Sj,k,l with E(∆n,1,1) = 0 because E(Sj,k,l) = 0 for all l 6= j and l 6= k. Denote

Dn,3 ≡ E(∆n,1,1)
2 = n−6

X
t1 6=t3,t2 6=t3,t3

X
t4 6=t6,t5 6=t6,t6

E{St1,t2,t3St4,t5,t6}.

We consider four different cases: (a) for all i0s, |ti − tj | > m for all j 6= i; (b) for exactly four different
i0s, |ti − tj | > m for all j 6= i; (c) for exactly three different i0s, |ti − tj | > m for all j 6= i; (d) all the
other remaining cases. Using Dn,3s to denote these cases (s = a, b, c, d), by Lemma A.2, one can show that
|Dn,3s| = o(n−2h−d) for s = a, b, c, d. In sum, Dn,3 = o(n−2h−d) and thus by the Chebyshev inequality

∆n,1,1 = op(n
−1h−d/2). (B.16)

Combining (B.15) and (B.16), we have (B.14). The conclusion follows.

Lemma B.7 Under Assumptions A.1-A.3, nhd/2|| bf(x, y, z)− f(x, y, z)||3∞ = op(1).

Proof. By (B.2) and Assumption A.3, nhd/2|| bf(x, y, z)−f(x, y, z)||3∞ = nhd/2Op(n
−3/2h−3d/2(lnn)γ/2+

h3r) = Op(n
−1/2h−d(lnn)γ/2 + nhd/2+3r) = op(1).

Putting Lemmas B.2-B.7 together, we have proved Theorem 3.1.

C Proof of Theorem 4.1

Let bf∗ (x) , bf∗ (x, y) , bf∗ (x, z) , and bf∗ (x, y, z) be defined as bf (x) , bf (x, y) , bf (x, z) , and bf (x, y, z) with
W∗ replacing W. Let ef (w) ≡ ef (x, y, z) denote the pdf of W ∗t = (X∗0t , Y ∗0t , Z∗0t )

0
, i.e., ef (x, y, z) ≡ef (y|x) ef (z|x) ef (x) ; and denote the corresponding cdf as eF (w) . Let bF ∗ (w) denote the empirical dis-

tribution of W ∗t . We first state a lemma that is proven in Appendix D.

Lemma C.1 Suppose Assumptions A.1-A.3, and A.5 hold. Then (a) sup
x∈A∩Rd1

¯̄̄ bf∗ (x)− ef (x)¯̄̄ = Op(n
−1/2

h−d1/2(lnn)γ/2+hr); (b) sup
x∈A∩Rd1+d2

¯̄̄ bf∗ (x, y)− ef (x, y)¯̄̄ = Op(n
−1/2h−(d1+d2)/2(lnn)γ/2+hr); (c) sup

x∈A∩Rd1+d3¯̄̄ bf∗ (x, z)− ef (x, z)¯̄̄ = Op(n
−1/2h−(d1+d3)/2(lnn)γ/2 + hr); (d) sup

x∈A∩Rd

¯̄̄ bf∗ (x, y, z)− ef (x, y, z)¯̄̄ = Op(n
−1/2

h−d/2(lnn)γ/2 + hr).

Define bΓ∗ ≡ Γ( bf∗, bF ∗) = n−1
Pn

t=1

½
1−

r
f∗(X∗t ,Y

∗
t )f
∗(X∗t ,Z

∗
t )

f∗(X∗t ,Y
∗
t ,Z

∗
t )f(X

∗
t )

¾2
a(X∗t , Y ∗t , Z∗t ). One can modify the

proofs of Lemmas B.1 and B.2 to obtain Γ( bf∗, eF ) = 1
4

R n f∗(x,y,z)
f(x,y,z)

− f∗(x,y)
f(x,y)

− f∗(x,z)
f(x,z)

