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0. Objectives 

This doctoral thesis aims to study the interfacial and chemical properties of 2D 
molecular organic structures at surfaces as model systems to evaluate their influence 
in the electron transfer (ET) of anchored redox proteins, such as myoglobin (Mb). The 
motivation is building up electrochemical biointerfaces whose properties can be 
tailored to tune a wide landscape of hydrophobic and hydrophilic interactions 
between Mb and functionalized surfaces by mimicking some basic features of ET at 
membranes or protein domains. The adsorption of building blocks constituted by ω-
substituted alkanethiols that self-organize into molecular layers (SAMs) at gold 
surfaces exposing –COOH and –CH3 terminal groups at the solution interface is 
hypothesized to meet such requirement. The following ob jectives have been set:  
 
1.- The formation of functional interfaces formed by 11-mercaptoundecanoic (MUA) 
and decanethiol (DT) molecules assembled onto Au substrates. 
 
2.- To test deposition procedures for the spontaneous or potentially-driven 
molecular assembly of MUA and DT under different experimental conditions (e.g. 
modification time, solvent and pH) in order to select those yielding well-organized 
structures of pure and homogeneously mixed SAMs with reproducible interfacial 
properties. The selection would be based on the proper control of the surface 
composition gradients of the MUA and DT components spatially distributed into 
nanopatterns at the SAMs, while their acid-base interfacial properties are modulated 
by the solution pH. 
 
3.- The replacement of surface patches of negatively charged residues at native Mb 
(n-Mb) by positively ones at cationized Mb (c-Mb) upon chemical modification.  
 
4.- The immobilization of n-Mb and c-Mb onto gold substrates modified with pure 
and mixed SAMs to get insight into the relationship between their function to directly 
shuttling electrons or to catalyze redox reactions and their structural/conformational 
rearrangements at the electrochemical interfaces depending on the underlying 
surface interactions. 
 
5.- The characterization of the 2D surface assemblies and protein complexes by using 
different mass analysis, electrochemical and spectroscopic techniques. 
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0. Objetivos 
 
Esta tesis doctoral pretende estudiar las propiedades interfaciales de estructuras  
moleculares orgánicas 2D formadas sobre superficies, y que sirvan como sistemas 
modelo para evaluar su influencia en la transferencia electrónica (TE) de proteínas 
redox inmovilizadas, como es el caso de la mioglobina (Mb). La principal motivación 
consiste en construir interfases electroquímicas cuyas propiedades puedan adaptarse 
a un amplio paisaje de interacciones hidrófobas e hidrofílicas entre la superficie y la 
Mb, y que permitan imitar algunas de las características básicas de la TE de proteínas 
que tiene lugar en membranas o entre dominios de éstas. La hipótesis de partida se 
basa en que la adsorción y ensamblaje de alcanotioles ω-sustituidos (SAMs) sobre 
superficies de oro para formar capas moleculares (SAMs) que exponen grupos -COOH 
y -CH3 hacia la interfase de la disolución pueden cumplir con tales requisitos. Para 
ello se han fijado los siguientes objetivos: 
 
1.- La formación de interfases funcionales formadas por moléculas de ácido 11-
mercaptoundecanoico (MUA) y decanotiol (DT) ensambladas sobre substratos de Au. 
 
2.- Ensayar procedimientos de deposición para llevar a cabo el ensamblaje molecular 
espontáneo o bajo control de potencial de MUA y DT bajo diferentes condiciones 
experimentales (ej.: tiempo de modificación, disolvente y pH) con el objeto de 
seleccionar aquellos que conducen a estructuras bien organizadas de SAM puras y 
mezcladas homogéneamente con propiedades interfaciales reproducibles. La 
selección se basaría en aquellas condiciones que permitan el control adecuado de la 
composición superficial de los componentes, MUA y DT, que se distribuyan en 
patrones superficiales nanométricos en las SAMs, a la vez que sus propiedades ácido-
base interfaciales son moduladas por el pH de la solución. 
 
3.- La sustitución de cargas negativas de residuos situados en la superficie de la Mb 
nativa (n-Mb) por positivas en la Mb cationizada (c-Mb) tras su modificación química. 
 
4.- La inmovilización de n-Mb y c-Mb en sustratos de oro modificados con SAMs 
puras y mixtas con el objeto de conocer la relación entre la función de transferencia 
directa de electrones o la capacidad de catálisis reacciones redox con su 
reordenamiento estructural/conformacional en interfaces electroquímicas en función 
de las interacciones superficiales subyacentes. 
 
5.- La caracterización de los ensamblajes formados por SAMs y proteínas mediante el 

uso de diferentes técnicas de análisis masa, electroquímicas y espectroscópicas. 
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1. Introduction 

1.1. Self-Assembly: A bottom-up strategy in molecular 

nanotechnology 

Self-assembly is defined as the spontaneous organization of components 

into higher hierarchically-ordered patterns or complex structures.1 The most 

characteristic features of the process are the following:  

(I) – The system has higher order (lower entropy) than its isolated 

components (i.e. surroundings become more disordered - higher entropy). 

(II) – The building blocks span a wide range of typologies such as atoms or 

molecules, nano- or mesoscopic structures with different compositions, 

shapes and functionalities.  

(III) – Interactions between the components (e.g. covalent, van der Waals, 

hydrogen bonding, electrostatic, п-п interactions, etc.).  This fact enables 

stable and flexible structures to withstand minor perturbations (ability of 

reversibility).  
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The self-assembling processes occurring in Nature, as well as in 

technology, can be classified as static or dynamic (Figure 1). On one hand, the 

systems formed by static self-assembly don´t dissipate energy as far as a 

global or local equilibrium is achieved. However, the formation of stable or 

ordered structures requires energy to trigger the assembly process. Some 

examples of this kind are represented by atomic, ionic, molecular, liquid or 

colloidal crystals, polymers, self-assembled monolayers (SAMs), lipid bilayers, 

folded proteins, etc. Templated/Directed self-assembly is a variant where the 

interactions between building blocks and regular features (e.g. surfaces, 

optical fields, etc.) determine the final structure. 

 

 

Figure 1. Static vs dynamic self-assembly (E=energy and S=entropy of the system). 
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On the other hand, dynamic self-assembly implies that the systems are 

dissipating energy which allows the formation of patterns or structures by 

their components interacting under non-equilibrium conditions. This 

definition is closer to that of self-organization. While self-assembly arrives at 

an equilibrium configuration, self-organization drives the system off the 

equilibrium which requires energy to maintain. Such situation is created by 

small fluctuations that are amplified by a positive feed-back loop where 

entropy decreases evoking emergent phenomena. The open thermodynamic 

systems may move from ordered, to near chaotic and far from equilibrium 

states (Figure 2).  As energy consumption increases, systems pass through 

transition states between order and chaos. Live systems meet these 

requirements as a self-sustained chemical system over a period of time being 

able to undergo biological evolution by gathering energy and molecules from 

its surroundings, self-replicating and mutating. Thus, life is adaptive and 

dynamic and, when the energy flux stops through the living entities/systems 

they collapse. 

The most common example of these complex and adaptive systems is 

the biological cell whose patterns are due to oscillating chemical reactions (i.e. 

competition between diffusion and reaction). The characteristic of biological 

self-assembly is the diversity and complexity of functions produced. How does 

life emerge from chemical reactions? It seems that self-organization play a 

central role in life, connecting the simplicity of chemical reactions to the 

complexity of cell division and self-replication by a hierarchy of self-

assembling processes that are fundamental to their operation. Such chemical 

reactions are usually confined in a space delimited by membranes - thin walls 
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of self-assembled molecules - keeping complex molecules inside but allowing 

pass through the smaller ones that are related to the waste and nutrition 

cycles. Then, the study of the interfacial and chemical properties of these 

molecular assemblies is interesting from the surface and colloidal chemistry 

points of view. Although, the study of dynamic systems is still in its infancy, it 

offers great challenges and opportunities. Thus, most of the research and 

understanding of self-assembly has focused in the examination of static 

systems. This will be essentially the case for the work presented in this 

doctoral thesis which is focused on functional interfaces formed by SAMs.  

 

 

 

Figure 2. Concept of self-organization: Illustration of the continuum of open 

thermodynamic systems from ordered, near-to-chaotic, to far-from-equilibrium 

states (Source: Review of the Universe: universe-review.ca).  
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Self-assembly represents a practical “bottom-up” strategy for the 

construction and design of materials and devices with nanoscale dimensions.2 

Nanoscience deals with the study, construction, imaging, measuring or 

manipulation of objects with one dimension below 100 nm (Figure 3a), whose 

new physical, chemical and/or biological properties are of interest in the 

development of added-value industrial and market products for technological 

applications, Nanotechnology.3-5 Nanoscience is an emerging highly 

interdisciplinary research field integrating chemistry, materials and surface 

science, applied physics, biology and engineering disciplines. 4, 5 

The assembly of entirely molecular building blocks into functional 

devices is usually named molecular nanotechnology to differentiate it from 

nanotechnology where devices are fabricated using other constituents (Figure 

3b).6 The fabrication of these nanostructured materials has been driven by the 

development of synthetic methods and advances in supramolecular 

chemistry.7  They have been developed not only from organic and 

organometallic components but also integrated with nanomaterials and 

biomolecules.8-10 Thus, nanomaterials have been designed with control over 

size, morphology and functionality by tailoring their properties. Additionally, 

advances in surface science have allowed building up 2D nanoscale 

molecularly assembled structures – 2D ultrathin films – in a simple and 

reproducible way with a plethora of functional groups, which can be 

chemically modified, onto a wide variety of conducting, semiconducting or 

insulating substrates. 
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Figure 3. General classification of: (a) Nanomaterials classes and dimensionality and 

(b) Molecular nanotechnology, nanotools and nanodevices. Red highlighted parts of 

the schemes relate to the specific areas where this doctoral thesis would be included.  
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The 2D films with nanoscale thickness (<<100 nm) can be classified as 

follows 7:  

(I) Self-assembled monolayers (SAMs) 

(II) Langmuir-Blodgett films (LBFs) 

(III) Two-dimensional supramolecular assemblies 

Therefore, the combination of the concepts of self-assembly and 

molecular recognition provides an efficient tool for surface functionalization. 

Like Nature, artificial constructs may response to external stimuli (e.g. 

electrical, chemical/biochemical, temperature, electromagnetic radiation, etc.) 

or interact with other isolated monomers to form functional materials.11, 12 

Then, the fabrication of functionalized surfaces can be used for designing 2D 

nanodevices, such as sensor/biosensors and for electronic applications, with 

either improved performance or new attributes (Figure 3b). The detection 

principle in nanosensor is simply based on monitoring changes in 

physicochemical properties (e.g. electrical, optical, magnetic, mass, pH, etc.) 

from the specific interaction of a target molecule with the molecular device. 

1.2. Self-Assembled Monolayers (SAMs) on surfaces 

1.2.1. General Concepts and Historical Background 

SAMs represent ordered molecular superstructures that are formed by 

the spontaneous adsorption of functional organic molecules from a liquid or 

gas phase through the attachment of a high-affinity head group onto a 

substrate. The balance of the intermolecular and surface interactions 

determines the final organization, sometimes into crystalline or 
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semicrystalline structures epitaxially grown (Figure 4).6, 13-17 They are the most 

elementary form of 2D organic thin-film nanomaterials showing thicknesses 

between 1 to 4 nm, which can be incremented for multi-layered assemblies. 

An advantage of SAMs over LBFs is that more flexibility is provided in the 

molecular design because the molecules required do not need to be 

exclusively amphiphilic.  

 

 

Figure 4. SAM general organization scheme and energy balance on surfaces. 

 

The molecular structure of the adsorbate building blocks can be divided 

into three main parts: 14 
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(I) – Head group. It is constituted by chemical moieties placed at one end of 

the molecule having a high affinity for the substrate surface. The head 

group is usually grafted to the substrate by covalent bonding with surface 

atoms (chemisorption). Some groups that have been mainly used are 

(Table 1): -SH, -S-S-, -S-, -SOCH3, xanthate, thiocarbamate, -SeH, -Se-Se-,    

-COOH, -PO3H, -OH, -H, -SiCl3, -Si-(OCH3)3, -N3 or diazonium salts, etc. 

(II) – Backbone. This is a spacer part linking the head and terminal groups of 

the molecule. It is usually composed by alkyl chains (saturated bonds) 

and/or aromatic rings (unsaturated bonds). Weak and short range 

backbone intermolecular interactions (e.g. Van der Waals, dipolar, п-п, 

etc.) play a crucial role in the final ordering/packing of the monolayer. 

Some examples of spacers used in the backbone are the following:  

-(CH2)n-,   -(CF2)-(CH=CH)n-,  -(C≡C)n-,     -(C=C)n-,  -(CH2-O)n-,   -CO2-CH2-,      

-CO-NH-,  -SO2-, -(-CH2-CH2-O)n-, aryl, biphenyl, alkylbiphenyl, azobenzene, 

oligo(phenylenen-ethynylene, etc). 

(III)  - Terminal/Tail group. It is the distal moiety exposed to the 

SAM/environment interfacial area defining the chemical functionality of 

the surface. A rich surface chemistry has been exploited thanks to the 

wide range of terminal functionalities available in SAMs (e.g. –COOH, -

CH3, –OH, -SH, -NH2. -NO2, -CH=CH2,-C≡CH, -CF3, -CN, -O-CH3, -CO2CH3, -

CO-NH2, -Cl, -SO3H, -B(OH)2, -N3, epoxide, aryl, pyrrole, ferrocene, etc.) 

The formation of a monolayer of adsorbed molecules diminishes the 

interfacial free energy between the substrate and the environment. 

Consequently, interfacial properties are altered by acting the organic material 

as a physical or electrostatic barrier changing the electronic and/or optical 
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properties, by decreasing the reactivity of surface atoms and modifying the 

electronic states, by acting as an electrically conducting or insulating film or 

even by introducing changes in the surface chemistry and reactivity through 

different terminal groups. That is, a hydrophobic terminal moiety will make a 

low energy hydrophobic surface, while polar or ionisable moieties will 

produce high energy ones. Hence, the plethora of molecular structure 

combinations and substrates available for SAMs formation (Table 1) provides 

a convenient and versatile system to tailor interfacial or tribological properties 

of surfaces, such as conductivity, corrosion, wettability and adhesion among 

others.14, 15, 18  

Then, the reason that makes SAMs attractive for building molecular 

devices is that well-defined surface packing and density of specific molecules 

can be obtained. Another reason is the possibility to build multifunctional 

surfaces by incorporating molecules with different terminal groups into SAMs 

(mixed SAMs) to finely tune chemistry at the top of the layers with precision 

down to the nanoscale or molecular level. Multifunctional surfaces can be 

designed to contain components that allow coupling further functionality, 

spacing components apart or aiding to control surface interactions with the 

environment. Thus, SAMs provide excellent models for studying electron 

transfer processes,19-21 controlling interfacial reactions and tailoring surface 

properties.6, 14, 15, 22, 23 SAM-based platforms have been widely applied in many 

fields such as biomaterials and biosensing,9, 10, 24, 25 fuel cells,26 molecular 

electronics and photovoltaics 17, 26, 27 (Figure 5).  
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Table 1. Chemical systems of adsorbates and substrates that form SAMs 
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In 1983, Nuzzo and Allara reported a new methodology for preparing 

organic monolayers with different terminal functional groups by adsorbing 

disulphide compounds from solution into gold surfaces.28 In the next decade 

(1983-1993), this fact extended dramatically the previous approaches to a 

wide variety of functional SAMs mainly formed by chemisorption of 

organosulfur compounds from solution or vapour phases onto Au and Ag 

surfaces.29, 30  

Among organosulfur compounds, the studies were mainly focused on ω-

substituted alkanethiols (HS(CH2)nX), dialkyl disulfides (X(CH2)mS-S(CH2)nX) and 

dialkyl sulphides (X(CH2)mS(CH2)nX) SAMs, where n and m represent the 

number of methylene units and X the tail group of the alkyl chain. In this 

period, much effort is dedicated to elucidate the structure, preparation 

protocols and some details governing thermodynamics and kinetics of the 

assembly process in these kinds of SAMs. 

Since early-1990s, research on organosulfur and ω-substituted 

alkanethiol SAMs on Au and Ag continued to get insight into the aspects 

commented above but also expanded to some degree the type of molecules 

used to build them and to other metallic and semiconductor flat surfaces 

(Table 1).31-38 During this period, this kind of monolayers also started to be 

employed in the stabilization, synthesis of nanoparticles (3D-SAMs) and, 

design of nanostructured materials.38 
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Figure 5. Diagram of SAMs applications. The work presented in this doctoral thesis 

would be ascribed to the research fields and applications included in the shaded-

area.  

 

In the last decade, the research interest in ω-terminated alkanethiols 

has grown on: (i) reactive surfaces by adding functionality, biocompatibility 

and implementing surface chemical gradients to pure and mixed 2D-SAMs in a 

controllable manner (e.g. click chemistry),39, 40 (ii) electron/charge transport 

across molecular and nanoscale junctions (Metal-SAM-Metal or Metal-SAM-

semiconductor interfaces) 40-42 and, specially (iii) the design of biocompatible 

nanoparticles and nanostructured materials in prospect of applications in 

Nanotechnology.10, 43, 44 
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1.2.2. Organosulfur SAMs: Alkanethiols on Gold 

Why alkanethiol SAMs are the most popular and studied 2D assemblies? 

They are considered model systems in 2D thin solid films for 

understanding of the self-assembly process at surfaces, which is essentially 

based on: (i) the ease of forming a structurally well-defined organic surface 

and (ii) providing unprecedented control over the monolayers formed at the 

molecular level with the possibility of further surface derivatization. However, 

the real challenge comes in making stable SAMs and almost defect-free in a 

reproducible way for different applications. 

Why is Gold the standard surface for alkanethiol SAMs? 

Although for some applications gold may not be the best substrate, 

several characteristics make it the best choice for studying alkanethiol SAMs: 

(I) – Unlike other metals, gold is reasonably inert with most chemicals and 

does not readily form surface oxides under atmospheric conditions. This 

makes possible to manipulate samples and conduct experiments without 

need of using complicated and expensive UHV equipment. 

(II) – It is a biocompatible material without evidence of toxicity for 

macromolecules or cells that can adhere and function on the modified 

surface. SAMs formed on gold are stable from days to weeks in contact with 

biological media when required.14   

(III) - The gold is easy to obtain either as a 15-1000 nm thick film deposited on 

Si, glass and mica, sometimes attached to the underlying substrate by a 1-5 

nm adhesion interlayer of Cr or Ti, or as a colloid. Highly organized and packed 

SAMs with low density of defects and well-defined interfacial properties 
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usually require the use of large atomically smooth terraces and single 

crystalline-textured gold surfaces.  

The use of commercial or “home-made” gold single crystals is more expensive 

and with a more reduced applicability for their easy implementation in 

conventional techniques for SAM´s characterization. However, they offer a 

unique possibility to unravel the role of the S-Au chemistry at different 

surface coordination sites and crystallographic orientations (e.g. low index 

Au(111), Au(100) and Au(110) surfaces) on the SAM organization and their 

interfacial properties.30 The use of polyfaceted gold surfaces is an 

intermediate lower cost solution compared to that of single crystals and 

deposited thin films.  

(IV)  – The development of accepted methodologies to obtain reliably 

clean, either by wet chemical or flame annealing procedures, and well-defined 

single crystalline or polyoriented gold surfaces is another important reason for 

its use.45 This fact allows improving reproducibility in the SAMs formation and 

characterization, as well as a more satisfactory comparison of results between 

laboratories. However, polycrystalline films are sufficient for many 

applications on planar substrates and inexpensive in comparison to single 

crystals. Then, the criteria for selecting the type of substrate and preparation 

method will depend on the SAM´s applications. 

1.2.2.1. Protocols for the formation of alkanethiol-based SAMs on gold    

The spontaneous formation of alkanethiol monolayers on gold can be 

performed from either the liquid or vapour phase. Assembly from solution is a 

convenient method for the gold surface modification and sufficient for most 
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applications of SAMs where subsequent contact with liquid phases is required 

(Figure 6a). The spontaneous adsorption of thiols to the gold surface takes 

place by a chemisorption process where a pseudo-covalent thiolate-gold bond 

(referred as S-Au for sake of simplicity) is formed ( 40-50 kcal/mol): 30 

 

X-(CH2)n-SH + Aun
0 → X-(CH2)n-S-Au+ · Aun

0 + ½ H2 (1) 

 

The proposed reaction (1) and the nature of the S-Au interface are still 

controversial and under debate as it will be commented later. The energy 

related to other parts of the molecule has a different order of magnitude 

compared to the S-Au bond. In this sense, 1–2 kcal/mol energy values are 

involved per methylene unit for the van der Waals interactions between 

hydrocarbon chains, and only a few kT values relate to the terminal groups.14, 

30 However, all three parts of the molecule contribute to the structure and to 

the physico-chemical properties of the SAMs. 

1.2.2.2. Deposition from solution phase    

SAMs are easily prepared by immersing a freshly prepared and clean gold 

surface into a dilute (0.01-10 mM) ethanolic solution of the alkanethiol 

compound for an adequate period (from minutes to 24 h) at room 

temperature (Figure 6a). The most common procedure described in literature 

is the use of 1-10 mM ethanolic solution of thiols for a 12-18 h immersion 

time period.14, 46 This fact comes from early studies designed to optimize 

reproducibility of the SAMs produced and convenience. The widespread use 

of ethanol is due to several reasons: (i) the solvation of different alkanethiols 
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with variable degrees of polarity and chain length, (ii) low-cost, (iii) high purity 

and (iv) low toxicity.46 

Although, high surface coverage of alkanethiols can be quickly obtained 

within milliseconds to minutes, a slow reorganization process is usually 

required over a period of time of several hours to maximize the packing and 

ordering of the monolayer while minimizing the structural defects in the SAM 

(Figure 6).13, 46, 47 

It is generally accepted that SAMs are formed following a multistep 

process: (I) the molecules that are physisorbed on the surface in lying-flat 

configuration, (II) they subsequently chemisorb, reorient and, (III) become 

densely packed into islands or domains of molecules that start to nucleate 

and spread across the surface with time, while thiol molecules continue to 

adsorb at domain boundaries and, (IV) finally at longer times and high surface 

coverages, the growing domains merge to form a quasi-defect free monolayer 

(Figure 6b). 
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Figure 6. (a) Diagram showing the steps in the formation of a SAM deposited on a 

Au(111) surface upon immersion in alkanethiols solution or micellar medium either 

under potential control or in its absence, and (b) representation of the assembly 

process: (I) physisorption, (II) chemisorption, (III) island and (IV) SAM formation. 

 

The assembly process is determined from thermodynamics and kinetics 

for the adsorption of the SAM (Figure 4).13, 14 The order and the final structure 

of the SAM is mainly derived from the van der Waals (v.d.W.) intermolecular 

interactions between neighbouring alkyl chains as long as efficient molecular 

packing is not disrupted by tail groups that are bulkier than the footprint of 



Introduction                                                                                                     Chapter 1 

 

31 

 

the alkyl backbone (20 Å). 13, 14, 29, 30 Then, the specific protocol selected will 

depend on the compound structure and the purpose for the SAM formation. 

Therefore, any experimental parameter that influences v.d.W. 

intermolecular interactions will affect the rate of formation and the resulting 

organization of the SAM.14 In practice, most experimental conditions yield 

SAMs with desirable functional behaviours which are acceptable for some 

applications. However, fundamental studies of interfacial properties usually 

require minimize defects in the final structure.18, 40 If a more ordered 

monolayer is required then, longer times of immersion, longer alkyl chains, 

more concentrated thiol solutions, small amount of dissolved impurities of 

other sulphur compounds, smoother, clean and well-defined surfaces would 

be recommended. However, the effects of other parameters as choice of 

solvent and temperature are less known.  

The thermodynamics and kinetics of the assembly process can be 

affected by the solvent structure and polarity used for the SAM deposition 

because of the balance of the solvent-substrate and solvent-adsorbate 

interactions in the dynamic equilibrium governing the thiol adsorption.48, 49 

Stronger solvent-substrate interactions may slow down the adsorption rate of 

the thiols from solution as they must compete for the displacement of the 

solvent molecules from the surface.50 Hydrocarbon non-polar solvents may 

improve the adsorption kinetics but, stronger solvent-adsorbate interactions 

lead to less-organized alkanethiol SAMs to that formed from polar solvents.48, 

51 It seems that poor solvents for n-alkanethiols (low solubility and heat of 

adsorption) reduce SAM conformational and pinhole defects by promoting 

densely packed layers but, in some cases, at the cost of the physisorption or 
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intercalation of thiol molecules on the monolayer.48, 51 Therefore, the solvent 

is an important parameter for determining the quality of the SAM. However, 

there remains a challenge to understand in detail the complex and dynamic 

interactions that takes place between solvent, surface and adsorbates in the 

assembly process. 

1.2.2.3. Deposition under potential control    

Gold substrates are metallic conductors that can act as electrodes. The 

adsorption of alkanethiols and the SAM organization process can be altered 

by changing the external potential applied to the metal. The studies focusing 

on the potential-controlled formation of the SAMs was firstly demonstrated 

by Porter and coworkers.52, 53 This fact is evidenced by the presence of 

oxidative readsorption peaks (electrochemical S-Au chemisorption reaction in 

alkaline media: Au + X-(CH2)n-S- → X-(CH2)n-S-Au + e-) in cyclic voltammograms 

once the potential is swept back to anodic values after the  SAM formed has 

been reductively desorbed from gold at cathodic potentials.  

More recently, control on the deposition kinetics of SAMs on gold is 

effectively achieved by changing the electrode potentials.54 When holding the 

electrode potential positive to the potential of zero charge of gold, the thiol 

molecules are covalently attached while, at cathodic potentials, 

chemisorption and reorganization processes are significantly slowdown. This 

potential-assisted deposition method usually leads to the formation of 

complete, free of pinhole defects and highly-ordered thiol SAMs faster, over 

time scales of a few minutes, than the common deposition process under 

open circuit potential (OCP) conditions.54, 55 However, this behaviour seems 

not prevail in the case of thiol SAMs with the shorter chains.56  Additionally, 
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this method is especially effective to: (i) tune surface composition to the 

molecular level in mixed SAMs, (ii) create surface gradients by switching 

off/on the SAM formation under soft conditions, (iii) control surface coverage 

in the submonolayer range or even the formation of monolayers or bilayers 

otherwise inaccessible using OCP deposition.54, 57-59  

1.2.2.4. Deposition from micellar medium    

SAM formation based on deposition from aqueous micellar media is a less 

explored method, but represents an interesting approach to build almost 

defect-free alkanethiolate monolayers. The study of this micelle-assisted 

deposition method was firstly reported by Kaifer et. al. 60 and examined in 

detail by Jennings et. at. 61-64 Self-assembly process of thiols from aqueous 

micellar solutions has been investigated by using Triton X-100,60, 65, 66 

olygoethylene glycol monodecyl ethers (CnE6),61-63 sodium dodecylsulfate 

(SDS),60 and n-alkytrimethylammonium bromides (CnTAB) 63 as representative 

nonionic, anionic, and cationic surfactants, respectively. 

The interactions of the micelles with alkanethiols influence the 

thermodynamics and kinetics of the adsorption process.62, 63, 65, 66  In this 

sense, the hydrophobic interactions between neighbouring alkyl chains are 

usually facilitated during the self-assembly process in hydrophobic micellar 

environments, while adsorption kinetics are slow down exponentially upon 

increasing the alkanethiols chain length.62, 63  Therefore, the formation of high 

quality monolayers with even improved packing density and excellent 

electron transfer blocking properties can be achieved as compared to SAMs 

prepared from organic solvents under similar experimental conditions.61, 65, 66 
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Interestingly, micelles have been suggested to act as vehicles transporting 

and delivering the thiols to the metal surface (Figure 7). The general 

mechanism proposed to explain the micelle-assisted monolayer formation 

consists of several steps (Figure 7a): (1) the micelles containing the 

alkanethiols diffuse to the proximity of the Au surfaces, (2) the release of the 

alkanethiols from the micelles adsorbed at the metal surface (admicelles) and, 

(3) alkanethiols chemisorb on the surface after admicelles removal. Yan et.al. 

have also proposed that thiols are likely to be transferred between micelles in 

solution and, to admicelles in metal surfaces at low surface coverages, 

through a collision induced activated diffusion process (Figure 7b).62, 63 At high 

surface coverages, the alkanethiols must be released atop the growing SAM 

by forming surfactant bilayers. 
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Figure 7. (a) Proposed scheme for the transfer to the surface of alkanethiols 

dissolved in a hexagonal liquid crystalline micellar phase of Triton X-100 (non-ionic 

surfactant) and water. (b) Possible pathways for exchanging insoluble alkanethiols in 

micellar solutions: B1 - collision-driven fusion-fragmentation and B2 – fragmentation-

growth mechanism, where either solute-dissolved sub-micelles separate from a 

normal-sized micelles to grow or become incorporated into empty micelles. 

