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ABSTRACT 
INTRODUCTION 
Postprandial lipemia (PPL) influences the development of atherosclerosis. However, there are still 
significant gaps to fully understanding of postprandial metabolism and its regulating factors.  

OBJECTIVES 
Main objective: To determine whether metabolic syndrome (MetS) traits influence the PPL of 
coronary patients, and whether this influence depends on the number of MetS criteria.  
Secondary objectives: 1) To investigate whether the number of criteria of metabolic syndrome may 
predict the degree of postprandial response in patients with normal fasting triglycerides (TGs); 2) To 
determine the exact contribution of the presence of MetS to age-associated enlarged PPL; 3) To 
explore the phenotypic flexibility of high risk patients, measured with an oral fat tolerance test 
(OFTT), according to different cardio-metabolic abnormalities and body mass index (BMI).  

METHODS 
We developed two independent studies: A first one where we compared the PPL response to a rich 
fatty meal of 88 healthy young men (<30 years old) and 97 older participants (77 MetS patients 
aged > 40; and 20 healthy people > 65) (all ApoE3/E3), at fasting state and at 2nd and 4th 
postprandial hours; and a second one where 1002 coronary artery disease patients from the 
CORDIOPREV study were submitted at the beginning of the study to an OFTT with 0.7 g fat/kg 
body weight and serial blood test analyzing lipid fractions were drawn at 0, 1, 2, 3 and 4 hours 
during the postprandial state. Patients were classified according to the presence of MetS and the 
number of its traits. We also explored in that cohort the dynamic response according to six body 
size phenotypes: (i) normal weight, metabolically healthy; (ii) normal weight, metabolically abnormal; 
(iii) overweight, metabolically healthy; (iv) overweight, metabolically abnormal; (v) obese, 
metabolically healthy; and (vi) obese, metabolically abnormal.  

RESULTS 
In the first study, we didn’t find differences between the healthy young men and the healthy elderly. 
MetS patients displayed a higher postprandial TG area below the curve than the other two cohorts p 
< 0.001. In the CORDIOPREV study, PPL response was directly related to the presence of MetS. 
We found a positive association between the number of MetS criteria and the response of 
postprandial plasma TGs (p= 0.001), area under the curve (AUC) of TGs (p= 0.001) and 
incremental AUC of TGs (p= 0.001). However, the influence of them on postprandial TGs remained 
statistically significant only in those patients without basal hypertriglyceridemia. Only fasting TGs, 
fasting glucose and waist circumference appeared as significant independent contributors (p < 
0.05). Metabolically healthy patients displayed lower PPL compared with those metabolically 
abnormal, independently whether or not they were obese (p < 0.001 and p < 0.01, respectively). 

CONCLUSIONS 
MetS may account for the differences in PPL that have been attributed to age. Fasting TGs are the 
major contributors to the postprandial TGs levels. MetS influences the PPL in patients with coronary 
heart disease, particularly in non-hypertriglyceridemic patients. Finally, our findings showed that 
certain types of the metabolic phenotypes of obesity are more favorable modulating their response 
to a fat load test. To identify these phenotypes may be the best strategy for personalized treatment 
of obesity.  



RESUMEN 
INTRODUCCIÓN 
La lipemia postprandial (LPP) influye en el desarrollo de arteriosclerosis. Sin embargo, existen 
importantes áreas de incertidumbre para comprender completamente el metabolismo energético 
postprandial y sus factores reguladores. 

OBJETIVOS 
Objetivo principal: Determinar si los rasgos de síndrome metabólico (SMet) influyen en la LPP en 
pacientes coronarios, y si esta influencia depende del número de criterios presentes de SMet.  

Objetivos secundarios: 1) investigar si el número de criterios de SMet puede predecir el grado de 
respuesta postprandial en pacientes con triglicéridos (TGs) plasmáticos en ayunas normales; 2) 
determinar la contribución exacta de la presencia de SMet en la respuesta anormal de LPP 
asociada a la edad; y 3) explorar la flexibilidad fenotípica de pacientes de alto riesgo, medida a 
través de un test de sobrecarga oral de grasa (TSOG), de acuerdo a diferentes anormalidades 
cardiometabólicas y al índice de masa corporal (IMC).  

MÉTODOS 
Se han desarrollado dos estudios independientes: un primer estudio comparando la respuesta en la 
LPP a una comida rica en grasa en 88 hombres jóvenes sanos (<30 años) y 97 participantes 
mayores (77 pacientes con SMet >40 años, y 20 sanos >65 años) (todos ApoE3/E3), en ayunas y a 
las 2 y 4 horas tras la sobrecarga; y un segundo estudio donde 1002 pacientes con enfermedad 
coronaria pertenecientes al estudio CORDIOPREV completaron al inicio del mismo un TSOG con 
0.7 g de grasa/kg, con extracciones sanguíneas a las 0, 1, 2, 3 y 4 horas durante el estado 
postprandial. Los pacientes fueron clasificados según la presencia de SMet y el número de sus 
criterios. También se exploró en esta cohorte de pacientes coronarios su respuesta dinámica de 
acuerdo a seis fenotipos diferentes corporales: (i) normopeso, metabólicamente sano; (ii) 
normopeso, metabólicamente enfermo; (iii) sobrepeso, metabólicamente sano; (iv) sobrepeso, 
metabólicamente enfermo; (v) obeso, metabólicamente sano; y (vi) obeso, metabólicamente 
enfermo. 

RESULTADOS 
En nuestro primer estudio, no encontramos diferencias entre los varones sanos jóvenes y los 
mayores sanos. Los pacientes con SMet mostraron mayor magnitud en la respuesta de TGs 
postprandiales que los otros dos grupos (p < 0.001). En el estudio CORDIOPREV, la magnitud en la 
respuesta de la LPP se relacionó directamente con la presencia de SMet. Encontramos una 
asociación positiva entre el número de criterios de SMet y la respuesta de TGs plasmáticos 
postprandiales (p= 0.0001), ABC de TGs (p= 0.0001) y el incremento del area bajo la curva (AUC) 
de TGs plasmáticos (p= 0.001). La influencia de estos criterios sobre los TGs postprandiales sólo 
se mantuvo significativa en aquellos pacientes sin hipertrigliceridemia basal. Tan sólo la cifras de 
TGs y glucosa en ayunas, así como el perímetro de cintura se mantuvieron como predictores 
independientes significativos de LPP (p < 0.05). Los pacientes metabólicamente sanos mostraron 
menor LPP comparados con aquellos metabólicamente enfermos, independientemente de si eran 
obesos o no (p< 0.001). 

CONCLUSIONES 
La presencia de SMet puede modular las diferencias en LPP que han sido atribuidas a la edad. Las 
cifras de TG en ayunas son el factor que más influye en el grado de respuesta de TGs plasmáticos 
postprandiales. El SMet influye en la magnitud de la LPP de pacientes coronarios, especialmente 
en aquellos sin hipertrigliceridemia basal. Finalmente, nuestros hallazgos muestran que ciertos 
fenotipos metabólicos de obesidad son más favorables modulando su respuesta a un TSOG. 
Identificar estos fenotipos podría constituir la mejor estrategia para un tratamiento personalizado de 
la obesidad. 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Chapter 1

INTRODUCTION



I. Chapter 1: INTRODUCTION

Cardiovascular disease (CVD) is one of the major causes of death and young age disability 

in developed countries, accounting for more than 30% of all deaths(1). Although there are 

entities, such as coronary vasospasm or sudden death that have a special pathophysiology, 

the underlying pathological mechanism of CVD in most cases is atherosclerosis. This slow 

and almost irreversible closeness of the vessel lumen develops insidiously over the years 

and is closely related to lifestyle risk factors (modifiable) and risk markers (unmodifiable). To 

date, the most recognized CVD risk factors, also known as classic risk factors, are 

smoking(2), hypertension(3), hyperlipidemia(4), obesity(5) and diabetes(6). The relation of 

these factors with CVD has been stated as causal.  

Although classic risk factors have been identified to play an important role in the 

development of atherosclerosis, they cannot account for the entire risk for incident coronary 

events. Furthermore, the strict control of these factors in clinical trials leads to a modest 

decline in CVD rate. This factor is known as residual risk, and may account up to  33%(7, 

8). Thus, emerging, “novel”, or nontraditional cardiovascular risk factors have been 

proposed, in an effort to improve risk assessment for CVD. They include postprandial 

hypertriglyceridemia(9), C-reactive protein (CRP)(10), carotid intima-media thickness 

(CIMT)(11), homocysteine(12) or lipoprotein (a) (Lp(a))(13) among others(14).  
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At population level, there are different entities that have been linked to a higher risk for 

CVD. Among these, elevated age and disturbed metabolism/obesity are a current focus of 

research. Two factors may be behind this interest: First, the global increase in life 

expectancy, and the importance towards achieving a healthy aging. Second, the increased 

prevalence of obesity worldwide, and the related Metabolic Syndrome (MetS). 

The so called MetS describes a clustering of risk factors for cardiovascular disease and 

type 2 diabetes mellitus (T2DM) including dyslipidemia, glucose intolerance, hypertension 

and central obesity. As stated above, this entity is increasing its prevalence to epidemic 

proportions worldwide and the health care costs and burden are enormous. As an example, 

MetS in Europe in adults includes over 30%(15), and in Spain 31% in general population 

and 50% among cardiovascular patients(16, 17). Although the importance of MetS includes 

a two-fold risk of cardiovascular disease or five-fold risk for T2DM(15, 18), the exact 

underlying mechanisms of the complex pathways of the MetS are still to be fully known. 

Increased body mass index has been also associated with excess mortality risk(5). Obesity 

is a chronic disease which has an outstanding impact on public health due to its increasing 

prevalence and to the high impact on cardiometabolic diseases. However, recent evidence 

suggests that not all obese subjects display a clustering of metabolic and cardiovascular 

risk factors, and, likewise, not all lean subjects present a healthy metabolic and disease-

free profile. Thus, recently more attention has been paid to the different metabolic 

phenotypes of obesity, suggesting that individuals in the same body mass index (BMI) 

category can have substantial heterogeneity on their metabolic control(19). These 

metabolic faults become more easily evident in the situations in which there is an increased 

stress of the metabolic pathways, such as the postprandial state. This fact may support the 
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idea that obesity is a multi-systemic disease with loss of flexibility in one or more metabolic 

processes involved(20). It has been shown that the persons with a given BMI with a poorer 

metabolism control have a higher risk for developing T2DM and CVD(21).  

Linking the two above metabolic diseases, one of the current lines of study on the 

pathophysiology of CVD is postprandial lipemia (PPL). PPL is the period of time after a fatty 

meal (>40 mg fat) in which dietary lipids are digested and metabolized until they return their 

levels in blood to baseline. Additionally to the increase of lipids, PPL is a situation 

characterized by the generation of an atherogenic environment in the bloodstream. This 

fact is derived by the conjunction of the direct atherogenic properties of some lipid particles, 

especially those carried in the triglyceride-rich lipoproteins (TRLs), and by the activation of 

the inflammatory and hemostatic system(22). A disregulation of this capacity of the body to 

deal effectively with the increase of postprandial lipids has been identified as loss of 

“phenotypic flexibility”(23), and highlights the fact that, although the metabolic machinery of 

a subject may work properly, there may be a problem to overcome to a metabolic overload, 

and, during that hours, biochemical, inflammatory and haemostatic factors may increase 

CV risk. This altered PPL is not only circumscribed to metabolic Syndrome or to certain 

altered metabolic phenotypes, but may be an isolated phaenomenon, which makes even 

harder to identify subjects at a high cardiovascular risk, because probably they would never 

conduct a posptprandial lipid determination, and, hence, they would remain undiagnosed. A 

fact that speaks about the importance of PPL in human metabolism is that due to the 

several meals ingested over the day, and considering that PPL lasts 8-12 hours, humans of 

modernized countries spend most of their lives in postprandial situation.  
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In line with the above, recent studies have even suggested that the evaluation of the 

postprandial lipemic response may be important to identify disturbances in lipid metabolism 

and correlates better with CVD risk than measurements taken in the fasting state. Large 

population studies (e.g. Women´s Health Study and the Copenhagen City Heart Study) 

have assessed the association between non-fasting triglycerides (TGs) and the risk of 

cardiovascular disease (CVD) events, and they state that postprandial TG levels are 

excellent markers of risk for coronary artery disease, peripheral vascular disease and 

cerebrovascular disease. In this regard, it has been shown that non-fasting TG (5 mmol/L 

vs. <1 mmol/L, 438.6 mg/dL vs. 87.7 mg/dL) confer an increased risk of myocardial 

infarction, ischemic stroke and risk of early death in women and men in the general 

population(24-28). 

Many factors have been described influencing postprandial metabolism(29). Dietary 

background has been identified as the main extrinsic factor influencing postprandial 

lipemia(30, 31), while genetics, gender and age have been identified as intrinsic 

modifiers(30, 32, 33).  The influence of gender or genetic factors is relatively easy to study, 

due that the factor studied is well characterized. However, the study of the cause of the 

increased PPL associated to age is much more complex. Aging is a process associated to 

other CVD risk factors, and age is often associated to related conditions, such as the 

appearance of metabolic syndrome. The exact contribution of the presence of metabolic 

syndrome to age-associated enlarged postprandial lipemia has not been explored deeply in 

the literature. 

The purpose of this thesis is to revise the knowledge and expose new findings regarding 

the regulation of PPL metabolism. We will focus on age associated PPL changes, and study 

�10



the consequences of human metabolism disruption. To study this, we will explore two 

situations. First, the well stablished model of MetS. Other, the so called body size 

cardiometabolic phenotypes, a relatively novel classification of metabolic status based on 

the addition of inflammatory and insulin resistance status to the classic MetS factors. With 

this, we aim to further characterize the pathophysiology of postprandial lipemia and identify 

subpopulations at high CVD risk.  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II. Chapter 2: REVIEW OF LITERATURE

A.  TRIGLYCERIDE-RICH LIPOPROTEINS AND 
POSTPRANDIAL LIPEMIA

As stated above, the postprandial state is the period from food intake to post-absorptive 

state. It is a dynamic condition, with a continuous fluctuation in the degree of lipemia and 

glycemia over the day, in which there is a rapid continuous remodeling of the lipid levels,  

and a host of other metabolic adaptations compared to the relatively stable conditions in the 

fasting state. The duration of the postprandial period depends on the composition of the 

diet, but typically it reaches its peak between the third and fourth hour, and lasts between 8 

and 12h after a fat meal(34). 

There is an increasing awareness on the importance of postprandial events in the 

development and exacerbation of atherosclerosis. Several epidemiological studies have 

demonstrated that the presence of postprandial hypertriglyceridemia is an independent risk 

factor for cardiovascular disease. Although this fact will be described in Section 1.4. in 

detail, in Table 1 we show the epidemiologic studies reporting strong links between remnant 

cholesterol and atherosclerosis.  
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Table 1. Epidemiologic studies reporting non-fasting triglycerides (TG) or remnant lipoproteins and the risk for 

cardiovascular morbidity and mortality. Adapted from Borén J et al, Clinica Chimica Acta (2014)(9). 

Study/First 
Author [ref.]

Population Follow-up Main outcomes Remarks

Norwegian 
counties 
study[178] 

43,641 men and 
42, 600 women 

free of CVD

Prospective, 27 
years 

HRs (95%CI) per 1 mmol/L increase in non-
fasting TGs for all causes, CVD, IHD, and 

stroke mortality: 
Women: 1.16 (1.13–1.20), 1.20 (1.14–1.27), 

1.26 (1.19–1.34) and 1.09 (0.96–1.23) 
Men: 1.03 (1.01–1.04), 1.03 (1.00–1.05), 1.03 

(1.00–1.06) and 0.99 (0.92–1.07).

Adjustment for major 
cardiovascular risk 

factors attenuated the 
effect 

Copenhagen 
City Heart 

study 

[177,176,175] 

Random 
population sample 
of 6391 men and 

7581 women 

Prospective, 33 
years 

HRs (95%CI) for total mortality by non-fasting 
TGs: 

(TG < 1 mmol/L: HR 1)  

TG 1.0–1.99 mmol/L: 1.1 (95%CI: 1.0–1.2) in 
women and 1.1 (95%CI: 1.1–1.2) in men 

 TG 2.0–2.99 mmol/L: 1.3 (95%CI: 1.2–1.4) in 
women and 1.2 (95%CI: 1.1–1.4) in men  

TG 3.0–3.99 mmol/L: 1.4 (95%CI: 1.2–1.7) in 
women and 1.3 (95%CI: 1.1–1.4) in men  

TG 4.0–4.99 mmol/L: 1.4 (95%CI: 1.1–1.9) in 
women and 1.4 (95%CI: 1.2–1.6) in men 

 TG > 5 mmol/L: 2.0 (95%CI: 1.5–2.7) in 
women and 1.5 (95%CI: 1.2–1.7) in men 

HRs (95%CI) for ischemic stroke by non-
fasting TGs: 

(TG < 1 mmol/L: HR 1) 
 

TG 1.0–1.99 mmol/L: 1.2 (95%CI: 0.9–1.7) in 
women and 1.2 (95%CI: 0.8–1.7) in men  

TG > 5 mmol/L: 3.9 (95%CI: 1.3–11.1) in 
women and 2.3 (95%CI: 1.2–4.3) in men

The best predictor for 
MI in women was non-
fasting TG and in men 
non-fasting cholesterol 

The remnant 
cholesterol increased 
stepwise as a function 
of non-fasting TG and 
cholesterol in cross-
sectional analysis of 

53,629 subjects

The Women's 
Health 

study[24]

26,509 initially 
healthy US women 
of which 6391 had 

non-fasting 
samples

Prospective, 11 
years

HR for CVD event by non-fasting TG: 
2nd tertile: 1.44 (95% CI 0.90–2.29) 
3rd tertile: 1.98 (95% CI 1.21–3.25)

TG measured 2 to 4 h 
postprandially had the 
strongest association 
with CVD events (fully 
adjusted HR [95% CI] 
for highest vs. lowest 
tertiles of levels, 4.48 

[1.98–10.15] [P < 0.001 
for trend])

The Framing 
ham study[174]

1567 women 
offspring of the 

original 
Framingham 

cohort: 83 with 
and 1484 without 

CVD

Cross-sectional RLP-chol + 15.6%; P b 0.0001 and RLP-TG 
+27.0%; 

P < 0.0002 in women with prevalent CVD

Adjusted RLP-chol was 
significantly associated 
with prevalent CVD in 

women in logistic 
regression analysis

Kugiyama et 
al.[173]

147 consecutive 
patients with CAD

Prospective 
follow-up until 
coronary event 
or 36 months

OR for developing coronary event: 
2nd tertile of remnant levels 2.43 (95%CI: 

1.1–5.8) 
3rd tertile of remnant levels 6.38 (95%CI:2.3–

17.6)

Remnant levels were 
independent predictors 
of future coronary event 

in multivariate model

CI, confidence interval; CHD, coronary heart disease; CVD, cardiovascular disease; HR, hazard ratio; MI, myocardial infarction; OR, odds ratio; 
RLP, remnant-like particles; TG, triglycerides.
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The underlying metabolic abnormalities that may explain the increased risk of CVD 

associated to an enlarged PPL are principally initiated by overproduction and/or decreased 

catabolism of TRLs. The effects of this unbalance, such as enhanced inflammation, 

endothelial dysfunction and higher concentrations of atherogenic particles, are  summarized 

in Figure 2.  