+ f∗(x)
f(x)

o2
a(w)d eF (w)+

Op(|| bf∗(x, y, z)− ef(x, y, z)||3∞), where °°° bf∗(x, y, z)− ef(x, y, z)°°°∞ ≡ sup
(x,y,z)∈A

¯̄̄ bf∗(x, y, z)− ef(x, y, z)¯̄̄ .
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Let r∗n (w) , R∗ (w, u) , eR∗ (w, u) , I∗n, G∗n (u) , H∗n (u, v) be defined as rn (w) , R (w, u) , eR (w, u) , In,
Gn (u) , Hn (u, v) with bf∗, ef, and eF replacing bf, f, and F. Throughout, let E∗ denote the expectation with
respect to the smoothed kernel density ef (x, y, z) conditional on W. Noticing that E∗G∗n(W ∗i ) = 0 and
E∗H∗n(W ∗i ,W

∗
j ) = 0 for i 6= j, we have

I∗n −E∗ [I∗n] = 2n−1/2hr
(
n−1/2

nX
i=1

G∗n(W
∗
i )

)
+ 2n−1h−d/2

⎧⎨⎩n−1
X

1≤i<j≤n
H∗n(W

∗
i ,W

∗
j )

⎫⎬⎭
+n−1h−d/2

(
n−1

nX
i=1

[H∗n(W
∗
i ,W

∗
i )−E∗H∗n(W

∗
i ,W

∗
i )]

)
≡ 2n−1/2hrU∗n,1 + 2n

−1h−d/2U∗n,2 + n−1h−d/2U∗n,3. (C.1)

Conditional onW, {W ∗i } forms a triangular array of independent random variables, and so do {G∗n(W ∗i )}
and {H∗n(W ∗i ,W ∗i )} . It is easy to verify that U∗n,1 = Op (1) and U∗n,3 = Op

¡
n−1/2h−d/2

¢
= op (1) follow-

ing the proof of Lemma 5.2 in Paparoditis and Politis (2000). By construction, H∗n(u, v) = H∗n(v, u),
and E∗H∗n(W

∗
i , v) = 0. Let G

∗
n(u, v) = E∗{H∗n(W ∗1 , u) H∗n(W ∗1 , v)}. We verify that E∗

£
H∗2n (W

∗
1 ,W

∗
2 )
¤
=

σ2 + o(1), E∗
£
H∗4n (W ∗1 ,W ∗2 )

¤ ≤ Ch−d, and E∗
£
G∗2n (W ∗1 ,W ∗2 )

¤ ≤ Chd, and thus {E∗ £G∗2n (W ∗1 ,W ∗2 )¤ +
n−1E∗

£
H∗4n (W ∗1 ,W ∗2 )

¤} /©E∗ £H∗2n (W ∗1 ,W ∗2 )¤ª2 → 0. Consequently, U∗n,2
d→ N(0, σ2/2) conditional onW

by Theorem 1 of Hall (1984).
Next, we can show that nhd/2E∗ [I∗n] = E∗H∗n(W ∗1 ,W ∗1 ) = h−d/2B1 + h−d/2+2B∗2 −h(d2−d1−d3)/2B∗3 −

h(d3−d1−d2)/2B∗4 + h(d2+d3−d1)/2B∗5 + o(1), where for i = 2, 3, 4, 5, B∗i is defined as Bi with ef 0s replacing
f 0s, e.g., B∗5 = Cd1

1

R
A
a (w) ef (w) / ef (x) dw. Let e∆∗n = bΓ∗ − Γ( bf∗, eF ). We can show conditional on W thate∆∗n = op

¡
n−1h−d/2

¢
with arguments similar to but simpler than those used in the proof of Lemma B.6

because {W ∗t } is an i.i.d. sequence givenW. Let bB∗i , i = 2, 3, 4, 5, be defined as bBi with
n
W∗, bf∗o replacingn

W, bf∗o , e.g., bB∗5 ≡ (C1)d1n−1Pn
t=1{a(W ∗t )/ bf∗(X∗t )}. Applying Lemma C.1, we can show h2−d/2( bB∗2 −