 

1.2.3. Alkanethiol-based mixed self-assembled monolayers 

Multicomponent SAMs, so-called mixed SAMs, are comprised by a 

well-defined mixture of 2D molecular structures. The simplest case is a 

mixture of two components leading to binary SAMs with defined gradients of 
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interfatial composition and surface nanopatterns.67, 68 As already commented, 

molecular level control over the density and spatial distribution of functional 

groups in surfaces is important for a wide variety of applications, and in 

particular, for the design of biomaterials, biosensors and molecular 

electronics devices.17, 24, 69, 70 At present, mixed SAMs offers the best option 

for controlling the density and spatial distribution of biomolecules on surfaces 

while preserving their biological activity in many cases. Morever, such SAM 

surfaces may be stimuli responsive (e.g. electrical, chemical/biochemical, 

optical, temperature, etc.), where their surface properties are manipulated 

providing the possibility to switch “on-off” states that modulate, for example, 

the biomolecule activity and function, protein immobilization and cell 

adhesion.7, 11, 12 These interfaces are also usually referred as “switchable” SAM 

surfaces.  

Mixed SAMs can be produced by spontaneous coadsorption from 

solutions containing mixtures of thiols in which the substrate is immersed. 

The formation of ω-terminated alkanethiol binary SAMs with widely varying 

surface compositions of functional groups can be controlled by changing the 

mole fraction of the adsorbates in solution – but does not necessarily coincide 

with their surface fraction usually due to the preferential adsorption of one 

component - for different concentration ranges.71, 72    Analytical techniques, 

such as X ray photoelectron (XPS)73-77 and infrared (IR) 74-76 spectroscopies, 

contact angle (CA),73, 76-78 ellipsometry,74, 79 cyclic voltammetry (CV)58, 75, 77, 79, 80 

and scanning probe microscopies (SPMs)75-77, 81 have been used to 

characterize the phase separation of components and determine the average 

surface composition of binary monolayers. SPMs are a powerful tool that 
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meets the requirement of molecular resolution for direct imaging of 

nanometer scale patterned mixed SAMs.75-77, 81    Then, macroscopic 

techniques can be used not only to elucidate the phase behaviour in mixed 

SAMs but also to relate the information provided with nanopatterns schemes 

of monolayer´s organization already supported by SPMs.  

 

 

Figure 8. Schematic illustration of mixing phases in binary SAMs and selective 

replacement by partial electrochemical desorption. X (blue) and Y (orange) 

represents the end-group of the alkyl chain (-CH3, -COOH, -OH, etc.) of the ω-

substituted thiols.  
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ω-terminated alkanethiols having similar molecular features and 

hydrocarbon chain lengths lead to homogeneously mixed SAMs formed either 

by nanoscale phase-separated domains of each component (macroscopically 

mixing)58, 75, 76 or uniformly distributed individual components (molecular level 

mixing) (Figure 8).58 The tendency of mixed binary SAMs whose components 

are markedly different in the hydrocarbon chain length and in the ω-terminal 

group is to phase-segregate into bigger size domains of each molecule 

(macroscopically phase-segregated) (Figure 8).79 When deposition is carried 

out under near-to-equilibrium conditions, such mixing phase behaviours can 

be explained by thermodynamics and the prevalence of homo- or 

heteromolecular interactions between neighbouring molecules would be the 

main factor determining the final phase composition. However, kinetics may 

play a crucial role in obtaining metastable trapped states under non-

equilibrium conditions. Some examples are the following: (i) binary SAMs 

formed by short and long ω-substituted alkanethiols may behave as an 

intermediate state between completely mixed (homogeneous mixing) and 

fully phase-segregated (macroscopically phase-separated)73 and (ii) binary 

SAMs formed by ω-terminated alkanethiols with the same chain length that 

form nanoscale phase-separated islands (homogeneous macroscopically 

mixing) at room temperature may either behave as uniformly distributed at 

the molecular level or macroscopically phase-separated when increasing the 

temperature.  

As in the case of pure SAMs, potential-assisted deposition of mixed SAMs 

allows the formation of highly-ordered films faster than the common 

deposition process under OCP conditions. Additionally, post-adsorption 
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processing of mixed SAMs under potential control offers unprecedented 

control over surface patterning, otherwise non-accessible by the conventional 

method of spontaneous deposition (Figure 8). Thus, different surface 

gradients can be created by selective replacement of the SAM components 

(e.g. electrochemical partial reductive or oxidative desorption) and backfilling 

with new functional molecules. Regarding to the deposition of mixed SAMs 

from micellar medium, the firstly reported example in literature will be 

described in the present doctoral thesis.  

1.2.4. Structural characterization of alkanethiolate SAMs     

A plethora of techniques for surface analysis and physico-chemical 

characterization (RAIRS, Raman, XPS, SFG, HREELS, NEXAFS, XRD, SPMs, 

ellipsometry, contact angle, mass spectrometries, etc.) have contributed to 

elucidate structural organization (orientation, organization and surface 

structure) and in the understanding of the self-assembly mechanisms at 

molecular scale in alkanethiolate SAMs (Table 2). Most of the studies have 

been carried out on Au(111) surfaces as a model system and in fact, still today 

there is only limited information about self-assembly of these molecules on 

other gold single crystalline surfaces.  
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Table 1. Summary of SAM properties collected by different analytical techniques 
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SAMs are generally accepted as well-defined phases of organic groups 

laterally organized on the underlying substrate. However, SAMs are dynamic 

materials with significant forms of structural complexities and embed extrinsic 

and intrinsic defects, specially when inmersed in fluids. Some of these 

dynamic aspects keep still opened discussions and controversial of SAM 

structure about phase transitions, conformational isomerism, lateral diffusion, 

the metal-sulphur bonding and environmentally responsive reconstructions of 

their surfaces.  

1.2.4.1. Gold-sulphur interface 

Knowledge of the S-Au bond is imperative in molecular electronics and the 

design of novel optoelectronic devices. The reaction (1) for the thiolate-gold 

bond formation is generally accepted. However, chemistry involved in its 

mechanism of formation and nature of S-Au interface are still under debate in 

search of a unified model.  

In general, the ordering and the final structure of an alkanethiolate 

monolayer on single crystalline gold surfaces is esentially determined by the 

energy balance (Figure 4) of two factors:  

(I) - The periodicity arrangment of surface atoms in the gold lattice and the 

presence of different coordination sites for the adsorbate molecules that 

leads to different adsorbate-substrate lateral corrugation and adsorption 

energies (Figure 9). 

(II) – The V.d.W. intermolecular interactions between alkyl chains that 

determine the adsorbate ordering in the absence of substrate 

corrugation.  
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Figure 9. (a) Top and front view of simplified models of the un-reconstructed and 

reconstructed Au(111) surface. Different shades emphasize the corrugation of the 

outer-most layer due to misfits between surface and the bulk atomic structure. (b) 

Schematics of bonding motifs between thiolates and unreconstructed Au(111) for the 

standard model, describing sulphur binding atop, bridge or hollow sites and, the 

adatom model, describing binding of dithiolate (RS-Au(I)-RS) and thiolate (RS-Au) 

with Au adatoms. 

 

A common motif at metal-gold interfaces is that the SAM structure tends 

to arrange similarly to a simple adlayer structure of elemental sulphur does on 

gold. Then, most of the long-range ordered alkanethiolate monolayers are 
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commensurate with the gold surface lattice. The substrate corrugation plays 

an important role in SAM ordering and intermolecular interactions also clearly 

influence the lateral spacing within neighboring hydrocarbon chains. This fact 

has been implicitally assumed by the standard model tradicionally accepted 

for the S-Au interfacial bonding where molecular ordering would take place 

on an unreconstructed surface (Figure 9). In this sense, the unreconstructed 

Au(111)-(1x1) surface would provide a rigid chequer-board of one, two and 

three-fold symmetry surface sites (i.e. atop, brigde and hollow sites) on which 

alkylthiolate molecules pin and assemble into different ordered structures 

depending on the thiolate surface coverage achieved (Figure 9b).  

However, flame-annealed clean Au(111) adopts a uniaxially-compressed 

hexagonal close-packing in the outer-most atomic layer with a gold 

interatomic distance smaller than the underlying bulk gold (Figure 9a). The 

larger atomic density of 4.4 % compared to the bulk layers below originates a 

(23 x √3) rectangular commensurate mesh with the substrate and a “herring-

bone” corrugation pattern.  

 The Au(111)-  (23 x √3)  surface reconstruction is lifted to a 

unreconstructed surface termination as the thiolate coverage increases.82 This 

fact must lead to an atomic surface motion with the release of the excess of 

Au atoms in the outer-most layer, and indeed the formation of surface “pits”, 

identified by STM technique as vacancy islands whose depth is equivalent to 

one or two gold atoms in height. The nature of these vacancies and the origin 

of the c(4 x 2) molecular superstructure, systematically observed in 

alkanethiol SAMs, has been a long-time controversial issue. For that reason, 

despite the classical view of static and unreconstructed Au(111) surface with 
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adsorbates occupying a specific surface site, different and dynamic bonding 

models have emerged for the S-Au interface, the so-called adatom models 

(Figure 9b). This new picture for the S-Au interface is based on the formation 

of surface thiolate species attached to Au adatoms, the most important being 

the RS-Au and RS-Au-RS complexes, whose surface movement allows to order 

the SAM structure and gives a reasonable explanation for the existance of 

vacancy islands. In fact, it is accepted that a certain amount of the gold atoms 

removed from the topmost layers forms gold-thiolate complexes that leave 

monoatomic vacancies yield to larger ones by Ostwald ripening. 

 Among the different adatom models, that proposed by Grönbeck et. 

al., which involves RS-Au-SR complexes in a cis configuration, is the most 

widely accepted ((RS)2Au model). In the RS-Au-SR moieties, the central Au 

atom is linearly coordinated by surface-paralell bonds to the thiolates, 

bridging sulphurs to two Au atoms of the underlying surface on top sites. The 

formation of these complexes satisfactoraly explains the behavior of low-

coverage striped phases of alkanethiolates on Au(111), and also the possibility 

to construct a full monolayer coverage with c (4 x 2) superstructure consisting 

only of trans- or cis-RS-Au-SR units without any disorder (Figure 10).  At 

present is unclear how low-coverage striped phases evolve to intermediate 

coverage or full monolayers. It can be speculated that favoured cis-trans 

isomeration of RS-Au-SR complexes, their mobility, steric interactions and 

other S-Au complexes may play a role. 

1.2.4.2. SAM surface structure and organization on Au(111) 

Alkanethiols yield different long-range ordered structural phases and 

commensurated lattices on Au(111).  In the general, there are three main unit 
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meshes of (m x √3)rect., (√3x√3)R30o and (2√3 x 3)rect. The (m x √3) rect. 

structures correspond to the so-called striped phases where molecules are 

lying-down on the surface (m value represents the number of molecules per 

surface unit mesh). At higher surface coverages of alkanethiolates on Au(111), 

the (√3x√3)R30o and (2√3 x 3)rect. overlayers both correspond to standing-

up phases. The basic structural motif and prototypical example of a full-

coverage thiol monolayer on Au(111) is a (√3x√3)R30o lattice, as expected by 

simple packing arguments based on the balance between the adlayer 

structure and lateral interactions. In this case, the tilt angle (α) of the 

hydrocarbon chains from the surface normal is around 30°, which is 

associated with a hexagonal packing with the nearest neighbour sulphur 

moieties on 3-fold hollow or bridge sites (Standard structural model) 

separated by 0.5 nm, and a thiolate surface coverage of θRS=0.33 (Figure 10).  

Spectroscopic, diffraction, SPM and density functional theory (DFT) 

simulation techniques have unravelled an orthorhombic c(4 x 2) superlattice 

structure of the (√3x√3)R30o adlayer. Such c(4 x 2) superstructure 

corresponds to a secondary ordering of the alkyl chains promoted by 

attractive lateral interactions (1 kcal/mol per methylene group in the chain) 

which leads to the backbone rotation ( angle) about the long axis of the 

molecule (Figure 10) . The stability of thiolate SAMs is sensitive to the alkyl 

chain length, being the longer ones more robust in their applications (e.g. 

thermal, chemical, etc.) than shorter ones for reasons that are probably both 

thermodynamic and kinetic. In addition to methyl terminated SAMs, this 
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structure has been also observed by STM for ω-functionalized alkanethiols 

with other functional groups like –COOH, –OH or –NH2. 

Minimizing the intermolecular forces between alkanethiolates molecules 

implies the reorganization of the backbone hydrocarbon chains to adopt a 

quasi-crystalline structure with the alkyl chains in an all-trans configuration. 

The variation in the orientation of the organic molecules within the 

monolayers can be described by a simple single-chain model (figure 10b) 

consisting in two angles: (i) the tilt angle (α) of the alkanethiolate backbone 

respect to the surface normal, and (ii) the rotation angle (β) about the long 

axis of the alkyl chain.  
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Figure 10. (a) Scheme showing alkanethiolates arrangement on the unreconstructed 

Au(111) lattice for a complete surface coverage: (a1) Standard structural model of a 

commensurate adlayer of adsorbed thiols in a (√3x√3)R30o hexagonal structure 

where sulphur atoms are positioned in 3-fold hollow sites of Au(111) (a=2.88Å), and 

(a2) equivalent adatom (RS)2Au model. Note the alternating orientation of the alkane 

chains to define a c(4x2) superlattice structure by tilting in the direction of  their 

next-nearest neighbours. (b) Representation of alkanethiolate adsorbed in an up-

right configuration at the gold surface: (b1) including the angular degrees of freedom 

of the all-trans alkyl chain conformation, tilt (α) and twist (β) angles, and (b2) the 

schematic diagram of the orientation of the terminal group depending on the odd-

even numbers of methylene groups in the alkyl chain.  
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For gold substrates, α and β values are close to 30° and 50°, respectively, 

while SAMs organized on silver and mercury exhibit lower cant angles of 10° 

and 0°, respectively, and β values near to 45°.14 Other ordered phases have 

also been observed for longer alkyl chains, where intermediate α values of 

50° were found at intermediate coverages to those of lying-down and 

standing-up tilted SAM configurations. 83  

The value of α for 2D crystalline alkanethiolate SAMs on Au(111) is 

characteristic regardless of the number of carbons in the chain. This fact leads 

to a different surface projection of the terminal groups for SAMs depending 

on the odd and even numbers of methylene units in their backbones (Figure 

10b), which correlates with the observed odd-even effects in wetting, 

tunnelling junctions, friction, field-effect transistors and molecular diodes 

related interfacial properties. 84-88 In general, such effect describes a zigzag 

oscillation in material structure and/or its physicochemical interfacial 

properties (e.g. chemical reactivity, electronic, friction and electrochemical 

properties). However, based on the structure of an ideal SAM, an odd-even 

effect in wetting or other interface-dependent properties should be expected 

for atomically flat gold surfaces with molecules in an all-trans extended 

conformation without gauche defects.85, 86  

The wetting behaviour of SAMs with an odd number of –CH2- groups 

correlates systematically with surfaces of larger free energy (i.e. lower 

wettability and higher contact angles) than those with an even number of –

CH2-. All these aspects evidenced the different orientation of the –CH3 end-

group in CH3-(CH2)n-SH SAMs as demonstrated by vibrational spectroscopies, 

such as IR and high-resolution electron energy loss (HREELS) .84, 89 For CH3-



Introduction                                                                                                     Chapter 1 

 

49 

 

(CH2)n-SH SAMs with n = odd or even, the dipolar transition moment for the 

terminal –CH2–CH3 tends to be parallel or tilted to the surface normal, 

respectively (Figure 10b), largely enhancing or weakening alternatively the 

vibrational features of the symmetric (υs
CH

3) or asymmetric (υas
CH

3) stretching 

modes.   

1.2.4.3. Defects in alkanethiolate SAMs 

The control of the structural organization of the self-assembled 

monolayers is a key point to solve many technological issues. Despite the high 

degree of order that alkanethiolate SAMs can achieve there are different 

kinds of structural defects that might limit their applications. Numerous 

factors can cause defects in the monolayer structure (Figure 11). Among the 

extrinsic factors are found the cleanliness and preparation of the substrate, 

and purity of the thiol solution that can complicate kinetics of the formation 

and final structure of the SAM. On the other hand, intrinsic factors for some 

defects in SAMs are simply based on its dynamic nature involving complex 

phase behaviours. 

The surface structure of substrates can directly determine structural 

defects in monolayers. All metal substrates, including the low-index surfaces 

have a large number of topographic irregularities such as misalignments, 

atomic steps, grain boundaries, faceting, twins, dislocations, etc. which 

directly impact the density of defects in SAMs as confirmed by STM. 82, 90, 91 

One type of defect, which is typical of monolayers on gold, is the monoatomic 

vacancy islands. 16, 82, 92 These pit-like defect-structures are induced by the 

lifting of the reconstructed gold surface due to the adsorption of thiols, where 
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relaxation of the surface stress results in the formation of single atom 

vacancies that nucleate and grow into larger islands.  

 

 

 

Figure 11. Diagram showing intrinsic and extrinsic defects in SAMs formed on flat 

and/or roughen surfaces.  

 

The intrinsic defects are related to the dynamic nature of the SAM 

structure. Once the SAM is formed it may be kinetically stable in the absence 

of adsorbate flux, as the rate of desorption is not rigorously zero. Then it 

becomes thermodynamically unstable to resist the competitive exchange or 

displacement from the surface by other species. The chain dynamics of 

alkanethiolate SAMs are subject of a variety of energy barrier-driven gauche 

conformers and tilt-order complex phase transitions.14, 16, 93-95  Therefore, 

molecular defects are present even in well-ordered crystalline alkanethiolate 

domains, such as missing molecules or pinholes and regions with some degree 

of molecular disorder (Figure 11). The rows of missing molecules, either in a 

straight or zig-zag configuration, are usually found for short alkanethiols with 
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smaller intermolecular interactions. Other type of defects is related to 

disordered liquid-like molecular domains coexisting crystalline ones, which 

either have different tilt angles or the hydrocarbon chains are not fully 

extended. Similar defective regions are found at step edges or domain 

boundaries or step edges, the latter due to a mistmach (or simply missing) of 

molecules between adjacent domains of different or same ordered lattices 

that coalesce at terraces.16, 82, 92 

1.2.4.4. Electron transfer blocking properties of SAMs 

Alkanethiols SAMs provide interfaces with well-defined thicknesses that 

can be varied by changing their chain length. Highly compact and sufficiently 

pinhole-free monolayers can effectively block the ionic permeation and 

electron transfer (ET) between electroactive redox species present in solution 

and the gold electrode, where the dominant ET mechanism is electron 

tunnelling through the film (Figure 12 - bottom).96 In this long-range ET 

mechanism, the apparent heterogeneous rate constant (kET) of a redox 

reaction is strongly dependent on the thickness of the insulating layer, which 

is described by an exponential decay of kET with the barrier distance according 

to the following expression: 40, 96, 97  

 

kET = kET
0 ·e-βd      (2) 

 

where kET
0 is the ET rate in absence of the insulating barrier,  is the structure-

dependent attenuation factor or electron tunnelling constant, describing the 

decay of electronic coupling between the redox species and the electrode as 
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the distance separating them increases, and d is the thickness of the 

monolayer.  

Electrochemical studies have allowed determining kET and putting 

forward the influence of SAM structure (e.g. backbone and terminal groups) 

on ET as demonstrated by cyclic voltammetry (CV) and electrochemical 

impedance spectroscopy (EIS) techniques.96, 98-105  This has been carried out by 

quantitative analysis of either the CV faradic response by constructing Tafel 

plots (log i vs overpotential), or the impedance (Z) response, by obtaining the 

charge transfer resistance (RCT) from fitting of the experimental Nyquist plots 

(-Zimag vs Zreal) to an equivalent Randles circuit (Figure 12). When kET followed 

the relation in equation (2), the  values reported for alkanethiol SAMs on 

metallic surfaces are usually ranging from 0.8-1.2 Å-1.40, 97  

However, the presence of SAM defects or pinholes allows the 

electroactive species in solution penetrating into the layer to be either at a 

closer distance or even into contact with the surface electrode, respectively. 

Then, short-range ET pathways can compete with electron tunnelling, either 

by permeation and/or diffusion/mass transfer of the redox species through 

the monolayer defects to the electrode surface (Figure 12). 98, 99 

Consequently, when the degree of structural integrity of the SAM decreases, 

kET strongly increases as monitored by CV 99, 101-105 and EIS 101, 102, 104, 105 

measurements. The limiting case would be that where kET takes the value for 

a bare electrode. In certain cases, the degree of integrity of the structure can 

be calculated semi-quantitatively as a function of the fractional coverage of 

defects (1-θ) with theoretical relationships for partially blocked 

microelectrodes.106 
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Figure 12. Schematic representation of electron transfer (ET) mechanisms for a redox 

probe on bare and SAM modified gold electrodes with a decreasingly number of 

defects (from top to bottom): (i) direct ET of the redox probe at the surface by a 

diffusion-controlled (mass transfer) process, (ii)-(iii) ET at SAM pinholes (surface), 

defects (surface vicinity) and by permeation, and (iv) ET by tunnelling mechanism at a 

defect-free SAM interface (on top of the layer at a defined distance from the 

surface). Alkanethiol SAMs acts as an ET barrier for diffusion-controlled redox 

reactions. From top to bottom, this is shown by further inhibition of the CVs faradic 

response (Left side) and the increasingly charge transfer resistance (RCT) values 

determined by EIS (Right side. Nyquist plots are described by a Randles equivalent 

circuit) until reaction heterogeneous kinetics are controlled by electron tunnelling. 
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In such a case, the apparent kET at defective-SAMs can be expressed as: 

 

kET
app = kET

0·(1-θ)    (3) 

 

where kET
app and kET

0 are the ET heterogeneous rate constants in the presence 

and absence of the SAM, respectively. Therefore, the number, size and 

distribution of defects in SAMs can be determined by monitoring changes in 

the ET kinetics. 101, 102, 104, 105 

1.2.4.5. Electrochemical desorption of alkanethiolate SAMs on Au 

Reductive desorption (RD) of alkanethiol SAMs occurs when a sufficiently 

negative potential is applied to the metallic substrate upon immersion in 

electrolyte aqueous or ethanolic solutions at a neutral or basic pH.107 In this 

sense, conventional electrochemical techniques, such as CV and EIS, are 

employed to get insight into the SAM organization and packing by means of 

the study of its desorption process. Figure 13 shows a typical cyclic 

voltammogram profile for the reductive desorption of an alkanethiol SAM 

coated Au(111) electrode in 0.1 KOH.  

A characteristic behaviour, before thiol adsorbates are electrochemically 

desorbed, is that alkanethiolate SAM coated electrodes drastically decrease 

the interfacial capacitance (1-5 µF/cm2) compared to the bare surface.52, 66, 96, 

98, 108, 109 This fact is manifested at the CV profiles by an important decrease of 

the capacitive current density in a wide range of potentials at the SAM´s 

stability region (Figure 13). When the current remains almost constant in the 

double layer region independently of the potential, this is indicative of an 

ideal capacitance interfacial behaviour of the SAM (Cdl
SAM). Thus, Cdl

SAM values 
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of alkanethiols with different chain length can be determined from CV and EIS 

measurements, by assuming a simple capacitor model. 141, 212, 214,66 The validity 

of this model has been demonstrated by the linear relationship of 1/Cdl
SAM 

versus the number of methylene units (n) in different electrolyte solutions. 141, 

212, 214   

 

Figure 13. Representative cyclic voltammogram of the electrochemical reductive 

desorption and oxidative readsorption processes in 0.1M KOH solution of an 

alkanethiolate SAM coated Au(111) electrode. Scan rate (v) 0.1 V/s. 

 

 

The SAM dielectric constant value, εm, calculated from the slope of the 

1/Cdl
SAM vs n plots is around 2.6, which is in good agreement with the 
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expected value for a saturated hydrocarbon chain in an all trans configuration 

and α=30º. In some cases, the higher values found for εm are probably 

indicative of the presence of SAM defects and ionic permeation, which can be 

induced by the influence of the terminal groups in the SAM structure or by 

potential values approaching to those delimiting the SAM stability and 

desorption regions. 52, 108 

Once sufficiently negative potentials are applied to the alkanethiol SAM 

modified electrodes (X-(CH2)n-S-M), a one-electron faradic electrochemical 

half-reaction of desorption takes places on gold (M) in alkaline medium as 

follows: 52, 55, 107, 110-112 

X-(CH2)n-S-M + e-   ↔  M + X-(CH2)n-S-   (4) 

SAMs formed on Au(111) crystalline surfaces show usually the presence of a 

narrow desorption peak, Ep,  (sometimes appearing a second peak as a 

shoulder of the main one) which corresponds to the reduction of the S-Au 

bond of the thiolates adsorbed (Figure 13). The reduction of the S-Au bond 

provokes that both, thiolates and bare metal electrode to become solvated, 

and that the thiolate diffuses away from the surface to solution.113, 114 The RD 

process for alkanethiolates is suggested to proceed through the following 

steps: 114 

(I) - At the onset potential of the RD peak (Ep). A partial desorption occurs 

resulting in the formation of lying-down domains of molecules that 

coexist with aggregates of physisorbed molecules in a random 

configuration. 
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(II) – Shifting potential to the RD peak (Ep). The thiol desorption is 

accelerated while molecules remain close to the surface forming bigger 

aggregates (bilayers to micelles) in a random distribution. 

(III)  - At potential much more negative than Ep. Individual molecules and 

aggregates may diffuse away the surface.  

The process is reversible and removing the applied negative potential can 

result in the readsorption of thiolates onto the surface. However, the reverse 

potential (surface charge of the metal) and the scan rate (time scale) of the CV 

experiment will determine the amount of surface material readsorbed. It is 

also worth mentioning that the higher interactions among alkyl chains (longer 

alkanethiols) are the higher order is maintained as a standing-up configuration 

in the molecules during the desorption-readsorption process. It is also 

accepted that the kinetics of the desorption process occurs first at defect sites 

and grain boundaries in the SAM and then, at apparently random distributed 

sites in SAM terraces where molecules are well-organized into crystalline 

phases. 115  Therefore, the electric-field induced rate of desorption seems to 

be the highest for molecules adsorbed at edges and defects. 

Ep at which RD of alkanethiolates occurs depends on a number of factors, 

including chain length, degree of ordering and type of intermolecular 

interactions within the film (e.g. hydrogen bonding), even when a single 

crystalline surface is used as substrate. For example, increasing the chain 

length of n-alkanethiols in the SAMs formed results in a monotonically 

displacement of Ep to the negative direction of potential. This is in agreement 

with the energy stabilization due to additional -(CH2)- intermolecular 
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interactions in the longer SAMs structures.52, 111, 116 A similar behaviour is 

obtained for the evolution of Ep with the modification time, where longer 

times leads Ep to displace to negative values until a well-ordered and packed 

SAM structure is finally achieved.55 Nevertheless, it is also necessary to 

consider the possible influence of the terminal groups of ω-substituted SAMs 

in the Ep values of the RD, as additional effects, such as the potential and pH-

dependent ionization of the terminal groups, may be present.117  

On the other hand, the desorption charge (Qdes) of the process, 

determined by the integrated area of the RD peak, does not appreciably 

change by increasing the alkanethiols chain length once the charging current 

due to non-faradic processes in the RD process are eliminated.52, 110-112 Qdes 

values between 70-80 μC/cm2 have been reported for alkanethiol SAMs on 

Au. This leads to alkanethiol surface coverages, Γ, considering a one-electron 

process, close to 7.5·10-10 mol/cm2 (Qdes
c = n·F·Γ), which is in nice agreement 

with a θRS=0.33, typical of (√3x√3)R30o adlayer of thiolates with the alkyl 

chains in an all-trans up-right configuration. Finally, crystallinity of the 

substrate also plays a role in Ep values and the number of peaks obtained in 

the RD multiresponse obtained by CV,33, 113, 118-121 which can help to selective 

replacement of adsorbates under potential control.80 

1.3. The importance of electron transfer (ET) reactions and 

proteins 

Since processes in life are highly non-equilibrium, constant energy 

input (energy flow) is required to maintain the structures and to support the 

functions.122 The main metabolic and photosynthetic pathways for energy 
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transformation and dissipation are referred to redox and potential gradients, 

where redox potential (E0) is a measure of the tendency of compounds to 

deliver electrons.122-125 In this sense, proteins are basically essential for these 

purposes as they constitute the most versatile macromolecules in living 

systems and serve crucial functions in all biological processes. In fact, they can 

catalyse reactions, transport and store other molecules, provide mechanical 

support and immune protection, generate movement, transmit nerve 

impulses and control growth and differentiation.  

Enzymes (biological catalysts) are probably the most important 

proteins as they are required to accelerate the chemical reactions necessary 

for organizing the random population of molecules into self-sustaining 

metabolic cycles in a highly specific way. The high specificity of enzymes is 

related to their structure and complementarity of interactions with other 

proteins or substrates that regulate the enzymatic activity. Their binding 

ability can be contributed to their tertiary structure that creates binding or 

active sites together with the chemical properties of the amino acids side 

chains constituting it. Therefore, proteins are also essential for cell signalling, 

molecular and electron transport pathways. A classic example is haemoglobin 

which binds O2 and transports it from the lungs, through the blood to all the 

essential body organs and tissues. 