Figure 2. Impact of delayed clearance of triglyceride rich lipoprotein on high density lipoprotein and low density lipoprotein 

metabolism, inflammation and vascular function. Adapted from Jackson et al, Atherosclerosis (2012)(35). Abbreviations: 

CE, cholesteryl ester; CETP, Cholesteryl ester transfer protein; CMs, chylomicrons; C-RP, C-reactive protein; eNOS, 

Endothelial nitric oxide synthase; HDL3, High-density lipoprotein 3; HDL-c, High-density lipoprotein cholesterol; HL, 

Hepatic lipase; IL-6, Interleukin 6; LDL3, Low-density lipoprotein 3; NADPH, Nicotinamide adenine dinucleotide 

phosphate; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NO, Nitric oxide; TG, Triglycerides; 

TNF-alfa, Tumor necrosis factor alpha; TRLs, Triglycerides rich lipoproteins; VLDL, Very-low-density lipoprotein.  
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1.  METABOLISM OF POSTPRANDIAL LIPEMIA
After a meal ingestion, TG are hydrolyzed in the human intestine by lipases to produce fatty 

acids (FAs) and monoacylglycerol, which are then absorbed into the enterocytes. Into the 

enterocyte they can be: 1) repacked into chylomicron (CM) lipoprotein particles for 

distribution to the body tissues, 2) stored within the enterocyte in a lipid droplet or TG 

storage pool, 3) used for synthesis of cholesteryl esters or phospholipids, and 4) 

oxidized(9). Although the incorporation of dietary fatty acids into TG or other lipids within the 

enterocyte may depend on chain length and structure, the majority of dietary fatty acids are 

processed as TG-rich CM and secreted into lymph(36). Once in the circulation, 

chylomicrons rapidly undergo hydrolysis to produce cholesterol-dense lipoprotein remnants 

which are taken up by the liver(37). Eventually, these fatty acids stored in the liver may be 

reassembled again and returned to the blood as very low-density lipoproteins (VLDL)(38).  

The elevation of postprandial triglycerides observed in plasma is due to raised 

concentrations of chylomicrons, VLDL, and their respective remnants, collectively known as 

TRLs(29). These TRLs are composed of a core of neutral lipids, mainly TG but also some 

cholesterol esters, surrounded by a monolayer of phospholipids, proteins and free 

cholesterol. Each TRL particle has one molecule of apolipoprotein B (ApoB), which is the 

ligand for the low-density lipoprotein (LDL) receptor(39). ApoB exists in two forms, 

ApoB-100 and ApoB-48, and both forms are coded by the same gene. ApoB-48 is formed in 

the intestine through editing of ApoB-100 mRNA by apolipoprotein B mRNA-editing enzyme 

1 (apobec-1), which function relies on introducing a stop codon into ApoB mRNA(40). 

Therefore, the resulting molecule corresponds to the amino-terminal 48% of apoB-100. 
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Thus, apoB48 is present on CMs and CM remnants, and apoB-100 on VLDL, intermediate-

density lipoprotein (IDL) and LDL. 

The exogenous CMs and endogenously produced VLDL share the same metabolic 

pathway. The intravascular lipolysis of these TRLs by lipoprotein lipase (LPL) results in the 

formation of smaller remnant particles that are TG depleted and enriched in cholesteryl 

esters(41). TGs are removed from the lipoproteins by LPL allowing the delivery of free FAs 

to be used by peripheral tissues, such as muscle and adipose tissue. As the TGs are 

extracted and density increases, CMs become CM remnants, and large TG-rich VLDL1 

particles become smaller VLDL2 and subsequently IDL. IDL can be further hydrolyzed by 

hepatic lipase (HL) to LDL, which is catabolized mainly by hepatic uptake of LDL through 

LDL receptors. Since the TRLs contain a substantial amount of cholesteryl esters, the 

smaller remnant particles formed by TG hydrolysis are enriched in cholesteryl esters(9). 

Due to limited LPL availability, competition at the level of this enzyme may induce 

accumulation of TRLs, specially when fasting high TG plasma levels are present. On the 

other hand, hepatic removal of remnant lipoproteins and direct chylomicron uptake are 

mechanisms that also determine triglyceride plasma levels. Some studies in T2DM patients 

have reported that, in this disease, the hepatic uptake of VLDL, IDL and LDL is decreased, 

resulting in increased plasma residence time of these lipoproteins. Thus, individuals with 

insulin resistance exhibit an impaired lipid tolerance with a severely delayed postprandial 

lipemia due to suppressed removal of TRL remnants(42-44). 

In summary, the fasting TG levels, the rate of TRLs synthesis, the hydrolysis of TGs 

mediated by LPL and the hepatic uptake of chylomicron remnants are the cornerstones of 
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the TRLs metabolism(9). Thus, the inter-individual PPL response can be explained by 

modification of those elements under genetic or environmental circumstances (Figure 3). 

 

Figure 3. Metabolism of postprandial triglycerides. Adapted from Lambert et al, Biochimica et Biophysica Acta (2012)(36). 

Abbreviations: CO2, Carbon dioxide; FA, fatty acids; LPL, lipoprotein lipase; MAG, Monoacylglycerol; NEFA, non-esterified 

fatty acid; TG, Triglyceride; VLDL, Very-low-density lipoprotein.  
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2.  FACTORS AFFECTING THE POSTPRANDIAL LIPEMIA
Several studies have linked the extent of PPL to the incidence of coronary heart disease 

(CHD), and it has been proposed that it is modulated by dietary patterns, food composition, 

conditions associated with lifestyle (physical activity, smoking and alcohol consumption), 

physiological factors (age, gender,  genetic background and postmenopausal status) and 

cardiometabolic conditions such as fasting TGs levels(45-49), T2DM, insulin resistance and 

obesity (50-52) (FIGURE 4). Of all of these, fasting TG seems to be the strongest predictor, 

but, in turn, it may be influenced by the rest of the factors. This highlights the fact that, 

although we will expose the influence of these factors separately, on a pedagogic basis, all 

the cited factors are intimately related among them.  

Figure 4. Factors affecting the postprandial lipemia response. Adapted from Klop B et al, Int J Vasc Med (2012)(51). 

Abbreviations: MUFA, Monounsaturated fatty acids; n3 PUFA, omega 3 polyunsaturated fatty acids; n6 PUFA, omega 6 

polyunsaturated fatty acids; SFA, Saturated fatty acids.  
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2.1. Meal size and composition

Nutrition is the most important environmental factor that modulates PPL. Solid evidences 

support the fact that postprandial lipoprotein metabolism is modulated by dietary patterns 

and food composition(50, 52). The PPL is influenced by the amount and type of fat 

ingested(53-56). Likewise, repeated or consecutive fat meals have been reported to 

increase PPL due to TRLs accumulation from previous meals(57). This fact is even more 

important considering that PPL is a phenomenon that takes place during most of the day in 

developed countries, where the average content of fat is 20–40g/meal with 3-4 meals/

day(29, 58).  

Additionally to the size of the meal, the type of fat is a clear determinant of PPL in the short 

(meal) or long (diet) basis. For example, regarding individual meals, previous studies have 

shown how fatty acid composition of a single fatty meal modulates TRL particle 

characteristics, such as their size, number, and apolipoprotein composition.  Thus, a meal 

containing saturated fatty acids (SFAs) causes the most pronounced lipemia, followed by 

MUFA with polyunsaturated fatty acids (PUFA) causing the least pronounced effect(29, 30). 

The kinetics of the PPL, also, seems to be dependent on the main fat. MUFA induces 

higher TG peak with a faster clearance, whereas PUFA, and specially SFA, induce longer 

PPL time to baseline(30).  

On the other hand, chronic intake and dietary supplementation of n-3 PUFA can lower the 

postprandial TG response as long as a high intake (2.7 – 4 g/d) are given(59). This effect 

has been related to an increase in endogenous LPL activity, causing in turn a decrease in 
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the production of TRLs(59-61) and an increased of TG clearance(62, 63).  Studies with 

diets rich in MUFA or n-6 PUFA have been associated with a trend in lower postprandial 

lipid response compared with SFA(30, 52, 64). 

Beyond fats, the amount and the nature of carbohydrates and proteins modulate 

postprandial lipid response. Diets rich in highly digestible carbohydrates have been related 

with higher postprandial response as a result of hepatic VLDL and CM remnants 

accumulation(65, 66). An amplification of the postprandial excursion of serum TG 

concentration has been reported in test meals with the addition of sucrose or fructose, but 

not with glucose(67, 68).  In addition, in obese insulin-resistant subjects the ingestion of a 

high-glycaemic index mixed meal, compared with a low-glycaemic index one, has been 

linked to postprandial accumulation of ApoB-100 and ApoB-48 particles(69). Unlike the 

previous, lean red meat, soy protein, casein, whey protein and dietary fiber, in the form of 

oat bran, wheat fiber, wheat germ, or psyllium husk, have been associated with a reduced 

postprandial lipemic response(29, 30, 52, 70-72). Recent evidences suggest that the 

presence of certain micronutrients such as plant sterols and polyphenols positively 

influence fasting and postprandial TRLs in different ways such as reducing TG absorption 

(with consequent lower circulating apolipoprotein B/TRLs and remnant lipoproteins), 

lipogenesis, inflammation and oxidative stress(73-75). 

2.2. Other Lifestyle factors

Physical activity 

PPL can be attenuated by aerobic exercise(76).  An acute bout of aerobic exercise 

significantly reduces PPL by 24 – 35% and increases LPL activity(77, 78). A higher affinity 
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of VLDL1 for LPL-mediated TG hydrolysis is one of the mechanism proposed to contribute 

to this TG-lowering effect of exercise(79). 

Alternatively, the modulation of the lipemic response to a high fat and carbohydrate meal 

has been related to the intensity and/or energy expenditure of the preceding exercise(80). A 

review of 16 studies conducted by Murphy et al. revealed that exercise in short bouts was 

as effective as continuous exercise at reducing PPL(78). In addition, combining increased 

physical activity with n-3 PUFA supplementation has been found to have a synergistic effect 

in reducing PPL in active males(81). 

Likewise, we have reported how compliance with moderate-to-high-intensity endurance 

training enhances the positive effects of a model of Mediterranean Diet on the regenerative 

capacity of endothelium and on the fitness of MetS patients(82). 

Smoking and alcohol 

Smoking and alcohol also affect the postprandial metabolism. Epidemiological studies show 

that low or moderate consumption of alcohol is related with lower postprandial TG 

concentrations in white population(58, 83). Paradoxically, single doses red wine induce an 

increased and prolonged postprandial response of TRLs when added to a test meal(84, 

85), suggesting an increase in larger, TG-enriched chylomicron particles. However, it is 

currently unknown whether this unfavorable effect of wine is transient or not, as suggested 

by studies that have explored the effect of other alcohol drinks, such as vodka, where the 

effect on PPL was abolished at 12 hours after alcohol intake(86).  
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It is also stablished that habitual smokers have greater increases in postprandial plasma 

TGs than non-smokers, and that fact has been related to a defective clearance of CMs and 

their remnants induced by smoking(87). The exact mechanism that explain that fact is still 

unknown. Although some authors have proposed inflammation and insulin resistance as 

potential "drivers" for this phenomenon, studies where the effect of smoking on PPL was 

controlled by homeostatic model assessment of insulin resistance (HOMA-IR) and/or 

inflammatory parameters still showed smoking as a significant determinant(88) Some other 

proposed mechanisms include an increase in oxidative stress by components of cigarette 

smoke or a reduction in the binding of peroxisome proliferator activator receptors (PPAR) 

by fatty acids(88) 

2.3. Physiological factors 

Age 

Age has been related to postprandial triglyceridemia. An early study (1988) performed in 22 

non-diabetic subjects (9 males, 13 females, 22-79 yr old) showed a correlation between 

age and the postprandial TG response to a fatty meal (89). Later studies have reported that 

this fact may be resulting from a delayed clearance intestinally derived TRLs in older 

subjects by a decrease in LPL activity(90, 91). However, there are not many studies of age 

influence in PPL when other covariates are controlled. In most of those studies, subjects in 

the older groups exhibited some of the metabolic syndrome traits, which is logical if we take 

into account that the prevalence of metabolic syndrome clearly increases with age(92).  

Gender 
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Gender modulates postprandial metabolism. Thus, several studies have demonstrated that 

men have higher levels of fasting and postprandial TG than premenopausal women(89, 93). 

Diurnal TG profiles had been shown to be lower in lean females than in lean males, with a 

mitigation on these gender differences in insulin resistance and overweight subjects(94). 

However, in MetS patients, men still have a more pronounced postprandial 

hypertriglyceridemia and seem to have delayed TG clearance(95). 

This gender protective effect has been related to a higher clearance capacity in women 

caused by an oestrogen-induced increase in LPL activity(96), and softened in 

postmenopausal women(97). 

2.4. Pathological conditions

Obesity 

Obesity has been associated with several metabolic abnormalities including fasting and 

postprandial dyslipidemia(98). Furthermore, obese individuals have a greater postprandial 

TG response after a fat meal compared to non-obese control patients, even in the absence 

of fasting hypertriglyceridemia(64, 99). This effect is due to the lower level of activity of LPL 

and the diminished ability to remove remnant particles as BMI increases(100). However, 

recent evidences suggest that not all obese patients display the same metabolic and 

cardiovascular risk factors, and probably more studies that explore how the different 

phenotypes of obesity behave after fat overload are needed. Interestingly, some authors 

have proposed that inflammation state could be the link explaining that fact. In this regard, 

our group have reported previously how some variations on inflammatory genes (i.e. IL1b) 

regulate fasting and postprandial lipids and we have hypothesized that patients with those 
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gene variations may have a higher inflammatory status and may over-respond to the pro-

inflammatory stimulus that represents a fatty meal(101).  

Hypertriglyceridemia 

The fact that fasting TG concentration is the main determinant of postprandial response is 

widely supported in the literature, and it has been described in many different 

populations(46-49). A reduction in LPL activity has been indicated as the cause to this 

exaggerated and prolonged postprandial lipid response(30). Moreover it has been proposed 

that in those situations where the liver induces overproduction of VLDL (such as central 

obesity, MetS, T2DM or familial combined hypercholesterolemia), VLDL and CMs catabolic 

mechanisms are saturated(51, 102, 103). This mechanism causes VLDL and CMs 

remnants accumulation, a lower concentration of high-density lipoprotein cholesterol (HDL-

c) and the activation of leukocytes and endothelial cells by remnants and fatty acids(104).

Insulin resistance and type 2 diabetes mellitus 

Two important conditions that modulate the postprandial metabolism are insulin resistance 

and T2DM. Both conditions are associated with increased PPL(105). Besides glucose 

impaired metabolism, insulin resistance leads to disturbed lipid metabolism, including 

elevated levels of fasting and postprandial TGs, low HDL-c levels and low LDL-particle 

diameter(106). Hyperinsulinaemia by itself delays and exacerbates postprandial 

accumulation of intestinally derived CMs in plasma and thus is involved in the regulation of 

apoB-48-TRL metabolism(107). Although the underlying mechanisms are not entirely 

understood, it has been also proposed an aberrant insulin-mediated suppression of hepatic 

VLDL production and fatty acid release from adipose tissue(108). Our group has recently 
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reported that prediabetic patients show higher postprandial TG response compared with 

those non-diabetic patients after a fat overload(109).  

Thus, it seems clear that the PPL response increases progressively according as the 

glycemic control worsens, according to the scale non-diabetic > prediabetic > T2DM state, 

and it is higher in patients with liver insulin-resistance(109).  

Chronic kidney disease 

Although dyslipidemia in chronic kidney disease (CKD) is usually characterized by  fasting 

hypertriglyceridemia, postprandial TG clearance is also impaired in adults with chronic 

kidney disease (CKD)(110).  A decreased utilization or catabolism of VLDL and CM TG is 

generally considered as the more relevant mechanism explaining this fact. Recently, in a 

young group of subjects with primary CKD, postprandial TG and CM metabolism have been 

reported as deteriorated in direct proportion to the degree of CKD, in mechanism involving 

LPL activity via increased apoC-III concentration(111).  