B∗2), h(d3−d1−d2)/2( bB∗3 − B∗3), h(d2−d1−d3)/2( bB∗4 − B∗4), h(d2+d3−d1)/2( bB∗5 − B∗5), and nhd/2|| bf∗(x, y, z) −ef(x, y, z)||3∞ are op(1). The completes the proof of Theorem 4.1.¥

D Other Proofs

Proof of Proposition 3.2. The analysis is similar to that of Lemmas B.1 and B.6, now keeping
the additional terms that don’t vanish under the alternative. First, Ψ(τ) = Ψ(0) + τΨ0(0) + o (Ψ0(0)) ,
where Ψ(0) = Γ(f, F ), and Ψ0(0) is obtained from (B.1). So Γ( bf, F ) = Γ(f, F ) + Ψ0(0) + o (Ψ0(0)) .
Noticing that Lemma B.6 also holds under the alternative, i.e., Γ( bf, bF ) = Γ( bf, F )+ op(n

−1h−d/2), we have
Γ( bf, bF ) = Γ(f, F ) +Ψ0(0) + o (Ψ0(0)) + op(1). It is easy to show that n1/2Ψ0(0) = Op(1) when Γ(f, F ) > 0.
Thus Tn = 4nhd/2Γ(f, F )/

√
2σ2 + n1/2hd/2Op(1)

p→∞ if Γ(f, F ) > 0.
Proof of Proposition 3.3. First, for the double array stochastic process {Wnt, 0 ≤ t ≤ n}, the func-

tional expansion of Γ(df [n], F [n]) and subsequent lemmas in Appendix B continue to hold when accommodat-
ing the additional terms arising under the local alternative. UnderH1(αn), Tn−4nhd/2Γ(f [n], F [n])/

√
2σ2

d→
N(0, 1). Moreover, under H1(αn), Γ(f [n], F [n]) =

α2n
4

R 4(w)2a(w)dF [n](w) + o(α2n). For αn = n−1/2h−d/4,
4nhd/2Γ(f [n], F [n]) =

R 4(w)2a(w)dF [n](w)→ R 4(w)2a(w)dF (w) ≡ δ as n→∞. Consequently, Pr(Tn ≥
zα|H1(αn))→ 1− Φ(zα − δ/(

√
2σ)).

Proof of Proposition 3.4. Under H1,h(βn, γn), Tn − 4nhd/2Γ(f [n], F [n])/
√
2σ2

d→ N(0, 1), and
4nhd/2Γ(f [n], F [n]) = nhd/2β2n

R
Λ((w − w0) /γn)

2a(w)dF [n](w) {1 + o(1)} = nhd/2β2nγna (w0) f (w0)
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R
Λ(w)2dw {1 + o(1)}→ Ca (w0) f (w0)

R
Λ(w)2dw ≡ δ as n→∞. Consequently, Pr(Tn ≥ zα|H1(αn))→

1− Φ(zα − δ/(
√
2σ)).

Proof of (3.1). To sketch the proof, we first note that || bf (0)(w)− f(w)||∞ = Op(υn) and || bf (2)i (w)−
∂2f(w)/∂w2i ||∞ = Op(h

−2
1 υn), where υn ≡ n−1/2h−d/21 (lnn)γ + hp1 for some γ > 0. So

1

n

nX
t=1

bf (2)i (Wt)a(Wt)bfh1(Wt)2
=
1

n

nX
t=1

∂2f(Wt)

∂w2i

a(Wt)

f(Wt)2
©
1 + h−21 υn

ª
.

By Assumption A.1(ii), ξt ≡
¡
∂2f(Wt)/∂w

2
i

¢
a(Wt)/f(Wt)

2 is a bounded random variable with compact
support A and {ξt} is a mixing process with the same mixing coefficients as {Wt} . One can thus apply a
CLT for mixing processes to obtain

1

n

nX
t=1

∂2f(Wt)

∂w2i

a(Wt)

f(Wt)2
−
Z
A

µ
∂2f(w)

∂w2i

¶
a(w)

f(w)
dw = Op(n

−1/2).