Biological processes are essential for life, especially those catalysing 

redox reactions and shuttling electrons in a specific way.122-125 In this sense, 

redox proteins, such as metalloproteins, play a crucial role either in 

electrocatalytic processes or as biochemical electron shuttles in enzymatic 

reactions.126 In particular, long-range electron transfer (ET) reactions of redox 



Introduction                                                                                                     Chapter 1 

 

60 

 

proteins occur at/or in heterogeneous membrane/solution interfaces, either 

by docking or specific recognition interactions. Therefore, important 

considerations arise:  

(I) - Protein mobility is restricted for integral proteins embedded in 

membranes or, for soluble ones, because of their specific binding either to 

surface or solvent-exposed parts of membrane-bound reaction partners. 

(II) – Dielectric constants may vary substantially along the ET pathways. 

(III) – Gradient concentrations of ions outside and inside of the membranes 

originate a potential drop and an inhomogeneous charge distribution within 

these organic thin layers and proteins which leads to high electrical fields. 

However, the protein environment can adjust the redox potential (E0) 

over a large range of values and its structure be altered to ensure rapid and 

efficient electron transfer (ET) from the redox center (heme or metal clusters) 

to distances located at several even to tens of nanometers.127 Then, protein 

orientation and structural dynamics could be also necessary for shuttling 

electrons through efficient ET pathways. When the dynamics of charge 

transfer processes and protein structure are altered by local changes in 

chemical and potential gradients at protein-protein complexes and 

membrane-protein interfaces, this may also affect the ET processes and 

consequently, to the regulatory functions and reaction mechanisms involved. 

Addressing these questions is of fundamental interest to find relationships 

between function and structural properties of proteins under external stimuli 

at interfaces. 
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In this respect, this doctoral thesis aims to study electrochemical 

biointerfaces formed by hemeproteins adsorbed on biocompatible SAMs 

coated electrodes as a model system, where ET takes place across organic thin 

layers that mimic some basic features of membranes or protein domains. 
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2. Experimental and methods 

2.1. Chemical reagents 

11-mercaptoundecanoic acid (COOH-(CH2)10-SH, MUA), 1-decanethiol (CH3-

(CH2)9-SH, DT), Triton X-100, potassium ferrocyanide (Fe(CN)6
4-) , potassium 

ferricyanide (Fe(CN)6
3-), myoglobin from horse heart (Mb), 3-dimethylamino 

propylamine (DMAPA), N-(3-dymethylaminopropyl)-N-ethylcarbodiimide 

hydrochloride (EDC) and semiconductor grade purity potassium hydroxide 

(KOH) were purchased from Aldrich-Sigma (purity ≥ 99%). The rest of the 

reagents, ethanol (CH3CH2OH), phosphoric acid (H3PO4), hydrochloric acid 

(HCl), perchloric acid (HClO4), hydrogen peroxide (H2O2), potassium chloride 

(KCl) and potassium nitrate (KNO3) were from Merck analytical grade. 

Aqueous solutions were prepared with deionized ultrapure water produced 

by a Millipore system (18.2 MΩ with an organic content < 4 ppb). 
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2.2. Substrates/Electrodes 

Electrochemical experiments were carried out with a conventional three 

electrodes cell comprising a platinum wire as the counter electrode, a calomel 

electrode with 50 mM of KCl as the reference electrode (E = +0.353 V vs 

Eo
NHE), unless otherwise stated, and gold as working electrode (Figure 1).  

 

 

Figure 1. Conventional electrochemical cell of three electrodes. 

 

The spectroscopic and electrochemical experiments were carried out using 

different kinds of gold substrates: 

(I) Polyfaceted Au bead. This substrate is prepared by the flame-annealing 

method developed by Clavilier et. al..1 A gold wire of 0.5 mm diameter 

(Goodfellow, 99.998 %) was melted into approximately 2.5 mm diameter 

sphere and after slowly cooling; it was quickly immersed in deoxygenated 
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ultrapure water. After this treatment, several facets were visible on the bead 

surface indicating its monocrystalline structure. 

 

 

Figure 2. Flame annealing procedure of a polyfaceted gold bead. 

 

(II) Au (111) single crystal. This was an approximately 3 mm in diameter and 2 

mm thick cylinder with a flat polished side oriented in the (111) low-index 

crystallographic direction (Metal Crystals and Oxides Ltd. - Cambridge, 

England). A gold wire is mounted at its far tip which allows easier handling of 

the crystal for the electrochemical experiments (Figure 3a).  

(III) Au (111) textured flat surface. This surface consisted on a 250 nm thick Au 

layer adhered to a 2.5 nm thin chromium layer deposited on a Borosilicate 

glass 11x11 mm flat surface were used as Au(111) coated substrates (Gold 

ArrandeeTM) for the Infrared Reflection-Absorption Spectroscopy (IRRAS) and 

electrochemical measurements. Similar substrates were employed for Quartz 

Crystal Microbalance (QCM) experiments, where gold was deposited on an AT 

quartz crystal. 
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Figure 3. (a) Au(111) single crystal transferred into the electrochemical cell in contact 

with a solution by the meniscus method and (b) Au(111) textured substrate placed 

on the mask platform of IRRAS equipment. 

 

2.3. Methodologies  

2.3.1. Substrates cleaning. Determination of the real surface 

area. 

Before each electrochemical measurement, the gold substrates (Section 

2.2) were annealed in a natural gas flame to light red melt for about 20 s and, 

after a short period of cooling in air, the electrode was then transferred into 

the electrochemical cell. The surface condition was then checked by recording 

a cyclic voltammogram in 0.01 M HClO4 that showed the well-known 

characteristic profile for an Au(111) single crystal or poliorientated gold faces 

(Figure 4).2 This surface treatment protocol was the most appropriate to 

produce a surface that was clean, ordered and highly reproducible (Figure 4). 

The substrates electrochemically cleaned and transformed in their respective 

unreconstructed surface states (e.g. Au(111)-(22x √3 → Au(111)-(1x1)) were 

used for further experiments (Introduction -Section 1.2.5.1). The real surface 

area was determined from the integrated area of the reduction peak of 
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oxygen adsorption on the Au electrode (AuO + 2H+ + 2e-  ↔ Au + H2O), 

assuming in the case of Au(111) and polyfaceted surfaces that the gold atomic 

density was 1.35·1015 (432 μC/cm2) and 1.2·1015 atoms/cm2 (390 μC/cm2), 

respectively.3 The areas determined for the gold bead electrodes ranged from 

0.175 to 0.238 cm2, meanwhile, the Au(111) single crystal and textured 

surface areas were 0.099 and 1.4 cm2, respectively. 

 

Figure 4. Cyclic voltammograms of electrochemically clean gold substrates obtained 
in HClO4 0.01 M . Scan rate, v = 100 mV/s. Au(111)-(1x1) surface is obtained by lifting 

of the Au(111)-(22x √3) surface reconstruction one upon applying sufficiently anodic 
potentials, which is reflected by a change of approximately +0.09 V in the potential of 
zero charge (Epzc) of the unreconstructed surface.4 
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2.3.2. Substrates modification. Formation of SAMs. 

The SAMs were formed spontaneously or under potential control by 

contacting the electrochemically clean unreconstructed gold substrates with 

solutions containing the thiols, either by the hanging meniscus method or 

direct immersion (Section 2.2). Pure SAMs were prepared by using 1 mM 

solutions of 1-decanethiol (CH3-(CH2)9-SH (DT) or 11-mercaptoundecanoic acid 

(COOH-(CH2)10-SH, MUA). Mixed SAMs were obtained from solutions 

containing both MUA and DT at different concentration ratios and a final 

concentration of 1mM. Ethanolic and micellar solutions were used to prepare 

SAMs spontaneously adsorbed on the substrates under open circuit potential 

(OCP) conditions. In this particular case, the adsorption times assayed were 

from 15 min to 24 hours at a controlled temperature ranging from 25 to 35 °C. 

Meanwhile, SAMs were prepared under potential control by substrate 

immersion in 0.1 M KOH solutions of the thiols at -0.4 V during 15 minutes.  

The micellar medium was composed by a mixture of Triton X-100 (42 wt 

%) and water (58 wt %) to which MUA and/or DT were added. After heating to 

40-45 °C under stirring, an isotropic phase containing a hexagonal phase was 

obtained upon cooling as already described in literature.5, 6  

Once the SAMs were formed, if necessary, before their characterization 

by electrochemical (e.g. CV and EIS) and/or spectroscopic (FT-IRRAS) 

techniques, they were thoroughly rinsed with solvent and dried with nitrogen 

gas. In the case of pH titration experiments, the samples were previously 

stabilized in aqueous solutions at the corresponding pH during 20 minutes and 

then, if necessary, dried with nitrogen for further characterization. 
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2.2.3. Chemical modification of myoglobin. Protein 

cationization 

Native myoglobin (n-Mb) was cationized by carbodiimide-activated 

coupling (EDC) reaction of the surface-accessible glutamic and aspartic acid 

residues to covalently attach DMAPA molecules (Scheme 1) as similar 

procedures elsewhere described.7, 8  

 

Scheme 1. Graphic shows the chemical derivatization of surface-exposed glutamate 

and aspartate side-chain residues at the native myoglobin (n-Mb) structure by the 

insertion of 3-dimethylamino propylamine (DMAPA) molecules via amide bond 

formation. Negatively charged patches of n-Mb are transformed into positively 

charged ones to yield cationized Mb (c-Mb), as indicated by the reaction steps.  

 

Typically, 5 ml of an aqueous solution of Mb (5 mg/mL, pH 6.5) was 

purified by centrifugation and extensive dialysis (Visking tubing, 7 kDa 

MWCO). Subsequently, a 0.65 M DMAPA solution adjusted to pH 6.5 was 

added drop wise to the native met-Mb purified solution (5 mg/ml) with 

continuous stirring until a 50:1 excess of DMAPA per acidic residue was 
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achieved. The coupling reaction was initiated by the addition of solid N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) to the 

solution in an excess of 20:1 per acidic residue. The reaction mixture was kept 

stirring at pH 6.5 with controlled additions of HCl, while another batch of solid 

EDC was added after 1 h. The resultant solution was left to stir for 24 h and 

then, centrifuged, filtered (Millex Millipore 0.22 micron), and dialyzed (7 kDa 

MWCO) against ultrapure water for 48 h (with water changes every 12 h) to 

obtain a stable solution of DMAPA-cationized Mb (c-Mb).  

2.3.4. Characterization of cationized myoglobin (c-Mb) 

The cationization efficiencies were evaluated by using matrix-assisted 

laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) 

and UV-visible spectroscopy of both native (n-Mb) and cationized myoglobin 

(c-Mb) samples. The sample preparation was the following: 

 MALDI-TOF MS samples were obtained by combining a 3:1 (v/v) solution 

of 20 mg/ml 2,5-dihydroxy acetophenone: 18 mg/ml ammonium citrate 

dibasic with an equal volume of 2% trifluoroacetic acid, then adding an 

equal volume of sample approximately 1 mg/ml in 0.02 M phosphate 

buffer, before spotting onto the MS plate and drying at 40 ºC. 

 UV-visible samples were 3 mg/ml in 0.01 M phosphate buffer at pH 7. 

Typical MALDI-TOF spectra corresponding to n-Mb and c-Mb are shown 

in the Figure 5a.  
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Figure 5. (a) MALDI-TOF MS of equine n-Mb and c-Mb show both single (z=1) and 
double charged (z=2) protein peak adducts. (zoomed area-top) The MS of the n-Mb 
gives a multiple peaks adducts response (discernible until n=18) associated with an 
incremental mass of K+ to the average molecular weight of n-Mb, which is 
determined to be 16951.5 Da. (zoomed area-bottom) MS of c-Mb gives a broader 
distribution of cationized products with the highest abundance centred at 
approximately 18470 Da confirming the covalent conjugation of ca. 18 DMAPA 
molecules to all the accessible surface-exposed residues of n-Mb. (b) UV-visible 
spectra of n-Mb and c-Mb in aqueous solution are shown highlighting the 
differences. 
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An average molecular weight (MW) of 16951 Da is determined for n-

Mb corresponding to the apomyoglobin form, as expected for the denatured 

state of heart and muscle equine myoglobins.9 Thus, sample preparation 

conditions induced n-Mb to unfold while the labile heme (type b, MW= 616 

Da) separates from the whole protein structure (MW=17.567 Da), which is 

only preserved when dissolved in an aqueous buffered solution (5–10 mM 

NH4CH3COO).10 Then, buried amino acids become available and, at a 

sufficiently low pH, the histidine residues, acting as binding sites to heme 

moiety, become fully protonated. As a consequence, the heme-myoglobin 

interaction is disrupted and the heme group separates from the globin. The 

absence of the heme-myoglobin complex is characterized by a relatively 

higher charge state distribution. 

The c-Mb sample shows a broader mass distribution of cationized 

products with the highest abundance at approximately 18470 Da and, a mass 

increase respect to n-Mb equivalent to the binding of 18 DMAPA molecules 

(Figure 5a). This would be indicative of a complete cationization of the 

exposed residues of n-Mb by the carbodiimide condensation reaction. 

Cationization has an important effect on the secondary structure of n-Mb due 

to changes in its electrostatic stabilization and the disruption of internal salt 

bridges.8, 11 This fact strongly affects the heme environment, which is 

manifested by a red shift in the Soret band and changes in the Q-bands of the 

UV-visible absorption spectra of c-Mb compared to n-Mb (Figure 5b). Such 

spectral changes, together with the remarkable similarity of the absorption 

spectra of c-Mb with those reported for Mb-mutants with proximal and distal 

histidine-coordinated heme moieties, are consistent with a shift from high to 
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low spin-state of the iron in the heme.8, 12 In conclusion, the results obtained 

are in good agreement with those previously reported for c-Mb. 7, 8 

2.3.5. Inmobilization of c-Mb onto SAMs. 

Pure and mixed SAMs prepared on Au(111) substrates according to the 

procedures described in the section 2.3.2, unless otherwise stated, were used 

to immobilize c-Mb by electrostatic and/or hydrophobic interactions. 

Different immersion times for the SAM modified surfaces were tested in 

aqueous solutions of c-Mb or n-Mb (0.5 mg/ml). Finally, a time of immersion 

of 1 hour was chosen as the optimum to achieve the maximum protein 

surface coverage. Subsequently, the samples were thoroughly rinsed with 

water and dry with nitrogen prior to their characterization by electrochemical 

(e.g. CV) and spectroscopic (e.g. IRRAS and Resonance Raman-SERRS) 

techniques.  

2.4. Instrumentation 

2.4.1. Electrochemical Techniques 

2.4.1.1. General Concepts 

Cyclic voltammetry (CV) is an important and widely used technique in 

many areas of electrochemistry, such as the study of redox processes and 

understanding of reaction intermediates and products.13 It is based on varying 

the applied potential (E) at a working electrode (WE) in both forward and 

reverse directions while monitoring the current (i) at a scan rate (v). 

Depending on the analysis, one full cycle, a partial cycle, or a series of cycles 
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can be performed to obtain i-E voltammetric profiles of the electrochemical 

processes occurring at the WE interface. 

 

Electrochemical Impedance Spectroscopy (EIS) is a powerful technique 

that provides a perturbative characterization of the dynamics of an 

electrochemical process. It is exploits the Faraday´s and Ohm´s law (R=E/I) to 

characterize a chemical process in terms of electrical measurements. Like 

resistance (R), impedance (Z) is a measure of the ability of a circuit to resist 

the flow of electrical current. The fundamental approach of ESI methods is to 

measure impedance (Z) by applying an AC potential (i.e. small amplitude 

sinusoidal potential excitation signal of  5-10 mV) ripple on top a fixed DC 

potential to an electrochemical cell while a linear or pseudo-linear AC current 

response is monitored phase-shifted. The associated AC current signal can be 

analysed as a sum of sinusoidal functions (Fourier series).  

 

Figure 6. Lissajous and Nyquist plots representation. 
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Then, an expression analogous to the Ohm´s law can be obtained for Z: 

Z(ω) = 
Et

It
=

E0·sin (ωt)

I0·sin (ωt+∅)
 =  Z0·

sin (ωt)

sin (ωt+∅)
  (1) 

where  is the phase shift. By representing It vs Et is obtained an oval in the 

classical Lissajous plot (Figure 6a). If the AC potential applied is a complex 

function (Euler relationship: Et=E0·ejωt ), impedance is represented as a 

complex number similarly to expression 1 (Z(ω)=Z0·ejω∅). 

Therefore, Z(ω) is composed of a real and an imaginary part. When, 

the imaginary part (-Zim) is plotted versus the real part (Zre) is obtained a point 

in the Nyquist plot for a particular frequency (ω). However, Z(ω) is usually a 

complex quantity with a magnitude and a phase shift which depends on the 

frequency of the signal (Z(ω)=|Z(ω)|·eω∅ ). Therefore, a wide range of 

frequencies (ω) can be selected for the applied AC potential perturbation in 

order to obtain an impedance-frequency spectrum (Nyquist plot -Zim vs Zre for 

different ω) that can interrogate the electrochemical response of a system for 

extremely different time scales (Figure 6b).13 Typically in electrochemistry, a 

frequency range of 100 kHz – 0.1 Hz is used.  

By analysing the dependence of Z(ω) with ω for an applied potential is 

possible to isolate and distinguish the influence of different governing physical 

(e.g. capacitive, mass transfer or diffusion processes) and chemical (e.g. 

electron transfer or ionic charge transfer processes) phenomena in the 

electrochemical interface (See Chapter 1 – Section 1.2.9 and Figure 12).13 The 

interpretation can be carried out by fitting EIS data to an equivalent circuit 

model, whose elements represent a physical basis of the processes modelled 

in the electrochemical interface. The Randles circuit is the most common and 
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simple model to represent a diffusion-controlled ET electrochemical reaction 

on a bare electrode (Figure 6b). In some cases, simplified Randles circuits can 

be used when ET or charge transfer reactions are blocked or inhibited by 

modified surfaces with SAMs (Chapter 1-Section 1.2.9). 

2.4.1.2. Specifications and working conditions 

CV and EIS measurements were recorded on Autolab (EcoChemie 

models Pgstat20 and Pgstat30) instruments attached to a PC with proper 

software for total control of the experiments and data acquisition (Figure 7).  

 

The system is able to measure impedances from 1 mΩ up to 100 GΩ 

and capacitances from 0.1 pF up to 5000 F, which can be used in corrosion, 

bio-electrochemistry, battery, and supercapacitor research areas, among 

others. The following modules were also available for expanded capabilities 

(Figure 7): 

- BOOSTER. BSTR10A allows for experiments at higher currents up to 10A. 

- ECD. It provides two additional lowest current ranges of 1 nA and 100 pA, 

giving a minimum current resolution of 0.3 fA, as compared to the standard 

lowest current range of 10 nA with a current resolution of 30 fA.  

-SCAN-GEN/ADC 750. This analog sweep generator combined with a fast 

sampling ADC module allows getting data points every 1.5 μs and increasing 

CV scan rates up to 10000 V/s. 

-FI20. This filter (Sallen-Key type) and integrator module gives the possibility 

to measure charge in CV and potential step experiments, together with 

selectable RC times up to 500 ms to filter out noise. 
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Figure 7.  Instrument configuration of PGSTAT 20 and 30 models with additional 

modules. A basic scheme of a potenciostat/galvanostat is included.13 

 

Before the electrochemical measurements, electrolyte solutions were 

purged with nitrogen gas (99.999 %) at least during 20-30 minutes to displace 
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dissolved oxygen. The solution contained in the electrochemical cell was kept 

under nitrogen atmosphere during the CV and EIS experiments. CV (i-E) 

profiles were recorded using scan rates ranging from 0.01 to 50 V/s. EIS 

spectra (Niquist Plots) were obtained in the potentiostatic mode by applying 

an AC sinusoidal potential excitation signal of 5 mV to a fixed DC potential in a 

frequency range (ω) from 100 kHz  to 0.1 Hz. 

CV and EIS data were further analyzed by using the supported software 

package (GPES 4.9, FRA and NOVA). Different parameters of the CV 

electrochemical profiles could be determined, such as peak potential (Ep), 

charge (Q), current (Ip), half-width (FWHM), etc. Similarly, EIS data were fitted 

to different equivalent circuits (e.g. Randles circuit or simplified ones)  

allowing to determine their constituent elements values (Rs, RCT, Cdl, etc.) and 

their related physical and chemical parameters of the systems studied (e.g. 

heterogeneous electron transfer rate constants, double layer capacitance, 

etc.).13 

2.4.2. Spectroscopic Techniques 

2.4.2.1. Infrared reflection-absorption spectroscopy (IRRAS) 

General Concepts 

The reflection process at a surface can be analysed as the behaviour of 

s- and p- polarized components, whose electrical fields are parallel to the 

surface and perpendicular to the direction of propagation, for the s-

component, and perpendicular to both the s component and the direction of 

propagation, for the p- component (Figure 8a). A molecule in the vicinity of 

the surface will experiment a combination (i.e. the vector sum) of the fields 
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due to the incident and reflected beams. In metals with high reflectivity in the 

IR region, the direction of the s component is almost exactly reversed on 

reflection and its magnitude is hardly changed. Therefore, electric vector ES 

and E’S nearly cancel. 14 

On the other hand, the behaviour of the p component depends 

somewhat on the incidence angle, θ, and when approaches to 90°, the fields 

combine to give a large component perpendicular to the surface (E) and a 

much smaller parallel to it (E||) (Figure 8b). As the absorption intensity is 

proportional to the square the amplitude of the electric field vector, at θ = 0° 

there will be a significant field E||, but an enhanced maximum field 

perpendicular, E, to the surface will arise from the p component at angles 

close to grazing (75-80°). This fact has two important consequences: (i) the 

sensitivity is maximized at high θ and, in this regard, field enhancement is also 

increased by a geometric factor due to that larger areas are covered by the 

beam and hence more molecules and, (ii) metal surface selection rules (MSSR) 

states that only those vibrational modes that have a component of their 

dipole change perpendicular to the metal surface will have measurable 

intensities and be detected.14  
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Figure 8.  (a) Electric vectors of s- and p-polarized incident radiation on a metal 

surface at an angle θ to the normal. (b) Resultant electric fields (E) relative to the 

incident (E0) for IR on a metal versus the incident angle θ, for perpendicular and 

parallel components to the surface arising from initially p-polarized radiation (Guided 

to eye). 

Therefore, IRRAS is an especially adequate optical technique to study 

thin films adsorbed on reflective surfaces such as metals and, that often yields 

to important information about adsorption geometry. Other advantages of 

this technique are its high sensitivity (<10-1-10-2 for monolayers in favourable 

cases) and the easiness to correlate its results with other surface- and bulk-

sensitive vibrational spectroscopies.14 Thus, IRRAS spectra monitor changes of 

reflectance (ΔR/R), where analytical solutions have been proposed for an 

adlayer of thickness, d, and complex refractive index, n, overlying a metal 

surface. Making approximations valid for low coverages of an adsorbate, the 

following simple expression is derived for the reflectance change of p-

polarized radiation of wavelength λ: 

 

∆R

R
=‐ (

4πkd

λ
) · (

4sinθtanθ

n3
)                                             (2) 
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where the first factor relates to the attenuation ε·C·l in the Beer-Lambert law, 

while the second corresponds to the field and geometrical enhancements 

previously commented. However, deviations from this simple behaviour are 

usually present, and recent work has favoured the use of numerical simulation 

for both reflection and transmission spectra of anisotropic systems. 

 Regarding to the comparison of IRRAS measurements with those from 

other non-surface IR spectroscopies, it is convenient to express the 

experimental intensities in terms of the dynamic dipole magnitude involved in 

the oscillation. Although, experimental measure of intensity for an dipole may 

be complicated, for a submonolayer film with dipoles oriented perpendicular 

to the surface it can be deduced the following equation:14  

 

A=
1

4πε0
·
8π3nSυ̌pμ2sinθtanθ

c·h
                                            (3) 

 

where ns is the adlayer density (i.e. molecules per unit area), υ̌p  the 

wavelength of the peak absorbance and μ the dynamic dipole. 
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Specifications and working conditions  

 
Figure 9.  Basic scheme of the configuration of a JASCO 6300 FTIR spectrometer with 

a sample compartment adapted to a variable angle specular reflectance accessory for 

IRRAS measurements. 

 

Reflectance-absorption infrared measurements were recorded on a 

JASCO 6300 FTIR single (He-Ne) laser beam spectrometer in the 400-400 cm-1 

wavenumbers range at a resolution of 2 or 4 cm-1 (Figure 9). The data were 

acquired by the software integrated in the equipment (Spectra Manager). A 

variable angle specular reflectance accessory (Pike Technologies-VeeMAXTM) 

assembled in the FTIR spectrometer compartment enabled the samples to be 

analysed by a p-polarized beam at a grazing angle of 80º. 
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Prior to the measurements, the interferometer and sample 

compartments were purged with a dry and free CO2 air flux of 8 l/min 

supplied by a compressed air adsorption dryer (K-MT LAB, Parker/Zandet 

GmbH & Co.KG). Then, the samples dried with N2 were placed face 

downwards on a mask platform with an aperture (10 mm in diameter) to 

define the position and sampling dimensions where the incident beam spot 

was collimated (Figure 9). The IR signals were collected by a liquid nitrogen 

cooled mercury cadmium telluride (MCT) detector which improves the 

dynamic range performance over a wide wavenumber range.14 

2.4.2.2. Resonance Raman spectroscopy (RRS) at surfaces 

General Concepts for the analysis of biomolecules 

 Resonance Raman (RR) scattering occurs when the exciting line is 

chosen that its energy intercepts the electronic excited state (Figure 10a). 15 

The depolarization ratios of Raman bands provide valuable information about 

the symmetry of a vibration , making possible band assigments. Figure 10 b 

shows Raman scattering geometries that allows to measuring intensities I|| 

and I using an analyzer and obtaining the depolarization ration, ρp. In this 

sense, if the molecule is performing a totally symmetric vibration, the 

molecules is polarized equally in every direction. Under this circumstance, I ꞊ 

0, since the oscillating dipole emitting the radiation is confined in the xz-plane 

(Figure 10b) and thus, ρp = 0. Such vibration is called polarized (p). On the 

other hand, if the molecule is performing a non-totally symmetric vibration, 

the polarizability changes from a spherical to an ellipsoidal shape during the 
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vibration. Then, the induced dipole would be the largest along the minor axis 

of the ellipsoid and,  ρp ≠ 0. Such vibration is called depolarized (dp). 

 

 

Figure 10.  (a) Scheme showing differences between IR absorption, non-resonant and 

Resonant Raman (RR) scattering. (b) Scattering geometries and depolarization ratio. 

One of the main advantages to use RR effect for the analysis of 

biomolecules is that vibrations of a particular chromophoric group can be 

selectively and considerably enhanced (up to 106). Then, it is especially 

recommended for the study of hemeproteins because of the possibility to 

probe the vibrational spectra of the prosthetic group solely and, thus, affords 

detailed information on the redox site structure. However other important 

structural subunits, such as aromatic residues and peptide bonds can be also 
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explored by tuning the excitation frequency (υext) into the electronic band of 

certain structural elements of the proteins. Such approach allows overcoming 

the difficulty of Raman spectra interpretation due to overlapping of multiple 

bands (Figure 11).15, 16 In summary, the main electronic transitions regions for 

absorption in RR are the following ones (Figure 11): 

 Heme charge transfer (CT) and Q (α and β, Q0 and Qv, respectively) 

transitions at the 520-650 nm range involving the metal ion (heme-in 

plane ring vibrations) and the axial ligands vibrations (type B bands).  

 Soret band (B) due to a strong π → π* transition in the heme group at 400 

nm involving the heme in-plane ring vibrations (type A bands). 

 The absorption of aromatic amino acid residues (Tryptophan and 

Tyrosine) in the 220-260 nm range 

 The peptide backbone amide π → π* transition below 220 nm. 

Therefore, information can be obtained on the binding of the ligand to 

the metal ion, the spin and redox states of the heme group, the state of Trp 

and Tyr residues, and the secondary structure of the protein. Because of the 

coordination of N atoms from the porhyrin ring to the central metal ion 

influences the macrocycle structure, the observed RR enhanced vibrational 

spectrum contains unique information on the state of the central ion. Then, 

vibrations of axial ligands can be also studied due to coupling with the π → π* 

electronic transitions. Excitation within the CT transition also results in 

enhancement of the axial ligand modes. 
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Figure 11.  UV-visible spectrum of native myoglobin showing selected absorption 

spectral regions for excitation in RR scattering. Structure of heme group 

(protoporphyrin IV) and C assignments are included. Vibronic bands, type A and B, 

are associated to Soret and charge transfer electronic excitation, respectively. The 

electron density distributions of the Soret and visible molecular orbitals (groups 

symmetry) giving rise to the electronic transitions (E0→E1
*) are included. 