Drugs 

The medications used for the management of dyslipidemia, diabetes and obesity also 

regulate PPL(112-114). The following paragraphs summarize the main effects described 

with these drugs:  

- Statins reduce postprandial lipemia mainly by inhibiting the production of ApoB 

containing lipoproteins from the liver and thus increasing the clearance of TG and 

increase HDL-c levels(113).  
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- Fibrates enhance the LPL expression at the transcriptional level mediated by PPAR, 

inhibited the transcription of the apoC-III gene, decrease ApoB and VLDL production and 

increase fatty acid oxidation in the liver. As a consequence, fibrates induce hypolipidemic 

effect via reduced secretion of VLDL particles, together with the enhanced clearance of 

TG-rich particles(115, 116).  

- Ezetimibe, a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 

cholesterol transporter, not only inhibits cholesterol uptake, but it may also decrease 

postprandial apoB48-containing CMs particles(117).  

- Supplementation with omega-3 fatty acids significantly suppresses postprandial elevation 

of TGs and remnant lipoprotein-cholesterol(118).  

- Insulin treatment reduces fasting and postprandial total TGs as well as the TGs 

contained in VLDL, LDL and HDL particles(119, 120).  

- Metformin interrupts mitochondrial oxidative processes in the liver and corrects 

abnormalities of intracellular calcium metabolism in insulin-sensitive tissues, reducing 

fasting plasma total cholesterol, total TG and VLDL cholesterol concentrations and 

increasing HDL-c levels. This last observation seems to be more  pronounced  in Whites  

and  African  Americans than in Hispanic populations. Nevertheless, the exact 

mechanism of action of metformin are only partially known(112). 

- Sulfonylureas increase activity of LPL and HL, reduce postprandial free fatty acids (FFAs) 

and reduce postprandial CM and VLDL TGs(112). 

- Meglitinides do not have high impact on PPL, however, in newly diagnosed T2DM 

patients repaglinide had more effects decreasing TGs and total cholesterol than 

gliclazide (121). 

- Pioglitazone reduces postprandial FFAs, and unlike rosiglitazone, reduces fasting and 

postprandial TGs and increases HDL-c levels(122). 
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- Incretin-based therapies with GLP-1 receptor agonists and dipeptyl peptidase-4 inhibitors 

improve fasting and postprandial lipid parameters by reducing total-cholesterol, LDL-c 

and TGs concentrations, and increasing HDL-c values(123). The underlying mechanisms 

which lead to this phenomenon seem to be independent to gastric emptying(124). 

- The  sodium  glucose  co-transporter  2  (SGLT2)  inhibitors have been associated  with  

reductions in body weight and total fat mass and some placebo-controlled studies 

suggest that they may induce small reductions in TG levels, and small increases in LDL-c 

and HDL-c(114). The clinical relevance of such small changes affecting CVD risk has  not 

yet been determined. 

2.5. Genetic background

Thanks to the development in the last decade of Nutrigenetics, it has been possible the  

identification of multiple candidate genes as key players of the postprandial metabolism to 

explain individual differences in dietary response. As highlighted in previous studies, 

variants in the majority of the apoprotein genes (A1, A4, A5, B, C3 and E), fatty acid binding 

protein 2 (FABP2), LPL, HL, microsomal transfer protein and scavenger receptor class B1 

have been associated with the magnitude of PPL response(50, 125, 126). More recently, 

other gene loci have been pointed as potentially important such as PPAR-alfa, PPAR-

gamma, CETP, angiopoietin like protein 4 (ANGPLT4), perilipin (PLIN), SCARB1, IL-6, 

melanocortin-4 receptor (MC4R), ZNF259, TRIB, GCKR or TCF7L2(127-134). 

Interestingly, some authors have described a new approach to explore novel genes 

involved in lipid metabolism by integrating epigenome-wide association studies (EWAS) and 

genome-wide association studies (GWAS) data with the lipidomic measurements, pointing 
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that integration of lipidomic and genomic data has the potential to identify new biomarkers 

of CVD risk(135). Thus, some SNPs in the sorbin and SH3 domain containing 1 (SORBS1) 

gene and PRIC285 (a co-activator of PPARa) have been highlighted in association with fat 

metabolism.  

�29



3.  POSTPRANDIAL HYPERTRIGLYCERIDEMIA AND 
CARDIOVASCULAR DISEASE

The significance of fasting and postprandial TG in CVD has been debated since Zilversmit's 

proposal in 1979 that CMs and their remnants are atherogenic(136).  Fasting TGs level 

have been identified as a risk factor in case–control studies, even after adjustment for total 

cholesterol (TC) or HDL-C(137-139). Large population studies have assessed the 

association between non-fasting TGs and the risk of CVD events, showing that postprandial 

TG levels are excellent markers of risk for coronary artery disease, peripheral vascular 

disease and cerebrovascular disease(24, 25, 27, 28, 140). In this regard, it has been 

proposed that non-fasting TG (442 mg/dL vs. < 88 mg/dL), marked an increased risk of 

myocardial infarction, ischemic stroke and early death in women and men in the general 

population(141). 

Possible pathways linking TRL and CVD have been suggested, both in vitro and in vivo(50, 

142). Atherogenic effects may be mediated directly by TRL particles or components of the 

particles: Postprandial CMs and VLDL and their remnants may enter the sub-endothelial 

space, become modified, and stimulate monocyte chemoattractant protein-1(MCP-1), 

promote the differentiation of monocytes into macrophages and be taken up by the 

macrophages to form foam cells(29, 50) (Figure 6). 
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Figure 6. The effects of postprandial chylomicrons and VLDL on arterial endothelium. VLDL remnants and chylomicron 

remnants enter the subendothelial space, where they become modified, and the modified remnants stimulate 

Chemoattractant protein-1 (MCP-1), promote the differentation of monocytes into macrophages and are taken up by the 

macrophages  to form foam cells. Adapted from Lopez-Miranda et al.,  Br J Nutr (2007)(50). 

TRLs have been also reported as directly cytotoxic to endothelial cells in cell culture 

studies(143). They induce an elevation in the expression of intercellular adhesion 

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and tissue factor(144) 

and induce modification in LDL composition and size with generation of small and dense 

LDL(145). Finally, postprandial hyperlipemia has been associated with changes in 

haemostatic variables known to promote the risk of thrombotic events. Thereby, it has been 

associated with an increase in factor VII and tissue plasminogen activator activity(146-148), 

an increased platelet reactivity(149, 150), and by contrast, with a lower plasminogen 

activator inhibitor type-1 activity (PAI-1)(146-148). In our group, it has been reported that 

this higher thrombogenic state induced by postprandial lipemia may be partly regulated by 

the type of fat ingested(151) (Table 2). 
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Many clinical trials have reported that statin therapy targeting reduction of LDL-c decreases 

the risk of CVD, however many cases of them are not yet prevented and residual risk 

factors remain unaddressed(152). Although high TG levels are considered to be an 

important residual risk factor, there is a lack of randomized controlled trials showing a lower 

risk of cardiovascular events induced by a reduction in TG levels during the postprandial 

period in patients at high risk of atherosclerotic cardiovascular disease. A recent meta-

analysis have showed that adding niacin, CETP inhibitors, n-3 fatty acid or fibrates to statin 

therapy in those patients have no clear clinical benefit(153). Probably more studies with 

other therapeutic options are needed to explore this issue. 
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Table 2. Differential Effects of Olive Oil Compounds Versus Other Sources of fat. Abbreviations: MUFA: Monounsaturated 

Fatty Acids. SAFA: Saturated Fatty Acids. PUFA: Polyunsaturated Fatty Acids. TFPI: Tissue Factor Pathway Inhibitor. 

PAI-1: Plasminogen Activator Inhibitor 1. All Cells Refer to Plasma Concentration if Otherwise is not Stated. Adapted from 

Delgado-Lista J at al, Current Pharmaceutical Design (2011)(154) 

Parameter MUFA Minor Compounds

Platelet aggregation 
(response to ADP/collagen) 

Platelet activity (measured 
by platelet activating factor)

Reduction compared with 
SAFA Inhibited compared 

with SAFA 

Reduction compared with 
SAFA Inhibited compared 

with SAFA 

Thromboxanes A2, B2 -

Lowered production and 
excretion both in fasting and 

postprandium. 

Reduction compared with 
low phenols Olive Oil

Von Willebrand Factor

Reduction compared with 
low-fat and PUFA in 

diabetics 

Reduction compared with 
low-fat and SAFA in healthy

-

Tissue Factor

Reduced expression in 
monocites. Reduction 
compared with SAFA -

TFPI Reduction compared with 
SAFA -

PAI-1 Reduction compared with 
low-fat and SAFA

Reduction compared with 
low-fat and SAFA

Factor VII 

 (Chronic Effect)  

(Acute Effect) 

Reduction compared with 
SAFA and PUFA 

Reduction compared with 
SAFA

Reduction compared with 
other sources of MUFA 

Reduction compared with 
low phenols Olive Oil

Factor XII Reduction compared with 
SAFA -
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4.  ASSESSMENT OF POSTPRANDIAL TG METABOLISM
Recent studies have reported that random non-fasting TG levels are good risk markers for 

CVD. However, the use of non-fasting TG values in clinical practice has been hampered by 

a lack of standardization of non-fasting TG measures, with respect to the time since last 

meal, and population-based reference values. Moreover, the measurement of TGs is 

complicated by its high intra-individual variability, reported on average as 22.5%(155), and  

the fact that they increase during the day(156). To evaluate changes and dynamics of 

postprandial lipoprotein metabolism, performing of an oral fat tolerance test (OFTT) has 

been used in research studies since several decades. Thus, TG response to an OFTT is 

commonly analyzed from sequential blood samples as the area under the curve (AUC) or 

incremental AUC (iAUC)(9). Postprandial TG levels increase for up to 3-4 h after the oral fat 

load and remain elevated for up to 6-8 hours. In healthy subjects the 4 h time-point after an 

oral load of 70-79 gr fat has been proposed as the most representative measurement of 

postprandial TGs in a recent meta-analysis(157). However, the postprandial response is 

higher and delayed in subjects with metabolic disorders or genetic variants causing 

hypertriglyceridemia(9).  

Although there have been recent advances in the standardization of the postprandial 

assessment, currently there is no definitive consensus or enough evidence to sustain the 

further development of routine non-fasting/postprandial TGs measurements for clinical 

purposes. In this context, an Expert Panel of scientists and clinicians, together with a meta-

analysis of 113 studies conducted in healthy white subjects (without clinical or physician-

diagnosed CVD or metabolic disease, with baseline TGs <177 mg/dL, with body mass 

index <30 kg/m2 and not on chronic medication) has suggested that subjects with fasting 

�34



TGs between 89-180 mg/dL would benefit from the additional clinical information provided 

by an OFTT(158, 159). We have recently tested this issue  in two large cohorts of patients 

(1,002 patients with CHD from the CORDIOPREV clinical trial, and 1,115 white US healthy 

subjects from the GOLDN study), validating the predictive values reported in previous 

consensus, and recommending that subjects with fasting TG between 89-180 mg/dL (1-2 

mmol/L) should be tested in order to identify an exaggerated postprandial response and to 

treat them more agressively (Article in press in Journal of Clinical Lipidology, DOI:http://

dx.doi.org/10.1016/j.jacl.2016.05.009).  

Alternatively to performing an OFTT, different methods have been proposed to assess the 

postprandial TRLs metabolism, such as measurements of apoB48(160) (reflecting the 

number of CM particles), calculated non-fasting remnant cholesterol(161) (evaluating not 

only VLDL and CMs but also their remnants), measurements of remnant-like particles (RLP)

(162) or performing ambulatory capillary TG profiles(163), but these techniques are much 

less extended and supported than OFTT. 
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B. HYPERGLYCEMIA, METABOLIC SYNDROME AND 
BODY SIZE PHENOTYPES AND THEIR 
RELATIONSHIP WITH CARDIOVASCULAR DISEASE

Hyperglycemia 

The role of diabetes in the pathogenesis of CVD was indeterminate until Kannel et al. used 

data from the Framinghan Heart Study (FHS) in 1979 to identify diabetes as a major 

cardiovascular risk of CVD in women with diabetes compared to men with diabetes(164). In 

that study, diabetes seemed to double the risk of total CVD in men, and triple it in women. 

Furthermore, after age-adjustment relative risks were higher for women than for men for 

every end-point that the authors had considered in the study (CHF, IC, Stroke, CHD, CVD, 

and CVD deaths). Despite reductions in CVD mortality over the past few decades, re-

examination of the contribution of diabetes became especially important since the definition 

of diabetes has changed since publication of the original study, and the prevalence of 

diabetes has increased seriously(165, 166). Furthermore, even though there has been a 

50% reduction in the rate of CVD among participants with diabetes from the FHS, the 

relative risk of diabetes as a risk factor for CVD has remained unchanged(6).  

In line with hypertriglyceridemia, it has been proposed that postprandial hyperglycemia may 

be a stronger risk factor for CVD than fasting hyperglycemia(167). In 2002 Meigs et al 

examined 3370 subjects from the Framingham Offspring Cohort and found post-challenge 

hyperglycemia as an independent risk factor for CVD(164). The mechanisms through which 

hyperglycemia induces atherosclerosis include: 
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- Direct effect of elevated glucose concentrations. High blood glucose levels have toxic 

effects on cell function, some of them occur rapidly (e.g., inducing oxidative stress via the 

generation of free radicals; expression of several inflammatory genes, including adhesion 

molecules that facilitate monocyte adhesion to endothelial cell), while others develop 

slowly in response to prolonged periods of hyperglycemia (e.g., nonenzymatic 

glycosylation of proteins exposed to glucose such cell membrane proteins; circulating 

proteins, such as lipoproteins; and structural proteins that form vessel walls)(168-170). 

- Insulin resistance and hyperinsulinemia. It has been suggested that reduced beta cell 

function together with insulin resistance are responsible for development of 

hyperglycemia. Previous studies proposed that high levels of insulin was an important risk 

factor for isquemic heart disease(171, 172). A recent meta-analisis of prospective cohort 

studies has confirmed that hypothesis, and identified hyperinsulinemia as a risk factor for 

coronary heart disease(173). Various mechanisms have been suggested to explain how 

hyperinsulinemia may promote atherosclerosis, such as stimulating smooth muscle 

proliferation and vascular growth factor production(174), stimulating renal sodium and 

water retention(175), or increasing noradrenaline release through activation of the 

sympathetic nervous system(176). Additionally, in vitro studies have shown that insulin 

also stimulates cholesterol synthesis and the binding of LDL to cell membranes in 

monocytes(177, 178). 

- Association with other risk factors for CVD. Hyperglycemia commonly occurs in 

association with other risk factors for CVD such as elevated blood pressure, dyslipidemia 

and insulin resistance. Hypertension occurs approximately twice as frequently in patients 

with diabetes compared with patients without it(179). Most patients with T2D present with a 
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cluster of lipoprotein abnormalities that include elevated fasting and postprandial TG levels, 

small-dense LDL-c levels, and decreased HDL-cholesterol levels(180, 181). The integrated 

epidemiological concept of metabolic syndrome discussed below was originated from the 

observation that several metabolic risk factors often co-occur in patients at high risk of 

CVD(182). 

Metabolic syndrome

The prevalence of MetS is dependent on the population studied, determined by age, sex, 

race, or ethnicity, as well as on the definition used. In western countries the estimated  

prevalence of MetS is about one-fifth of the adult population, and the prevalence increases 

with age(183). As pointed previously, this entity is increasing its prevalence to epidemic 

proportions worldwide and the health care costs and burden are substantial. MetS in 

Europe in adults includes over 30%(15), and in Spain 31%(16).  

Although to date there are no universally accepted definition criteria for MetS, one of the 

most widely accepted definitions is that provided by Grundy et al. (AHA/NHLBI, 2005)(184) 

that consider as criteria for clinical diagnosis of metabolic syndrome the presence of at least 

3 of the following: Fasting blood glucose ≥ 100 mg/dl, High-density lipoprotein cholesterol 

<40 mg/dl in men and <50 mg/dl in women, Triglycerides ≥ 150 mg/dl, Waist circumference 

≥ 102 cm in men and ≥ 88 cm in women and Hypertension (≥ 130/85 mmHg or specific 

treatment for this disorder).  

The pathogenesis of MetS is complex and not well understood but a multi-factorial origin 

has been suggested, involving complex interactions among the genetic background and 

environmental factors such as nutrition. To date, obesity, insulin resistance, ectopic fat 
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accumulation, secretion of adipo-cytokines and an increased inflammatory and oxidative 

states are currently identified as key factors in MetS pathology(185, 186).  Other factors 

such as chronic stress and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis 

and autonomic nervous system (ANS), renin-angiotensin-aldosterone system activity and  

micro RNAs have been also related to its pathogenesis(187). 

In a recent meta-analysis(18) carried out to assess the prognostic significance of MetS in 

CVD and which contained a population of 952.083 patients included in prospective 

observational studies, MetS was associated with a 2-fold increase in cardiovascular 

outcomes (CVD, cardiovascular mortality, myocardial infarction and stroke) and a 1.5-fold 

increase in all-cause mortality. In turn, excluding the influence of the presence of T2DM, this 

increased risk persisted for cardiovascular mortality, acute myocardial infarction and stroke. 

These data are consistent with previously published evidence(188). In the Fenofibrate 

Intervention and Event Lowering in Diabetes (FIELD) trial cohort, performed on diabetic 

population, the absolute risk of suffering a first cardiovascular event was higher in patients 

with more components of MetS(189).  