It then suffices to ensure that h2−d/2h−21 υn = o(1), which holds by assumption.

Proof of Lemma C.1. We only prove part (a), since the proof of parts (b) and (c) is analogous and
part (d) follows from (a)-(c). Let A1 = A∩Rd1 . Then sup

x∈A1

¯̄̄ bf∗ (x)− ef (x)¯̄̄ ≤ sup
x∈A1

|n−1Pn
t=1[Kh (X

∗
t − x)−

E∗Kh (X
∗
t − x)]| + sup

x∈A1

|E∗Kh (X
∗
t − x)− ef (x) |. The first term is Op(n

−1/2h−d1/2(lnn)γ/2) following from

a standard argument (e.g., Masry, 1996). E∗Kh (X
∗
t − x) − ef (x) = (hr/r!)

R
Rd1 K (u)

Pd1
i=1 u

r
i∂

r ef(x +
λhu)/∂xri du for some λ ∈ [0, 1]. By Assumption A5, sup

x∈A1

¯̄̄
E
h
∂r ef(x)/∂xri i¯̄̄ = O(1) and sup

x∈A1

¯̄̄
∂r ef(x)/∂xri−

E
h
∂r ef(x)/∂xri i¯̄̄ = Op(n

−1/2b−d1/2−r(lnn)γ/2) = Op (1) . Consequently, sup
x∈A1

¯̄̄
∂r ef(x)/∂xri ¯̄̄ = Op (1) by

the triangle inequality, and the desired result follows.
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Table 1: Level comparison of the tests

DGP1s DGP2s DGP3s DGP4s DGP1s DGP2s DGP3s DGP4s

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5
Tn, c=2

n=100, 5%
0.044 0.061 0.050 0.060
0.054 0.058 0.060 0.048
0.042 0.056 0.056 0.040

0.076 0.060 0.084 0.064
0.064 0.056 0.088 0.068
0.096 0.060 0.048 0.072
0.068 0.056 0.052 0.056
0.072 0.036 0.072 0.048

n=100, 10%
0.095 0.121 0.110 0.106
0.094 0.100 0.132 0.120
0.100 0.112 0.140 0.108

0.108 0.080 0.156 0.116
0.128 0.108 0.124 0.148
0.176 0.152 0.120 0.148
0.124 0.120 0.120 0.124
0.136 0.072 0.120 0.084

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5

Tn, c=2

n=200, 5%
0.043 0.053 0.042 0.050
0.044 0.056 0.060 0.048
0.068 0.053 0.048 0.084
0.048 0.060 0.064 0.068
0.056 0.028 0.064 0.072
0.064 0.052 0.080 0.080
0.064 0.056 0.048 0.036

0.044 0.060 0.056 0.048

n=200, 10%
0.840 0.109 0.101 0.090
0.095 0.100 0.108 0.112
0.096 0.088 0.104 0.124
0.092 0.100 0.124 0.140
0.092 0.084 0.112 0.132
0.100 0.140 0.136 0.140
0.120 0.128 0.120 0.092

0.092 0.144 0.084 0.096
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Table 2: Power comparison of the tests

DGP1p DGP2p DGP3p DGP4p DGP5p DGP6p

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5
Tn, c=2

n=100, 5%
0.999 0.337 0.213 0.126 0.163 0.153
0.920 0.548 0.504 0.412 0.384 0.188
0.780 0.404 0.380 0.288 0.292 0.156
0.924 0.464 0.352 0.500 0.224 0.196
0.728 0.236 0.288 0.340 0.120 0.112
0.668 0.756 0.388 0.860 0.828 0.680
0.888 0.940 0.512 0.924 0.952 0.812
0.952 0.944 0.576 0.940 0.988 0.912