 

The heme group can be considered in the first approximation as a 

planar structure with a D4h symmetry. Further, if the substituents are treated 

as point masses, the in-plane and out-of-plane vibrational modes can be 

represented according to the following equations: 

a 
b m 
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Γin-plane = 9A1g + 8A2g + 9B1g + 9B2g + 18Eu  (4) 

Γout-of-plane = 3A1u + 6A2u + 5B1u + 4B2g + 8Eg  (5) 

  

In an idealized heme group, the presence of a symmetry center operates 

the Raman selection rules where only “gerade” (g) modes are Raman-active. 

The allowed Raman modes can be recognized by the following polarization 

properties: (i) polarized  (A1g) , (ii) depolarized (B1g and B2g), and (iii) 

anomausly polarized (A2g). The observed spectral pattern depends on λex. 

There is a relationship between symmetry of resonantly enhanced vibrational 

modes and the nature of the electronic transition. The Raman intensity, IR, is 

proportional to the square of the polarizability tensor component for the k 

transition [(αpσ)k]. For RR scattering, the polarizability tensor can be 

approximately described as the sum of two terms A and B ([(αpσ)k ≈ A + B) . 

Depending on the nature of the electronic transition, term A or B dominates, 

originating two varieties of RR vibrational modes:15, 16 

 Term type A is associated with vibrational modes connecting the ground 

state to the excited state through Frank-Condon overlap, or which change 

the energy of the resonant excited state, and usually leading contribution 

to IR. Fundamentals, overtones and combination bands of totally 

symmetric modes dominate the spectra. For the heme group this 

resembles excitation in the Soret (B) band and resonance enhancement 

of A1g modes. 

 Term type B is associated with the vibronic coupling of one resonantly 

excited state to another excited state of higher energy. Fundamental 
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transitions of non-totally symmetric vibrations are resonantly enhanced. 

This is the case for a excitation within a weakly allowed electronic 

transition which is vibronically coupled with a strong one. For the heme 

group this corresponds to the excitation within Q bands and resonant 

enhancenment of B1g, B2g and A2g modes. 

Resonance with the Q0 (α band) might be expected to enhance type A 

modes, but they are not observed because of their too low intensity. Rather, 

the type B modes are observed, which mix Q0 and Qv (α and β band, 

respectively) electronic transitions and give rise to the β band with the 

allowed symmetries, Eu x Eu =A1g + A2g + B1g + B2g. However, as commented, 

the polarized symmetric A1g modes show ineffective vibronic mixing and the 

depolarized B1g and B2g modes appears as observed Raman bands. The 

antisymmetric A2g modes, which are inactive in normal Raman scattering, 

become active in the resonance region, giving rise to inversely or anomaly 

polarized RR bands. 

 The idealized D4h symmetry of the heme group can be distorted by 

asymmetric substitutions (axial ligands) and deformation of its planar 

structure. In fact, in-plane inactive Eu and out-of-plane deformation modes 

are observed in hemeproteins when heme interactions with the protein 

matrix destroy the effective symmetry center of the chromophore. RR 

spectrum is mainly dominated by in-plane modes, inasmuch as the dominant 

π → π* transitions are polarized in the plane. Most of the strong RR bands lie 

between 1000-1650 cm-1 and are expected to involve primarily C-C, C-N 

stretching and Cm-H bending vibrations of the porphyrin ring, with their 
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frequencies attending to their bond orders (e.g. Cb-Cb >  Ca-Cm > Ca-N > Ca-Cb ). 

Usually the fingerprint region is in the 1000-1300 cm-1 wavenumber region. 

Table 1 summarizes the unique information of the state of the heme metal 

ion by analyzing certain oxidation and core size marker bands, which are 

usually encountered between 1350-1650 cm-1.16 

 

Table  1.Oxidation state and spin marker bands of heme group (mode and frequency 

assignments). Examples of different heme coordination states of myoglobin.16-19   

 

 

 

There are three main reasons for the frequency of the modes to be displaced: 

- The electron density on the antibonding π* orbitals of the porphyrin ring. 

 Higher electron density weakens C-C and C-N bonds and frequency 

decreases. This is the case for the transition from Fe3+ to Fe2+ due to the 

increase in occupation of π* orbitals. On the contrary, electron withdrawal 
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from π* orbitals, such as axial ligation by CO, NO and O2, leads to a frequency 

increase (Table 1). 

- The core size of the porphyrin ring. The core size depends on two 

factors: (i) the spin state of Fe and, (ii) the coordination number (CN). In the 

high-spin (HS) state two antibonding d orbitals of the Fe contains an electron 

and, the porphyrin cavity is expanded, as compared to the low-spin (LS) state 

where these orbitals are empty. Expanding the core size decreases stretching 

frequencies. Similarly, the CN of the central Fe influences the core size. In the 

6C state, Fe is located in the heme plane, while in the 5C state, Fe is dislocated 

from the heme plane towards the proximal fifth ligand. Such a dislocation 

decreases the core size and stretching frequencies increase (Table 1). 

- Twisting/tilting of Pyr rings from the idealized heme planar structure.  

This fact is usually due to interactions with the protein matrix. 

Finally, the limitations of the RR technique must also be considered. 

First, a laser source is needed to observe weak Raman scattering, which 

causes local heating and/or photodescomposition of the active center in the 

biomolecule, especially in RR studies, where the radiation frequency is tuned 

within the electronic adsorption band. To avoid such problems, low laser 

powers, defocusing of the laser beam, cooling and rotating samples, and 

independent inspection of the sample integrity are employed. Another 

inconvenient is that many active centers in biomolecules or impurities 

intensely fluoresce when irradiated by the laser beam. In this sense, the 

backscattering geometry (135º or 180º) has several advantages over the 
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common 90º geometry. A simple and versatile design that allows rotation and 

cooling of the sample simultaneously.  

Specifications and working conditions 

Raman spectra were collected in back-scattering geometry using a 

Renishaw Raman instrument (InVia Raman Microscope)  equipped with a 

Leica microscope furnished with various lenses, monochromators and filters 

in addition to a CCD camera (Figure 12a). An 1800 l/mm grating was used in 

the spectrograph. Spectra were obtain by excitation with green laser light 

(532 nm) from 150 cm-1 to 1500 cm-1. A total of 15 scans were done in order 

to improve the signal-to-noise ratio. For RR measurements, a 20x microscope 

objective was used to focus the laser. RR spectra were acquired in 30 s using a 

laser power of 10 mW at the sample. RR measurements were conducted on 

samples of myoglobin immobilized on pure and mixed MUA/DT SAMs on gold, 

either dried or by contacting them with a drop of buffer solution at pH 7.5. 

Each experiment was repeated several times to check reproducibility. 
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Figure 12.  Basic scheme is shown for the configuration of a Renishaw Raman 

instrument (InVia Raman Microscope) with a sample compartment to perform 

measurements in backscattering geometry. 
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2.4.3. Mass Techniques 

2.4.3.1. Matrix-Assisted Laser-Desorption Ionization (MALDI-TOF) 

General Concepts  

MALDI is a leading soft ionization technique used in mass spectrometry 

(MS) for protein sequencing, proteomic research, DNA, lipids and 

glycoconjugates or polymers (e.g. dendrimers) analysis, and is commonly used 

together with electrospray ionization (ESI) technology. The main features of 

MALDI-TOF MS are: (I) The broad mass range allows analysing a wide variety 

of biomolecules, (II) it is relatively tolerant to buffers and salts, (III) Data 

acquisition is fast, and (IV) mass resolution, accuracy and sensitivity are very 

high. 

In MALDI, the sample is first dissolved in a suitable solvent and mixed 

with an appropriate matrix before is spotted on a metal plate and air-dried. 

Then, the sample is co-crystallized with the matrix. The choice of a specific 

matrix is mainly experimental and can be influenced by the ionization mode, 

whether positive or negative. Secondly, the mixture is irradiated with a pulsed 

laser (usually of nitrogen, λ = 337 nm) which triggers the desorption of the 

matrix material by adsorption of energy of the laser. Finally, under these 

circumstances, the ionization of the analytes in the sample takes place (Figure 

13a).20  

Then, the ionized biomolecules enter to the mass analyzer sector, 

where ions are separated based on their m/z (mass to charge) values. In MS, 

the isolation of ions is usually electrically driven, although traditional 

analyzers employed magnetic fields that influenced ion separation.  
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Figure 13.  (a) Graphic representation of the MALDI ion source sector of a MS. (b) 

Basic scheme is shown for the configuration of an Applied Biosystems 4700 MALDI 

TOF/TOF spectrometer of the Facility Services of the University of Bristol (UK). 

 The Time of Flight (TOF) analyzer is based on a simple ion separation 

methodology, which relies on the free flight of the ionized molecules in a long 

tube (L=1-2 m) before reaching the detector. Then, two ions formed at the 
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same time and with the same charge but different mass will reach the 

detector at different times, which is due to their different kinetic energy (KE) 

upon being accelerated by a voltage (U) in a previous sector. The equation 

that correlates the m/z ratio with the total time of flight (tf) is expressed as 

follows: 

 

m

z
 = tf

2·
2U·s

(2s+L)
 = K·tf

2      (6) 

 

where m is the mass, z is the charge, U is the acceleration voltage, s is the 

length of the acceleration region, L is the path length of the free flight region, 

t is the time of flight and e is the elementary charge. Theoretically, U, s, and x 

are fixed and included in K, the calibration factor of the instrument. TOF 

analyzer has the advandtage to detect a very high mass range and individual 

ions m/z at improved resolution thanks to the reflector electrostatic ion 

mirror. 

 In tandem mass spectrometry (MS/MS), MALDI-MS can provide not 

only valuable information about non-fragmented molecular ions, but  also 

structural information when fragmentation is induced. Therefore, MS/MS 

relies on the isolation of a specific m/z, i.e. precursor ion, that is subjected to 

dissociation and production of product ions. The task consists to solve the 

fragmentation patterns created by the MS/MS spectrum to reveal information 

about the analyte sequentiation or structure. To achieve this goal, mass 

analyzers can be connected in series (e.g. TOF/TOF), so that ion isolation is 

performed in the first analyzer (TOF1) followed by ion fragmentation in the 
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collision cell (CID), whereas the final analizer (TOF2) separates fragment ions 

based on their m/z (Figure 13b). 

Specifications and working conditions 

Protein mass measurements of n-Mb and c-Mb were determined by MS 

performed by an Applied Biosystems instrument (Figure 13b). As indicated in 

section 2.3.3.1 (Experimental and Methods), MALDI-TOF MS samples were 

obtained by combining a 3:1 (v/v) solution of 20 mg/ml 2,5-dihydroxy 

acetophenone: 18 mg/ml ammonium citrate dibasic with an equal volume of 

2% trifluoroacetic acid, then adding an equal volume of protein´s samples 

approximately 1 mg/ml in 0.02 M phosphate buffer, before spotting onto the 

MS plate and drying at 40 ºC. 

 

2.4.3.2. Quartz Microbalance (QCM) Technique 

General concepts 

The quartz crystal microbalance (QCM) technique has found wide 

acceptance as an analytical technique. This is because of its sub-nanogram 

(ng) detection capabilities, is label-free, affordable, and QCM surfaces can be 

readily modified with a rich surface chemistry (e.g. SAMs, polymerized films, 

sensing ionic liquids, etc.) to detect and characterize diverse interactions (e.g. 

hydrophobic, electrostatic and hydrogen bonding), for example as a tool for 

biomolecular recognition, and detection of carbohydrates, nucleic acids, non-

enzymatic proteins, cells, drugs, antigens and antibodies, among others.21 
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The signal transduction mechanism of QCM is based on the converse 

piezoelectric effect, investigated initially in quartz crystals. Piezoelectric effect 

is described by the generation of electrical charge on opposite surfaces of a 

crystalline material upon mechanical deformation (e.g. pressure or torsion) of 

the crystal along a given direction (Figure 14a). The converse piezoelectric 

effect takes place when the quartz crystal produces acoustic waves upon the 

application of an alternating current (AC) voltage by an oscillator circuit to a 

pair of metallic electrodes (e.g. Au, Ag, Pt, Al or Ni) where quartz is 

sandwiched. Then, mechanical oscillations are generated that cause shear 

displacements/deformations of the quartz-and any mass bound to its surface- 

at a particular frequency (Figure 14a).  

Therefore, nanogram mass changes (Δm) that occur on the surface of a 

quartz crystal can be correlated with changes of the resonant frequency 

oscillation (Δf) at the quartz crystals surface. Quartz crystals are cut so that a 

particular mode of vibration dominates, being the AT-cut the most commonly 

used for QCM applications. The resonant frequency is governed by the 

thickness of crystal. Then, an increase of the material thickness produces a 

decrease of its resonant frequency. The Sauerbrey equation reports the 

principle postulate of this technique that relates the linear change in mass 

with frequency:21 

 

Δf = -
2f0

2

A√μqρq

·Δm = -Cf·Δm    (7) 
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Here, Δf represents the measured frequency change (Hz), f0 the 

fundamental frequency (Hz) of an AT-cut quartz crystal, Δm the change in 

mass (g) deposited elastically (i.e., without energy loss) as a thin, rigid and 

uniform film, A the area of the electrode (cm2), μq the shear modulus of an 

AT-cut quartz crystal (2.947·1011 g·cm-1·s-2), and ρq the density of quartz 

crystal (2.648 g·cm-3). Cf is the integrated QCM/mass sensitivity or Sauerbrey 

constant, which depends on f0 and increases proportionally with the overtone 

number. This equation applies only when the mass layer has the same density 

as quartz does and is not greater than approximately 2% of the mass of the 

crystal. 
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 Figure 14.  (a) Schematic representation of a QCM sensor and its fundamental 

principles of operation. (b) Basic scheme for the configuration of an SRS-QCM200 

sensor used at the Electrochemistry Group of the School of Chemistry of the 

University of Bristol (UK). 

 

Specifications and working conditions 

QCM measurements were performed using a Stanford Research 

Systems (SRS) QCM200 at the University of Bristol, UK (Figure 14b). The 

frequency output of the SRS QCM200 was connected to the auxiliary 

analogue-to-digital converter (ADC) input of a PGSTAT30 controlled with GPES 

software. 5 MHz QCM crystals covered with gold, and functionalized with 

SAMs, were first mounted onto the QCM crystal holder using a retainer ring. 

Background electrochemical measurements were performed in solution as 

described below:  

- The SAM modified gold surfaces were rinsed with 0.01 M pH 7.6 phosphate 

buffer solution (PBS). A flow cell attachment was connected to the crystal 

holder, and three injections of different solutions were made while recording 

the oscillation frequency, allowing the system to stabilize between each stage. 

The solutions injected were 0.01 M pH 6.5 PBS, 10 μM native or cationized 

protein in PBS, and finally a rinsing stage using only PBS. The crystal was 

immersed in solution during the whole QCM experiments (Figure 14b).  

- Manual syringes were used to inject solution. A suspended waste syringe 

open to atmosphere was connected to the cell outlet to minimize pressure 

effects upon the oscillation frequency of the crystal. This was clamped at a 

constant height, and the waste solution left in it, kept at a constant level to 
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ensure the pressure remained constant within the cell during the experiment 

(Figure 14b). This setup also allowed removing bubbles in the system via 

gentle pumping. During the initial and final buffer stages, the parasitic 

capacitance (C0) was nulled to ensure the Δf (Hz) due to adsorption processes 

could be accurately measured. 

2.4.4. Other equipment 

The solution pH was measured and adjusted by using CRISON Basic-20 

and 20+ pH meters for carrying out CV or IRRAS titration experiments of 

modified gold surfaces with SAMs. The equipment was calibrated with pH 4, 7 

and 9.21 standard solutions. 

UV-visible spectra were acquired with a JASCO V-670 vis-NIR 

spectrophotometer and 0.2 and 1 cm path length cuvettes in order to 

characterize the protein aqueous solutions.  

 

2.5. Data Processing 

As previously commented in Section 2.4.1.2, electrochemical data, and 

including those obtained from QCM measurements (Section 2.4.3.2.2), were 

analyzed with GPES, FRA and NOVA software packages, and electrochemical 

parameters determined. The data curve fitting is performed by the least 

squares of Marquardt method used for non-linear functions. The convergence 

criteria are based on the value of χ2 test, Σ (Y-Yfit)2, and its change during the 

last iteration, as well as the accuracy in the adjusted parameters. In the 

particular case of EIS spectra, those were analyzed a nonlinear adjustment 
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method (CNLS), Equivcrt22 included in the FRA software configuration of the 

Autolab instrument. 

The baseline correction, second-derivative and deconvolution analysis of 

the FT-IRRAS spectra were carried out by the Spectra Manager software 

package included in the configuration of the JASCO 6300 instrument. Similarly, 

the baseline of RR spectra was corrected with the software included in the 

Renishaw Raman instrument (In Via Microscope).  
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CHAPTER 3 

MUA SAMs Formed on Au(111) by Different Methodologies 
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3. MUA SAMs formed on Au(111) by different 

methodologies 

3.1. Introduction 

The self-assembly processes of organic molecules in metallic 

substrates have been widely investigated due to their potential applications in 

different fields.1-8 Specially, the interfacial behavior of nanofilms based on the 

self-assembly of ω-alkanethiols on gold surfaces have attracted a lot of 

attention opening a bottom-up strategy to build supramolecular assemblies 

through the attachment of different kind of biomolecules and cells by non-

covalent interaction or via conjugation covalent chemistry.8 To achieve this 

objective, the study of the quality and the interfacial properties of ω-
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functionalized SAMs formed following different strategies results of great 

interest.  

The most common method for preparing alkanethiols self-assembled 

monolayers is by immersion of a metal substrate into the assembly solution 

containing the thiols at room temperature.1 The changes on the nature of the 

organic solvents used to prepare the formation solutions as well as the use of 

potential control, may direct the assembly mechanism of the self-assembled 

monolayers and in turn, their interfacial properties (Chapter 1-Section 1.2.3.) 

.9, 10 Many researchers have studied the thiol-monolayers formed on Au 

surfaces in different solvents by immersion processes, but the mechanism 

that governs the solvent effects on the assembly step has not been 

elucidated. Bain et al.11 have assessed the effect of various solvents (DMF, 

THF, ethanol, CCl4, acetonitrile, hexadecane, cyclooctane and toluene) on the 

formation of nanofilms on Au substrates. It has been found that the 

hexadecanethiol monolayers adsorbed on Au from hexadecane, exhibited low 

contact angles when reached the expected thickness, which is most likely 

attributed to the incorporation of hexadecane into the monolayer. Bensebaa 

et al.12 have characterised by infrared reflexion-absorption spectroscopy 

(IRRAS) the kinetics of the assembly processes of the C22-thiol monolayer. The 

results showed that an ordered film was rapidly obtained in ethanol and, that 

the monolayers formed in CCl4 were more disordered. Likewise, Sur et al.13 

using cyclic voltammetry (CV) and electrochemical impedance spectroscopy 

(EIS), have measured the interfacial capacitance of alkanethiol SAMs in Au 

electrodes in non-aqueous solvents, such as n-hexane, chloroform, toluene, 
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ethanol, DMF, acetonitrile and hexadecane. They concluded that the 

nanofilms formed from hexane and chloroform/hexane presented the best 

structural organization.  

The assembly mechanism of self-assembled monolayers deposited over 

metallic substrates under potentiodynamic conditions are regulated by 

deposition kinetics and the surfaces coverages of the resulting films are often 

slightly lower than the theoretical surface coverage value for a full monolayer 

(i.e. submonolayer coverage).14, 15 Porter et al.16 have found that the 

monolayers formed under electrochemical control show similar structures 

and interfacial properties to those obtained by traditional routes.  

A number of techniques have been employed to determine the acid-basic 

interfacial behaviour of surface confined carboxylic acids such as contact 

angle titration,17 quartz crystal microbalance measurements,18 

amperometry,19 FTIR-ATR,20 laser-induced temperature jump studies, double 

layer capacitance titration,21 impedance spectroscopic studies,22 and chemical 

force microscopy measurements.23-25  

Herein, the relationship between the structure and the interfacial acid-

base properties of 11-mercaptoundecanoic-acid (MUA) self-assembled 

monolayers formed by three different methodologies is studied by means of 

electrochemical and IRRAS techniques.  
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3.2. Material and methods 

Chemical reagents. 11-mercaptoundecanoic acid (MUA), Triton X-100, 

potassium ferrocyanide (Fe(CN)6
4-), potassium ferricyanide (Fe(CN)6

3-), and 

KOH were purchased from Aldrich-Sigma (purity ≥ 99%). The rest of the 

reagents (ethanol and HCl) were from Merck analytical grade. All solutions 

were prepared with deionized ultrapure water produced by Millipore system. 

Methods. A conventional three electrode cell comprising a platinum coil as 

the counter electrode, a 50 mM KCl calomel electrode as the reference 

electrode and an Au(111) single crystal as the working electrode were used. 

Au(111) single crystal and (111) textured surfaces (Gold ArrandeeTM) were 

cleaned and modified with MUA as indicated in the protocols described in the 

Chapter 2 (Sections 2.3.1 and 2.3.2). The adsorption time assayed in the 

lyotropic medium was 15 minutes. 

In the pH titration experiments, samples were immersed either in 5 mM 

HCl or KOH aqueous solutions at the adjusted pH, and allowed to equilibrate 

during 20 minutes (i.e. non-reactive spreading protocol).26 Then, the modified 

substrates were dried with nitrogen for further characterization by FT-IRRAS. 

Titrations were performed from alkaline to acidic direction, and vice versa, by 

changing the pH solution upon addition of KOH or HCl. At least three freshly 

prepared samples were titrated for each deposition protocol by FT-IRRAS 

methodology. 

Electrochemical and FT-IRRAS characterization of the samples was carried 

out accordingly to the specifications and working conditions included, unless 

otherwise stated, in the Chapter 2 (Sections 2.4.1. and 2.4.2.1). In the 
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particular case of FT-IRRAS analysis, the relative surface coverage of –COOH 

(1-θ) and –COO- (θ) was determined from the integrated area of the νC=O 

vibrational bands corresponding to the stretching modes characteristic of 

carboxylic (1700-1750 cm-1) and carboxylate (1400-1445 cm-1) groups.   

3.3. Results and discussion 

The knowledge of the interfacial properties of -terminated SAMs is very 

important for the application of these layers as platforms to build more 

complex molecular architectures. As the final properties are entirely 

dependent on the preparation strategy, in this chapter, a comparison of the 

MUA-SAMs formed by different methods is carried out.  

The first strategy is the classical spontaneous method that is performed 

by contacting the clean gold electrode with an ethanolic solution of the 

mercaptoderivative molecule. It is well known that this methodology is good 

for obtaining well organized SAMs upon long modification times (> 24 h). 

Under these conditions, it is believed that a dense and well organized 

monolayer of MUA is obtained. 
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Figure 1. Cyclic voltammogram for the reductive desorption process of MUA-SAM in 

KOH 0.1 M formed by immersion of an Au(111) single crystal surface into a 1 mM 

MUA ethanol solution during 24 hours. Scan rate: 20 mV/s. 

To get some information about the quality of the SAM, cyclic 

voltammetry of the reductive desorption (RD) process is carried out. Figure 1 

shows the RD profile obtained in KOH 0.1 M for the MUA-SAM formed after 

24 h of modification time in an ethanolic solution. Starting at -0.4 V and 

scanning to cathodic potentials, a low and constant current density is 

obtained in a wide potential region (400 mV) until suddenly a very sharp 

peak at -1.07 V appears. This peak corresponds to the surface desorption of 

the monolayer by breaking the S-Au bonds as indicated in the following 

reaction: 

R-S-Au + 1 e  R-S- + Auo     (1) 

The half-width measured for this peak (FWHM) is of 22 mV, suggesting a 

cooperative RD process due to long-range attractive interactions between the 
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molecules in the layer. The charge density involved in the RD process, 

determined by the area integrated under the reduction peak, is near 71 

μC/cm2 which gives rise to a thiol surface coverage of 7.35·10-10 mol/cm2, in 

good agreement with a (√3x√3) R30o overlayer structure of molecules 

organized in an up-right configuration on Au (111).27  

The second method chosen for the formation of the MUA-SAM also 

consists of the spontaneous adsorption of the molecules on the metal 

substrate but, in this case, a new strategy has been employed. We have used 

the deposition from a lyotropic medium where the mercaptoderivative 

molecules are inserted. Under these experimental conditions a lower 

modification time is used to evidence the appropriateness of this micellar 

medium to prepare well-organized SAMs. In fact, by examining the formed 

layer by the RD process, a sharp peak, quite similar to that recorded for the 

SAM prepared from ethanolic solution is obtained (Figure 2). If the potential 

for the reduction peak is taken as a way to measure SAM energetics, it can be 

seen that, both layers, are reduced at the same potential and, therefore, their 

structural organization must be rather similar. Moreover, the charge density 

involved is both cases is almost coincident, which means that the 

compactness must be also closely similar. 
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Figure 2. Cyclic voltammogram for the reductive desorption process of MUA-SAM in 

KOH 0.1 M formed by immersion of an Au(111) single crystal surface into a 1 mM 

MUA crystalline lyotropic mixture during 15 minutes. Scan rate: 20 mV/s. 

Finally, a methodology based on potential control for the SAM formation 

has been developed. To perform this experiment it is necessary to know the 

characteristics of the electrochemical adsorption behavior of MUA on the gold 

electrode. Figure 3 shows the cyclic voltammogram recorded for a clean 

Au(111) substrate immerse into a solution containing 1 mM MUA in KOH 0.1 

M. The electrochemical response is obtained by starting at a potential Eo, 

chosen as a sufficiently negative one that the thiol derivatives are not 

expected to bind to the gold surface. After stabilization of the electrode 

current intensity, the potential is scanned in the positive direction (at 20 

mV/s) up to reach the potential Em, where it was reversed (Figure 3, Inset).  
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Figure 3. Cyclic voltammetry of an Au(111) single-crystal electrode in a 1 mM MUA in 

0.1 M KOH solutions; scan rate = 20 mV/s. Inset: scan program. The arrows in the 

voltammetric curves indicate the position of Eo and the scan direction. 

The characteristic features of this voltammetric curve are the appearance 

of an oxidation and a reduction peak that corresponds to the adsorption of 

the molecules through the formation of an S-Au bond and its subsequent 

desorption by bond breakage, respectively. The adsorption potential of MUA 

is -0.87 V. As the anodic formation reaction is taking place in alkaline medium, 

the terminal carboxylic group of MUA contributes to the destabilization of the 

layer. In fact, the charge density involved under potentially-driven adsorption 

is of 45 µC/cm2, that is lower than that necessary for the formation of a 

complete monolayer of standing-up molecules on the surface.28 It is 
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interesting to note that even if the scan rate is lowered to 2 mV/s (the lower 

scan rate used in our experimental conditions), the charge density 

corresponding to a complete monolayer is not attained. The reason for this 

can be found in the presence of a second functional endgroup in the molecule 

that should compete with the thiolate head-group for the interaction with the 

surface.14 Moreover, the occurrence of certain anodic current at potentials 

positive to the adsorption peak can be explained by the reorganization of 

molecules on the surface from a lying-down to a standing-up orientation 

giving place to some adsorption events and, in this way, a higher charge 

density in the subsequent reductive peak ( 65 µC/cm2) in comparison to the 

oxidative one.  

The way to build up the molecular layer by using a potentiostatic method 

consisted of using the potential program included in Figure 4. Firstly, the 

potential is stepped from a negative value compared to the anodic peak (Eo = -

1.35 V; t = 120 s), where no adsorption of molecules occurs, to an anodic 

value in the region of S-Au formation (Eform = -0.4 V; t = 600 s) where it is 

maintained for a time that it is considered enough for a stable layer 

formation. After this time (black arrow in the Inset of Figure 4), the electrode 

is removed from the solution and transferred to an electrochemical cell 

containing only KOH 0.1 M. After equilibration at the initial potential (-0.4 V), 

the potential is scanned in the negative direction. Figure 4 shows the typical 

voltammetric response obtained under these conditions. The analysis of the 

parameters of the CV profiles obtained by this methodology evidences that 

the SAM formed under these experimental conditions is of apparently similar 
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quality to those formed either from ethanolic solutions, at much longer times, 

or from a lyotropic medium, only upon 15 min of modification time. 

 

Figure 4. Voltammetric curve for the reductive desorption of a MUA-SAM  formed by 

using the potential program shown in the inset, in the presence of 1 mM MUA in 0.1 

M KOH solution. The arrow points the transfer to the solution without MUA; scan 

rate = 20 mV/s. 