For lack of conclusive studies, it is still unknown whether the prognostic significance of 

metabolic syndrome is greater than the risk associated with the sum of its individual 

components(190-194). Furthermore, as stated above, the complex interrelationships of 

some of the metabolic criteria makes really difficult to isolate the true risk conferred by a 

given component.  
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Body size phenotypes 

High BMI is an important cardiovascular disease risk factor which has an outstanding 

impact on public health due to its increasing prevalence(5, 195). However, it has been 

suggested that individuals in the same BMI category can have substantial heterogeneity of 

metabolic features, such as lipid profile, glucose tolerance, blood pressure and waist 

circumference(19, 196). Thus, recently more attention has been paid to the different 

metabolic phenotypes of obesity (Figure 7). Previous studies have suggested that the 

cardiometabolic risk may change considerably among subjects with a similar BMI, 

depending on their metabolic profile(197). 

#

Figure 7. Cardiometabolic phenotypes according to body size. Abbreviations: BMI: Body Mass index. HDL: High-density 

Lipoprotein. Adapted and modified from Karelis AD et al, J Clin Endocrinol Metab (2004)(21). 
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Metabolically healthy obesity (MHO) is a clinical condition that describes the absence of 

any cardiometabolic disease (T2DM, hypertension and dyslipidemia) in subjects with a high 

BMI (>30 kg/m2)(198). In contrast, metabolically obese but normal-weight (MONW) 

subjects are a subgroup of individuals who have normal weight and BMI, but display a 

cluster of obesity-related abnormalities such insulin resistance, hyperinsulinemia or 

dyslipidemia, with a higher risk for developing T2DM and CVD(21). This fact may support 

the idea that obesity is a multisystemic disease with loss of flexibility in one or more 

metabolic processes involved(20).   

Descriptive studies have pointed that up to 30% of obese people seem to be metabolically 

healthy(199), and there is a high prevalence of clustering of cardiometabolic abnormalities 

among normal-weight individuals. Although there is not yet a standardized definition of body 

size phenotypes, mostly authors agree with the cardiometabolic abnormalities to consider: 

elevated blood pressure, elevated TGs levels, decreased HDL-c level, insulin resistance 

and low grade inflammation (Table 3).  
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Table 3. Prevalence and criteria used for the definition of metabolic phenotypes in population-based studies. 

Abbreviations: ATP-III: Adult Treatment Panel III. BMI: Body Mass Index. BP: Blood Pressure. FPG: Fasting Plasma 

Glucose. HDL-c: High-density Lipoprotein Cholesterol. HOMA-IR: Homeostatic Model Assessment of Insulin Resistance.  

hsCRP: High-sensitivity C-reactive Protein. IR: Insulin Resistance. LDL-c: Low-density Lipoprotein Cholesterol. MANW: 

Metabolically Abnormal but Normal Weight. MAOW: Metabolically Abnormal but Overweight. MetS: Metabolic Syndrome.  

Population studied Diagnosis criteria Prevalence (%)
St-Onge MP, 2004 N = 7602 

≥ 20 years (mean 43.3 yr) 
with BMI 18.5 – 24.9 kg/m2 

USA (NHANES 1988-1994)

BMI 18.5-26.9 kg/m2 and MetS - 
ATP-III

MANW: 3% for BMI 
18.5-20.9; 6.5% for BMI 21- 
22.9; 10% for BMI 23-24.9 

MAOW (BMI 25- 26.9): 
22.5% 

(data for white people)
Meigs JB, 2006 N = 2.902 

≥ 20 years without diabetes 
or cardiovascular disease 
(mean age 53.6 yr) 

USA (Framingham Offspring 
Study)

BMI < or ≥ 25 kg/m2 and presence 
or absence of the MetS - ATP-III or 
three lower quartiles of HOMA-IR

MANW: 7.1% (MetS) / 7.7% 
(HOMA-IR) 

MHO: 37% (MetS) / 44.3% 
(HOMA-IR)

Wildman RP, 2008 N = 5.400  
≥ 20 years (mean 45.0 yr) 
USA (NHANES 1999-2004)

BMI <25 kg/m2, 25-29.9 or ≥ 30 kg/
m2 

Metabolically healthy, 0 or 1 and 
metabolically abnormal, ≥ 2 
cardiometabolic abnormalities of 
the following: MetS - ATP-III criteria 
(except waist circumference), 
hsCRP > 0.1 mg/L, HOMA-IR > 
5.13

MANW: 23.5% MHOW: 
51.3% MHO: 31.7%

Lee K, 2009 N = 5276  
≥ 20 years (mean 43.4 yr) 
Korea

BMI < or ≥ 25 kg/m2 and presence 
or absence of MetS - ATP-III 
adapted criteria (waist 
circumference ≥ 90 cm in men, ≥ 85 
cm in women)

MANW: 12.7% 

MHOW + MHO: 47.9%

Kuk JL, 2009 N = 6.011  
18-65 years 
USA (NHANES III)

BMI ≥ 30 kg/m2 and ≤ 1 MetS - 
ATP-III criteria (excluding waist) 
and/or HOMA-IR < 2.5

MHO: 30.2% (IR) / 38.4% 
(MetS) / 6% (IR and MetS)

Velho S, 2010 N = 5.360  
35-75 years (mean 53.3 yr) 
Switzerland

BMI ≥ 30 kg/m2 

Different combinations of the 
following criteria: waist; BP; total, 
HDL-c, LDL-c; TGs; FPG; HOMA-
IR; hs-CRP; personal history of 
cardiovascular, respiratory or 
metabolic diseases.

MHO: 3.3 - 32.1% in men 
and 11.4 - 43.3% in women

  
Calori G, 2011

  
N = 2.011  
mean age 55 years

BMI ≥ 30 kg/m2 and HOMA-IR < 
2.5

  
MHO: 11%
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MHO: Metabolically Healthy but Obese. MUFA: Monounsaturated Fatty Acids. SAFA: Saturated Fatty Acids. PUFA: 

Polyunsaturated Fatty Acids. TGs: Triglycerides.  Adapted from Gomez-Huelgas R et al, Endocr Pract (2013)(197). 

From a clinical point of view, there is a debate over whether or not different body size 

cardiometabolic phenotypes have an increased risk of metabolic complications, with 

conflicting results published. Some prospective cohort studies have reported that, unlike 

MHO subjects, MONW individuals exhibited greater all-cause mortality during follow-

up(200, 201). On the other hand, a recent meta-analysis has shown that MHO individuals 

are at increased risk for all-cause mortality and CV events over the long term compared 

with metabolically healthy normal-weight persons. This study has also reported that obese 

individuals have an increased risk for death and CV events over the long-term regardless of 

metabolic status(202). More prospective and intervention studies need to be carried out to 

clarify and to answer these questions, but at present, identifying certain types of the 

metabolic phenotypes of obesity may be a good strategy for personalized treatment.  

At this point, it is important to understand the underlying causes for those phenotypic 

differences associated to obesity and to explore whether obesity in its various forms may 

influence different biomarkers. Two of these biomarkers could be postprandial triglyceride 

response and inflammation state related to insulin resistance.  
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C. SUMMARY
In this introduction we have reviewed the current knowledge about factors affecting PPL in 

physiologic and pathologic conditions.  

Among physiologic, behavior associated factors, like diet, smoking or exercise seem to 

have a well supported basis. This may be helped by the fact that they are factors that can 

be easily identified and measured. However, there are other not modifiable markers, like 

age, which real contribution to PPL are not clearly stated. There is a paucity of studies 

evaluating PPL in the aged compared to young or middle aged persons, and most of them 

have methodological limitations. The fact that aging and metabolic syndrome traits are 

intimately overlapped makes that the adequate matching of the two populations to study is 

crucial for studying this phenomenon, because otherwise, some of the effects attributed to 

age could be really due to fasting lipids, obesity, inflammation or high blood pressure.  

Among the pathological factors affecting PPL, we reviewed how T2DM have an worsen 

PPL due to biochemical and inflammatory factors derived/favored from hyperglycemia. 

However, the intermediate metabolic statuses from health to T2DM are still to be studied, 

and the relevance of factors defining altered metabolic balance (well metabolic syndrome or 

altered metabolic phenotypes) may be better characterized.           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III.  Chapter 3: OBJECTIVES

Main objective 

- To determine whether MetS traits influence the PPL of coronary patients, and whether this 

influence depends on the number of MetS criteria (Chapter 4.B). 

Secondary objectives 

- To investigate whether the number of criteria of metabolic syndrome may predict the 

degree of postprandial response in patients with normal fasting TGs (Chapter 4.B). 

- To determine the exact contribution of the presence of MetS to age-associated enlarged 

PPL (Chapter 4.A). 

- To explore the phenotypic flexibility of high risk patients, measured with an OFTT, 

according to different cardio-metabolic abnormalities and BMI (Chapter 4.C). 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a b s t r a c t

Objective: Postprandial lipemia influences the development of atherosclerosis. Age has been defined as
a regulating factor of the extent of postprandial lipemia, but its independence of other age-associated
phenotypic features, such as metabolic syndrome, has not been fully elucidated.
Methods: To investigate if age is an independent factor influencing postprandial lipemia, we compared
the lipemic response to a rich fatty meal (60% fat) of 88 healthy young men (<30 years old) and 97 older
participants (77 metabolic syndrome patients aged > 40; and 20 healthy people > 65) (all ApoE3/E3), at
fasting state and at 2nd and 4th postprandial hours.
Results: We didn’t find differences between the healthy young men and the healthy elderly. The meta-
bolic syndrome patients displayed a higher postprandial TG area below the curve than the other two
cohorts p < 0.001. ANOVA for repeated measurements confirmed that these differences were significant
at every time-point (fasting, 2 h and 4 h). Concomitant higher responses for Large and Small TRL-carried
TG and Chol were found in these metabolic syndrome patients. Interestingly, the most significant
differences were found for Small-TRL-carried particles, which suggest that this fact may be mainly due to
impaired lipid clearance.
Conclusion: Metabolic syndrome may account for the differences in postprandial lipemia that have been
attributed to age. In our study, there were no significant differences in postprandial lipemia between
a young population (mean age 22.6 years) and a healthy people >65 years one (67.2 years) without
metabolic syndrome.

! 2012 Elsevier Ireland Ltd. All rights reserved.

Postprandial lipemia following a fat-rich meal is a situation
characterized by the generation of an atherogenic environment in
the bloodstream, derived by the conjunction of the direct athero-
genic properties of some lipid particles, especially those carried in

the triglyceride-rich lipoproteins, and by the activation of the
inflammatory and hemostatic systems [1,2]. These last featuresmay
be influenced by the amount and type of fat in the meal [1,3e5],
and are partly mediated by mononuclear cells, which respond
directly to the increase in triglyceride remnants in the blood, to the
apparition in the blood of proteins of bacterial origin (like LPS) and
to stimuli secreted from intestinal endothelial cells (via TLR4
receptors) [6e8]. Furthermore, endothelial vasodilatory capacity is
transiently impaired after a high-fat meal, a fact linked to the nitric
oxide synthase pathway [9]. All these features turn the post-
prandial state into an atherogenic environment, and the extent of
this period has been related to increased atherosclerosis [10].

Dietary background has been identified as the main extrinsic
factor influencing postprandial lipemia [11,12], while genetics, sex,

Abbreviations: ApoB, apolipoprotein B; Chol, cholesterol; HDL-C, high density
lipoproteins cholesterol; MetS, metabolic syndrome; SFA, saturated fatty acids; SNP,
single nucleotide polymorphism; T2DM, type 2 diabetes mellitus; TG, triglycerides;
TRL, triglyceride-rich lipoproteins.
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and age have been identified as potent intrinsic modifiers of post-
prandial lipemia [11,13,14]. For example, ApoE genotyping is a clearly
established modifier of triglyceride levels, and the ApoE3/E3 geno-
type (the commonest) identifies those persons with an average
response to diet and lipid overload [15e19]. However, although the
influence of sex and genetics is easier to isolate from other inter-
fering factors, age is often associated to related conditions, such as
the appearance ofmetabolic syndrome. In developed countries, up to
35% of the general population suffers frommetabolic syndrome [20].
The exact contribution of the presence of metabolic syndrome to
age-associated enlarged postprandial lipemia has not been explored
much.

1. Subjects and methods

1.1. Subjects

We evaluated one hundred and eighty-five persons who partici-
pated in three different studies performed in our unit: Eighty-eight
healthy young men (<30 years old), and ninety-seven persons
ranging from 40 to 70 years old, and who, in turn, came from two
studies: 77 participants with metabolic syndrome from the LIPGENE
study, and 20 healthy participants from the coenzyme Q and age
study. Detailed information of these three studies has been published
elsewhere [12,21e24]. The metabolic syndrome in the LIPGENE study
was determined using amodified version of theNCEP criteria forMetS
[25], where subjects were required to fulfill at least three of the
following five criteria: waist circumference > 102 cm (men) or
>88 cm (women); fasting glucose 5.5e7.0mmol/L; TAG! 1.5mmol/L;
HDL cholesterol< 1.0mmol/L (men) or< 1.3mmol/L (women); blood
pressure ! 130/85 mmHg or treatment of previously diagnosed
hypertension. Notably, all participants were previously genotyped for
the ApoE genotype, and only ApoE3/E3 subjects were selected. None
of the 88 healthy youngmales had any criteria ofmetabolic syndrome.
All participants provided their written informed consent before
enrolling for the study, according to the Declaration of Helsinki II. The
study was approved by the local committee for scientific ethics.

1.2. Protocol

More detailed protocols have been published previously
[12,21e24]. To sum up, participants fasted for 12 h, and then
received a fatty meal, containing 1 g fat and 7mg cholesterol per kg
of body weight in the case of the healthy young men, and 0.7 g fat
and 5 mg cholesterol per kg of body weight in the case of the other
two cohorts. The meals contained 60e65% of energy as fat, 10e15%
of energy as protein, and 25% of energy as carbohydrates, and were
consumed in 20 min. We measured the lipid particles at the fasting
state, and via blood drawn performed at different time-points in
the postprandial state: with the young cohort, we assessed these
fractions every hour until the sixth, and then every 2.5 h until 11th.
With the metabolic syndrome patients, we measured them twice-
hourly for 8 h, while with the cohort of persons above 65 years, for
ethical reasons, we performed a short lipemia study (twice-hourly
until the 4th hour). In the present study, only the common time-
points (fasting, 2nd and 4th postprandial hour measurements) of
all cohorts are considered.

1.3. Blood test

Extensive laboratory methodology has been published for the
three populations elsewhere [22,24,26]. Blood drawn and TRL
(Large and Small) isolation were performed by standard method-
ology, as published previously [24]. In short, plasma was separated
from red cells by centrifugation at 1500" g for 15 min at 4 #C.

The chylomicron fraction of TRL (Large-TRL) was isolated from 4mL
of plasma overlayeredwith 0.15mol/L NaCl, 1 mmol/L EDTA (pH 7.4,
d < 1.006 kg/L) by a single ultracentrifugal spin (36,200 g, 30 min,
4 #C) in a 50-type rotor (Beckman Instruments, Fullerton, CA).
Large-TRL, contained in the top layer, was removed by aspiration
after cutting the tubes, and the infranatant was centrifuged at
a density of 1.019 kg/L for 24 h at 183,000 g in the same rotor. The
non-chylomicron fraction of TRL (also referred to as Small-TRL) was
removed from the top of the tube. All operations were done in
subdued light. Large and Small TRL fractions were stored at $70 #C
until biochemical determinations were performed. Total choles-
terol (Chol) and triglycerides (TG) in plasma and lipoprotein frac-
tions were assayed by enzymatic procedures. APOA1 and APOB
were determined by turbidimetry [27]. HDL-C wasmeasured by the
dextran sulfate-Mg2þmethod, as described in Ref. [28]. LDL-C levels
were estimated using the Friedewald formula [29].

1.4. Statistics

In the baseline fasting comparisons, we used univariate ANOVA.
We tested the size of the postprandial lipid fractions by univariate
ANOVA for the area below the curve (AUC), defined as the area
within the plasma concentration-versus-time curve, using the
trapezoidal rule and treating the cohort as independent variable,
with each of the lipid fractions as dependent variables. Then, to
estimate if the influence was regular throughout the lipemia, we
performed repeated ANOVA measurements, testing all the time-
points (fasting, 2nd hour and 4th hour) in the Post-Hoc analysis,
using Bonferroni’s corrections. Additionally, we tested if the post-
prandial findings were influenced by fasting values by relativizing
each tested variable to its fasting figures. For any given variable,
fasting value was set to 1, and the relativized values for the 2nd and
4th hours were calculated as the quotient of the real value of that
given variable in the studied time-point by that of the fasting value.

To infer if the short lipemia (4 h) was suitable to represent the
whole postprandial lipemia, we used our existing data with the
complete set of extracted blood for the young men’s cohort (hourly
after themeal for 6 h, then every 2.5 h until 11th) and themetabolic
syndrome cohort (twice-hourly for 8 h), and we performed the
correlation tests to obtain the R2 index and the equation for the
linear regression function.

A p-value of less than 0.05 was considered significant. All the
data presented in the text and tables are expressed as mean & SE
unless otherwise specified. SPSS 19.0 for Windows (SPSS Inc., Chi-
cago, IL, USA) was used for statistical comparisons.

2. Results

Baseline characteristics of the groups are described in Table 1.
Young men differed from the metabolic syndrome and the healthy
>65 years old cohorts in BMI, total cholesterol, and LDL cholesterol
(all p < 0.001, Table 1). Metabolic syndrome patients exhibited
higher baseline TG levels, while healthy>65 years patients showed
higher HDL concentrations than the other two groups (Table 1).

The metabolic syndrome cohort showed a higher postprandial
TG response than the other two groups (p < 0.001), both in AUC
(Fig. 1) and in repeated ANOVA measurements, with differences
found at the baseline and at every time-point blood drawn (Fig. 2).