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5
Tn, c=2

n=200, 5%
1.000 0.354 0.250 0.113 0.172 0.143
0.992 0.748 0.788 0.680 0.476 0.360
0.952 0.552 0.660 0.532 0.336 0.284

0.980 0.648 0.620 0.720 0.352 0.280
0.964 0.324 0.512 0.552 0.148 0.136
0.900 0.960 0.596 0.992 0.968 0.880
0.980 1.000 0.808 0.992 0.972 0.972
1.000 1.000 0.864 1.000 1.000 0.996

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5
Tn, c=2

n=100, 10%

1.000 0.436 0.284 0.175 0.239 0.233
0.964 0.652 0.644 0.480 0.472 0.304
0.868 0.492 0.496 0.428 0.408 0.232
0.960 0.564 0.488 0.612 0.324 0.300
0.876 0.372 0.400 0.436 0.176 0.212
0.772 0.840 0.532 0.932 0.912 0.776
0.948 0.972 0.692 0.964 0.972 0.896
0.976 0.988 0.712 0.964 0.992 0.928

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5
Tn, c=2

n=200, 10%
1.000 0.442 0.327 0.176 0.253 0.209
1.000 0.856 0.904 0.752 0.592 0.508
0.988 0.676 0.756 0.676 0.484 0.404
0.988 0.732 0.728 0.812 0.480 0.424
0.984 0.468 0.604 0.664 0.276 0.232

0.944 0.984 0.712 0.996 0.976 0.936
0.984 1.000 0.896 0.992 0.984 0.996
1.000 1.000 0.936 1.000 1.000 0.996
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Table 3: Comparison of tests for high frequency alternatives

DGP1h DGP2h DGP3h DGP4h DGP1h DGP2h DGP3h DGP4h

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5
Tn, c=2

n=100, 5%
0.045 0.055 0.133 0.190
0.020 0.160 0.280 0.128
0.024 0.128 0.176 0.112

0.012 0.088 0.180 0.080
0.036 0.156 0.196 0.116
0.028 0.696 0.948 0.764
0.044 0.828 0.980 0.892
0.020 0.596 0.976 0.936

n=100, 10%
0.100 0.115 0.187 0.267
0.064 0.276 0.428 0.248
0.072 0.256 0.316 0.172

0.036 0.168 0.288 0.120
0.072 0.220 0.292 0.152
0.072 0.808 0.968 0.876
0.068 0.916 0.984 0.948
0.044 0.708 0.992 0.968

LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5

Tn, c=2

n=200, 5%
0.047 0.059 0.124 0.202
0.068 0.444 0.708 0.332
0.056 0.284 0.524 0.220
0.024 0.196 0.356 0.104
0.044 0.204 0.356 0.140
0.040 0.980 1.000 0.964
0.028 0.988 0.992 0.996

0.020 0.972 1.000 0.996

n=200, 10%
0.094 0.115 0.207 0.286
0.100 0.580 0.816 0.536
0.104 0.448 0.680 0.336
0.036 0.272 0.488 0.196
0.096 0.336 0.476 0.236
0.072 0.988 1.000 0.988
0.064 0.996 0.992 0.996

0.080 0.988 1.000 0.996

Table 4: Applications to Deutschemark (DM), Japanese yen (YEN) and British pound (PD)

DM and YEN DM and PD

Tests \ H0
LINn

CMn

KSn
SCMn

SKSn
Tn, c=1
Tn, c=1.5
Tn, c=2

∆YEN ; ∆DM ∆DM ; ∆YEN
0.219 0.431
0.915 0.790
0.915 0.625

0.710 0.865
0.620 0.905
0.185 0.020
0.385 0.025
0.450 0.020

∆PD ; ∆DM ∆DM ; ∆PD
0.997 0.234
0.900 0.320
0.785 0.365

0.925 0.340
0.770 0.635
0.005 0.105
0.020 0.110
0.065 0.200

NOTE: The notation ; means “does not Granger cause”. The central entries are the p-values for
each test. Bandwidth sequences and kernels are chosen as in the simulations.
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