A deeper understanding of the structural details of these films was 

obtained by IRRAS measurements. Figure 5 displays the spectra obtained for 

the MUA SAMs prepared by each deposition method. In the high wavenumber 

region, the bands at 2918 and 2850 cm-1 are attributed to the C-H stretching 

asymmetric (νas) and symmetric (νs) vibrational modes of the -CH2 groups, 

respectively, belonging to hydrocarbon chains arranged into crystalline-like 

structure. Then, it can be assumed that the monolayers formed from a 

micellar environment and under electrochemical control possess 
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predominantly an all-trans configuration of the alkyl chain with few gauche 

defects.29, 30 Interestingly, a small shift to higher values of the νas peak was 

observed for the MUA SAM formed from ethanol, suggesting a lower 

organization of these 2D-arrays. This fact is ascribed to the influence of the 

attractive interactions between the ethanol solvent molecules and the 

carboxyl groups on the assembly mechanism.  

In the low frequency region, the spectra show the typical bands for the 

carboxyl groups region (1300-1800 cm-1). Bands at 1741 and 1717 cm-1 are 

assigned to the non-hydrogen and hydrogen bonding interactions of the 

carboxylic groups, respectively,31, 32 whereas the band at 1468 cm-1 is linked to 

CH2 scissors deformation. The other low frequency features are ascribed to 

asymmetric (1440 cm-1) and symmetric (1421cm-1) stretching modes of 

carboxylates groups (COO-).33 
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Figure 5. IRRAS spectra at the high and low wavenumber regions of MUA-SAMs 

formed from a) lyotropic micellar medium, tmod = 15min; b) potentiodynamic method, 

tmod = 10min at Efor = -0.4V, and c) ethanol solution, tmod = 24h. 

It is interesting to highlight that the bands associated with the –COOH 

group do not appear in the low frequency spectra for the SAM deposited 

under potential control, owing to the basic conditions used in this experiment 

(KOH 0.1 M aqueous solutions). The well-organized negatively charged 

carboxylates groups of these assemblies may be associated to: i) the Van der 

Waals forces between the neighbouring alkyl chain and ii) the possible extra-

stabilisation contribution of a two-dimensional ionic crystal layer compose by 

carboxylates groups and the counterions of the alkaline solution.34 On the 

other hand, the MUA-SAMs spontaneously formed from ethanol or micellar 

media, show a high proportion of -COOH groups associated by H-bonding 

interactions.   
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A set of IRRAS measurements are performed to elucidate the relationship 

between the structure of these surface-confined molecules and their 

deprotonation/protonation interfacial behaviour. These measurements have 

been carried out by contacting freshly prepared MUA-SAMs with aqueous 

buffer solutions of different pH during enough time to equilibrate the 

carboxy-terminal groups of the SAM. Then, substrates were removed from the 

solutions and dried with a N2 flow. Figure 6 shows a series of IR spectra at the 

low wavenumber region in the pH interval from 2 to 11. A striking 

dependence of the stretching modes belonging to -COOH and –COO- groups 

with the increase of the pH electrolyte solution is observed. There is a 

continuous decrease of the C=O absorption at 1741 and 1710 cm-1 

(disappearance of COOH groups), that can be correlated with the concomitant 

increase of one of the absorption bands assigned to the carboxylate groups. 

This behaviour perfectly agrees with changes in deprotonation/protonation at 

the monolayer/electrolyte interface.  

A first comparison of the spectra allows stablishing an important 

difference to be commented. At the highest pH assayed (pH = 11), the SAM 

formed from ethanolic solutions shows the IR bands that would correspond to 

free and H-bonded carboxylic acids. Taking into account that the pKa of 

carboxylic groups in homogeneous solution is of around 4, the existence of 

these signals in the spectra are inconsistent with an expected fully 

deprotonated state of the SAM endgroups. 
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Figure 6. IRRAS spectra of MUA-SAMs recorded after equilibration of the layers with 

a buffer solution at different pHs. The spectra series correspond to SAMs formed a) 

lyotropic micellar medium, tmod = 15min; b) potentiodynamic method, E = -0.4V; c) 

ethanol solution, tmod = 24h. 

However, literature reports on the structure of carboxylic-terminated 

alkanethiol SAMs formed from ethanol have shown contradictory results. One 
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of the pioneering works dealing with these SAMs showed that a terminal 

carboxylic acid had not a big impact on the structural ordering of the alkyl 

chains,33 but others stated that the SAMs formed from ethanolic solutions 

were unstructured.32, 35 

The addition of acid to the modification solution has been proposed as 

a strategy to reduce electrostatic interactions between carboxylate groups 

that might be formed for the presence of trace amounts of cations in solution. 

In this way, the acid will restore the carboxyl group into the acidic form, which 

will facilitate the formation of densely packed and ordered assemblies, 32 and 

reduces the risk of bilayer formation through the association of -COOH 

dimers.36, 37 However, under conditions of acid additions, IR absorption peaks 

corresponding to ester derivatives have been found.32 It has been since 

proposed that the carboxylic acid reacts with ethanol in the presence of acid 

to form an ethyl ester. More recently, it has also been found that even in the 

absence of acid in the ethanolic solution, the -COOH group can be converted 

into the ethyl ester group.38 The fact is that the peak for C=O stretching for a 

non-hydrogen-bonded -COOH group and that for the –COOCH3 coincides in 

frequency (1741 cm-1). For this reason, is very difficult to assess the origin of 

the peaks in the spectra of the MUA-SAM, formed from an ethanolic solution, 

at pH = 11. It is more plausible that the peak corresponds to the ethyl ester 

than to carboxylic acid species originated at this very high pH.   

To analyse the IRRAS results in terms of changes in the protonation state 

of the carboxylic groups, we have used a deconvolution procedure of the 

bands associated to the –COOH and –COO- groups, to determine the amount 

of such species at a given pH. The results obtained have been transformed 
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into the ratio of carboxylate species, θ. In Figure 7, the θ values are plotted 

versus pH for the SAMs deposited by the three different procedures, and the 

apparent pK1/2 determined as the midpoints of the sigmoidal curves are 

gathered in Table 1. As can be seen, the titration curve corresponding to the 

MUA-SAM formed from ethanol shows a gradual decrease from alkaline to 

acid medium without a clear transition that is considered to occurs at an 

apparent pK1/2 of approximately 5.7 (i.e. close to the solution pKa value for 

alkanoic acids). 

 

Figure 7. IRRAS titration curves of MUA-SAMs formed from: (● ─) lyotropic micellar 

medium, tmod = 15min; (● ─) potentiodynamic method, E = -0.4 V;  (● ─) ethanol 

solution, tmod = 24h. 
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Table 1. pK1/2
app values of MUA-SAMs determined from the IR titration curves. 

 

In the case of the MUA-SAM formed from a lyotropic medium, the 

inflection point observed appears at pH 7.7. This value agrees with many 

studies in literature that explain the increase of the apparent surface pKa of ω-

carboxy-terminated SAMs with respect to the solution pK as being due to the 

stabilization of the protonated state by hydrogen bond formation in the 

adsorbed state and the increase of the SAM structural order by van der Waals 

intermolecular interactions between alkyl chains.21, 39-50 However, the 

extended literature in this topic concludes that the apparent pK values 

obtained are highly dependent on the technique used for its determination as 

well as experimental conditions (e.g. solution ionic strength). Another 

important factor to consider is the SAM fabrication method, being most of the 

results reported on the spontaneously formed monolayers from ethanolic 

solutions.  

On the other hand, MUA-SAMs formed under electrochemical control, 

have shown a more complex behavior as two inflection points are 

distinguished at pH 4.9 and 8.1, respectively. In this case, it is important to 

highlight two main different aspects: (i) the SAM is formed under 

electrochemical control and, therefore, is forced to reach a specific potential-

dependent final estate, and (ii) the SAM is prepared from aqueous alkaline 

Preparation method  pK1/2
app  

Lyotropic medium; tmod = 15min - 7.7 

Ethanolic solution; tmod = 24h - 5.7 

Electrochemical control: E = -0.4V 4.9 8.1 
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solution where –COO- groups should accommodate in the surface of the as 

prepared layer. In this sense, it is not expected that hydrogen bonding should 

proceed in the same way as it does for that layers built from preformed -

COOH groups that can interact trough hydrogen bonds in the first moments of 

assembly contributing to stabilize the complete layer structure. Moreover, it 

has been suggested that a balance among differently associated –COO- groups 

with the K+ counterion layer at the SAM/electrolyte interface, probably 

facilitates the titration of two different domains of molecules with different 

acid-basic chemical properties. Gershevitz et al.20 have reported the direct 

observation of two different pKa values by FTIR-ATR measurements on 

siloxane-COOH self-assembled monolayers. They proposed that the 

monomeric carboxylic groups domains are the least stable domains as the pD 

increases contributing to the first pKa values around 4.9, while the titration of 

bridges species (dimeric and oligomeric carboxylic groups) determine the 

higher pK value of 9.3.  

 

3.4. Conclusions 

- The assembly and characterization of MUA-SAMs on Au (111) surfaces 

has been accomplished by three different deposition methods. 

 

- The structure of the SAMs formed are compatible with a (√3x√3) R30o 

overlayer structure of molecules organized in an up-right 

configuration.  
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- FT-IRRAS characterization reveals that the assemblies built from a 

micellar environment or under potential control arrange into 

“crystalline-like” structures of alkyl chains packed in 2D-arrays, where 

as those deposited ethanol display a lower degree of ordering.  

 

- The changes in the acid-basic interfacial properties of the studied MUA 

SAMs are mainly attributed to differences in the organization of the 

alkyl chains structure and differently coupled domains of carboxylates 

groups with the counterions layer at the SAM/electrolyte interface. In 

the particular case of the monolayers formed from ethanol, it cannot 

be discarded the formation of ethyl ester terminal groups which may 

partially affects the acid/base interfacial properties of the SAM. 
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4. Mixed SAMs of MUA/DT formed in lyotropic 

medium 

4.1. Introduction 

The control of the spatial confinement of individual functional molecules 

and nano-objects on surfaces is a highlight topic in studying single-molecule 

properties, such as reactivity and kinetics, and provides new insights into the 

design of molecular switches and motors, opening new applications in the 

field of biochemical sensors, molecular electronics, catalysis and surface 

material chemistry.1-7 

Of particular importance is the building up of multifunctional 

architectures on solid substrates to make their active functional groups 
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accessible and to create molecular recognition sites that can act either as 

receptors or favoring the specific adsorption of different kind of biomolecules, 

such as proteins. Among the different methodologies proposed to achieve the 

assembly of functional molecules on solid substrates, the chemisorption of 

self-assembled monolayer (SAMs) on gold has been widely studied.8 

Particularly, the strategy of building up mixed monolayers by the dilution of 

ω-functionalized alkanethiols in a homogeneous two-dimensional array is a 

way for tailoring the surface properties of these SAMs (Chapter 1 - Section 

1.2.4). However, in many cases a true mixing of the components is not 

reached at the molecular level and, phase segregation in single-component 

domains is observed.9-11 To achieve this goal, the control of determined 

factors affecting the balance of the intermolecular interactions during the 

self-assembly process, such as different molecular chain length, nature of the 

functional groups and solvent, is crucial for obtaining binary SAMs with the 

expected mixing properties. 

Developing of these strategies requires understanding of the intrinsic 

phase behavior of the mixed thiol monolayers. In this sense, Folkers et al., by 

using the Bragg-Williams model, described the behavior of binary 

alkanethiolate SAMs at gold surfaces.12 They concluded that only one phase 

consisting of a homogeneous mixture of both alkanethiolates would exist 

under equilibrium conditions, being the strength of the interactions between 

neighboring molecules the factor that determines the actual composition of 

the phase. Consequently, it can be inferred that it would be possible to obtain 

fully miscible and crystalline intermixed domains of two-component SAMs 

favoring hetero-molecular interactions. 
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Electrochemical and infrared spectroscopy techniques have emerged as 

useful tools to elucidate the phase behavior in multicomponent SAMs systems 

from a macroscopic point of view.11,13,14 Although macroscopic in nature, 

these techniques afford to get also valuable information related with the 

feasible nanoscopic scheme of the monolayer organization. In this sense, it 

has been reported that a mixed monolayer with domains containing 50 

molecules exhibits two-dimensional bulk properties15 which has been used to 

infer a complete mixing in these quasi-two dimensional systems.11,14 

Most of the studies carried out to explore phase segregation of binary 

SAMs formed from molecules of similar chain length and intermolecular 

interactions have been based on SAMs built up from ethanolic solutions.14,16 

More recently, the preparation of alkanethiolate SAMs on gold from micellar 

solutions has been reported as an environmentally friendly process that yields 

almost defect-free structures with greater packing density than those for the 

SAMs formed from organic solvents.17,18 Indeed, in the previous Chapter 3 

was found that MUA SAMs formed from micellar medium and in KOH solution 

(under potential control) showed an excellent insulating behavior and 

crystalline-like organization even for modification times as short as 10-15 min. 

It is well known that monolayers of molecules presenting defects are more 

prone to conformational fluctuations and, this lack of order would disfavor 

the possibility of attain intermixed crystalline domains at the molecular level.  

Therefore, a lyotropic medium consisting of Triton X-100 and water 

can be used as a system that produces well ordered alkanethiolate 

monolayers 19,20, and in this chapter will be demonstrated that this approach 

is also suitable for the formation of molecularly mixed thiol monolayers at Au 
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(111) surfaces. The higher viscosity and size of the micelles respect to the thiol 

molecules is thought to be the reason for the absence of the solvent inclusion 

into the monolayer lattice and accordingly the improvement of the quality of 

the assemblies’ organization (Chapter 1 – Section 1.2.3.3).  

On the other hand, the formation of a mixed monolayer of 11-

mercaptoundecanoic acid (MUA) and octanethiol (OT) under electrochemical 

control has been put forward the existence of macroscopically homogeneous 

and completely homogeneous mixed layers at higher and lower MUA:OT 

molar ratios, respectively. The macroscopically mixed layer should be formed 

by small domains that keep the same energetic behavior as the single-

component SAM of the thiol constituents, and the completely homogeneous 

mixed one should be formed by few MUA molecules diluted in an OT layer.21  

Then, the purpose would be to take advantage of the different solubility of 

molecules on the hexagonal micelles in the lyotropic medium to obtain mixed 

monolayers of MUA and 1-decanethiol (DT) on Au (111) electrodes of definite 

composition.  

In this sense, this work presents the first reported example of mixed 

SAMs formed from micellar solvents succeeding to achieve fully 

homogeneous mixed components in a wide range of molar concentration 

ratios. The characterization of the binary SAMs is carried out by 

electrochemical techniques, such as cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS) and, by infrared reflection-

absorption spectroscopy (IRRAS). In order to estimate the changes in the 

spatial distribution of the components of the binary SAMs formed under near 
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thermodynamic equilibrium and non-equilibrium conditions, a theoretical 

analysis has been applied based on the Bragg-Williams model (Appendix). 

 

4.2. Materials and Methods  

Chemical reagents. 11-mercaptoundecanoic acid (MUA), 1-decanethiol (DT), 

Triton X-100, potassium ferrocyanide (K4Fe(CN)6), potassium ferricyanide 

(K3Fe(CN)6) and semiconductor grade purity KOH was purchased from Aldrich-

Sigma (purity ≥ 99%). The rest of the reagents were from Merck analytical 

grade. All solutions were prepared with deionized ultrapure water produced 

by Millipore system.  

 

Methods. A conventional three electrode cell comprising a platinum coil as 

the counter electrode, a 50 mM KCl calomel electrode as the reference 

electrode and an Au(111) single crystal as the working electrode were used. 

The Au(111) surfaces were cleaned and modified with MUA and/or DT as 

indicated in the protocols described in the Chapter 2 (Sections 2.3.1. and 

2.3.2.). In this particular case, the adsorption times assayed in lyotropic liquid 

mixtures were 15 min and 18 hours. Electrochemical characterization was 

carried out by CV and EIS techniques accordingly to the specifications and 

working conditions included, unless otherwise stated, in the Chapter 2 

(Section 2.4.1.).  
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Au (111) textured surfaces were modified in the same experimental 

conditions indicated for Au(111) single crystal (Chapter 2 – Sections 2.3.1., 

2.3.2.) and characterized by FT-IRRAS technique (Chapter 2 – Section 2.4.2.1.). 

Electrochemical and spectroscopic data were further analyzed and processed 

as indicated in Chapter 2 (Sections 2.4.1.2 and 2.5.). 

 

4.3 Results and discussion 

4.3.1. Cyclic voltammetry of the reductive desorption process of 

mixed MUA/DT SAMs 

Cyclic voltammetry of the reductive desorption (RD) process is a useful 

technique to explore the structure and stability of the mixed SAMs.  Figure 1 

shows a series of cyclic voltammograms (CVs) for the RD processes in KOH 

0.1M of the SAMs obtained at different MUA/DT molar ratios in the lyotropic 

medium after 15 min and 18 h of modification time (tmod). The desorption 

processes of the single-component layers take place at -1.07 V and -1.10 V for 

MUA and -1.14 V and -1.18 V for DT at low and high modification times, 

respectively and, the mixed monolayers obtained at different component 

ratios show peak potentials comprised within these values. It is interesting to 

note that, under all the experimental conditions tested, the mixed-monolayer 

reductive desorption processes produce single desorption peaks indicating 

that the SAMs do not contain macroscopically phase separated domains 

(Chapter 1-Section 1.2.4.).  However, this effect is expected if we take into 

account that phase-separated domains are only macroscopically observed by 
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two well-separated peaks when the potential difference for the single 

component SAMs are greater than 0.2 V.22 Otherwise, the system is 

considered to be homogeneously mixed either as segregated domains of the 

components at the nanoscale or ideally to the molecular level. 

As it is shown in Figure 2, the variation of the peak potentials with the 

solution molar ratio of the components do not follow the linear trend 

expected for an ideal behavior.22 At low modification time, the peak 

potentials hardly vary from that of the MUA single component SAM at XMUA
sol 

> 0.5. However, at lower MUA molar fractions, these values tend to these 

expected for an ideal behavior. On the contrary, the observed trend for the 

SAMs obtained at high modification time is near ideality at higher XMUA
sol and 

show a higher deviation at XMUA
sol < 0.5. Therefore, an enrichment of MUA 

molecules in the layers in respect to the modification solution composition is 

obtained under all the conditions, although the extent of this effect is 

dependent on tmod. 
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Figure 1. Cyclic voltammograms for the reductive desorption process in KOH 0.1 M of 

MUA/DT mixed monolayers formed at different MUA/DT molar ratios in a lyotropic 

medium on Au(111) single crystal electrodes at 15 min (a) and 18 h (b) modification 

time. Total thiol concentration is 1 mM. Scan rate: 20 mV/s. 
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Figure 2. Changes in the peak potential (E) and half-width (W) of the reductive 

desorption peaks for MUA/DT SAMs formed at different molar concentration ratios 

at 15 min and 18 h modification time. Red and blue lines are presented as a guide for 

the eyes. 

 

The half width of the reduction peaks (W) behaves in a similar way at 

higher MUA solution ratios. In fact, the values approach to that of the MUA 

single-component SAM. At low MUA solution ratio, the peaks broaden up to 



Mixed SAMs of MUA/DT Formed in Lyotropic Medium                           Chapter 4 

 

158 

 

values that are even higher than the half-width of the DT single-component 

SAM.  This broadening of desorption peaks can be explained either by an 

overlapping of the peaks corresponding to the individual molecules that could 

form phase segregated domains at the nanoscale 22,23 or by the weakening of 

the attractive interactions between molecules in 2D arrays.24,25 The first 

hypothesis has been tested by carrying out the deconvolution of the broaden 

desorption peaks using the peak parameters obtained for the single 

component SAMs reduction peaks.21 In any of the cases, the CV curves cannot 

be properly fitted. Thus, the possibility of formation of segregated domains 

composed of MUA or DT molecules maintaining the same properties as the 

single component SAMs can be discarded and the occurrence of some 

disorder introduced by the mixing of these two molecules in the monolayer 

under these conditions should be taken into account. 

Considering that in the present case, the length of the alkane chains of 

both components in the mixed SAM is similar, we can assume that Van der 

Waals interactions between molecules are favored. However, the presence of 

the bulkier terminal carboxylate group in the MUA molecules can act as 

monolayer destabilizing group. It has been reported 26 that the reductive 

desorption peaks for a 3-mercaptopropionic acid (MPA) monolayer are very 

narrow, showing a W value of 20 mV irrespective to the type of cation 

contained in the alkaline electrolyte solution. This fact is in agreement with 

the low W values observed for the pure MUA SAM and the mixed layers with 

higher molar ratios of MUA. Then, it can be thought that the negatively 

charged carboxylate groups can bind counterions in alkaline solutions in a way 

that they can induce an additional interaction by forming a two-dimensional 
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ionic crystal and, when the surface concentration of DT increases at low MUA 

mole fractions, the counterion layer can break and a partial loss of stability of 

the SAM takes place. 

Although the trend of the peak half widths is similar for the SAMs 

formed at different tmod, the values for the SAMs formed at 18 h present a 

narrower range of concentration ratios where the strong peak broadening is 

observed. This fact can be in agreement with the larger deviation of the peak 

potential to values that account for a higher MUA content in the SAM. 

On the other hand, the charge involved in the reduction processes is 

nearly constant for the SAMs studied. The average value upon capacitive 

contribution subtraction is 66 ± 7% μC/cm2 and 69 ± 5% μC/cm2 for the mixed 

SAMs formed at the shorter and longer modification time, respectively. Then, 

the thiol surface concentrations for the SAMs are 6.9·10-10 mol/cm2 (±7 %) and 

7.2·10-10 mol/cm2 (±5%), respectively, which are close to the expected 

coverage value of 7.6·10-10 mol/cm2 for an ( 33X ) R30º overlayer structure 

of molecules organized in an up-right configuration on Au (111). 

Binary SAMs formed by alkanethiols with similar features have been 

studied in order to explore the possibilities of phase segregation at the 

nanometer scale.16,22 Kakiuchi et. al. have reported similar one peak-

voltammograms for mixed monolayers of MUA and 1-undecathiol (UDT) on 

gold surfaces and have shown that both thiolates molecules phase separate 

under ambient conditions into nanometer scale domains. These kinds of 

mixed SAMs are considered macroscopically homogeneous when the domains 

size does not exceed 15 nm2 and produce only one reductive desorption 

peak.22,23 Thus, this “macroscopically homogeneous state” has been defined 
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to be somewhere between the truly homogeneous state at the molecular 

level and a phase-segregated one that is enough to give two macroscopically 

discernable reductive desorption peaks in techniques such as voltammetry. 

To determine mixed SAMs surface composition 22,27-29, it is assumed the 

approach that the reduction peak potential (Epeak) of each mixed monolayer is 

a simple weighted average of those of the single component SAMs: 

 

DT
surf

DTMUA
surf

MUApeak EEE       (1) 

1 surf

DT

surf

MUA        (2) 

 

where EMUA and EDT are the peak potentials for the pure MUA and DT SAMs, 

respectively, and XMUA
surf and XDT

surf are the surface mole fraction for each 

component in the mixed SAMs. From equations (1) and (2) and assuming that 

the packing density of the alkanethiolates is approximately constant with the 

surface composition, as stated above, the surface composition of MUA can be 

given by:  

 

DTMUA

DTpeaksurf

MUA
EE

EE




                              (3) 

 

Figure 3 shows the variation of the XMUA
surf determined by using eqn. 3 

with the concentration ratio of MUA in solution, XMUA
sol, for the mixed SAMs 

studied. A linear behavior is not obtained for any of the conditions tested. 

Interestingly, the surface enrichment of MUA molecules over DT as a function 
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of XMUA
sol is observed at lower modification times and, this trend is more 

pronounced at SAMs built at higher modification times, where the system can 

be thought near the thermodynamics equilibrium conditions. The nature of 

the adsorbate-adsorbate and adsorbate-solvent interactions may influence 

the composition and the structure of mixed SAMs in many ways. Different 

solvents will change the adsorbate activities in the solution and then, affect 

the monolayer composition at or near thermodynamics equilibrium.  

Kakiuchi et. al.22 using ethanol as solvent investigated the composition 

of binary SAMs composed by MUA and UDT, concluding that the adsorption of 

the methyl-terminated thiol is preferred at any UDT concentrations. This 

finding is opposite to the present results, indicating that the different 

adsorbate-solvent interactions of the two molecules in solution influence the 

SAM surface composition. In this sense, using an non-polar solvent as 

isooctane, Bain et al.28 have reported a remarkable strong preference for the 

11-mercapto-1-undecanol (MU) from mixtures of UDT/MU. 

  The prevalence of specific interactions between terminal groups such 

as hydrogen bonding can ultimately control the phase properties of these 

layers. Carot et al.29 have formed a homogeneous mixed monolayer of MUA 

and MPA demonstrating that the changes from two distinct to a unique 

homogeneous phase is driven by strong hydrogen bonding between the unlike 

molecules.  
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Figure 3. MUA surface composition (determined by Eqn. 3) as a function of the MUA 

solution mole fraction at 15 min (a) and 18 h (b) modification times. Red lines are 

presented as a guide for the eyes. 

 

 In the present work, an aqueous micellar solution consisting in a lyotropic 

hexagonal crystalline liquid as solvent for the assembly process has been 

used. The interactions of the micelles with the alkanethiols should determine 

the adsorption mechanism (Chapter 1 - Section 1.2.3.3.). It is believed that the 
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micelles act as vehicles to transport and deliver the thiols to the metal 

surface. The mechanism proposed to explain the micelle-assisted SAM-

formation consists of three steps: (1) the diffusion of the micelles containing 

the alkanethiols to the proximity of the Au surfaces, (2) the release of the 

alkanethiols from the micelles adsorbed at the metal surface (admicelles) and, 

(3) the chemisorption of the alkanethiols on the surfaces after admicelles 

removal.30,31 Yang al.30 have proposed that the transfer of the thiols from 

micelles in solution to admicelles in metal surfaces likely occurs through a 

collision induced activated diffusion process that explains the exponential 

decrease of the SAM formation rate constant with the alkanethiol chain 

length.  

 Assuming that both molecules are solubilized in the hexagonal micelles 

formed in the lyotropic medium, the different solubility of MUA and DT on the 

micelles can be taken as responsible for the more favorable delivery of MUA 

over DT at the surface.  In this sense, DT is probably better inserted in the 

hydrophobic part of the micelles than MUA does, which eventually affects the 

adsorbate activities in the micellar solution and thermodynamics of the 

assembly process. 

 

4.3.2. Thermodynamics analysis of phase behavior in mixed 

SAMs 

As it has just been stated, the nature of the solvent has a significant 

influence in the composition of the binary SAMs. However, the intermolecular 

interactions between the like and unlike components should also play a major 
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role in the final SAM structure and composition. Knowledge of these 

interactions would shed light about important questions on the molecule 

spatial distribution and, therefore, on the mixing behavior of the components 

in the binary SAMs. The strength of the interactions between these molecules 

will be the factor in determining these properties. 

In earlier studies, Folkers et al.12 formulated a thermodynamic model 

that explains the relationship between the mole fraction of one thiolate in the 

mixed SAM and the ratio of both thiols in solution based on the Bragg-William 

solution theory.32  In this model they only consider the interactions between 

the nearest neighbor’s molecules, assuming that thiols don’t interact in 

solution and maintain the same configuration in solution and within the SAM. 

They have elegantly deduced an equation relating the mole fraction of 

the thiolate of longer chain length (XLg) in the two-components SAM and the 

ratio of thiols in solution (Rsol = XLg / XSh; where XLg and XSh are the mole 

fraction of the longer and short chain length thiols in solution, respectively) 

taking into account the mixing of the components as: 

 

kTXkTXXR LgLgLgso /)()21)(/())1/((lnln ln       (4) 

 

where ω is the interaction parameter which describes intermolecular 

interactions within the SAM and, Δ(Δμ) is the chemical potential variation 

between the thiols in solution and the thiolates at the SAM.12  

Figure 4 shows the relationship between XMUA
surf and the ratio of the 

two different thiols in the solution (as explained in the Figure legend). The 
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experimental data have been obtained from the peak potentials of the RD 

processes studied at different solution ratios (Eqn. 3). Additionally, IRRAS 

measurements were carried out to quantitatively determine surface 

compositions. For this purpose, IR spectra of the mixed SAMs were analyzed 

in the C-H stretching wavenumbers region (gathered in Figures 7 and 9) and, 

the XMUA
surf values calculated by both electrochemical and spectroscopic 

methods (Figure 4). These results are also compared with the theoretical 

curves calculated for different values of ω, the interaction parameter, which 

determines the phase behavior of the SAMs. 12  

The physical interpretation of ω gives three different regimes that can 

be related to the mixing behavior of the two thiolates in the SAM under 

thermodynamic conditions:  

(1) When ω < 0, the interactions between the unlike molecules (hetero-

molecular) predominate over the interaction between the like ones 

(homo-molecular). At ω = 0, an ideal bi-dimensional mixture where the 

components are energetically equivalent are formed.  

(2) When 0 < ω < 2kT, the interactions between the thiolates of the 

same nature are more favorable than those of different nature, thus 

showing complete molecular mixing. At ω = 2kT, a critical point in the 

mixing behavior is obtained.  