When evaluating the different postprandial lipid fractions, we
found differences for metabolic syndrome patients versus the other
two groups for Large-TRL-TG (p< 0.05), Small-TRL-Chol (p< 0.001)
and Small-TRL-TG (p < 0.001), both in AUC (Fig. 1) and in the
repeated ANOVA measurements (Fig. 3). When evaluating the
differences in the different time-points, we found higher Large-
TRL-TG in metabolic syndrome patients than in the other two
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groups at time-point 2 h, and at 4 h than the young men (all
p < 0.05). Metabolic syndrome patients also showed higher Small-
TRL measurements (Small-TRL-TG and Small-TRL-Chol), at every
time-point (fasting, 2nd and 4th hours) than the other two groups
(all p < 0.001) (Fig. 3). We did not find any differences between the
young men’s cohort and the cohort of healthy persons >65 years,
although a trend towards higher TG in this last population at the
fasting state versus the young men cohort (0.05 < p < 0.10) was
found. All significant differences were influenced by the fasting
values, as these differences disappeared when relativizing the
figures to the fasting values.

We also evaluated the concordance of the short lipemia method
(by assessing the AUC of TG in the first 4 h) which was used in the
evaluation of the three groups in this work, with the additional data
that we had from the young men (11 postprandial hours) and the
metabolic syndrome patients (8 postprandial hours). When
comparing these AUCs of TG, the short lipemia reproduced the long
lipemia datawith accuracy: in the young men’s cohort, R2 for the 4 h
versus the 11 hwas 0.928, while inmetabolic syndrome patients, the
4 h lipemia versus the 8 h lipemia resulted in a R2 of 0.9059.

3. Discussion

In our study, healthy people above 65 years do not present
higher postprandial lipemia than healthy youngmen in response to
a single fat meal. However, in our study, the existence of metabolic
syndrome is a clear determinant of postprandial lipemia. Age has
been proposed as a determinant of postprandial lipemia in previous
reports [11], based in original works [30e32]. Twomain underlying
causes have been proposed: a decrease in postprandial lipid

clearance, and an increase in VLDL ApoB-100 production in elderly
persons [31]. However, in most of these studies, subjects in the
older groups exhibited some of the features of metabolic syndrome,
which is logical if we take into account that the prevalence of
metabolic syndrome clearly increases with age [30e32].

Other factors, like genetics, may interact with age to determine
postprandial lipids [13,14]. In a recent report, it has been shown that
the impact of ApoE gene variations (clear modifiers of triglyceride
metabolism) on postprandial lipemia are closely linked to age, and
are more important in the elderly than in young persons [33]. To rule
out the possibility of our results being influenced by ApoE, we only
included ApoE3/E3 subjects. This phenotype (ApoE3/E3) is the
commonest in the general population, and the one that has a more
physiological TG response to fat overload [15e18].

The most important aspects of this study are not the differences
of postprandial lipemia between the metabolic syndrome patients
and the healthy persons, which has been previously stated [20], but
the following two main premises. First, the lack of differences
between young and healthy persons above 65 years, and second,
that the main particles affected in postprandial lipemia in the
metabolic syndrome are those carried by Small-TRL (Small-TRL-
carried Chol and TG), reflecting a delayed clearance of lipids. In fact,
these lipid fractions were already higher at fasting levels, which
implies that these patients are not able to clear their postprandial
lipid fractions sufficiently after 12 h fasting. In our study, the cohort
of participants >65 years old had higher baseline HDL concentra-
tions that the other two cohorts, which may partly explain our
findings. HDL serves as a donor of ApoC, apo E and other apopro-
teins during postprandial state [34]. However, pointing to addi-
tional underlying mechanisms, the findings were more evident in
the markers of the late postprandial state (Small-TRL particles),
while HDL and ApoA1 influence is better documented in the

Fig. 1. Area below the curve (AUC) of the different postprandial lipid fractions during
lipemia. *p < 0.05 MetS versus the young men and the healthy >65 years old cohorts.
Figures of Large-TRL-Chol and Small-TRL-Chol have been multiplied by 10 for visual
purposes.

Fig. 2. Evolution of TG (mg/dL) depending on the distinct phenotype group.
Means ! SE. *p < 0.05 MetS versus the other two groups.

Table 1
Baseline characteristics.

Healthy young men
(n ¼ 88)

MetS (n ¼ 77) Healthy subjects >65
years old (n ¼ 20)

p

Age (years) 22.2 ! 0.31a 56.55 ! 0.84b 67.25 ! 1.15c <0.001
BMI (kg/m2) 25.38 ! 0.38a 34.9 ! 0.4b 31.63 ! 1.3c <0.001
TG (mg/dL) 80.4 ! 3.72a 148.73 ! 9.59b 102.53 ! 7.64a <0.001
Total Chol (mg/dL) 151.53 ! 2.45a 196.51 ! 4.48b 201.3 ! 6.51b <0.001
HDL (mg/dL) 46.29 ! 1.08a 43.62 ! 1.13a 54.01 ! 2.75b <0.001
LDL (mg/dL) 89.16 ! 2.28a 136.86 ! 3.8b 126.79 ! 5.21b <0.001
Glucose (mg/dL) 84.15 ! 3.56a 114.78 ! 2.16b 97.3 ! 3.39c <0.001
Blood pressure (mm Hg). systolic 107 ! 3a 140 ! 15b 147 ! 16b <0.001
Blood pressure (mm Hg). diastolic 70 ! 7a 85.6 ! 16b 87.5 ! 16b <0.001
Waist circumference (cm) 91.60 ! 6.55a 108.33 ! 8.76b 100.98 ! 12.88b <0.001
Female (%) 0 63.6 50 e

The p-value in the last column corresponds to univariate ANOVA, with each age group as an independent factor and each phenotypic variable as a dependent factor. Within
each row, values with different superscript letters are different at p < 0.05. All values are means ! SE.

A.I. Perez-Caballero et al. / Atherosclerosis 226 (2013) 258e262260



�  53

markers of early postprandium (Large-TRL), [34e36]. The effect of
BMI on postprandial lipemia has also been reported [37]. In our
sample, the metabolic syndrome patients had higher BMI than the
youngmen, and this could somehowexplain the findings; however,
there were no differences between the metabolic syndrome and
the healthy persons above 65 years old in terms of BMI, which
replicates previous findings pointing to the fact that it is metabol-
ically active obesity which impairs energy homeostasis [38], which
may explain the lack of differences between the persons above 65
years old and the healthy young men.

When we tested the influence of the fasting values in the
postprandial lipids we observed that the postprandial differences
were parallel to the differences in fasting values. Relativizing the
values by the fasting figures resulted in the absence of differences
in any of the significant differences found when using the real
values. This fact reveals that the concentration of the different
tested variables of the postprandial lipemia in metabolic syndrome
patients are shifted towards up.

Our study comprises the first four postprandial hours of the
postprandial lipemia, which show the initial andmaximal peaks for
the postprandial lipid particles, and which have been identified as
the most accurate predictor of total postprandial lipemia [39,40].
Furthermore, one of the problems when trying to translate post-
prandial lipemia into clinical practice is to find a tolerable meth-
odology to be performed in the real setting of usual care practice.

Periods of waiting longer than 4 h are difficult to be implemented in
the real setting. Supporting our model, in the Women’s Health
Study, TGs calculated in the 2nd to 4th postprandial hours had the
strongest association with CVD events fully adjusted hazard ratio
[95% CI] for highest versus lowest tertiles of levels, 4.5 [2.0e10.2]
and this association progressively decreased with longer periods
of sampling [41]. Additionally, we subsequently performed an
internal control of the correlation between the lipemia in the first
4 h versus the complete data that we had for metabolic syndrome
(8 h) and for the young men (11 h). In the two cases, the correla-
tions (R2) were higher than 0.90 (Fig. 4).

Although all studies which are presented in the present manu-
script have been carried out in our Unit, and we try a standardized
methodology, our results may be taken with caution, and require
confirmatory studies prior to be fully extrapolated. The fact that the
populations are pooled together but the experiments were not per-
formed at the same time is a limitation of our study. Other point to be
considered when extracting conclusions from the present study is
the fact that, while the two older cohorts (metabolic syndrome and
healthy persons aged >65) received a fat load with 0.7 g of fat per kg
body weight, the healthy young men received 1 g/kg. This fact was
due to that previous data indicated that optimal fat loads to ascertain
postprandial lipemia were inferred to be 70e79 g/fat. Participants in
the latter cohorts were expected to be obese when these studies
were projected. In fact, 70 and 80% of the healthy >65 and the

Fig. 3. Evolution of Large-TRL-chol (Panel A), Large-TRL-TG (Panel B), Small-TRL-chol (Panel C) and Small-TRL TG (Panel D). All values are mg/dL. Means ! SE. *p < 0.05 MetS versus
the other two groups. **p < 0.05 MetS versus participants above 65 years.

Fig. 4. Correlation and linear regression data of postprandial AUC of TG for short versus long lipemia in MetS patients (Panel A) and healthy young men (Panel B).
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metabolic syndrome patients cohorts were weightier than 80 kg.
Nevertheless, the meals provoked a postprandial lipemia that was
not correlated to the grams of fat ingested (Suppl. Fig. 1).

To conclude, we have tested the effects of a single meal on three
populations: young men, middle-aged metabolic syndrome patients
and healthy subjects >65 years. We did not find any differences
between the healthy men and the healthy persons >65 years, which
may be linked to the absence of metabolic syndrome traits and the
fact that we limited the effects of confounding factors, such as the
existence of ApoE gene variations.
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Abstract

Objective: To determine whether metabolic syndrome traits influence the postprandial lipemia response of coronary
patients, and whether this influence depends on the number of MetS criteria.

Materials and Methods: 1002 coronary artery disease patients from the CORDIOPREV study were submitted to an oral fat
load test meal with 0.7 g fat/kg body weight (12% saturated fatty acids, 10% polyunsaturated fatty acids, 43%
monounsaturated fatty acids), 10% protein and 25% carbohydrates. Serial blood test analyzing lipid fractions were drawn at
0, 1, 2, 3 and 4 hours during the postprandial state. Total and incremental area under the curves of the different
postprandial parameters were calculated following the trapezoid rule to assess the magnitude of change during the
postprandial state

Results: Postprandial lipemia response was directly related to the presence of metabolic syndrome. We found a positive
association between the number of metabolic syndrome criteria and the response of postprandial plasma triglycerides (p,
0.001), area under the curve of triglycerides (p,0.001) and incremental area under the curve of triglycerides (p,0.001).
However, the influence of them on postprandial triglycerides remained statistically significant only in those patients without
basal hypertriglyceridemia. Interestingly, in stepwise multiple linear regression analysis with the AUC of triglycerides as the
dependent variable, only fasting triglycerides, fasting glucose and waist circumference appeared as significant independent
(P,0.05) contributors. The multiple lineal regression (R) was 0.77, and fasting triglycerides showed the greatest effect on
AUC of triglycerides with a standardized coefficient of 0.75.

Conclusions: Fasting triglycerides are the major contributors to the postprandial triglycerides levels. MetS influences the
postprandial response of lipids in patients with coronary heart disease, particularly in non-hypertriglyceridemic patients.
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Introduction

The postprandial state is the period from food intake to post-
absorptive state, defined in terms of extent and duration of
increased plasma triglycerides (TG) in response to fat intake. It is a
dynamic condition, with a continuous fluctuation in the degree of
lipemia and glycemia over the day, in which there is a rapid
continuous remodeling of the lipoprotein and a host of other
metabolic adaptations compared to the relatively stable conditions
in the fasting state. Over the last decade, postprandial triglyceride
metabolism has taken on more importance, since fasting is not the
typical physiological state of humans in modern society, who spend
most of the time in the postprandial state. In this context, the
evaluation of the postprandial lipemic response may be more
important to identify disturbances in lipid metabolism than
measurements taken in the fasting state. In fact, large population
studies (e.g. Women’s Health Study and the Copenhagen City
Heart Study) have assessed the association between non-fasting
triglycerides and the risk of cardiovascular disease (CVD) events.
Data from these studies have clearly documented that postprandial
TG levels are excellent markers of risk for coronary artery disease,
peripheral vascular disease and cerebrovascular disease [1–5]. In
this regard, it has been proposed that non-fasting TG (5 mmol/L
vs. ,1 mmol/L) marked a 17- and 5-fold increased risk of
myocardial infarction, a 5-and 3-fold increased risk of ischemic
stroke, and a 4- and 2-fold increased risk of early death in women
and men in the general population [1–4].

Moreover, several studies have linked the extent of postprandial
lipemia to the incidence of coronary heart disease and it has been
proposed that postprandial lipoprotein metabolism is modulated
by dietary patterns, food composition, conditions associated with
lifestyle (physical activity, smoking and alcohol consumption),
physiological factors (age, gender, genetic background and
postmenopausal status) and cardiometabolic conditions such as
fasting triglycerides levels [6–10], type 2 diabetes (T2DM), insulin
resistance and obesity [11–13].

The importance of Metabolic Syndrome (MetS) lies in its close
association with the risk of CVD and T2DM. Unfortunately its
prevalence is increasing to epidemic proportions and the health
care costs and burden are substantial. One of the most widely
accepted definitions is that provided by the National Cholesterol
Education Program guidelines, revised in 2004 (rNCEP) [14]. In a
recent meta-analysis [15], including 952.083 patients and carried
out to assess the prognostic significance of MetS in cardiovascular
disease, it was shown that MetS was associated with a 2-fold
increase in cardiovascular outcomes (cardiovascular disease,
cardiovascular mortality, myocardial infarction and stroke) and a
1.5-fold increase in all-cause mortality. In turn, excluding the
influence of the presence of T2DM, this increased risk persists for
cardiovascular mortality, acute myocardial infarction and stroke.
These data confirmed previously published evidence [16]. From a
clinical point of view, there is a debate as to whether the MetS
alone or its associated conditions are more important for CVD
incidence and mortality or whether prevention and/or treatment
of the MetS will reduce CVD incidence and mortality. In this
regard, previous observations have reported that the presence of
more components of MetS was associated with an increase in
subclinical atherosclerosis, and incidence and mortality of
coronary heart disease [17–21]. In the same context, it has been
suggested that, in healthy people, there is a relationship between
MetS components and exacerbated postprandial lipemia [22], but
there is still a lack of data in patients with CVD.

Based on this previous evidence, our objective was to determine
if MetS traits influence the postprandial lipemia of coronary

patients, and whether this influence depends on the number of
MetS criteria.

Materials and Methods

Ethics Statement
Patients gave written informed consent to participate in the

study. The trial protocol and all amendments were approved by
the Ethics Committee from Reina Sofia University Hospital,
following the Declaration of Helsinki (2008) of the World Medical
Association.

Population
The current work was conducted within the framework of the

CORDIOPREV study. The CORDIOPREV study is an ongoing
prospective, randomized, opened, controlled trial including 1002
patients with coronary heart disease (CHD), who had their last
coronary event more than six months before enrollment in two
different dietary models (Mediterranean and low-fat) over a period
of five years, in addition to conventional treatment for CHD.

Patients were recruited from November 2009 to February 2012,
mostly at the Reina Sofia University Hospital (Cordoba, Spain),
but patients from other hospital centers from the Cordoba and
Jaen provinces were also admitted.

Inclusion and exclusion criteria are shown in Table 1. In
summary, patients were eligible if they were between 20 and 75,
had established CHD without clinical events in the last six months,
were thought to follow a long-term dietary intervention and had
no severe diseases or an expected life expectancy of under five
years. Patients were categorized depending on the presence or not
of MetS and number of its criteria, defined by the rNCEP criteria
[14].

Study design
Before participants were enrolled in the two different dietary

models from CORDIOPREV study, they received an oral fat
tolerance test using a weight-adjusted meal (0.7 g fat and 5 mg
cholesterol per kg body weight) with 12% saturated fatty acids
(SFA), 10% polyunsaturated fatty acids (PUFA), 43% monoun-
saturated fatty acids (MUFA), 10% protein and 25% carbohy-
drates (CHO). The meal composition was designed by a group of
nutritionists with olive oil, skimmed milk, white bread, cooked egg
yolks and tomatoes.

Methodology of the oral fat tolerance test
Before starting the test, the patients had fasted (food/drugs) for

12 hours and were asked to refrain from smoking during the
fasting period and from alcohol intake during the preceding 7
days. They were also asked to avoid strenuous physical activity the
day before the test was given. The patients arrived at the clinical
center at 08:00 h. We measured anthropometric (weight, height,
waist circumference, Body mass index (BMI) and blood pressure)
and biochemical measurements, took a fasting blood sample and
under supervision, the patients ingested the fatty food meal. The
breakfast was eaten in 20 min. After the meal, the volunteers
rested and consumed no food for 5 hours, but were allowed to
drink water.

Blood samples for biochemical testing were collected before the
meal and every hour during the next 4 hours, following
recommendations for an oral fat tolerance test proposed by Mihas
et al. in a recent meta-analysis [23].

Postprandial Lipemia and Metabolic Syndrome Traits
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Table 1. Inclusion and exclusion criteria for the CORDIOPREV study.

Ages
Eligible for
Study 20 to 75

Genders
Eligible for
Study Both

Inclusion
Criteria

Unstable Coronary Disease Chronic

Acute Myocardial Infarction

Unstable Angina

Chronic Coronary Disease with high risk of event

Exclusion
Criteria

Age ,20 or .75 (or life expectancy below 5 years)

Patients already scheduled for revascularization Patients submitted to revascularization in the last 6 months Grade II/IV Heart failure

Left ventricle dysfunction with ejection fraction lower than 35%

Patients unable to follow a protocol

Patients with severe uncontrolled Diabetes Mellitus, or those with Renal Insufficiency with permanent plasma creatinine higher than 2 mg/dl, or cerebral
complications of Diabetes Mellitus

Other chronic diseases: Psychiatric diseases, Chronic Renal Insufficiency, Chronic Hepatopathy, Active Malignancy, Chronic Obstructive Pulmonary
Disease, Diseases of the digestive tract, Endocrine disorders, Patients participating in other clinical trials (at the time of enrollment or 30 days before)

doi:10.1371/journal.pone.0096297.t001

Figure 1. Flow-chart of CORDIOPREV study. Before participants were enrolled in the two different dietary models from CORDIOPREV study, they
received an oral fat tolerance test using a weight-adjusted meal (0.7 g fat and 5 mg cholesterol per kg body weight) with 12% saturated fatty acids
(SFA), 10% polyunsaturated fatty acids (PUFA), 43% monounsaturated fatty acids (MUFA), 10% protein and 25% carbohydrates (CHO).
doi:10.1371/journal.pone.0096297.g001
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Laboratory test
Venous blood was sampled from the antecubital vein and

collected into tubes with no anticoagulant and EDTA, and
immediately transferred to 4uC. To minimize proteolytic degra-
dation, plasma was supplemented with protease inhibitor cocktail

40 mL per mL of plasma. Plasma and serum samples were frozen
at 280uC for further biochemical analysis.