(3) At ω > 2kT the mixing of the components is not favored. 
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Figure 4. Plots of the MUA surface concentration versus the ratio of thiols in solution 

(Rsoln= [MUA]sol / [DT]sol where Rsoln
SAM=1 represents the value of Rsoln that yields 

equimolar quantities of thiolates in the SAM) for mixed SAMs built at 15 min (a) and 

18 h (b). Experimental data are determined from: () CV (peak potentials) and () 

IRRAS measurements (–CH3 asymmetric stretching peak); Lines are the theoretical 

representation of eqn. 4 determined for interaction parameters corresponding to: 

() ω = -2 kT; () ω = 0 and () ω = 2 kT.  Black dotted line is a guide for the eyes. 
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The experimental data for XMUA
surf versus Rsoln/Rsoln

SAM=1 for the 

monolayers formed at longer modification time (Figure 4b) are well fitted to 

the theoretical curve with ω = -2kT, indicating the prevalence of the 

interactions MUA-DT over MUA-MUA and DT-DT in the SAM structure. From 

these results it can be hypothesized that the DT molecules must be 

completely diluted in the MUA domains, or viceversa, forming a 

homogeneously mixed layer at the molecular level comprising a single phase 

probably close to the thermodynamic equilibrium. A similar mixing behavior 

has been observed at low XOT
surf in mixed SAMs of MUA/OT formed under 

electrochemical control from alkaline solutions.21 By using STM techniques, 

Pace et al.33 have achieved a subnanometer-resolved patterning of bi-

component domains formed by an alkyl amide derivative and DT and, Chen et 

al.34 have built true molecular-scale uniform SAMs of C14/C8 and C12/C8 

molecules on Au (111) surfaces, as a few examples of homogeneously mixed 

layers at the molecular level.  

However, other type of interactions seems to prevail in the SAMs 

formed at shorter modification time (Figure 4a). In this case, the experimental 

points are mainly localized between the theoretical curves of ω = 0 and ω = 

2kT. This behavior can be interpreted as a different surface distribution where 

the molecules prefer to form nanoscale domains of their own kind, where the 

interaction energy is not sufficient to overcome the entropy of mixing. If the 

short modification time used to build these monolayers is taken into account, 

it can be thought that equilibrium conditions are not still achieved for an ideal 

mixing and most likely, the compositions correspond to kinetically trapped, 

metastable states of small domains of the same kind of molecules.  
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In this sense, Figure 4a shows higher and lower surface MUA content 

deviation for  Rsoln/Rsoln
SAM=1 >1 and Rsoln/Rsoln

SAM=1 <1, respectively, in 

comparison to the SAMs formed at higher immersion time and the theoretical 

representation of eqn.4 with an interaction parameter value of ω=-2kT (Figure 

4b). Such behavior is related to that previously commented for the variation 

of the peak potentials with XMUA
sol in this system (Figure 2). This fact can be 

tentatively interpreted by the balance of the MUA-MUA and DT-DT molecular 

interactions that still runs the system into MUA-enriched or DT-enriched 

segregated domains of like-molecules at high or low XMUA
sol, respectively. 

Otherwise, the closer the system is to the ideal thermodynamic equilibrium 

conditions, the heteromolecular interactions are favored, as expected, and 

the assemblies might evolve to a molecularly homogeneous mixing of the 

components by balancing of the MUA and DT surface content in the DT-

enriched and MUA-enriched domains, respectively. Both scenarios could be 

validated by the similar evolution of the XMUA
surf values shown in Figure 4, as 

determined by two different experimental methods. 

4.3.3. Blocking properties studied by CV and EIS 

The monolayer barrier properties of the mixed SAMs have been checked 

by studying the electron-transfer reactions of the redox probe molecules 

K4Fe(CN)6/K3Fe(CN)6. The ability of SAMs to block the electron transfer 

between the metal surface and redox species in solution is very well-known 

and it is used as a way to evaluate the molecular organization and the 

monolayer quality (Chapter 1 – Section 1.2.9.).19,35 Figure 5 shows the 
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voltammetric response of K4Fe(CN)6/K3Fe(CN)6 for pure and mixed MUA and 

DT monolayers formed at two different modification times.  

Cyclic voltammograms (CVs) recorded in the presence of the SAMs don’t 

show the typical peaked shape for a diffusion-controlled reversible redox 

mechanism, indicating the blocking effect of the redox reaction in the 

modified surfaces. However, a stronger blocking effect is observed for the 

mixed monolayers built at longer times (Figure 5b) accordingly to the much 

lower current density values obtained in this case.  

Electrochemical impedance spectroscopy (EIS) of redox probes is a 

powerful tool to study the interface properties of the electrode modified 

surfaces and it can give complementary information to that supported by the 

cyclic voltammetry experiments. EIS measurements provide an easy way for 

the determination of the kinetic parameters of the electron transfer process 

as well as the detection of the presence of pores and pinholes in the 

monolayer structure. A parallel study of this presented by cyclic voltammetry 

(Figure 5) has been carried out by EIS and the results are plotted in Figure 6. 
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Figure 5. Cyclic voltammograms of 1mM of K4Fe(CN)6/K3Fe(CN)6 in 0.1M KNO3. Scan 

rate: 0.1 V/s. The curves have been recorded for bare and modified electrodes under 

the conditions gathered at different modification times: (a) 15 min, (b) 18 h. 

 

 The analysis of the impedance spectra has been performed by data 

fitting to a Randles equivalent circuit consisting of a parallel combination of 

capacitor represented by C and Faradaic impedance Zf  in series with the 

uncompensated solution resistance Ru (Chapter 1 – Section 1.2.9. and Chapter 

2 -2.4.1.). The magnitude Zf is a combination of charge transfer resistance RCT 

and the Warburg impedance W. For the SAM modified electrodes the 

impedance spectra show only the contribution of the charge transfer 

resistance. By using the relationship between the charge transfer resistance, 



Mixed SAMs of MUA/DT Formed in Lyotropic Medium                           Chapter 4 

 

171 

 

RCT and the apparent electron transfer rate constants, kET
app (Eqn. 5), this 

parameter can be determined for the different SAM compositions.36 

 

2 2CT app

ET

RT
R

n F Ak c
       (5) 

 

 

Figure 6. Nyquist plot of 1mM of K4Fe(CN)6/K3Fe(CN)6 in 0.1M KNO3. The curves have 

been recorded for bare (Inset) and modified electrodes with pure and mixed SAMs of 

MUA and DT at different modification times: (a) 15 min, (b) 18 h. (1) MUA-SAM, 

MUA/DT molar ratio: (2) 0.5/0.5, (3) 0.3/0.7, (4) 0.2/0.8, (5) 0.05/0.95 and (6) DT-

SAM. The solid lines are the fits to the simplified Randles equivalent circuit (Ru[CRct]) 

without the Warburg impedance contribution (mass transfer).  

 

In equation (5), R is the gas constant, T the temperature, F the Faraday 

constant, n the number of electrons, A the area of the electrode, and c the 

concentration of the redox couple. The apparent electron transfer rate 

constants obtained are gathered in Table 1. 
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Table 1. Apparent electron transfer rate constant (kET
app) and capacitance (C) values 

determined for pure and mixed MUA and DT SAMs. 

(a) Solution ratio of MUA/DT. (1) Parameters referred to SAMs formed at 15 min. (2) Parameters 

referred to SAMs formed at 18 h. XMUA is the surface mole fraction of MUA in the mixed 

monolayer as determined from Eqn. 3. The standard deviations for C and kET
app values are 

lower than 8 % in all cases.  

 

In the case of well-ordered structures with low defect densities, an 

exponential decrease of the electron transfer rate constant is usually 

observed 37-39 and, the electron tunneling through the electronic states of the 

SAM control the electron transfer process (Chapter 1 – Section 1.2.9.). The 

tunneling process can be represented as, 

 

nn

etk k e
 

       (6) 

 

where βn is the tunneling constant per carbon, n is number of carbon atoms 

and ko is the apparent rate constant of the clean Au electrode. The coupling 

coefficient β for saturated alkane monolayers has been estimated to be in the 

range of 0.8-1.2 Ǻ-1.40-43 The apparent electron transfer rate constant for the 

redox probe ferro/ferricyanide in the bare Au(111) surfaces is 0.026 cm/s, as 

MUA/DT(a) X MUA
(1) C (1) 

μF·cm-2 

kET
app (1) 

cm/s 
XMUA

(2) C (2) 

μF·cm-2 

kET
app (2) 

cm/s 

1.00/0.00 1.00 3.05 7.15·10-7 1.00 3.02 2.26·10-6 

0.50/0.50 0.76 2.89 1.16·10-6 0.73 2.74 2.14·10-7 

0.30/0.70 0.41 2.81 2.07·10-6 0.60 2.59 2.25·10-7 

0.20/0.80 0.33 2.74 2.79·10-6 0.56 2.59 2.74·10-7 

0.05/0.95 0.15 1.51 3.70·10-6 0.31 2.59 3.57·10-7 

0.00/1.00 0.00 1.86 3.47·10-6 0.00 1.80 3.36·10-6 
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determined from the analysis (Eqn. 5) of the impedance spectrum (Figure 6a 

Inset), which is within the range of reported values.44-47 Using the Eqn. 6 and 

βn=1, ket values for ideally free-defect monolayers of DT and UDT monolayers 

under ET tunneling conditions can been calculated as 1.2·10-6 and 4.3·10-7 

cm/s, respectively. From these values and the kET
app constants determined for 

the mixed monolayers (Table 1), we can conclude that only the mixed SAMs 

obtained at higher modification times act as a highly ordered 2-D organic layer 

that prevents the approach of the redox probe to the metal surface, and 

consequently the electron transfer should take place by a tunneling 

mechanism. 

As it can be expected, the Nyquist plots for the mixed monolayers 

obtained at lower modification time (Figure 6a) show an increase RCT and C 

values with the increase in MUA surface concentration (Table 1). These results 

reflect that from a microscopic perspective, each component of the binary 

mixed SAM contributes almost proportionally to the overall RCT and C values 

in respect to its surface composition,48 which should correspond with SAMs 

composed by domains of the same kind of molecules at the nanometer scale. 

Interestingly, a different behavior is apparently observed for the mixed SAMs 

obtained a longer modification times (Figure 6b), where the impedance curves 

show higher RCT values and, C values don´t significantly change with the 

surface fraction of the components of the binary SAMs. It should be pointed 

out that this fact would be indicative of a different spatial distribution of the 

components into the SAMs lattice and is in agreement with a model consisting 

in a homogeneous distribution of the two different thiol moieties at the 

molecular level. Consequently, a homogeneous arrangement of the carboxyl 
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groups and, therefore, of the negative charge density at the top of these 

mixed layers, would make possible the negligible variations in the capacitance 

and the high RCT values obtained when the MUA surface concentration 

changes (Table 1). 

 

 

Scheme 1. Homogeneously MUA/DT mixed SAMs composed by segregated 

nanodomains (lower depicted figures) and molecularly distributed (upper depicted 

figures) arrangements at different MUA surface compositions, XMUA: (a) 0.25, (b) 0.84, 

(c) 0.23 and (d) 0.8 
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Thus, these features could be explained by considering the spatial 

distribution of MUA and DT molecules in the different mixed thiol SAMs 

studied, together with the probable existence of a population of MUA 

molecules in carboxylate form on the SAM exposed surface. In this sense, the 

nanodomains segregated pattern, previously described for SAMs formed at 

lower modification times, could increase the repulsive interactions between 

neighbors’ carboxylates and induce some kind of defects and disordering in 

the domains, either inside them and/or at their edges/boundaries, eventually 

favoring the increase of the electron transfer rate process (Scheme 1a-b). In 

an opposite way, the intermixed domains of SAMs formed at higher 

modification times should distribute the negative surface charge density of 

carboxylate groups in a 2-D homogeneous arrangement, leading to a long-

range ordered assembly that completely hinders the electron transfer 

reaction (Scheme 1c-d). Then, electron transfer should occur through a 

tunneling mechanism probably due to the much lower number of SAM 

defects and pinholes 49-52 and, to the decay of the interfacial concentration of 

anionic redox species driven by the repulsive interaction with the negatively 

charged terminal carboxylate group on top of the surfaces. 

4.3.4. FT-IRRAS characterization of MUA/DT mixed SAMs 

Pure and mixed MUA / DT SAMs formed by modification times of 15 min 

and 18 h were characterized by infrared spectroscopy (Figures 7-10). IRRA 

spectra of the C-H stretching wavenumbers region were obtained in the range 

of 2800-3000 cm-1. Modes assignments are given in table 2.53-55 
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IRRAS, XPS and STM techniques can be used as reliable methods to 

calculate the relative surface coverage values of mixed SAMs constituents, 

yielding quantitative results that are in good agreement.16 The presence of DT 

molecules in the mixed SAMs is shown in the IRRAS spectra by the appearance 

of the peaks corresponding to the symmetric (r+, 2878 cm-1) and asymmetric 

(ra
-, 2964 cm-1) C-H stretching vibrational modes assigned to the terminal –CH3 

groups. Since, the intensity ratio of both peaks does not significantly vary 

across the composition series in the mixed SAMs formed at the same 

immersion time, the methyl group orientation can be assumed to remain 

almost unaltered in such assemblies. Moreover, it is observed that the peak 

wavenumber values are composition independent. Therefore, the absorption 

coefficients can be considered constant and the integrated absorption of the 

peaks used to determine the relative surface coverage of DT and MUA in the 

SAMs. The results obtained for XMUA
surf (IR spectra in Figures 7 and 9) are 

generally in good agreement with those derived from the VC peak potentials 

values by using eqn. 3 (Figure 3 and Table 1). This fact is also supported by the 

similar trends observed in the evolution of XMUA
surf vs Rsoln/Rsoln

SAM=1 that fit for 

both methods (Figure 4). 

Figure 7 shows that the position and width of peaks assigned to the 

methylene groups in the C-H stretching region change with the surface 

composition in the mixed SAMs formed at low immersion time. At MUA 

surface coverages larger than 0.67, the peaks associated with the symmetric 

and antisymmetric (d+ and d- modes, respectively) of the CH2 groups’ exhibit 

composition independent values of 2849-2850 and 2918-2919 cm-1, 

respectively. It can be noted, based on the position of these peaks, that these 
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spectra correspond to SAMs with densely packed assemblies of alkyl chains, 

mainly in all-trans conformations.56,57   

However, in the mixed films with lower MUA surface coverage (54% 

and 25% of MUA molecules), the CH2 symmetric and antisymmetric peaks 

shifts to higher frequencies and the shape of the antisymmetric bands varies 

markedly, indicating the existence of domains where the alkyl chains are 

somewhat disordered showing a more liquid-like conformational order.56-60  

Moreover, it should be highlighted that the changes in the intensity of 

these peaks have been also attributed to the diminished conformational order 

of the alkyl chains.61 The intensity of these bands depends on the transition 

dipole moments projections of the C-H stretching vibrations along the surface 

normal direction (Table 2) and, consequently, the increase in the intensity and 

broadening of the d+ and d- bands could be explained in terms of different 

orientations of the latter SAMs. Therefore, the alkyl chains on the disordered 

domains should have different configurations that are distinctly different from 

the canted orientations existing when the monolayer possesses a crystalline 

conformational order. This lack of organization may be associated to the 

distribution and charge state of the carboxyl terminal groups. In fact, these 

groups are completely deprotonated in carboxylate form as it is indicated by 

the absence of any band at around 1700 – 1750 cm-1 (-COOH stretching 

vibrations) and the presence of the symmetric stretching modes of 

carboxylate groups at 1420 cm-1 62 (Figure 8). Then, the electrostatic repulsion 

forces between nearest carboxylates molecules in the nanodomains should 

lead to the alkyl chain disordering in these SAMs (Scheme 1a). 
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Figure 7. Infrared spectra of pure and mixed monolayers formed at a modification 

time of 15min from a lyotropic medium containing different mixtures of MUA and DT 

on Au (111) surfaces. The integrated intensity of the methyl stretching mode 

adsorption at 2964 cm-1 (ra
-), only present for the methyl-terminated thiol, was used 

to estimate the fraction of MUA surface coverage. Dashed lines represent the 

wavenumber values for a crystalline-like assembly of an alkanethiolate overlayer. 
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Table 2. Spectral assignments and transition dipole moment directions for C-H 

vibrational modes of alkanethiol SAMs on Au. 

Mode description Abbrevna C-H / cm-1 Direction of Transition 

Dipole Moment 

-CH3   asym (ip) ra
- 2964 ip of CCC, 

perpendicular to C-CH3 bond 

-CH3   asym (op) rb
- 2954 perpendicular to CCC 

backbone plane 

-CH3   sym r+ (FR) 2937 parallel to C-CH3 bond 

-CH3   sym r+ 2878 parallel to C-CH3 bond 

-CH2-  asym d- 2918 perpendicular to CCC 

backbone plane 

-CH2-  sym d+ 2850 ip CCC backbone plane, 

a Abbreviations: asym : asymmetric; sym : symmetric; ip : in plane; op : out of plane; FR : 
Fermi Resonance. 

 

On the other hand, in those SAMs showing a crystalline-like 

arrangement, accordingly to the peaks position of the CH2 stretching modes 

(for instance a SAM with 84% of surface MUA molecules, as included in 

Figures 7 and 8), a vibration band appears at the 1740 cm-1 region that can be 

well fitted with two individual components centered at 1740 and 1713 cm-1. 

Both bands represent C=O stretching modes corresponding to non-hydrogen 

(70 %) and hydrogen bonding (30 %) interactions of the -COOH terminal 

groups, respectively,56 and account approximately for the 53 % of the total 

area that could be ascribed to the different vibrational modes of the surface 

carboxyl groups. In fact, the additional band observed at around 1460 cm-1 
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can be also decomposed in two main peaks at 1470 cm-1 (CH2 scissoring) and 

1442 cm-1 (C-O stretching). We believe that the existence of the protonated 

carboxylic groups prevents the approach of carboxylate molecules diminishing 

the repulsive electrostatic interactions in the domains and, as a consequence, 

the alkyl chains are able to organize themselves in a crystalline-like packing 

(Scheme 1b).63  

 

 

Figure 8. Infrared spectra at the low wavenumbers region of three representative 

mixed monolayers (15min) with different surface ratios of HS(CH2)10COOH and 

HS(CH2)9CH3 on Au (111). 
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 IR spectra in the CH stretching region for pure and mixed monolayer of 

MUA and DT at 18 h of modification time are shown in Figure 9. The peak 

positions for the methylene stretching bands at 2918 cm-1 and 2850 cm-1 

reveals a crystalline conformational order of the alkyl chains that is 

independent of the surface composition. These results suggest the existence 

of fully miscible and crystalline multicomponent arrangements with favorable 

heteromolecular interactions, reached under cuasi-thermodynamic 

equilibrium conditions, and supported by the conclusions explained in the 

former section derived by applying of the Bragg-William approach as well as 

by the trend observed in the EIS results (Scheme 1c-d).  
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Figure 9. IR spectra of pure and mixed monolayers formed at modification times of 

18 h from a lyotropic medium containing mixtures MUA and DT at Au (111) surfaces. 

The integrated intensity of the asymmetric methyl stretching mode adsorption at 

2964 cm-1 (ra
-) was used to determine the fraction of MUA surface coverage. Dashed 

lines represent the wavenumber values for a crystalline-like assembly of an 

alkanethiolate overlayer. 
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Figure 10. Infrared spectra at the low wavenumbers region of two representative 

mixed monolayers (18 h) with different surface ratios of HS(CH2)10COOH and 

HS(CH2)9CH3 on Au (111). 

 

 The low wavenumber region of these spectra (Figure 10) provides more 

insights into the intermolecular environment of the alkyl chains in these 2-D 

films. The stretching C=O band at 1740 cm-1 is observed at low as well as at 

high surface MUA concentration. The band at 1460 cm-1 can be fitted, as in 

the case of the layers formed at low modification time, by two bands at 1440 

(C-O stretching) and 1470 cm-1 (CH2 scissoring), being the contribution of the 
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former in the spectrum of low MUA concentration, only 20 % of the total peak 

area and 28 % of the total MUA in the monolayer. Thus, under conditions 

where only a MUA surface mole fraction of 0.23 is present, hydrogen bonds 

are not preferentially formed and the carboxylic groups coexist with 

carboxylate ones but, as the alkane chains show characteristics signals of a 

highly organized layer, carboxylates must be very well separated and do not 

effectively interact each other (Scheme 1c).  Similarly, in the case of the layer 

containing a MUA surface mole fraction of 0.79, again the C-O stretching band 

ascribed to the carboxylate groups accounts for a 28 % of the total MUA in the 

SAM. This fact seems not to be casual accordingly to a MUA/DT crystalline-like 

arrangement where hetero-molecular interactions of both components are 

balanced to a molecular level, independently of their surface mole 

composition. However, at high MUA surface coverage, the stretching C=O 

band shows two contributions at 1740 and 1710 cm-1, corresponding to 

carboxylic acid terminal groups interacting by non-hydrogen (70%) and 

hydrogen bonding (30%), respectively. In such a case, a small amount of 

hydrogen bonds can be detected between MUA molecules (around 20 %), as 

it was also previously described for the crystalline-like SAM formed at low 

modification time (Scheme 1d).  

 Therefore, it can be concluded that a homogenous distribution of the 

carboxylic/carboxylate groups must play a major role in the crystallinity 

observed for the alkane chains in the SAMs organized at large modification 

time. Earlier results reported by Chambers 11 et. al. on ferrocene terminated 

and amide-containing alkanethiol mixed monolayers, lead to an homogeneous 

distribution of the thiolates driven by buried interchain hydrogen-bonding 
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interactions.  More recently, Pace et. al. reported the first example of the 

formation of SAMs composed by completely miscible bicomponent domains 

of UDT and ω-substituted alkanethiol derivatives chemisorbed on a metallic 

surface.33 The authors argued that the assembly was affected by the relative 

concentration of both compounds in solution and by their molecular 

structure. The kinetic control during the formation of mixed crystalline 

domains at the subnanometer scale was demonstrated for a specific solution 

molar ratio 1:9 of a pyridine-amide ω-substituted alkanethiol and UDT, 

respectively. They concluded that the mixed SAM was trapped into a local 

thermodynamic minimum when the solution concentration of both molecules 

and the incubation times were varied. Finally, the authors also remarked the 

still pending goal to achieve the formation of crystalline mixed SAMs under 

thermodynamic control by stabilization of their hetero-molecular interactions. 

From since to now, to the best of our knowledge, this goal had not been 

achieved for mixed SAMs in a wide range of surface ratio compositions under 

quasi-equilibrium thermodynamic assembly conditions.  

4.4. Conclusions 

- The structure of mixed SAMs of MUA/DT formed at low and high 

modification times from a lyotropic medium have been characterized 

by CV, EIS and FT-IRRAS. 

- The mixed layers exhibit well-ordered structures, composed by 

molecules in an up-right configuration with favored adsorption of the 

polar component (-COOH) from the micelles onto Au (111) surfaces.  
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- The reductive desorption of SAMs shows one CV single peak, which is 

typical of macroscopically homogeneous films.  

 

- CV, EIS and IRRAS have demonstrated a clear improvement in the 

mixing properties of these assemblies to the molecular level with the 

increase of time, which is attributed to an increment in the MUA/DT 

hetero-intermolecular interactions that probably occurs at quasi-

equilibrium thermodynamic conditions.  

 

- The degree of the miscibility of both components has been addressed 

varying the modification time where their spatial distribution can be 

controlled by creating two surface patterns:  

 

(1) The first one consists in small nanodomains of like molecules 

formed probably by kinetically trapped metastable compositions.  

(2) The second one is a molecularly mixed monolayer favored by 

interactions between unlike molecules.  

 

- Depending on the applications, both type of SAM-based patterns are 

attractive for electron/charge transport across molecular and 

nanoscale junctions (e.g. molecular electronics), as biomimetic 

surfaces for effective electrostatic immobilization of charged 

biomolecules, and to create specific molecular recognition or receptor 

sites (e.g. design of biomaterials and biocompatible nanomaterials, 

biosensing, etc.).  
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4.5. Appendix 

A. Bragg-Williams thermodynamic approach for binary SAMs 

Bragg-William theory describes phase diagrams thermodynamics on 

binary alloys where their composition is explained by the nature of their 

binding forces. Such idea can be extrapolated to binary SAMs formed from 

solutions of alkanethiols with different alkyl chain length (Lg = longer and Sh = 

shorter chain) (1). 12 In our case, Lg and Sh refers to MUA and DT molecules 

forming SAMs with different terminal groups and thus, interaction energies. 

The following approximations are assumed:  

(I) Thiols in solution are dilute and not interacting  

(II) Nearest neighbours interactions are only considered  

(III) Internal structure of adsorbates is the same in solution as in the 

monolayer. 

 

MUAsoln  +  DTsoln                                  MUASAM + DTSAM  (A1)      

 

The chemical potential of a thiol in solution and within the monolayer can be 

expressed by equations (A2) and (A3): 

 

μi
soln=μi

† + kT lnYi        (A2) 

μi
SAM = μ*+ kT lnXi+ ϖ(1-Xi)

2
     (A3) 

where 𝑌𝑖 is the mole fraction of the thiol in solution and 𝜇𝑖
† is the chemical 

potential of the thiol at infinite dilution,  𝜇∗ is the chemical potential of the 
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thiolate in the single component monolayer, 𝑋𝑖 is the mole fraction of the 

thiol in the binary arrays ( Xi + Xj=1 ,  i = MUA and j = DT ), and 𝜛  is the 

interaction parameter describing intermolecular interactions within the 2-D 

assembly. 

Then, the interaction parameter is obtained from the difference in the 

internal energy between the two-component mixed (Eqn. A4) and the two-

separate pure alkanethiolate SAMs (Eqn. A5 - reference state), and is defined 

by the equation A6:  

 

Emixed
SAM  = [ωMUA-MUAN

MUA-MUA
SAM  + ωDT-DTN

DT-DT
SAM + ωMUA-DTN

MUA-DT
SAM ]  (A4) 

Eref
SAM = 

Z

2
[ ωMUA-MUANMUA

SAM +  ωDT-DTNDT
SAM]   (A5) 

ϖ = 
Z

2
[2ωMUA-DT - ωMUA-MUA- ωDT-DT]   (A6) 

ωij  is the interaction energy between the molecules i and j, Nij
SAM is the 

number of nearest-neighbour interactions of a specific type within the SAM, 

Ni
SAM is the number of molecules of the kind  𝑖 in the monolayer and 𝑍 is the 

number of nearest neighbours.  

The aim of this model is obtaining a thermodynamic relationship 

between the surface mole fraction of a component i, XMUA, and the mole 

fraction ratio in solution of both components, Rsoln =
 YMUA

YDT
. To attain this 

objective, the change in the Gibbs free energy for the formation of a binary 

SAM is determined (  Δf =  χMUA(μMUA
SAM -μMUA

soln ) + χDT(μDT
SAM-μDT

soln) , and the 

definitions of the chemical potentials for thiols in solution and thiolates in the 
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SAM (Eqns. A2 and A3) inserted in this expression. Then, it can be deduced 

the free energy of mixing of both components in the monolayer: 

 

∆f = XDT(μDT
* -μDT

† ) - XDT kT lnYDT - △fmixing
SAM    (A7) 

 

where the free energy of mixing of the individual molecules in the SAM is: 

 

 △fmixing
SAM  = kT(XMUAlnXMUA+ XDTlnXDT) + ϖ XMUAXDT  (A8) 

 

The first term in equation A8 represents the entropy of mixing and the second 

term is the internal energy of mixing ( enthalpy of mixing). 

In the case of mixing of both components in the SAM, Eqn. A7 can be 

minimize respect to XMUA, (
d(Δf)

 dχMUA

 = 0), and after rearrangement the following 

equation (A9) remains relating the mole fraction of XMUA in the mixed SAMs 

and the ratio of thiols in solution Rsoln = 
YMUA

YDT
  : 

 

lnRsoln= ln (
XMUA

1-XMUA
) + 

ϖ

kT
(1-2XMUA) + 

Δ(Δμ)

kT
       (A9) 

 

The two unknown parameters in Eqn. A9 are ∆(∆μ) and ϖ, as Rsoln can be 

controlled experimentally and XMUA can be determined experimentally. 