Serum parameters were measured using spectrophotometric
techniques (enzymatic colorimetric methods): hexokinase method
for glucose, and oxidation-peroxidation for total cholesterol, HDL-

Table 2. Baseline characteristics of the patients.

All patients Metabolic Syndrome Non-Metabolic Syndrome p-value

(n = 1002) (n = 581) (n = 421)

Age (Years) 59.560.2 60.060.3 58.960.4 NS

Male/Female 837/165 470/111 367/54 ,0.001

Weight (Kg) 85.160.4 88.860.6 80.160.6 ,0.001

Waist circumference 105.160.3 108.760.4 100.160.5 ,0.001

BMI (kg/m2) 31.160.1 32.460.1 29.360.2 ,0.001

HDL-c (mg/dL) 42.260.3 38.660.4 47.160.5 ,0.001

Fasting Plasma Glucose (mg/dL) 113.761.2 125.961.8 97.161.0 ,0.001

TG (mg/dL) 135.462.2 159.963.1 102.162.2 ,0.001

APO-A1 (mg/dL) 129.660.7 124.960.8 136.161.1 ,0.001

Total Cholesterol (mg/dL) 159.060.9 158.661.3 159.561.4 NS

APO-B (mg/dL) 73.660.5 76.160.8 70.260.8 ,0.001

LDL-c (mg/dL) 88.560.8 86.3761.1 91.561.2 ,0.001

Lipid lowering drugs:

Statins (%) 85.6 85.7 85.5 NS

Fibrates (%) 1.6 2.4 0.5 0.01

Other1(%) 4.8 4.6 4.9 NS

Values are means 6SEM. Continuous variables were compared using the analysis of variance (ANOVA). Qualitative variables were compared using Chi Square test.
BMI = Body mass index. HDL-c = High density lipoprotein cholesterol. TG = Triglycerides. LDL-c = Low density lipoprotein.
1Other lipid lowering drugs: Ezetimibe and Nicotinic acid.
doi:10.1371/journal.pone.0096297.t002

Figure 2. Plasma levels of triglycerides (mg/dL) during postprandial period in patients with and without MetS. MetS patients showed
higher plasma levels of triglycerides in each of the time points performed during the postprandial period (p,0.001). Results are plotted as Mean6SE.
Variables were compared using repeated measured ANOVA, with sex and age as covariates.
doi:10.1371/journal.pone.0096297.g002

Postprandial Lipemia and Metabolic Syndrome Traits

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e96297



�  61

cholesterol and triglycerides. The LDL-cholesterol was calculated
using the Friedewald formula (provided the triglyceride level was
less than 300 mg/dl). Apolipoprotein A1 and apolipoprotein B
were determined by immunoturbidimetry by means of mouse
specific antibodies for every magnitude.

TG-rich lipoprotein fraction (TRL) containing chylomicrons
and VLDL was removed from plasma by ultracentrifugation
performed in a 70Ti fixed-angle rotor at 30.000 rpm and 4uC for
30 min. at d,1.006 g/mL.

Statistical
All statistical analyses were made with PASW Statistics software,

version 18.0.0. Continuous variables were compared using
Student’s ‘‘t’’ and the analysis of variance (ANOVA) depending
on the existence of two or more groups in each comparison. When
these variables did not follow a normal distribution, the required
transformation of the data was used for analysis. We used total
(AUC) and incremental (iAUC) area under the curves of the
different postprandial parameters following the trapezoid rule to
assess the magnitude of change during the postprandial state, as in
previous works by our group [24]. The units used for the AUC
and iAUC were (mg * min * dL21). To determine the influence of
metabolic syndrome in the postprandial metabolism, we used a
general linear model of repeated measures of each postprandial
parameter, with presence or not of metabolic syndrome as a
between-subjects variable, blood drawing time as a within-subject
variable and gender and age as covariates. Bonferroni’s correction
was used for multiple comparisons. Pearson’s correlation or
Spearman rank order correlation analyses were performed to
examine the correlations between the levels of metabolic syndrome
traits (Systolic blood pressure, Diastolic Blood Pressure, HDL-c,
TG, Glucose and waist circumference), treatment (statins and
fibrates) and AUC of postprandial parameters. The values of
fasting triglycerides, fasting glucose, fasting HDL-c, waist circum-
ference and both systolic and diastolic blood pressure were tested
in a stepwise multiple linear regression to predict the AUC of
triglycerides and determine their individual effect on it.

Results

Baseline characteristics
A total of 1002 participants with coronary artery disease were

included in the CORDIOPREV study (Figure 1), of which 581
had MetS criteria.

Table 2 shows the baseline characteristics. The mean age was
59.5 years for all the population. They were mostly males (83.4%)
with a mean body mass index of 31.1 Kg/m2. Patients with MetS
showed significant differences compared with patients without
MetS, with greater weight, waist circumference, body mass index,
plasma glucose, and higher levels of fasting TG and ApoB (all, p,
0.05). MetS patients showed lower levels of fasting HDL-c, ApoA1
and LDL-c (all, p,0.05).

Postprandial parameters and Metabolic Syndrome
After the intake of the fat load test, we found differences

between patients with and without MetS during the postprandial
period. MetS patients showed higher plasma levels of TG
(Figure 2) and ApoB as well as lower HDL-c and ApoA1 in
each of the time points performed during the postprandial period
(all, p#0.001). No differences were detected for total cholesterol
between groups. Furthermore, MetS patients showed lower AUC
of postprandial HDL-c (8375.6684.6 vs 9940.5699.8, p,0.001)
and ApoA1 (28236.16205.7 vs 30546.96242.9, p,0.001), with
higher AUC of postprandial TG (55048.7461186.7 vs 36373.
661398.3, p,0.001), TRL (22389.36606.9 vs 13983.46703.1,
p,0.001), ApoB (16697.46176.8 vs 15289.76207.7, p,0.001)
and glucose (36936.76568.4 vs 27546.36669.5, p,0.001). We
also analyzed the incremental (iAUC) of area under postprandial
parameters curve. MetS patients showed higher iAUC of TG
(15298.96540.1 vs 12296.26636.4, p,0.001), TRL
(12673.16353.6 vs 9322.56409.6) and glucose (5608.06286.7
vs 2131.96337.6, p,0.001), with higher negative iAUC of ApoB
(2743.2668.4 vs 2490.2680.3, p,0.001) and total cholesterol
(21143.3692.9 vs 2828.56109.8, p,0.001).

Figure 3. Postprandial AUC of triglycerides in relation to Mets traits. The magnitude of the AUC of postprandial TG increased in the
sequence 0, 1,2 criteria ,3 criteria ,4 criteria ,5 criteria. Variables were compared using ANOVA with sex and age as covariates. Different letters
express statistically significant differences with a p value below 0.01.
doi:10.1371/journal.pone.0096297.g003
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Components of Metabolic Syndrome and postprandial
response

Postprandial lipemia response was directly related to the
number of MetS components. Specifically, we found a positive
association between the number of MetS criteria and the response
of postprandial plasma TG (p,0.001), AUC of TG (p,0.001) and
iAUC of TG (0,0.001). Interestingly, the magnitude of the AUC
of TG increased in the sequence 0, 1,2 criteria ,3 criteria ,4
criteria ,5 criteria, as shown in Figure 3 (p,0.001). For the
iAUC of TG, this sequence differs as follows: 0, 1,2, 3,4,5
(1017961862, 105016828,137466641, 137746633,
158866653,1900661070, respectively). A similar fashion was
detected for AUC of plasma glucose and ApoB. In contrast, a
negative relationship in the number of criteria of MetS with AUC
of HDL-c and ApoA1 was observed (data not shown).

The correlations between the levels of MetS traits and
postprandial parameters (AUCs of TG, TRL, total cholesterol,
HDL-c, ApoA1, ApoB and glucose) are shown in Table 3.
Specifically, postprandial AUC of TG were significantly correlated
with the values of diastolic blood pressure (r = 0.11, p,0.01),
HDL-c (r = 20.27, p,0.01), fasting glucose (r = 0.20, p,0.01),
TG (r = 0.77, p,0.01) and waist circumference (r = 0.20, p,0.01).
Moreover, levels of postprandial AUC of TRL were significantly
correlated with the values of diastolic blood pressure (r = 20.13,
p,0.01), HDL-c (r = 20.25, p,0.01), TG (r = 0.58, p,0.01),
fasting glucose (r = 0.16, p,0.01) and waist circumferen-
ce(r = 0.15, p,0.01). Hypolipidemic drugs (statins or fibrates)
were not significantly correlated with fasting TG and the AUC of
TG (all p.0.05).

In stepwise multiple linear regression analysis with the AUC of
triglycerides as the dependent variable, only fasting triglycerides,
fasting glucose and waist circumference appeared as significant
(P,0.05) contributors. The multiple regression (R) was 0.77, and
fasting triglycerides showed the greatest effect on AUC of
triglyceride (Table 4).

To explore the effect of basal hypertriglyceridemia on
postprandial metabolism, patients were divided into two groups
according to the presence or abscence of basal hypertriglyceride-
mia. In patients with high fasting triglycerides (TG $150 mg/dL),
the AUC and iAUC of TG were significantly greater
(6416461169 vs 364036501, p,0.001; and 1754861083 vs
122296324, p = 0.001, respectively) than in the group of patients
with fasting TG,150 mg/dL.

The influence of the different MetS factors still remained
statistically significant (p,0.001) when we analyzed the AUC of
TG on those patients without high TG at the basal point, but not
on those patients with basal hypertriglyceridemia (Table 5).

Discussion

In the present study we investigated the effect of a fatty meal on
postprandial lipid metabolism in patients with coronary artery
disease. We showed that MetS and the number of its components
influence the degree of postprandial lipemic response. Specifically,
postprandial AUC of TG showed a progressively unfavorable
increase from one component to five in our population. However,
this effect was attenuated when the population was divided into
two groups according to the presence or absence of basal
hypertriglyceridemia. Thus, only those patients without high
fasting TG remained a statistically significant influence.

Recently, it has been established that the presence of higher
number of components of MetS is associated with an increase in
subclinical atherosclerosis, and incidence and mortality of CHD.
Teramura et al. reported that intima-medial thickness was
significantly higher in subjects with MetS and increased with the
number of coexisting components of MetS, compared with those
without MetS [17]. Furthermore, a prospective cohort study
including 6255 subjects, showed how CHD and CVD mortality
were both influenced by the number of MetS components [20]. In
the same context, Sattar et al. observed that men presenting four
or five MetS traits had a 3.7-fold increase in risk for CHD and a
24.5-fold increase for diabetes compared with men with none [19].
However, the mechanisms underlying this fact are still unknown.
Although it is generally accepted that the main pathogenic
mechanism underlying the development of cardiometabolic
changes in patients with MetS relies on insulin resistance, other
mechanisms could influence the increased risk of CVD associated
to MetS. While the independence of the association and causality
has not been fully established, postprandial TG concentrations
have emerged as a clinically significant CVD risk factor following
the results of several prospective studies [25]. In our study, patients
with an increased number of MetS components showed higher
levels of postprandial TG, confirmed by AUC and iAUC of TG.
This deterioration in postprandial lipid metabolism associated with
the increase number of MetS components may favor a higher risk
of atherogenesis.

Previous studies have explored the mechanisms underlying the
relation between postprandial lipid metabolism and the increased
risk of atherogenesis [26,27]. High levels of postprandial triglyc-
erides have been reported to correlate with high remnant
cholesterol in individuals in the general population [4], and, in
addition, it has been proposed that in those situations where the
liver induces an overproduction of VLDL, such as central obesity,
metabolic syndrome, type 2 diabetes mellitus and familial
combined hypercholesterolemia, VLDL and chylomicrons cata-
bolic mechanisms are saturated [12,28–30]. These mechanisms
cause the accumulation of VLDL and chylomicron remnants [31–

Table 4. Multiple linear regression coefficients1 to predict AUC of triglycerides.

Parameter Unstandardized Coefficients Standardized Coefficients Sig.

B Std. Error Beta

Fasting TG 228.49 6.68 0.752 ,0.001

Fasting Glucose 29.41 11.05 0.059 0.008

Waist Circumference 85.78 37.43 0.051 0.02

Predictive variables tested by stepwise method: fasting triglycerides (mg/dL), fasting glucose (mg/dL), waist circumference (cm), fasting HDL-c (mg/dL), systolic and
diastolic Blood (mmHg).
1(Constant) = 2163.28. (R2) = 0.602.
doi:10.1371/journal.pone.0096297.t004
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33], a lower concentration of HDL-c and the activation of
leukocytes and endothelial cells by the remnants and fatty acids
[34,35]. At this stage, postprandial remnant lipoproteins would
penetrate the vessel wall and monocytes would catch them,
inducing the formation of foam cells [36]. Although it is generally
accepted that the main pathogenic mechanism underlying the
development of metabolic changes in patients with MetS relies on
insulin resistance, a large body of evidence supports the concept
that increased oxidative stress and a state of chronic low-level
inflammation may have important roles in MetS-related manifes-
tations [37]. In this way, the formation of oxidized reactive species
and oxidized remnant lipoproteins would also contribute to
endothelial dysfunction and the development of coronary artery
disease [37]. In this regard, we have recently demonstrated the
relationship between the number of MetS components and the
degree of oxidative stress in MetS patients [38].

Previous evidence carried out in healthy population has
suggested a significant linear trend between increasing numbers
of MetS components and magnitude of postprandial lipemia in
112 healthy subjects [25]. Nevertheless, to our knowledge, our
study is the first one to show that in non-hypertriglyceridemic
coronary patients. Another important feature underlying MetS is
atherogenic dyslipidemia, defined as a rise in triglycerides and
small LDL particles and low HDL-c [39]. In this regard, we have
observed that patients with at least three MetS components have
higher ApoB plasma levels and lower HDL-c and ApoA1 plasma
levels in all blood drawn during the postprandial state, as well as a
positive relationship with AUC of ApoB and a negative
relationship with AUC of HDL-c and ApoA1. All of these
abnormalities have been implicated as being independently
atherogenic [14].

Although baseline TG has been previously proposed in different
studies as the major determinant of postprandial lipemia [7–10], in
our study the involvement of other factors were also statistically
significant. Thereby, the stepwise multiple linear regression
analysis with the AUC of triglycerides as the dependent variable,
showed that fasting TG, fasting glucose and waist circumference
appeared as significant independent contributors, with fasting TG
as the major contributors (see Table 4).To avoid the influence of
high levels of fasting TG on postprandial response, patients were
divided in our study into two groups on the basis of their fasting
TG concentrations. In hypertriglyceridemic patients, the AUC
and iAUC of TG were significantly greater than in the group of
normotriglyceridemic patients, according to previous data report-
ed [40]. Besides, the influence of number of MetS components on
AUC of TG remained statistically significant in those patients
without high fasting TG but not in those patients with basal
hypertriglyceridemia. This feature may be related to the fact that
in an already disturbed background, as suggested by a fasting
hypertriglyceridemia, the postprandial lipid metabolism is altered,
and cannot be impaired further by the presence of MetS traits.
However, in patients that are not hypertriglyceridemic, the
addition of different metabolic syndrome criteria can progressively
worsen the efficient management of a fat meal, suggesting, from a
clinical point of view, that MetS subjects with normotriglycer-
idemia would obtain a higher benefit on the size of postprandial
lipemia controlling MetS components than those with hypertri-
glyceridemia.

Despite the great strength of our study given the population size
and the standardized methodology used, there were some
limitations. The cross-sectional study design limited our ability to
make an inference about the casual relationship between MetS
components and postprandial parameters. However, it will be
possible to evaluate this point in the future taking in consideration
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that the CORDIOPREV study is an ongoing prospective,
randomized, opened and controlled trial with a mean proposed
follow-up of 5 years. Moreover, it would be interesting to study
whether those patients with an increased number of MetS
components and higher postprandial lipemia have more cardio-
vascular events in the future.

In summary, our study shows that the existence of MetS
influences the postprandial response of carbohydrates and lipids in
patients with coronary heart disease. In non-hypertriglyceridemics
patients, the magnitude of postprandial response is related to the
number of MetS components altered. Fasting triglycerides are the
major contributors to the postprandial triglycerides levels. Our
findings imply the need for intensive control of MetS components
to decrease the cardiovascular risk.
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ABSTRACT

Background We examined the degree of postprandial triglyceride (TG) response over the day, representing a
highly dynamic state, with continuous metabolic adaptations, among normal-weight, overweight and obese
patients, according to their metabolically healthy or abnormal status.

Materials and methods A total of 1002 patients from the CORDIOPREV clinical trial (NCT00924937) were
submitted to an oral fat load test meal with 0!7 g fat/kg body weight (12% saturated fatty acids (SFA), 10%
polyunsaturated fatty acids (PUFA), 43% monounsaturated fatty acids (MUFA), 10% protein and 25% carbo-
hydrates). Serial blood test analysing lipid fractions and inflammation markers (high-sensitivity C-reactive protein
(hs-CRP)) were drawn at 0, 1, 2, 3 and 4 h during postprandial state. We explored the dynamic response
according to six body size phenotypes: (i) normal weight, metabolically healthy; (ii) normal weight, metabolically
abnormal; (iii) overweight, metabolically healthy; (iv) overweight, metabolically abnormal; (v) obese, metaboli-
cally healthy; and (vi) obese, metabolically abnormal.

Results Metabolically healthy patients displayed lower postprandial response of plasma TG and large triacyl-
glycerol-rich lipoproteins (TRLs)-TG, compared with those metabolically abnormal, independently whether or not
they were obese (P < 0!001 and P < 0!001, respectively). Moreover, the area under the curve (AUC) of TG and
AUC of large TRLs-TG were greater in the group of metabolically abnormal compared with the group of met-
abolically healthy (P < 0!001 and P < 0!001, respectively). Interestingly, metabolically abnormal subjects dis-
played higher postprandial response of plasma hs-CRP than did the subgroup of normal, overweight and obese,
metabolically healthy patients (P < 0!001).
Conclusions Our findings showed that certain types of the metabolic phenotypes of obesity are more
favourable modulating phenotypic flexibility after a dynamic fat load test, through TG metabolism and inflam-
mation homoeostasis. To identify, these phenotypes may be the best strategy for personalized treatment of
obesity.

Keywords CORDIOPREV study, hs-CRP, metabolically healthy obesity, phenotypic flexibility, postprandial
lipaemia, triglycerides.

Eur J Clin Invest 2014; 44 (11): 1053–1064

Introduction

Obesity is a chronic disease which has an outstanding impact
on public health due to its increasing prevalence and to the

high impact on cardiometabolic diseases. Recent evidence
suggests that not all obese subjects display a clustering of
metabolic and cardiovascular risk factors, and, likewise, not all
lean subjects present a healthy metabolic and disease-free
profile [1,2]. Thus, recently more attention has been paid to the
different metabolic phenotypes of obesity. Metabolically1The first two authors contributed equally to this study.
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healthy obesity (MHO) describes the absence of any cardio-
metabolic disease (type 2 diabetes mellitus (T2DM), hyperten-
sion and dyslipidaemia) in subjects with a body mass index
(BMI) >30 kg/m2. In contrast, metabolically obese status with
normal-weight subjects is characterized by hyperinsulinism
and insulin resistance, which are susceptible to develop T2DM
and cardiovascular disease (CVD), even if they are not obese
[3,4]. This fact could support the hypothesis to consider obesity
as a systems disease with loss of flexibility in one or more
metabolic processes involved [5]. Therefore, the capacity to
adapt in time and location to alterations in external factors,
such as environmental conditions, is called phenotypic
flexibility.
At this point, there is an intriguing debate over whether or

not MHO and metabolically obese status with normal-weight
individuals have an increased risk of metabolic complications.
In this regard, and based in clinical implications, it is important
to distinguish between these phenotypes for minimizing or
delaying the comorbidities associated with obesity [6]. More-
over, several processes and mechanisms involved in pheno-
typic flexibility include triglyceride metabolic regulation,
glucose regulation, optimal inflammatory balance, oxidative
stress regulation, muscle metabolic flexibility and many others.
Interestingly, most of these mechanisms are disrupted in obese
patients, and it requires a high degree of flexibility, in order to
adjust the parameters to fit the situation. One biomarker of this
phenotypic inflexibility is the degree of postprandial triglycer-
ide response over the day, representing a highly dynamic state,
with continuous metabolic adaptations [7]. Moreover, post-
prandial lipaemia is considered as a factor in the development
of cardiometabolic diseases [8]. Specifically, the effect of tri-
glyceride metabolism on all rapidly changing parameters
related to the phenotypes of obesity and the extent to which the
human body is able to flexibly react to such challenges can be
used to quantify many aspects of phenotypic flexibility. In this
regard, the oral fat load test is a classic example of a challenge
test [9].
Based on this knowledge, it is important to understand the

underlying causes for phenotypic inflexibility and whether
obesity in its various forms may influence the maintenance of
overall triglycerides homoeostasis and inflammation state. The
CORDIOPREV study is an ongoing prospective, controlled trial
with a mean follow-up of 5-year duration, including 1002
patients with high-risk coronary disease. In this cohort of high-
risk patients, we examined the phenotypic flexibility, measured
with the fat tolerance test, among normal-weight, overweight
and obese patients, according to their metabolically normal or
abnormal status, from the CORDIOPREV clinical trial
(NCT00924937). In a next step, we investigated whether several
cardiometabolic abnormalities may influence the postprandial
lipaemic response.

Material and methods

Population
This work was conducted within the framework of the COR-
DIOPREV study. The CORDIOPREV study is an ongoing pro-
spective, randomized, opened, controlled trial including 1002
patients with coronary heart disease (CHD), which had their
last coronary event more than 6 months before the enrolment in
two different dietary models (Mediterranean diet and low-fat
diet) over a period of 5 years in addition to conventional
treatment for CHD (Figure S1).
Patients were recruited from November 2009 to February

2012, mostly at the Reina Sofia University Hospital (Cordoba,
Spain), but other centres from the Cordoba and Jaen provinces
were also included. Inclusion and exclusion criteria are
exposed in Table 1. In summary, patients were eligible if they
were older than 20 years, but younger of 75, had established
CHD without clinical events in the last 6 months, were
thought to follow a long-term dietary intervention and did not
have severe diseases or expected life expectancy lower than
5 years. Patients were categorized depending on the presence
or not of several cardiometabolic abnormalities in six different
body size phenotypes. To homogenize the analysis, only
subjects with all plasma variables available were included
(n = 992).

Cardiometabolic abnormalities
Cardiometabolic abnormalities were considered according to
body size phenotype definitions proposed by Wildman et al.
[10]. For homoeostasis model assessment of insulin resistance
(HOMA-IR), we used the cut-off points of insulin resistance for
the Spanish population [11], and for the high-sensitivity C-
reactive protein (hs-CRP) levels, we used the cut-off point
suggested for use by the CDC/AHA guidelines to define high-
risk levels [12]:

1 Elevated blood pressure: systolic/diastolic blood pressure
≥130/85 mmHg or antihypertensive medication use;

2 Elevated triglyceride level: fasting triglyceride level
≥150 mg/dL;

3 Decreased HDL-C level: HDL-C level <40 mg/dL in men or
<50 mg/dL in women or lipid-lowering medication use;

4 Elevated glucose level: fasting glucose level ≥100 mg/dL or
antidiabetic medication use;

5 Insulin resistance: HOMA-IR >2!6;
6 Systemic inflammation: hs-CRP level ≥3 mg/L.

Criteria for body size phenotypes [10]

1 Normal weight, metabolically healthy: BMI < 25!0 and <2
cardiometabolic abnormalities;

1054 ª 2014 Stichting European Society for Clinical Investigation Journal Foundation
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2 Normal weight, metabolically abnormal: BMI < 25!0 and ≥2
cardiometabolic abnormalities;

3 Overweight, metabolically healthy: BMI 25!0–29!9 and <2
cardiometabolic abnormalities;

4 Overweight, metabolically abnormal: BMI 25!0–29!9 and ≥2
cardiometabolic abnormalities;

5 Obese, metabolically healthy: BMI ≥ 30!0 and <2 cardiomet-
abolic abnormalities;

6 Obese, metabolically abnormal: BMI ≥ 30!0 and ≥2 cardio-
metabolic abnormalities.

All patients gave written informed consent to participate in
the study. The trial protocol and all amendments were
approved by the local ethics committees, following the Helsinki
declaration and the good clinical practices.

Study design
Before participants were enrolled in two different dietary
models (Mediterranean diet and low-fat diet) from CORDIO-
PREV study, they received an oral fat tolerance test using a
weight-adjusted meal (0!7 g fat and 5 mg cholesterol per kg
body weight) with 12% saturated fatty acids (SFA), 10% poly-
unsaturated fatty acids (PUFA), 43% monounsaturated fatty
acids (MUFA), 10% protein and 25% carbohydrates (CHO).
Meal preparation was performed by a group of nutritionists
with olive oil, skimmed milk, white bread, cooked egg yolks
and tomatoes.

Methodology of the oral fat tolerance test
Previously, to the starting of the test, the patients had been
fasting for 12 h and were asked to refrain from smoking during
the fasting period and from alcohol intake during the preceding
7 days. They were also asked to avoid strenuous physical
activity the day before the test given. At 8:00 a.m., patients
presented in the laboratory, completed anthropometric (weight,
height, waist circumference, BMI and blood pressure) and bio-
chemical measurements, donated a fasting blood sample and
under supervision, ingested the fatty food meal. The breakfast
was eaten in 20 min. After the meal, volunteers were resting and
consumed no food for 5 h, but were allowed to drink water.
Blood samples for biochemical testing were collected before

the meal and every hour during the next 4 h, following rec-
ommendations for an oral fat tolerance test proposed by Mihas
et al. [13] in a recent meta-analysis.

Laboratory test
Venous blood was sampled from the antecubital vein and col-
lected into Vacutainer tubes with no anticoagulant and to tubes
containing EDTA, and immediately transferred to 4 °C. To
minimize proteolytic degradation, plasma was supplemented
with protease inhibitor cocktail (Roche Diagnostic, Mannheim,
Germany) 40 lL per mL of plasma. Plasma and serum samples
were frozen at "80 °C for further biochemical analysis. Serum
parameters were measured in Architect c16000 analysers (Ab-
bott!, Chicago, IL, USA) by spectrophotometric techniques
(enzymatic colorimetric methods): hexokinase method for glu-
cose, and oxidation–peroxidation for total cholesterol, HDL-C
and triglycerides (TG). Apolipoprotein A-1 and apolipoprotein
B were determined by immunoturbidimetry by means of
mouse-specific antibodies for every magnitude. Plasma levels
of insulin were measured by chemiluminescent microparticle
immunoassay using an analyser (i-2000Abbott Architect !,

Table 1 Inclusion and exclusion criteria for CORDIOPREV study

Ages Eligible 20–75 years

Genders Eligible Both

Inclusion Criteria Unstable coronary disease

Acute myocardial infarction

Unstable angina

Chronic coronary disease at high risk for event

Exclusion

Criteria

Age <20 or >75 years (or life expectancy

lower than 5 years)

Patients already planned for revascularization

Patients submitted to revascularization in

the last 6 months

Grade II/IV Heart failure

Left ventricle dysfunction with ejection

fraction lower than 35%

Patients unable to follow a protocol

Patients with severe uncontrol of diabetes

mellitus, or those with renal insufficiency

with permanent plasma creatinine higher

than 2 mg/dL, or cerebral complications

of diabetes mellitus

Other chronic diseases:

Psychiatric diseases

Chronic renal insufficiency

Chronic hepatopathy

Active malignancy

COPD

Diseases of the digestive tract

Endocrine disorders

Patients participating in other clinical trials

(in the enrolment moment or 30 days prior)

European Journal of Clinical Investigation Vol 44 1055
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Chicago, IL, USA). HOMA-IR was derived from fasting glucose
and insulin levels [(fasting plasma glucose x fasting serum
insulin)/22!5]. As HOMA-IR takes into account both insulin
and glucose levels, it may be a more complete index than
plasma insulin. The hs-CRP is a strong independent risk factor
for cardiovascular events, and levels of hs-CRP ≥3 mg/L have
been suggested to define high-risk group [12]. Thus, plasma
concentrations of hs-CRP were determined by high-sensitivity
ELISA (BioCheck, Inc., Foster City, CA, USA) at the University
College Dublin. Large triacylglycerol-rich lipoproteins fraction
(TRL) containing chylomicrons and VLDL was removed from
plasma by ultracentrifugation performed in a 70Ti fixed-angle
rotor (Beckman Instruments, Fullerton, CA, USA) at 82 508 gpm
and 4 °C during 30 min at density <1!006 g/mL.

Statistical analysis
All statistical analyses were made with PASW Statistics soft-
ware, version 18.0.0. Continuous variables were compared
using Student’s ‘t-test’ and the analysis of variance (ANOVA)
depending on the existence of two or more groups in each
comparison. When these variables did not follow a normal dis-
tribution, the required transformation of the data was used for
analysis. Data are presented as means " standard error (SE) for
continuous variables and as frequencies or percentages for cat-
egorical variables. To determine the influence of body size
phenotypes in the postprandial metabolism, we used a general
linear model of repeated measures of each postprandial
parameter, with the different phenotype as between-subjects
variable, blood drawn time as within-subject variable, and
gender and age as covariates.We used total area under the curve
(AUC) and delta (D) AUC of the different postprandial param-
eters following the trapezoid rule to assess the magnitude of
change during postprandial state, as in previous works of our
group [14]. Pearson’s correlation was performed to examine the
correlations between the levels of cardiometabolic abnormalities
(systolic blood pressure, diastolic blood pressure, HDL-C, TG,
glucose, HOMA-IR and hs-CRP) and postprandial parameters
(AUC TG and AUC hs-CRP). Bonferroni’s test was used in the
post hoc analysis. All the analyses were adjusted for potential
confounders, and P < 0!05 was considered to be significant.

Results

Baseline demographic and metabolic characteristics according
to several body size phenotypes are presented in Table 2.

TG metabolism response during fat load test
We explored the dynamic response during the fat load test
according to the same body size phenotypes. Thus, ‘metaboli-
cally healthy’ patients showed lower postprandial TG concen-
tration, compared with those ‘metabolically abnormal’

(P < 0!001), independently whether or not they were obese
(Fig. 1a). No significant differences were observed within the
group of metabolically healthy (among normal, overweight and
obese) or the group of metabolically abnormal (among normal,
overweight and obese) (Fig. 1a). Specifically, we observed that
overweight and obese, metabolically abnormal subjects showed
a higher TG postprandial response compared with the sub-
group of normal, overweight and obese metabolically healthy
patients (P < 0!05 for all comparisons) (Fig. 1a). The same effect
was observed in normal-weight but metabolically abnormal
subjects compared with normal-weight but metabolically
healthy subjects (P = 0!039) (Fig. 1a). Consistently, metaboli-
cally healthy patients displayed lower postprandial response of
large TRL-TG, compared with those metabolically abnormal,
independently whether or not they were obese (P < 0!001)
(Fig. 1b). The area under the postprandial curve in the study
participants according to the body size phenotypes was anal-
ysed; significant differences were observed between subgroups
(Fig. 2). AUC of TG and AUC of large TRL-TG were greater in
the group of metabolically abnormal compared with the group
of metabolically healthy (P < 0!001 and P < 0!001, respectively)
(Fig. 2). Moreover, the DAUC of TG confirmed these results
(P = 0!008, 14555!89 " 455!04 vs. 11686!81 " 972!93 metaboli-
cally abnormal vs. metabolically healthy). A gender-stratified
analysis of AUC of TG and AUC of TRL-TG is shown in Table
S1. In this analysis, significant differences remained between
subgroups for AUC of TG in both men and women. For AUC of
TRL, only the TG differences in men remained significant.

Hs-CRP response during fat load test
We also measured the postprandial serum hs-CRP levels and
the effect of the different body size phenotypes. Patients with
very high levels of hs-CRP (≥10 mg/L) were excluded from the
analysis to avoid nonspecific inflammation. We observed that
metabolically abnormal subjects displayed a higher hs-CRP
postprandial response compared with the subgroup of meta-
bolically healthy patients (P < 0!001). Specifically, we observed
that overweight and obese, metabolically abnormal subjects
showed a higher hs-CRP postprandial response compared with
the subgroup of normal, overweight and obese metabolically
healthy patients (P < 0!05 for all comparisons) (Fig. 3). In
addition, the subgroup of normal weight but metabolically
abnormal had a higher postprandial hs-CRP response com-
pared with the obese but metabolically normal (P = 0!012)
(Fig. 3). Our results remained significant even after adjustment
made by fasting hs-CRP (Fig. 4).

Influence of other potential factors on the
postprandial response
Finally, we explored the influence of several potential factors
on the postprandial response. The correlations between the
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levels of cardiometabolic abnormalities and postprandial
parameters are shown in Table S2. The levels of postprandial
AUC of TG were significantly correlated with the values of
diastolic blood pressure (r = 0!11, P < 0!01), HDL-C (r = "0!27,
P < 0!01), fasting glucose (r = 0!20, P < 0!01), TG (r = 0!77,
P < 0!01), HOMA-IR (r = 0!23, P < 0!01) and hs-CRP
(r = 0!15, P < 0!01). The levels of postprandial AUC of hs-CRP
were significantly correlated with the values of HDL-C
(r = "0!11, P<0!01), TG (r = 0!07, P = 0!02), fasting glucose
(r = 0!09, P < 0!01) and hs-CRP (r = 0!54, P < 0!01).