The term ∆(∆μ)/kT (i.e. shift of XMUA from 0.5 when Rsoln = 1) is related to the 

preference of one component over the other in the SAM relative to the 

solution. It can be observed from Eqn. A9 that when ∆(∆u)> 0 and XMUA= 0.5 
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the values of Rsoln will be larger than 1 implying that the driving force for 

having DT molecule on the surface relative to having it in solution is greater 

than that for MUA. When ∆(∆u) <0, there is a shift of Rsoln values to lower 

values than 1 and MUA is enriched on the surface. 
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5. Patterning Influence in Surface pKa of MUA/DT 

Mixed SAMs 

5.1. Introduction 

In the previous chapter, it has been demonstrated that the surface 

coverage of MUA and DT can be controlled in binary SAMs formed on Au(111) 

surfaces from a micellar medium by changing the molar ratio of both 

molecules.1 Even though homogenous mixing of the components is achieved, 

different mixing patterns were proposed to form upon variation of the 

modification time. Thus, the formation of small nanodomains of like-

molecules (MUA-MUA and DT-DT) seems to be favoured at lower times (i.e. 

non-thermodynamic conditions) as compared to monolayers composed of 

unlike-components (MUA-DT) molecularly mixed that seems to prevail at 

higher ones (i.e. near to thermodynamic conditions). 
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Control in the spatial confinement of individual functional molecules and 

nano-objets on surfaces (i.e. surface nanopatterning) is important for a wide 

variety of applications.2 In particular, the design of devices based on 

molecular electronics and junctions is actually of special relevance, where 

surface chemistry tailored with SAMs and the presence of structural defects in 

the molecular constituents matter their electrical and thermal performance.3-5 

Thus, the formation of molecularly mixed patterns of components with a high 

structural order in a wide range of surface compositions, as argued to be the 

case for MUA-DT SAMs formed from micellar media under equilibrium 

conditions, might meet these challenging requirements. Additionally, this 

provides the possibility to explore the performance of organic electronic 

devices according to well-defined and tuneable gradients of rectification, 

where local molecular environment affects the interfacial transport physics.4, 5  

These multicomponent SAM surfaces may also be biocompatible and 

stimuli responsive (e.g. electrical, chemical/biochemical, optical, temperature, 

etc.),6, 7 where their composition, organization, thickness, conformation and 

mixing of the components play a crucial role in tailoring such surface 

properties.8 Then, surface gradients of these SAMs can be tuned between 

“on-off” states that modulate, for example, the activity and function of 

biomolecules, protein immobilization and cell adhesion (e.g. pH responsive 

biomimetic SAMs containing acid-base ionisable groups diluted into a 

hydrophobic environment).6, 7 This is of particular importance to create 

molecular recognition or receptor sites for controlling the specific adsorption 

of different kind of macromolecules, such as proteins, in prospect of getting 
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insight into the design of biocompatible surfaces and nanomaterials to 

develop new biosensing and biomedical applications.9-18 

At present, mixed SAMs offers the best option for controlling the density 

and spatial distribution of biomolecules on surfaces while preserving their 

biological activity in many cases. In the particular case of redox proteins either 

covalently or non-covalently bound to these SAMs, fundamental 

understanding of electron transfer (ET) processes and control of 

electrochemical reactions at surfaces can be gained by mimicking the 

biological milieu on an electrode.10, 19-21 Proteins can be non-covalently 

immobilized on surfaces by the balance of electrostatic and hydrophobic 

interactions between its constituent amino-acid residues and the components 

of the mixed SAMs. Specifically, ω-alkanethiol compounds containing 

ionizable carboxyl and/or amino end groups have been employed to anchor 

charged proteins on SAMs as a manner to study the influence of the 

SAM/electrolyte interface on the redox protein behavior. 22-25 

Several factors can affect the interfacial properties of SAMs, and thus, the 

interaction with biomolecules such as, the polarity of the surface, hydrogen 

bonding effects, interfacial electrostatic fields, and the local structure of the 

solvent among others.26 In this sense, the knowledge of the acid/base 

properties of these functionalized surface-confined molecules becomes an 

important parameter to develop complex molecular assemblies.  

Contact angle titration,27,28 quartz crystal microbalance,28,29 

amperometry,30 voltammetry,31 laser-induced temperature,32  

electrochemical titration,33-42 double-layer capacitance,43 and chemical force 

microscopy measurements 44-46 have been used to determine the surface pKa 
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of carboxyl- and amine-terminated self-assembled monolayers. Despite the 

overall changes in the ionization of surface-confined carboxyl groups are 

broader than what is seen in aqueous environments, the pKa values measured 

through different techniques give a wide range of values that fluctuates 

between 5.2-10. For example, the surface pKa of MUA was found to be 

5.7±0.2 by Indirect Laser-Induced Temperature Jump (ILIT) 32 and 10.3 by 

double layer-capacitance measurements.43 In some cases, such a different 

behavior of the acid/base properties of the SAM might be related to different 

experimental details used to carry out the experiments. 

Electrochemical impedance spectroscopy (EIS) 23, 34, 37, 40, 47 and FTIR 41,42, 

48,49  spectroscopies have been also applied to study the acid/base chemistry 

of ω-carboxyl monolayers. The pKa values for MUA SAMs determined by EIS 

and FT-IRRAS measurements are usually ranging between 5.3-8. The reported 

apparent pKa (pK1/2
app) values are 1-4 pH units more alkaline than those for the 

bulk alkanoic acid pKa value in 0.1 M NaClO4 aqueous solution.32 Several 

factors can cause an apparent increase on the pKa:  

 
(I) Repulsive interactions between neighboring ionized groups. Their effect 

on the interfacial protonation-deprotonation process can be predicted by 

the double layer continuous-charge 1-pKa model (Appendix A).50 

(II) Hydrogen bonding between terminal groups 

(III)  Lowering of the dielectric constant, εS, in the inner part of the double 

layer (Scheme 1-Appendix A), which affects ion solvation. 

(IV)  Applying a surface potential, E, more positive than the potential of zero 

charge, Epzc, of the layer.  
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 Therefore, the ionization onset for –COOH moieties on the surface is 

usually higher and their titration curve extends over several pH units. Such 

spreading of the titration curves has been invoked to be due to electrostatic 

interactions between neighboring ionized groups. In a typical 0.1 M 

monovalent electrolyte solution the distance between ions of the same 

charge is around 2-3 nm, whereas in a SAM on Au(111) is about 0.5 nm. 

Moreover, electrostatic interactions are more efficiently reduced by Coulomb 

screening in solution where Debye screening lengths are around 1 nm for a 

1:1 salt at 0.1 M concentration. For that reason, interactions tend to make the 

ionization of the surface –COOH groups more difficult. This effect increases 

with the fraction of ionized –COO-, θ. Therefore, the proton concentration 

near the surface (Helmholtz plane acid dissociation-PAD. Appendix A) is larger 

than in the bulk solution according to Boltzmann statistics distribution. As a 

result, because of the –COOH moieties suffer restricted access to the outer 

space and their ionization is hindered then, the reduced solvation of ionized –

COO- surface groups is responsible for the displacement of the intrinsic pK1/2
app 

value to positive values of pH, and its spreading before complete ionization. 

Then pK1/2
app shifts and titration curves broadening could be explained by the 1-

pKa model assuming an increment of the molecular interaction parameter, βE̅ 

(Appendix A). 

However, a shift of several pH units of the pK1/2
app compared to the solution 

pKa cannot be easily accounted only by repulsive interactions, and there must 

be considered aside other factors responsible for explaining such stabilizing 

behavior of the uncharged state (e.g. hydrogen bonding, 43, 51, 52 ion 
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solvation/polarity 31, 42, 43, 49, 52-54 or potential effects 34, 42). In the case of 

electrochemical techniques where the SAM titration curves are obtained by 

applying potential to the surface (e.g. EIS measurements at the half wave 

potential, E1/2, of the Fe(CN)6
3-/4- redox reaction), this can have an influence on 

the interfacial surface charge and, consequently, in the pK1/2
app determined. 34, 42 

In this sense, Sanders et al. showed that pK1/2
app  values of MUA-SAMs 

determined by EIS using an anionic (Fe(CN6)3-/4-) or cationic (Ru(NH3)6
3+/2+) 

redox probe were 5.5 and 7.5, respectively.34 This result was taking as 

characteristic of the influence that the applied potential has on interfacial pH 

and its impact on the ionization of the monolayer. The Fe(CN6)3-/4- and 

Ru(NH3)6
3+/2+ standard potentials, E1/2, applied to the substrate to carry out 

the EIS experiments are positive and negative, respectively, in respect to the 

Epzc value of MUA-SAMs (around -0.13 V vs Ag/AgCl reference). In the case of 

the anionic redox probe, as Eapplied = +0.2 V > Epzc, anionic species of the 

electrolyte should be in greater concentration in the interface, and then, the 

interfacial pH should be more basic than the solution value. As a 

consequence, ionization of –COOH is favored (i.e. intrinsic pKa is lowered) and 

the subsequent electrostatic repulsion between –COO- groups and the anionic 

probe increases the charge resistance values, RCT. Therefore, the actual pKa of 

the MUA-SAM would lie somewhere between the pK1/2
app values determined 

from both redox probes ( 6). 

 The effect of surface coverage in the pK1/2
app values and broadening of the 

transition region of the titration curves of –COOH/-CH3 terminated binary 

SAMs has been analyzed by several research groups. Although there are still 
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some discrepancies in the results reported in literature, the following 

behaviors have been described: 

(I) Mixed SAMs of short ω-terminated alkanethiols (e.g. SH-(CH2)6-COOH and 

SH-(CH2)n-CH3 with n=4-6) are speculated to have high pK1/2
app  values 

because of the greater degree of disorder in these SAMs compared to 

longer ones (n>10).27 The argued reason is that –COOH groups would be 

buried in the monolayers while –CH3 groups were more exposed, which 

was interpreted as a predominant contribution of microenvironment 

effects (ion solvation/dielectric constant factors) compared to 

electrostatic ones in the surface pKa shift. In the case of mixed SAMs of 

longer alkyl chain (e.g. MUA, n=10), it was observed that increasing the 

chain length of diluent –CH3 alkanethiols (e.g. n = 9-12) raised the surface 

pKa, reflecting a progressively less polar environment surrounding the –

COOH sites. This would also be in agreement with a lower dielectric 

constant that would disfavor the formation and solvation of –COO-.27  

(II) Kakiuchi et al.43 have argued that SH-(CH2)6-COOH (MHA) SAM leads to a 

greater magnitude of the pKa (8.5) shift than that predicted by the 

electrostatic mean-field model, and a considerable contribution of 

hydrogen bonding and hydrophobic effects might be present in the SAM 

vicinity. However, the dilution of the –COOH groups by SH-(CH2)2-CH3 (PT) 

molecules decreases the pKa value in 0.5 pH units. In a homogenously 

mixed SAM, this fact would be consistent with the predominant effect of 

the lowering of the electrostatic interactions compared to the lowering of 

εS by the insertion of –CH3 while decreasing the number of -COOH groups. 

However, this seems not to reconcile with the results obtained by Kim et 
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al. for SH-(CH2)2-COOH (MPA) and ethanethiol (ET) mixed SAMs where 

surface pKa of sparsely adsorbed MPA molecules is more sensitive to the 

increase of hydrophobicity than the reduction of intermolecular 

interactions, such as hydrogen bonding or repulsive interactions.  

 As it will be commented in the results and discussion section of this 

chapter, SAM ordering and backbone length of the –COOH and –CH3 

diluent molecules may play a role to reconcile both results. In this sense, 

it is probable that –COOH/-CH3 mixed SAMs of similar chain lengths 

and/or some degree of disorder in their structure would reflect a 

predominant effect of the hydrophobic environment in its interface 

vicinity while diluting COOH sites. On the other hand, well-ordered and 

homogenously mixed SAMs composed of longer –COOH and shorter –CH3 

alkanethiol molecules (i.e. –CH3 groups embedded underneath the –COOH 

moieties) may reflect a predominant effect of the lowering of in-plane 

repulsive interactions between –COOH groups as compared to hydrogen 

bonding or hydrophobicity effects. In fact, it has been inferred that 

ionization of –COOH groups appears to be independent of the 

surrounding –CH3 groups even when the alkyl chain length is the same or 

shorter only by 2 and 4 methylene units than that of the acidic groups. 

This would be contradictory for a homogeneous distribution of –COOH 

and –CH3 groups with all of them being accessible by water molecules 

(hard sphere diameter of water is 2.5 Å), and where –COO- solvation 

should be still affected by the hydrophobic environment created by –CH3 

groups closely placed underneath. However, -COOH groups could be 

homogeneously rearranged with its upper part lying on the surrounding –
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CH3 terminations, hence minimizing hydrophobic and promoting 

electrostatic interactions. 49, 55 

(III)  Surface patterning of mixed SAMs has been also demonstrated to play a 

role in the surface pK1/2 values determined as a function of –COOH 

surface coverage. For example, using patterned MUA and dodecanethiol 

(DDT) SAMs by contact printing, with at least 1m of spatial resolution 

between MUA and DDT patches, it was found that the pK1/2 obtained 

from chemical AFM titration curves was virtually identical for a pure 

unpatterned -COOH surface and patterned –COOH regions.54 The same 

experiment was carried out by contact angle technique. In this case, the 

titration curves of the patterned surface revealed the pK1/2 value to be 5 

pH units higher than that of the force titration result, and strongly 

correlated to the COOH surface coverage percentage. 54 This was 

assumed to reflect the average property of a chemically inhomogeneous 

surface.  

Aureau et al.49 carried out titration curves of well-defined mixed 

carboxyl/methyl-terminated SAMs, with the same number of methylene 

units (C10), grafted on Si(111) by quantitative analysis of calibrated FT-

IRRAS spectra. They also observed that the comparison of calculated with 

experimental titration curves suggests “microscopic” segregation of –

COOH and –CH3 domains by considering an acid-base equilibrium mainly 

determined by electrostatic interactions. In this case, the –COOH groups 

in the mixed SAMs behave like in a pure acid layer. Thus, the local 

environment was found to be independent of –COOH surface coverage 

(from 31-100 %) as all the titration curves showed the same pK1/2 and 
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spreading behavior. Contrarily, if a homogeneous behavior had been 

found accordingly to electrostatic interactions effects, then, a decrease of 

the pK1/2 value and of the spreading of the titration curves (i.e. lower 

molecular interactions and βE̅ parameter) should have been progressively 

manifested while diminishing –COOH surface coverage. 

 

 In this sense, this chapter aims to the systematic study of the acid/base 

surface properties of MUA and DT mixed SAMs formed from lyotropic 

medium under different experimental conditions (See Chapter 4). Titration 

curves will be obtained by EIS and FT-IRRAS measurements, and the results 

analyzed and commented in the framework exposed above. This will allow to 

get insight into the possible explanation of different acid/base surface 

behaviors for these 2D-arrays that might be related to the structural 

organization, surface coverage or spatial distribution (e.g. different 

nanopatterns) of the –COOH surface groups.  

5.2. Materials and Methods 

Chemical reagents. MUA, DT, Triton X-100, K4Fe(CN)6, K3Fe(CN)6 and 

semiconductor grade purity KOH was purchased from Aldrich-Sigma (purity ≥ 

99%). HCl, KNO3, KCl and H3PO4 reagents were from Merck analytical grade. 

All solutions were prepared with deionized ultrapure water.     

 

Methods. A conventional three electrode cell comprising a platinum coil as 

the counter electrode, a 50 mM KCl calomel electrode as the reference 
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electrode and an Au(111) single crystal as the working electrode were used. 

The polyfaceted and Au(111) surfaces were cleaned and modified with MUA 

and/or DT as indicated in the protocols described in the Chapter 2 (Sections 

2.3.1. and 2.3.2.). The adsorption times assayed in lyotropic liquid mixtures 

were 15 min and 18 hours. Surface compositions of the mixed SAMs were 

determined as described in the Chapter 4 (Section 4.3).1 

In the pH titration experiments, samples were immersed either in 5 mM HCl 

or KOH aqueous solutions at the adjusted pH, and allowed to equilibrate 

during 20 minutes. Then, if necessary, the modified substrates were dried 

with nitrogen for further characterization by FT-IRRAS (i.e. non-reactive 

spreading protocol).27 Similarly, samples were transferred to the 

electrochemical cell containing 1 mM K4Fe(CN)6 and K3Fe(CN)6 in 0.1 M 

phosphate buffered solutions at the corresponding pH, and equilibrated 

during 20 min. before the EIS measurements were recorded. Titrations were 

performed from alkaline to acidic direction, and vice versa, by changing the 

solution pH upon addition of KOH or HCl. Two or three freshly prepared 

samples for each SAM surface composition were titrated either by EIS or FT-

IRRAS methodologies.  

Electrochemical characterization was carried out accordingly to the 

specifications and working conditions included, unless otherwise stated, in the 

Chapter 2 (Section 2.4.1.). Characterization of the samples was also performed 

by FT-IRRAS as previously indicated (Chapter 2 – Section 2.4.2.1.). 

Electrochemical and spectroscopic data were further analyzed and processed 

(Chapter 2 - Sections 2.4.1.2 and 2.5.). In the particular case of FT-IRRAS 

analysis, the relative surface coverage of –COOH (1-θ) and –COO- (θ) was 
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determined from the integrated area of the νC=O vibrational bands 

corresponding to the stretching modes characteristic of carboxylic (1700-1750 

cm-1) and carboxylate (1400-1445 cm-1) groups. Similarly, RCT values at acidic 

and alkaline pH were considered as representative of –COOH and –COO- 

covered surfaces, and their changes related to their surface coverage and 

acid-base interfacial properties (Appendix A). 

 

5.3. Results and Discussion 

5.3.1. EIS titration of pure and mixed SAMs of MUA and DT 

 
As already described, the ability of SAMs to block the electron transfer 

(ET) of charged redox species in solution is a convenient way to evaluate the 

quality of a monolayer and its interfacial properties (Chapter 1 – Section 1.2.9. 

Chapter 4 – Section 4.3.3). Figure 1 shows the EIS response (Nyquist plots) of 

the ET of Fe(CN)6
3-/4- on Au surfaces modified with pure and mixed MUA/DT 

SAMs, at different modification times (15 minutes and 18 h) and surface 

compositions, as a function of the solution pH.  
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Figure 1. Nyquist plots as a function of pH of SAMs formed by different MUA:DT 
surface molar ratios at 15 min:  a) 1.00/0.00 b) 0.41/0.59 c) 0.15/0.85, and 18h: d) 
1.00/0.00 e) 0.60/0.40 f) 0.30/0.70  from a lyotropic medium. E1/2 = 0.17 V vs SCE. 
K4Fe(CN)6/K3Fe(CN)6 in 0.1 M KNO3. The solid lines are the fits to the simplified 
Randles equivalent circuit (Ru[CRct]) without considering mass transfer contribution. 
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It is observed from the Nyquist plots (-Zim vs Zre representation) that the 

diameter of the semicircle gets larger while increasing the solution pH, 

independently of the modification time and surface composition of the SAMs. 

This is directly related to an increase of the charge transfer resistance values, 

RCT, due to the influence that SAMs have over the kinetics of the redox 

reaction. This clearly indicates that the apparent heterogeneous rate 

constant, kET
app, of the ET interfacial reaction of the Fe(CN)6

3-/4- must be 

altered by the solution pH in response to the acid-base reaction of the 

ionisable –COOH groups at the SAMs/electrolyte interface.34, 37, 40, 56 Hence, 

the higher the content of deprotonated –COO- groups is at the surface upon 

increasing pH the lower is the ET rate of the process. The main reason is that 

the negatively charged interface prevents the electroactive anions of the 

redox probe from effectively approaching the surface due to electrostatic 

repulsion, which in turns causes the depletion of the Fe(CN)6
3-/4- surface 

concentration. As a result, at high pHs the ET response is further hindered 

which is manifested as an improvement of the blocking behaviour of the SAM 

interface. In brief, the charge density of the monolayer interface directly 

impinges on the experimentally observed RCT values (Appendix A - Eqns. 

A7/A8).47  

 

Similarly, the interfacial capacitance (Cdl) must be influenced by the 

dielectric properties of the SAM and its ability to limit the distance of closest 

approach of the redox probe as a function of the solution pH. Therefore, it is 

reasonable to assume that observed changes in Cdl (Cdl  Cm
SAM) would reflect 
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changes in surface composition of the mixed SAMs and also in the degree of 

dissociation of the ω–carboxylic groups.31, 43, 57, 58 

In addition, it is also worth noting that RCT values increased by a factor 

of ≈ 2 for the pure and mixed SAMs built at the larger modification time 

(Figure 1d-f) compared to the lower one (Figure 1a-c). As commented in the 

previous chapter, this is interpreted as a consequence of the improvement in 

the ET blocking properties of almost defect-free SAM structures formed near-

to-equilibrium conditions. Moreover, the almost molecular homogeneous 

intermixing of MUA and DT domains might give rise to a more effective 

repulsive electrostatic interaction between the negatively charged 

carboxylate groups and the Fe(CN)6
-3/-4 anions, than the segregated 

nanodomains of MUA and DT molecules. Consequently, a more homogeneous 

arrangement of the negatively charged carboxyl groups and, therefore, of the 

distribution of the interfacial electrical fields at the top of the mixed SAMs 

would be responsible for such behavior. 

The analysis of the impedance spectra has been performed by data 

fitting to a simplified Randles equivalent circuit consisting of a parallel 

combination of a capacitor, represented by C, and Faradaic impedance, RCT, in 

series with the uncompensated solution resistance Ru (Chapter 1 – Section 

1.2.9. and Chapter 2 – Section 2.4.1.). The C and RCT values determined for the 

mixed SAMs are shown as a function of the solution pH in the Figures 2 and 3.  

 
Figure 2 shows that interfacial capacitance, C, mainly varies with the 

surface composition of MUA and DT, while changes in C with pH are barely 

observable for pure MUA and MUA/DT mixed SAMs. The latter effect has 
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been already reported by Kakiuchi et al.43, where capacitance titration curves 

of ionisable SAMs were only applicable to monolayers with shorter chain 

lengths (n < 10).  

 

Figure 2. Representation of Capacitance values vs pH for pure and mixed monolayers 

of MUA and DT formed from a lyotropic environment at a) 15min and b) 18h. χMUA
surf 

determined from the RD peak potentials (Eqn. (3) in Chapter 4 – Section 4.3.1) are 

roughly similar to those obtained from Eqn. 2. 

(a) 

(b) 
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Then, assuming that there are not significant contributions from ionized 

groups at the outer layer of the SAMs to the measured capacitance with pH, C 

could be averaged (Figure 2 – red and black lines) with their value only related 

to the surface composition changes of both components. C would be 

composed of two capacitances in series: Cm
SAM (monolayer) and Cdl (double 

layer). Cm
SAM of long chain alkanethiol SAMs is in general more than an order 

of magnitude smaller than Cdl in electrolytes of 0.1 M concentration.59 

Therefore, the interfacial capacitance (C-1 = Cm
-1 + Cdl

-1), can be assumed to be 

essentially that of the monolayer (C  Cm
SAM). From a macroscopic 

perspective, the total capacitance, C, of the binary mixed SAMs will consist of 

the sum of capacitances Cm
MUA and Cm

DT, representing the values for a pure 

SAM of each component, weighted by their mole surface fractions:57  

 

C = Cm
MUA·χMUA

surf  + Cm
DT·χDT

surf = Cm
MUA·χMUA

surf +Cm
DT·(1-χMUA

surf ) (1) 

χMUA
surf  =

C‐Cm
DT

Cm
MUA‐Cm

DT                                                                   (2) 

 

The surface composition of mixed SAMs can be calculated by using eqn. (2). 

The values obtained (χMUA
surf ) are in reasonable agreement with those obtained 

from the CV method, which is based on the peak potential value of the SAM 

reductive desorption (Chapter 4 – Section 4.3.1.), and that are included in the 

Figures 2 and 3. The underlying limitations of this indirect method are similar 

to others and, in this particular case, to the assumption that the “effective 

thickness” is equivalent to the dielectric thickness and remains constant with 
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changes in the mixed SAM composition. Additionally, the low capacitance 

values would indicate the presence of well-organized and compact SAMs. 

These kinds of SAMs behave as an ideal dielectric layer that can be analyzed 

by a simple double layer capacitor model:  

 

C =
A

d
εo·εm                                                                      (3) 

where C is the SAM capacitance, d the layer thickness, εo the permittivity of 

free space, and εm the relative permittivity of the layer.  

Then, the relative permittivity determined for the pure SAM should be 

taken as an average of the film quality. Assuming, that the SAMs are formed 

by well-packed molecules (either MUA or DT) in an all-trans configuration for 

the hydrocarbon chains with a tilt angle of 30°, the thickness can be 

determined by using the equation d = 1.3·10-10·n·cosθ, where n is the number 

of carbons in the chain and θ the tilt angle of 30° (d=12.5 and 11.2 Å for MUA 

and DT, respectively).60 Then, by using eqn. (3), the εm values calculated are 

1.8-2.0 and 3.4-3.6 for pure MUA and DT SAMs formed at 15 min. and 18 h of 

modification time, respectively. The value of εm for DT agrees with those 

reported for the dielectric constant of polyethylene and well-ordered 

alkanethiol SAMs (e.g. εm=2-2.3). 61-63 Similarly, the values of εm for MUA are 

consistent with the higher polar character of well-packed ω-terminated SAMs 

(e.g. εm = 3, 4 and 3.5-6.6 for –OH, –SH and –COOH as terminal groups, 

respectively).43, 63-65 These results confirm that these SAMs behave as a 

dielectric medium of approximately the expected thickness, and in turn they 
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can be used as a valid method to determine the surface molar composition of 

their components. 

Figure 3 shows that RCT changes with pH are clearly discernable for each 

SAM in comparison to what happens to interfacial capacitance. Therefore, RCT 

titration curves reflects the change in the degree of the dissociation of the –

COOH groups in the pure MUA and mixed SAMs. Under acidic conditions, the 

RCT remains constant, which is characteristic of SAMs with interfacial charge 

densities that keep pH-independent because the –COOH terminal groups are 

fully protonated and uncharged. Under very basic conditions, the RCT 

increases to almost attain a limiting value that is greater than that found at 

acidic pHs. These larger values for RCT are taking as representative of SAMs 

almost fully deprotonated with high charge densities due to the dissociation 

of –COOH into –COO- groups. At intermediate pH values, there is a transition 

between low to high RCT values, which extends over several pH units while 

increasing the degree of dissociation of the ionizable groups, θ. Such 

spreading of the titration curve is due to electrostatic interactions between 

neighboring charged groups (i.e. higher spreading relates to a larger βE̅ 

interaction parameter – Appendix A). The pH at the steepest slope of the 

curves may be taken as the apparent surface pKa value of the SAM (pK1/2). All 

EIS titration curves showed a single transition, pK1/2, for the acid-base 

equilibrium reaction at the SAM interface. 
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Figure 3. Titration curves obtained by plotting the RCT values obtained from EIS data 

fitted by a simplified Randles equivalent circuit as a function of the solution pH. 

Fe(CN)6
-3/-4 was used as redox probe and mixed monolayers of MUA and DT formed 

at a) 15min and b) 18h from a lyotropic medium with different surface compositions 

(Determined from their RD peak potentials: Eqn. (3) in Chapter 4 – Section 4.3.1.). 

 

(a) 

(b) 
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Under these experimental conditions, the apparent pK1/2 values are 7.7 

and 8.3 for the MUA layers formed at low and high modification times, 

respectively. This is about 3.5 units higher than the pK values of alkanoic acids 

in solution. As previously commented, such increase in the apparent pK1/2 of 

the MUA SAMs is greater than that predicted by the electrostatic mean-field 

model, and an additional contribution of hydrogen bonding, ion solvation and 

hydrophobic effects must be present in the vicinity of the SAM PAD layer 

(Introduction and Appendix A).  

Both pK1/2 values are very similar to one of the two pKa values 

determined for MUA SAMs deposited electrochemically from an alkaline 

medium (pK1/2
a = 4.9 and pK1/2

b = 8.1), as well as the spreading of the titration 

curves is also quite similar between them (Chapter 3). However, the pK1/2 

values are greater and the spreading of the titration curves narrower 

compared to that of the MUA SAMs formed from ethanol (pK1/2 = 5.7 – 

Chapter 3). pKa values reported in the literature for -COOH terminated SAMs 

formed from ethanol, and determined from CV and EIS titration curves using 

Fe(CN)6
3-/4- as redox probe, ranged between 5.3-6.23, 33, 34, 37, 40, 47 This is in 

good agreement with the results reported here.  

FTIRRAS results confirmed that MUA SAMs formed either from a 

micellar medium or under potential control were better organized into a 

crystalline-like structure than those deposited from ethanol (Chapter 3), as it 

has been also reported for other kind of alkanethiol SAMs.66-69  Then, MUA 

SAMs with a lower number of structural defects and compactness must be 

more efficiently stabilized by intermolecular interactions than SAMs with 

some degree of structural disorder. Consequently, the increment observed in 
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the pK1/2 values of well-organized MUA SAMs can be partially related to the 

favored electrostatic repulsion between neighboring –COO- groups. However, 

the behavior observed for the spreading of the titration curves of the 

disordered SAMs seems counterintuitive. For that reason, an explanation 

based on the influencing factors described above could not be addressed.  