Discussion

Our findings support the hypothesis that metabolically healthy
patients, even if they were overweight or obese, showed a
higher degree of flexibility sustained by an improvement in the
postprandial TG response and the inflammation status, com-
pared with those metabolically abnormal, independently
whether or not they were obese. Thus, we have identified some
inflexibility-risk phenotypes (i.e. normal weight, metabolically
abnormal and overweight, metabolically abnormal) and other
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Figure 1 Evolution of (a) triglycerides
(TG) and (b) large triacylglycerol-rich
lipoproteins (TRLs)-TG after the oral fat
tolerance test according to the body size
phenotypes [10] defined as follows: (i)
Normal weight, metabolically healthy:
BMI < 25!0 and <2 cardiometabolic
abnormalities (n = 26); (ii) Normal weight,
metabolically abnormal: BMI < 25!0 and ≥2
cardiometabolic abnormalities (n = 84); (iii)
Overweight, metabolically healthy: BMI
25!0–29!9 and <2 cardiometabolic
abnormalities (n = 74); (iv) Overweight,
metabolically abnormal: BMI 25!0–29!9 and
≥2 cardiometabolic abnormalities (n = 39);
(v) Obese, metabolically healthy:
BMI ≥ 30!0 and <2 cardiometabolic
abnormalities (n = 281); (vi) Obese,
metabolically abnormal: BMI ≥ 30!0 and ≥2
cardiometabolic abnormalities (n = 488).
Results are plotted as mean # SE.
Variables were compared using repeated
measured ANOVA, with sex and age as
covariates.
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Figure 2 Postprandial area under the curve (AUC) of triglycerides (TG) according to the body size phenotypes [10] defined as
follows: (i) Normal weight, metabolically healthy: BMI < 25!0 and <2 cardiometabolic abnormalities (n = 26); (ii) Normal weight,
metabolically abnormal: BMI < 25!0 and ≥2 cardiometabolic abnormalities (n = 84); (iii) Overweight, metabolically healthy: BMI
25!0–29!9 and <2 cardiometabolic abnormalities (n = 74); (iv) Overweight, metabolically abnormal: BMI 25!0–29!9 and ≥2
cardiometabolic abnormalities (n = 39); (v) Obese, metabolically healthy: BMI ≥ 30!0 and <2 cardiometabolic abnormalities
(n = 281); (vi) Obese, metabolically abnormal: BMI ≥ 30!0 and ≥2 cardiometabolic abnormalities (n = 488). Variables were compared
using ANOVA with sex and age as covariates. Different letters express statistically significant differences with P value lower than 0!05.
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Figure 3 Evolution of high-sensitivity C-reactive protein (hs-CRP) after the oral fat tolerance test according to the body size
phenotypes [10] defined as follows: (i) Normal weight, metabolically healthy: BMI <25!0 and <2 cardiometabolic abnormalities
(n = 26); (ii) Normal weight, metabolically abnormal: BMI <25!0 and ≥2 cardiometabolic abnormalities (n = 84); (iii) Overweight,
metabolically healthy: BMI 25!0–29!9 and <2 cardiometabolic abnormalities (n = 74); (iv) Overweight, metabolically abnormal: BMI
25!0–29!9 and ≥2 cardiometabolic abnormalities (n = 39); (v) Obese, metabolically healthy: BMI ≥ 30!0 and <2 cardiometabolic
abnormalities (n = 281); (vi) Obese, metabolically abnormal: BMI ≥30!0 and ≥2 cardiometabolic abnormalities (n = 488). Results are
plotted as mean " SE. Variables were compared using repeated measured ANOVA, with sex and age as covariates.

P. PEREZ-MARTINEZ ET AL. www.ejci-online.com

1060 ª 2014 Stichting European Society for Clinical Investigation Journal Foundation



�  76

flexibility-risk phenotypes (overweight, metabolically healthy
and obese, metabolically healthy). Previous evidences have
linked the postprandial TG response to the incidence of coro-
nary artery disease and stroke [15,16]. Thus, to identify these
inflexibility-risk phenotypes with an exaggerated postprandial
TG and inflammation response may be important in terms of
early identification of those at greatest risk who should be
prioritized for pharmacological and lifestyle intervention. It is
noteworthy that we did not find significant differences within
the group of metabolically healthy (among normal, overweight
and obese) or the group of metabolically abnormal (among
normal, overweight and obese).
Despite the increase in the prevalence of obese individuals,

less is known about the factors involved in the development of
phenotypic inflexibility in this population. It looks clear that the
more efficient an organism is in adjusting its phenotype to a
new situation, the more stable and healthy it remains. In this
regard, our study has identified how the different metabolic
phenotypes of obesity can adapt their response to a stressful
dynamic test according to their triglyceride homoeostasis.
Interestingly, this response was accompanied by differences in
the inflammation system. Based on our results, the question
then arises whether some normal weight but metabolically
abnormal phenotypes are unhealthier than some obese meta-
bolically healthy phenotypes. Mechanisms underlying the dif-
ferent metabolic phenotypes of obesity and the development of
cardiometabolic diseases have been poorly examined to date.
Several hypotheses have been proposed in an attempt to
explain the role of the adipose tissue in the metabolic dys-
function associated with obesity to better understand the
difference between different groups. Interestingly, most of

mechanisms disrupted in obese individuals, such as glucose
regulation, optimal inflammatory balance, oxidative stress
regulation and triglyceride metabolic regulation, require a high
degree of flexibility, in order to adjust the parameters to fit the
situation. Other hypotheses suggest the contribution of envi-
ronmental and genetic and/or epigenetic factors to metaboli-
cally abnormal phenotypes risk, although these hypotheses
should be investigated in depth.
In obesity, adipose tissue dysfunction will eventually lead to

abnormalities in lipid metabolism, such as hypertriglycerida-
emia (due to decreased TG hydrolysis and increased hepatic
very-low-density lipoprotein production), small dense LDL
particles, remnant lipoproteins and low HDL-C levels, all
associated with a higher risk for the development of cardio-
vascular diseases [17–20]. Adipocyte hypertrophy leads to
many changes in adipocyte function and production of anti-
and pro-inflammatory cytokines. By secreting adipokines and
other proteins (such as lipoprotein lipase and cholesteryl ester
transferase protein), adipose tissue affects TG metabolism. In
this context, we observed that obese, metabolically abnormal
subjects showed a higher triglyceride postprandial response
compared with the subgroup of normal, overweight and obese
metabolically healthy patients. Moreover, several studies sup-
port the concept that the levels of circulating TRL after meals
are significantly associated with the development of athero-
sclerosis [21,22]. Therefore, we observed that metabolically
healthy patients displayed lower postprandial response of large
TRL-TG, compared with those metabolically abnormal, inde-
pendently whether or not they were obese. The mechanisms
that might explain our findings are complex and could reflect
differences in chylomicron synthesis, secretion or clearance.

Figure 4 Postprandial incremental (D)
area under the curve (AUC) of hs-CRP
according to the body size phenotypes.
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However, from a clinical point of view, it is important to
identify the higher and undesirable postprandial TG response
related to particular obese phenotypes that could be strongly
treated by modifying eating habits, (increasing fish consump-
tion and consideration of n-3 supplements), weight loss,
smoking cessation and increased physical activity [23,24].
In the last years, van Oostrom and others have provided

evidence suggesting that postprandial triglyceridaemia is
related to the proinflammatory state due to the high expression
of the activation markers in neutrophils and monocytes [25].
Obesity is now considered to be a condition that facilitates the
development of a low-grade inflammatory state, characterized
by increased plasma levels of proinflammatory cytokines such
as tumour necrosis factor (TNF)-alpha, interleukins and
adipokines [26,27]. Furthermore, previous studies have con-
firmed that fat consumption induced the activation of inflam-
matory markers during the postprandial phase [28,29].
Nevertheless, whether obesity in its various forms has the same
state of subclinical inflammation is still a matter of debate.
Recently, in fasting state, we have observed that metabolically
abnormal individuals displayed a more proinflammatory
(higher hs-CRP and leptin), prothrombotic (higher plasmino-
gen activator inhibitor-1 (PAI-1)), and proatherogenic (higher
leptin/adiponectin ratio) metabolic profile relative to the met-
abolically healthy group [30]. In this study, as expected, obese,
metabolically abnormal subjects displayed a higher hs-CRP
postprandial response compared with the subgroup of normal,
overweight and obese metabolically healthy patients. Interest-
ingly, we also observed that levels of postprandial AUC of hs-
CRP were strongly correlated with the values of hs-CRP at
baseline. These findings confirm that not all obese individuals
exhibit increased risk of inflammation and not all normal-
weight individuals are inflammatory healthy. Our dynamic
results confirm our previous and other fasting data, indicating
that postmenopausal women displaying the metabolically
healthy obesity phenotype also have a favourable inflammation
profile as shown by lower CRP and alpha-1 antitrypsin levels
compared with insulin-resistant women. In this context, we
have previously demonstrated that after long-term consump-
tion of the high MUFA diet and 4 h after the fat overload,
induced a postprandial decrease in NF-kB activation and in the
nuclear p65 protein levels in metabolic syndrome (MetS)
patients [31]. Moreover, a postprandial increased in the tran-
scription of PBMC IkB-gene and the reduced transcriptional
activity of PBMC TNF- and MMP-9 after HMUFA diet, as
reflected in decreased mRNA levels, is consistent with
decreased NF-kB binding and also with an improvement in the
pro-inflammatory state of MetS patients [31]. Therefore, our
data suggested a different degree of flexibility between meta-
bolically healthy and unhealthy obese individuals regarding
the obesity-associated inflammatory mediators. This point is

interesting because insulin resistance has been shown to be the
most important, associated with a chronic state of subclinical
inflammation and characterized by increased serum concen-
trations of hs-CRP [32]. It is very interesting to know how these
potential mechanisms can modify the natural history of obesity,
and how the metabolically healthy obesity converts into meta-
bolically unhealthy obesity. Although there are other several
inflammatory markers, hs-CRP is the only marker of inflam-
mation used routinely in clinical practice.
In summary, our findings showed that certain types of the

metabolic phenotypes of obesity are more favourable modu-
lating phenotypic flexibility after a dynamic fat load test,
through TG metabolism and inflammation homoeostasis. To
identify, these phenotypes may be the best strategy for per-
sonalized treatment will help physicians in treating the right
cohort of at high-risk patients.
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V.  Chapter 5: SUMMARY OF RESULTS 
AND DISCUSSION

In the last years there has been an increasing awareness on the importance of postprandial 

events in the development and exacerbation of atherosclerosis, since fasting is not the 

typical physiological state of human in western countries. PPL following a fat-rich meal is a 

situation characterized by the generation of an atherogenic environment in the bloodstream, 

derived by the conjunction of the direct atherogenic properties of some lipid particles, 

especially those carried in the TRLs, and by the activation of the inflammatory and 

hemostatic systems(22, 203). Results form large population studies have assessed that 

postprandial TG levels independently predict the risk for coronary artery disease, peripheral 

vascular disease and cerebrovascular disease, and are possibly even better predictors of 

CVD than fasting TG(24-28, 204). 

As previously reviewed in Chapter 2 (“FACTORS AFFECTING THE POSTPRANDIAL 

RESPONSE”), postprandial lipoproteins metabolism is modulated by dietary patterns, food 

composition, conditions associated with lifestyle (physical activity, smoking and alcohol 

consumption), physiological factors (age, gender, genetic background and postmenopausal 

status) and cardiometabolic conditions such as fasting levels, T2DM, inflammation, insulin 

resistance, obesity and MetS(45-52, 205). However, despite the broad existing knowledge, 

there are still significant gaps to fully understanding of postprandial metabolism and its 

regulating factors. Some of them have been addressed in the present thesis. 
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Thus, age has been defined as a regulating factor of the extent of postprandial lipemia(32, 

33, 50, 206), but its independence of other age-associated phenotypic features, such as 

metabolic syndrome, has not been fully elucidated. In Chapter 4.A. (“LIPID METABOLISM 

AFTER AN ORAL FAT TEST MEAL IS AFFECTED BY AGE-ASSOCIATED FEATURES 

OF METABOLIC SYNDROME, BUT NOT BY AGE”)  we have explored whether age is an 

independent factor influencing postprandial lipemia on three different populations (88 

healthy young men, 77 middle-age metabolic syndrome patients and 20 healthy subjects 

>65 years) at fasting state and at 2nd and 4th postprandial hours. We did not find any 

differences in PPL response between the healthy young men and the healthy persons >65 

years, which may be linked to the absence of MetS traits and the fact that we limited the 

effects of confounding factors, such as the existence of ApoE gene variations. An early 

study performed in 22 non-diabetic subjects (9 males, 13 females, 22-79 yr old) showed a 

correlation between age and the postprandial TG response to a fatty meal (89). Later 

studies have reported that this fact may be resulting from a delayed clearance intestinally 

derived TRLs in older subjects by a decrease in LPL activity(90, 91). However, there are not 

many studies of age influence in PPL when other covariates are controlled. In most of those 

studies, subjects in the older groups exhibited some of the MetS traits, according to the 

high prevalence of MetS in older people(92). Our results show no differences in the 

evolution of postprandial TG between the healthy young men and the healthy persons >65 

years. Although the evaluation of the increase in plasma TG concentrations only during the 

early part of the postprandial period may not accurately describe the complete effects of fat 

meal ingestion on the perturbation of plasma lipids induced in older people as some authors 

have argued(206), the study of the first four postprandial hours have been identified as the 

most accurate predictor of total PPL(158, 159). Also, we additionally performed an internal 

control of the correlation between the lipemia in the first 4 h versus the complete data that 
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we had for MetS (8 h) and for the young men (11 h), showing in the two cases high 

correlation indices (R2 higher than 0.90). Nevertheless, confirmatory studies with 

standardized methodology and where covariates were controlled are needed before our 

results were fully extrapolated.  

On the other hand, although baseline TG has been previously proposed in different studies 

as the major determinant of PPL(46-48), the involvement of other traits of the MetS and 

whether this influence depends on the number of MetS criteria has not fully established. In 

Chapter 4.B. (“HYPERTRIGLYCERIDEMIA INFLUENCES THE DEGREE OF 

POSTPRANDIAL LIPEMIC RESPONSE IN PATIENTS WITH METABOLIC SYNDROME 

AND CORONARY ARTERY DISEASE: FROM THE CORDIOPREV STUDY”), we have 

explored the effect of a fatty meal on PPL metabolism in 1002 patients with coronary artery 

disease. We showed not only that fasting TGs are clearly the major contributors to the 

postprandial TGs levels but also that MetS and the number of its components influence the 

postprandial response of lipids in patients with CHD, particularly in non-hypertriglyceridemic 

patients. Postprandial AUC of TG showed a progressively unfavorable increase from one 

component to five in our population. However, this effect was attenuated when the 

population was divided into two groups according to the presence of basal 

hypertriglyceridemia. Thus, only those patients without high fasting TG (<150 mg/dL) 

remained a statistically significant influence of MetS traits. Our results agree with previous 

reports that have established that the presence of higher number of components of MetS is 

associated with an increase in subclinical atherosclerosis, and incidence and mortality of 

CHD(207, 208). In that context, it has been observed that men presenting four or five MetS 

traits had a 3.7-fold increase in risk for CHD and a 24.5-fold increase for diabetes 

�84



compared with men with none(209). However, the mechanisms underlying this fact are still 

unknown. Although it is generally accepted that the main pathogenic mechanism underlying 

the development of cardiometabolic changes in patients with MetS relies on insulin 

resistance, other mechanisms could influence the increased risk of CVD associated to 

MetS. In our study, patients with an increased number of MetS components showed higher 

levels of postprandial TG, confirmed by AUC and iAUC of TG. This deterioration in 

postprandial lipid metabolism associated with the increase number of MetS components 

may favor a higher risk of atherogenesis. Previous evidence carried out in healthy 

population has suggested a significant linear trend between increasing numbers of MetS 

components and magnitude of postprandial lipemia in 112 healthy subjects(210). 

Nevertheless, to our knowledge, our study was the first one to show that in non-

hypertriglyceridemic coronary patients. Another important feature underlying MetS is 

atherogenic dyslipidemia, defined as a rise in triglycerides and small LDL particles and low 

HDL-c. In this regard, we have observed that patients with at least three MetS components 

have higher ApoB plasma levels and lower HDL-c and ApoA1 plasma levels in all blood 

drawn during the postprandial state, as well as a positive relationship with AUC of ApoB and 

a negative relationship with AUC of HDL-c and ApoA1. All of these abnormalities have been 

implicated as being independently atherogenic(211).  

Finally, recently more attention has been paid to the different metabolic phenotypes of 

obesity due to evidences that suggest that not all obese subjects display the same 

clustering of metabolic and cardiovascular risk factors, and, likewise, not all lean subjects 

present a healthy metabolic and disease-free profile(19, 196). The degree of postprandial 

TG response could be an interesting field of study to explore the underlying causes for that 

phenotypic differences. In Chapter 4.C. (“METABOLIC PHENOTYPES OF OBESITY 
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INFLUENCE TRIGLYCERIDE AND INFLAMMATION HOMOEOSTASIS”), we have 

reported in 1002 coronary patients that certain types of metabolic phenotypes are more 

favorable modulating their response to a fat load test. Specifically, metabolically healthy 

patients displayed lower postprandial response of plasma TG and large TRLs, compared 

with those metabolically abnormal, independently whether or not they were obese. Although 

there is not yet a standardized definition of body size phenotypes(199, 201, 212, 213), we 

have explored those including inflammation and insulin resistance parameters to the 

classical definition of MetS as the most related to pathophysiological factors involved in the 

development of atherosclerosis and easier to measure than other proposed(214). As 

reviewed previously in the introduction section, descriptives studies have pointed that up to 

30% of obese people in general population seem to be metabolically healthy (MHO)(199), 

and there is a high prevalence of clustering of cardiometabolic abnormalities among 

normal-weight individuals. In our cohort of coronary patients from the CORDIOPREV study, 

more than 80% of the patients showed metabolically abnormal criteria, with a ratio of MHO 

of 7.5%. On the other hand, from a clinical point of view, there is a debate over whether or 

not different body size cardiometabolic phenotypes have an increased risk of metabolic 

complications, with conflicting results published(200-202). Although larger prospective 

studies are needed to reach final conclusions, in our study we have focused the attention in 

the identification of metabolical phenotypes of obesity as a good strategy to identify 

subjects at higher risk and drive personalized treatment. 
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VI. Chapter 6: CONCLUSIONS

1. In patients with coronary heart disease, PPL response was directly related to the 

presence of MetS. We found a positive association between the number of MetS criteria 

and the response of postprandial plasma triglycerides (Chapter 4.B). 

2. Metabolically healthy patients displayed lower postprandial response of plasma TGs and 

TRLs, compared with those metabolically abnormal, independently whether or not they 

were obese (Chapter 4.C).   

3. MetS interacts with age to determine PPL (Chapter 4.A). 
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