Otherwise, it can be speculated that highly disordered MUA SAMs may 

behave partially as a “reactive spreading” system even though, they are 

supposed to be pre-equilibrated at each pH to become into a “non-reactive 

spreading” system.53 

Noteworthy, the EIS titration curves of both kinds of MUA/DT mixed 

SAMs display a similar behavior when the surface composition of MUA, χMUA
surf , 

is decreased by the insertion of DT molecules (Figure 3a and b).  It is observed 

that dilution of the –COOH groups by DT molecules progressively decreases 

the pK1/2 values up to 1.5 pH units (Table 1).  This trend is also reflected by 

the intrinsic pKa (i.e. in absence of intermolecular interactions) and βE̅/2.303 

values obtained from the best fits of the 1-pK model 50 (Appendix A) to the 

experimental data (Table 2).33, 43 In this sense, either the intrinsic pKa (for 

similar interaction parameters) or βE̅ (for a fixed intrinsic pKa) diminish when 

surface coverage of the acid groups decreases. This is consistent with the 

predominant effect of the lowering of in-plane repulsive interactions between 

–COOH groups as compared to hydrophobic effects due to the lowering of the 

local dielectric constant, εS, by the insertion of –CH3 terminal groups.27, 43 Such 

behavior is resembled by well-ordered and homogeneously patterned SAMs 

(i.e. non-segregated) with –COOH groups molecularly and/or nanoscopically 

distributed into 2D arrays, as it would be the case here. 49, 54, 55 Hence, 



 Patterning influence in surface pKa of MUA/DT mixed SAMs               Chapter 5 

 

221 

 

minimizing hydrophobic and promoting electrostatic interactions would be 

possible by the rearrangement of the –COOH groups to lying on the 

surrounding –CH3 terminated molecules. 49, 54, 55   

 
Table 1. Apparent pK values of MUA:DT mixed SAM obtained from titration curves. 

(a) XMUA and XDT are the surface mole fraction of MUA and DT in the mixed 

monolayers as determined from Eqn. 3 (Chapter 4) by the CV reductive desorption 

method. The standard deviations for pK1/2
app values are lower than 12 % in all cases.  

 

Nevertheless, when the surface molar ratio of DT is further increased, 

the pK1/2 values display the opposite trend, and a large shift of 3 pH units 

(pK1/2  9-9.7) is observed towards the alkaline direction. It seems reasonable 

to assume that the gradual lessening of the interfacial polarity, which is 

related to a low dielectric “micro/nano-environment” of the –COOH moieties, 

contributes to a reduction of the group´s acidity.27, 31, 37, 42, 52-54 This also 

relates to the strength of the electrostatic solvation and the stabilization of –

COO- by counterions which depend on the degree of polarity at the 

SAM/electrolyte interface. 

χsurf 

MUA/DT(a) 

pK1/2
app  

EIS titration 

pK1/2
app  

IR titration 

15 min 18 h 15 min 18 h 

1.00/0.00 7.7 8.3 7.5 7.7 

0.90/0.10 - 7.1 6.9 7.2 

0.60/0.40 - 6.7 - 9.1 

0.41/0.59 7.0 - 4.0/7.3 - 

0.30/0.70 6.3 9.2 - 9.4 

0.15/0.85 9.4 - 4.5/9.7 - 
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 Table 2. Intrinsic pK and interaction parameter, βE̅ values determined from the 

fitting of the experimental titration curves of pure and MUA:DT mixed SAMs. 

(a) Best fitting βE̅ values by fixing the intrinsic pKa are included in parenthesis. When two pKa 
are found (IR titrations), the interaction parameter is only determined for the higher 
value. 

 

Interestingly, this change in behavior occurs at a higher surface 

coverage of –COOH groups for those SAMs formed at the higher modification 

time (XMUA
surf  0.3) than that at the shorter time (XMUA

surf  0.15). This could 

be interpreted in the terms of a different spatial distribution of 

homogeneously mixed binary SAMs, as commented in the previous chapter. 

When the mixing of –COOH and –CH3 groups is close to the molecular level 

(i.e. ideal homogeneously mixed SAMs), a feasible scenario would be that for a 

1:1 surface composition of both components, the electrostatic interactions 

should decrease to a minimum compared to the pure MUA SAM. Further 

dilution of –COOH groups beyond XMUA
surf  0.5 would provoke a gradual 

increase of hydrophobicity in their local environment, which is due to the 

excess of –CH3 surface groups that cannot be shielded all by neighboring –

χsurf 

MUA/DT 

EIS titration IR titration 

15 min 18 h 15 min 18 h 

pKa 
βE̅

2.303
 pKa 

βE̅

2.303
 pKa 

βE̅

2.303
 pKa 

βE̅

2.303
 

1.00/0.00 7.2 1 7.9 1 6.2 (6.2) 3 (3) 6.2 3 

0.90/0.10 - - 6.4 1-2 5.9 (6.2) 3 (2.4) 6.4 3 

0.60/0.40 - - 4.7* 5* - - 7.2 3 

0.56/0.44 - - 5.5 2 - - - - 

0.41/0.59 5.9 2 - - 5.7 (6.2) 3 (2) - - 

0.30/0.70 5.6 2 7.6 3 - - 7.2 3 

0.15/0.85 8.1 2 - - 7.7 (6.2) 3 (6) - - 
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COOH moieties. This is more closely resembled by the –COOH/-CH3 mixed 

SAMs built at higher modifications times which are assumed to better meet 

the requirement of molecular mixing. Then, the effect of lowering of the local 

dielectric constant becomes predominant compare to the decrease of 

electrostatic interactions between neighboring acid groups. In the case of 

SAMs built at lower times, such effect does not become evident until an 

excess high enough of –CH3 groups surrounds the MUA-enriched 

nanodomains (XMUA
surf  0.15). In such situation, both molecularly mixed and a 

small number of MUA nanodomains (i.e. highly diluted) would converge into a 

less discernable scenario of quite similar local hydrophobic environments. 

This conclusion is assumed to be valid in the basis of building well-

ordered homogeneously mixed SAMs. However, a similar conclusion could be 

drawn when –COOH groups highly diluted (i.e. high –CH3 surface coverages) 

become sparsely adsorbed and structurally disordered.27, 37, 42 Then, the –

COOH groups could be buried in the monolayers while –CH3 groups were 

more exposed, which would also favor the contribution of microenvironment 

effects (ion solvation/dielectric constant factors) instead of electrostatic ones 

to the shift of the surface pKa. In such as case, the mixed SAMs formed at 

lower modification time would be more prone to structural disordering 

(XMUA
surf  0.3 – Figures 2 and 7 of Chapter 4), and the possible influence on 

the acid-base interfacial behavior should not be discarded. In any case, these 

results suggest that the distribution of alkanethiolates at the molecular scale 

can directly modulate the interfacial acid-base properties of binary SAMs, 

most likely by the changes of cooperative effects of the nearest carboxylic 
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moieties on their intermolecular interactions as a result of the sort of 

assembly patterns.  

5.3.2. IR titration of pure and mixed SAMs of MUA and DT 

Figure 4 shows the IRRA spectra of MUA monolayers deposited on 

Au(111) and subsequently exposed to acid or basic aqueous solutions. These 

MUA-SAMs show the vibrational absorption bands of the νC=O groups that 

are usually present at low wavenumbers of the IR region (1300-1800 cm-1). 

Five bands are clearly identified.70 

Bands centered at 1740 and 1715 cm-1 are assigned to the –C=O 

stretching modes associated with non-hydrogen and hydrogen bonding 

interactions of neighboring –COOH groups, respectively.71, 72 The difference 

between these vibrational frequencies is due to the weakened C=O bonding 

strength upon formation of the interactions between the acid groups. The 

relative intensities of these peaks has been reported as a way to evaluate the 

quality of the SAMs due to its sensitiveness to the surface flatness and 

nanotopology of the Au(111) substrates.73 In the case of single crystal Au(111) 

surfaces with a very low miscut angle (<0.1°), that are composed by large 

atomically flat smooth terraces (i.e. >100 nm in diameter), the uniformity of 

the SAMs is greatly improved by favoring intermolecular interactions. As a 

consequence, only one peak associated to hydrogen bonded –COOH groups  

appears (1715 cm-1).73  However, in the case of Au(111)-textured surfaces 

gathering many grains (20-50 nm in diameter and 1-3 nm in height), both 

peaks at 1740 and 1715 cm-1 are present due to the presence of extrinsic 

structural defects in the SAM (Figures 4-6) that are induced by the surface 
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topography (e.g. Au step edges and grain boundaries. Chapter 1 - Section 

1.2.8.). 41, 73  This fact has been suggested to affect the acid-base behavior of 

carboxylic SAMs, in the way that electrostatic repulsion between terminal 

groups is lower than at atomically flat gold surfaces. 41, 73  

 

Figure 4. Typical IRRA spectra in the low frequency region of a pure MUA monolayer 

on Au(111) immersed in acid and alkaline media. 

 

The vibrational band at 1468 cm-1 is attributed to the scissors deformation 

mode of the –CH2 groups (δsc-CH2) in the alkyl chain of the monolayers.  The 

remaining bands are ascribed to asymmetric, νas
 (1440 cm-1) and symmetric, νs

 

(1410-1420 cm-1) stretching modes of carboxylates groups (COO-).41, 70, 74  

Figures 5 and 6 show IRRA spectra of pure and mixed MUA:DT 

monolayers formed at 15 minutes and 18 h, respectively, which are titrated 

from basic to acid pHs (pH range = 2-11). As expected, all the SAMs tested 
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showed that the stretching modes belonging to carboxylic and carboxylate 

groups were pH-dependent. When the solution pH decreases, the 

characteristic vibrational signals corresponding to the –COO- groups diminish 

while the νC=O stretching band at 1740 cm-1 (i.e. –COOH non-hydrogen 

bonded) and the δsc-CH2 mode concomitantly increase until the protonation of 

the MUA molecules is almost attained approximately at pH 4-5 (Figures 4-6).  

When pH is further decreased (pH=2), the general trend observed is that the 

δsc-CH2 band now decreases while the νC=O stretching band at 1715 cm-1 (i.e. 

–COOH hydrogen bonded) concomitantly appears and increases. In most of 

the cases, a small fraction of non-titrated –COO- groups is still observed at the 

surface (νas at 1440 cm-1) even at this very low pHs. As it will be commented 

later, these changes must be related to additional structural rearrangements 

and different tilted orientations of the backbone and the –COOH terminal 

groups of the SAMs that take place during the titration experiments. 

In the attempts to unravel this assumption, IRRA spectra of the SAMs 

have been analysed in the high wavenumbers region (2800-3000 cm-1) that 

shows the characteristic absorption bands of the symmetric, d+, and 

asymmetric, d-, stretching modes of the -CH2 groups of the hydrocarbon 

chain.  
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Figure 5. IR titration spectra of pure and mixed MUA/DT SAMs on Au(111) formed in 

lyotropic medium after 15 min. χMUA/DT
surf :  a) 1.00/0.00, b) 0.41/0.59 and 0.15/0.85. 

(a) 

(b) 

(c) 
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Figure 6. IR titration spectra of pure and mixed MUA/DT SAMs on Au(111) formed in 

lyotropic medium after 18 h. χMUA/DT
surf : a) 1.00/0.00, b) 0.60/0.40 and c) 0.30/0.70. 

(a) 

(b) 

(c) 
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The peak position and width of the d+ and d- vibrational modes are 

sensitive to the conformational order of the hydrocarbon chains in alkanethiol 

SAMs. Densely packed SAMs arranged into a crystalline ordering with the alkyl 

chains mainly in an all-trans conformation are usually associated with d+ and 

d- bands positioned at 2849-2850 and 2818-2819 cm-1, respectively.61, 71, 75, 76 

These bands are broadened and shifted to higher wavenumber when the 

conformational order of the alkyl chains progressively decreases and the 

structure becomes increasingly disordered. 61, 71, 75, 76 

Figure 7 shows that all the mixed SAMs formed and equilibrated at pH 11 

exhibits a crystalline-like conformational order composition-independent 

behavior (d+ and d- bands located at 2850 and 2919 cm-1, respectively), except 

those formed at 15 minutes with lower MUA surface coverage (χMUA/DT
surf  < 0.41) 

which exhibited a higher conformational disorder (d+ and d- bands located at 

2853 and 2924 cm-1). This is in agreement with the results already reported in 

the previous chapter (Sections 4.3.1 and 4.3.3).1 Taking into account that the 

titrations shown are performed from pH 11 to 2, d+ and d- band broadens and 

displaces their position to higher wavenumber while their intensities increase 

when the pH is progressively diminished (Figure 7a). The changes in the 

position, intensity and half-width of these bands from that of the originally 

formed crystalline-like structure is attributed to the disordering of the alkyl 

chains during the protonation of the –COOH end groups.76 This is related to 

the transition dipole moment projections of the C-H stretching vibrations 

along the surface normal direction and, consequently to configurations that 

are different from the canted orientations at SAMs with a crystalline-like 

structure.  
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Figure 7. Representative behaviour of the evolution of the position and intensity of d- 

and d+ bands during the acidic titration of mixed MUA/DT SAMs formed at: a) 18 h at 

all χMUA/DT
surf  compositions and 15 min at χMUA

surf > 0.41, and b) 15 min for χMUA/DT
surf = 

0.41/0.59 and 0.15/0.85. 

(b) 

(a) 
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In the particular case of mixed SAMs formed at 15 minutes and χMUA
surf  < 

0.41, they remain disordered during the titration experiments (Figure 7b). This 

finding would agree with the fact that, in most of the cases, the δsc-CH2 mode 

changes its intensity and a small fraction of –COO- surface groups cannot be 

titrated at very low pHs. The latter case may be associated to the burying of –

COO- moieties because of the gradual disordering of the SAM structure 

induced by the protonation process. Assuming that extinction coefficients of 

ν(COO-)/ν(C=O) bands were approximately similar, the surface ratio of –

COOH/-COO titrated in the SAMs can be determined from their integrated 

peak area. Then, this makes conceivable to study the 

deprotonation/protonation processes that take place at the SAM/solution 

interface by FT-IRRAS. Figure 8 illustrates the changes in the surface ratio of –

COO-, θ, with pH. These IR titration curves reflect the change in the degree of 

the dissociation of the –COOH groups for pure MUA and mixed MUA/DT SAMs 

with different surface compositions and modification times. The acid-base 

interfacial behaviour of the terminal groups titrated in these mixed assemblies 

is generally in good agreement with that of the electrochemical results 

previously commented (Section 5.3.1.).  Then, dilution of the –COOH groups 

by DT molecules progressively decreases both apparent pK1/2 and intrinsic pKa 

values (Tables 1 and 2), which is associated with the predominant effect of 

diminishing the in-plane repulsive interactions between charged moieties. 

This behaviour reflects a homogeneous mixing of the components, and it is 

observed in a wider range of surface compositions for the SAMs formed at 15 

minutes. The opposite trend is observed in pK1/2 and pKa values at higher 
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coverages of DT molecules mainly due to the increase of the local 

hydrophobic “microenvironment” surrounding the –COO- groups. 

 

Figure 8. IR titration curves obtained by plotting the surface coverage, θ, of –COO- 

titrated groups vs pH, for mixed monolayers of MUA/DT formed from lyotropic 

medium at: a) 15min and b) 18h, with different surface compositions (χMUA/DT
surf ). θ and 

1-θ are determined from the integrated area of the ν(COO-)/ν(C=O) vibrational 

bands.  

(a) 

(b) 
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Scheme 1. Acid/base interfacial properties of homogeneously mixed MUA/DT SAMs 

vs composition: (A) nanodomains and (B) molecularly distributed components. 
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However, IR titration curves put forward some remarkable aspects in contrast 

to the electrochemical titration experiments. In this sense, two different 

scenarios can be described for the SAMs formed at low and high modification 

times (Scheme 1): 

(I) Mixed SAMs formed at 15 minutes (Figure 8a) show a more complex 

acid/base interfacial behavior with two different surface pK1/2 emerging 

at low surface coverages of MUA (χMUA
surf <0.41). This is an unusual case, and 

there are only a few examples reported in literature of SAMs, either with 

one or two surface-confined ionizable groups, where two discernible 

interfacial pKa are directly observed.48, 51, 77 Gershevitz et al.48 firstly 

reported the appearance of two pKa values by FTIR-ATR titration of 

carboxyl-terminated alkylsiloxane monolayers anchored on Si. The 

authors have shown the balance among differently associated interfacial 

–COOH groups on the surface (e.g. –COOH monomers and water 

molecules, -COOH···HCOO- dimeric and -COOH···OCOH····HOOC- linear 

oligomeric structures linked by hydrogen bonding), and argued that their 

association was related with changes in alkyl chain conformation and 

groups acidity. The first pKa (4.9) was associated to the deprotonation of 

–COOH monomers and the second one (9.3) to that of dimeric and 

oligomeric species. Other authors have found that the formation of 

strong ionic hydrogen bonds (i.e. –COOH··· -OOC-) leads to higher pKa 

values (8.4). 51, 78 This kind of hydrogen bonding interactions is favoured 

under low ionic strength conditions and a reduced local dielectric 

constant (ε1), where the association of –COO- with cations is 
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unfavourable and the water is expelled from the interaction volume (i.e. 

poor solvation).51, 78, 79 Finally, Nuzzo et al.71 addressed that 

mercaptohexadecanoic acid (MHDA) SAMs on gold exhibiting a high 

degree of molecular orientation were composed only by a small fraction 

of hydrogen bonded –COOH groups. They also proposed that such acidic 

groups were bounded by forming linear oligomers instead of head-to-

head dimers. On the other hand, it has been also reported the existence 

of head-to-head dimers (νC=O at 1717 cm-1) in MHDA and MUA 

monolayers whose structure is slightly distorted.  

Then, the first scenario proposed to explain the present results is based 

on the surface distribution of MUA molecules and the different size of 

their nanodomains (Scheme 1).  

- At χMUA
surf  > 0.41, the average size of the MUA domains may be still large 

enough for the –COO- groups to be mainly protonated in quite similar 

local environments, as it would happen to a 100% MUA SAM, but with 

their repulsive interactions reduced by the diluting effect of DT 

molecules. As commented above, some structural disorder is induced in 

the alkyl chains during this single protonation step (pK1/2). However, 

when the pH << pK1/2, an additional rearrangement of the alkyl chains and 

of the –COOH terminal groups takes place in the distorted structure of 

the SAMs, which probably provokes the formation of dimeric species 

associated by intermolecular hydrogen bonding (Figure 5b-c).   

- At χMUA
surf  < 0.41, the size distribution of the MUA nanodomains probably 

becomes more heterogeneous while their average size decreases. It is 

feasible to assume that the MUA molecules might be mainly divided in 
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two different arrangements composed by: (a) smaller and (b) larger 

domains with a low and higher number of –COO- groups, respectively. 

The smallest “domain” size would be ideally composed only by two –COO- 

groups as a dimer. The MUA molecules associated in the smallest groups 

(included isolated dimers) and/or in larger ones, but located at the 

MUA/DT domain boundaries, will be firstly titrated at the higher pKa value 

due to their lowest local dielectric environment among the overall 

molecules of each domain. This effect can be favoured by the fact that 

this kind of mixed SAMs are already structurally disordered with a high 

number of gauche defects where some –COOH might be buried in the 

hydrocarbon scaffold. Then, the –COO- moieties located mainly inside the 

larger MUA domains are subsequently protonated at the lower pKa value 

(4 to 4.5), which is quite similar to that of free carboxylic acids in the 

bulk solution. Once this kind of –COO- are protonated, the –COOH groups 

are able to rearrange and link together to probably form hydrogen 

bonded dimeric species as commented above.  

Figure 8a clearly shows that titration curves with two pKa are directly 

observed when at least 50% of the size distribution of domains is 

composed of small enough arrangements of MUA molecules.  

(II) Mixed SAMs formed at 18 hours (Figure 8b) show a different acid/base 

interfacial behavior based on the appearance of only one apparent 

surface pKa. A second scenario is proposed to explain the results obtained 

(Scheme 1).  

- At χMUA
surf  > 0.60 (at least χMUA

surf  > 0.56 for EIS titration - Table 2), although 

the average size distribution of the MUA domains may become smaller 
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than that of the mixed SAMs formed at lower time, the –COO- groups are 

also probably protonated in similar local environments where their 

repulsive interactions are diminished.  

- At χMUA
surf  < 0.60 (χMUA

surf  < 0.3 for EIS titration - Table 2), a sufficient 

population of MUA domains below a critical size is readily achieved, 

which would lead ideally to a homogenous mixing of –COO-/-CH3 groups 

at the molecular level for surface compositions of χMUA
surf  ≤ 0.50. Then, the 

effect of a low dielectric surrounding environment quickly prevails, even 

for slightly higher surface compositions of χMUA
surf  > 0.50 as expected for –

CH3 groups also distributed down to the molecular level. Under these 

circumstances, -COO- can be assumed to be distributed onto the surface 

in small groups of few MUA molecules, dimers and/or even totally 

isolated, and, thus, surrounded by quite similar local hydrophobic 

environments. Therefore, the protonation of –COO- is described by a 

single titration curve with an apparent surface pKa value of  9.1-9.4 

(Figure 8b). It is worth mentioning that again the –COOH groups titrated 

tend to form intermolecular hydrogen bonds upon structural 

rearrangement, most likely from pre-existing –COO- dimers than from 

isolated –COO- moieties closely placed in the surface (Figure 6b-c). In this 

sense, the existence of strong ionic hydrogen bonds might not be 

discarded as the present conditions would favour their formation.51, 78  
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5.4. Conclusions 

- EIS experiments reveal that there is not a significant contribution from 

ionized groups at the outer layer of the SAMs to the measured 

capacitance, C, with pH. The averaged values of C allow determining the 

surface compositions of both components of well-packed SAMs, which 

are in good agreement with those obtained by the reductive desorption 

method (Chapter 4).       

 

- Charge transfer resistance, RCT, and IR titration curves clearly reflect the 

change in the degree of the dissociation of the –COOH groups in pure 

MUA and mixed MUA/DT SAMs on Au, which allows determining their 

apparent surface pK1/2 values.  

 

- The pK1/2 value determined for MUA SAMs is greater than that predicted 

by the electrostatic mean-field model. It is assumed that additional 

contribution of hydrogen bonding, ion solvation and hydrophobic effects 

are present in the vicinity of the ionizable surface groups confined in 

these SAMs with a “crystalline-like” arrangement. 

 

- The acid/base interfacial behavior of MUA/DT SAMs resembles that of 

homogeneously mixed systems. Such behavior mainly depends on the 

degree of homogeneous mixing and spatial distribution of both 

components arranging into different patterns at the surface.  
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- For mixed SAMs formed at low and high immersion times with surface 

compositions of χMUA
surf  > 0.3 and χMUA

surf  > 0.60, respectively, the dilution of 

MUA with DT progressively decreases the pK1/2, pKa, and the interaction 

parameter, βE̅ (i.e. for a fixed intrinsic pKa) values that are obtained from 

the best fits of the 1-pK model to the experimental data. This is consistent 

with the predominant effect of the lowering of in-plane repulsive 

interactions between –COOH groups. In both cases, a single pK1/2 appears 

corresponding to the titration of MUA molecules associated in large 

domains that experiment similar local environments to that of the pure 

monolayer.  

 

- In contrast, at χMUA
surf  < 0.3 (t=15 min) and χMUA

surf  < 0.60 (t=18 h), the pK1/2 

value increases several pH units when the MUA molecules are further 

diluted in the assemblies. Then, the effect of lowering of the local 

dielectric constant becomes predominant between neighboring ionizable 

groups. 

 

- For SAMs formed at low time, the heterogeneity in the size distribution of 

the MUA nanodomains determines the appearance of two apparent 

surface pK1/2 values. This is due to the coexistence of different 

environments created by –COOH groups associated in smaller and larger 

arrangements of MUA molecules. The –COOH associated in smaller 

arrangements and those located at the –CH3 domain boundaries, 

contribute to the appearance of the higher pKa value as expected for the 

lowest local dielectric environment experienced among these groups in 
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the domains. The –COOH moieties located inside the larger MUA domains 

are subsequently protonated at the lower pKa value. 

 

- For the SAMs formed at higher time, -COOH moieties seems to be 

homogeneously distributed close to the molecular level. In this case, a 

single pK1/2 is always observed that displaces to higher values. This can be 

explained by the similar local hydrophobic microenvironment 

experienced by all the –COOH surface groups which are assumed to be 

distributed in very small groups, as dimers or even isolated when a critical 

MUA/DT mixing ratio is achieved. 

 

- The formation of hydrogen bonding interactions between MUA molecules 

is observed upon rearrangement of the SAM structure. It is suggested 

that dimeric species (-COOH···HCOO-) are the most likely to form by the 

association of MUA molecules either inside of larger domains (e.g. SAMs 

formed at lower modification time) or as pre-existing dimers 

homogeneously mixed in the surface (e.g. SAMs formed at higher time). 

 

- Mixed SAMs formed at 15 minutes are more adequate to study their 

interaction with biomolecules at a physiological pH 7, as a wider range 

of surface percentages of –COO- and –COOH groups (8-45%) are available 

to evaluate the effect of electrostatic (i.e. influence of interfacial 

electrostatic fields) and hydrogen bonding interactions, at the same time 

that the effect of hydrophobic interactions can be approached by the 

insertion of –CH3 surface groups by tuning its percentage from 10-85%.  
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5.5. Appendix 

A. Double layer continuous-charge surface pKa model 

The dissociation of the terminal –COOH groups in a monolayer can be 

described by an equilibrium reaction between protonated and ionized 

moieties: 

 

-COOH(surface)      -COO-
(surface)   +    H+

(solution)  (A1) 

 

The equilibrium constant, Ka, of the surface reaction is given by: 

 

Ka= 
θsurf

COO‐

θsurf
COOH

[H+]surf                                                                       (A2) 

 

where θsurf
COO-

 is the fraction of surface acid dissociated and [H+]surf is the proton 

concentration at the surface. [H+]surf relates to the bulk proton concentration, 

[H+]sol through a Boltzmann distribution: 

 

[H+]surf = [H+]sol·e
‐F∅2/RT                                                         (A3) 

 

where F is the Faraday constant and ϕ2 the electrostatic potential at the 

surface which is related to the potential difference between the outer plane 

of closest approach of –COOH terminal groups in the SAM (Helmholtz plane of 

acid dissociation, PAD) , ϕPAD,  and the bulk solution, ϕS (Scheme A1).31 

Combining expressions A2 and A3 it follows that: 
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log 
θsurf

COO‐

θsurf
COOH  =  log 

θ

1‐θ
 = pH ‐ pKa+ 

F∅2

2.303RT
= pH ‐ pK1/2

app (A4) 

 

where θ is the fraction of surface carboxylates, Ka is the dissociation constant 

of the surface bound acid in the absence of any interfacial electric fields (i.e. 

ϕ2 = ϕPAD - ϕS = 0), pH relates to the proton activity in the bulk solution and 

pK1/2
app is the pH value at θ = 0.5 that represents the shift of pKa caused by 

electrostatic/intermolecular repulsions (pH = pKa – Fϕ2/2.303RT). Then, 

varying with the ionization of the SAM, ϕ2 includes θ. According to the 1-pK 

model, and extended to ionizable solid-water interfaces by the statistical 

mechanical model developed by Borkovec et. al.,50 titration curves takes the 

form: 

 

  log 
θ

1‐θ
 = pH ‐ pKa ‐ 

E̅θ

2.303RT
 = pH ‐ pKa ‐ 

βE̅θ

2.303
        (A5) 

 

where ϕ2 = - E̅θ / F, E̅ (potential of mean force) is the energy of electrostatic 

interactions of charged molecules with its surroundings, and β = 1/RT. The 

increasing order of molecular interactions from  βE̅ = 0 to 1, 2, 3, etc., 

broadens the titration curves and the inflection point (θ = 0.5) shifts the pK1/2
app 

- pKa = βE̅θ/2.303 with ΔpK1/2
app = βE̅/2.303 to higher values. 

 Therefore, if the electrostatic contribution is not included in equations A4 

and A5, they become the same equation as that for acid-base equilibrium of 

free carboxylic acids in bulk aqueous solution. 
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Scheme A1. Double layer model for ionizable –COOH SAMs. 
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 The electrostatic potential associated with the SAM is given by the Gouy-

Chapman theory of the electrical double layer, where the surface charge, σ, is 

related to ϕ2 by the following equation: 

 

σ = εoεSκ
2RT

F
sinh (

Fϕ2

2RT
)                                                       (A6) 

 

where κ is the inverse Debye length of electrolyte solution with the dielectric 

constant εS, and assumed to be pH-independent and, εo the free space 

permittivity. In a more realistic model, Fawcett et.al. have considered the 

discreteness-of-charge effects and the presence of a Stern layer adjacent to 

the molecular film comprising solvent molecules differently structured from 

the bulk liquid (e.g. with local dielectric permittivity significantly lowered).80 

 Nevertheless, this interaction model is usually well-reproduced by 

titration curves of different electrochemical and spectroscopic parameters 

such as capacitance (C), RCT, kET or carboxylate/carboxylic ratio of IR bands 

area ratio vs pH curves for pure and mixed –COOH SAMs. 

Thus, the apparent heterogeneous rate constant, kET
app, of the surface 

reaction of a negatively charged redox probes (e.g. Fe(CN)6
3-/4-) can be altered 

by the solution pH in response to the acid-base reaction of the ionizable –

COOH groups at the SAM. At a constant electrode potential, the –COOH 

ionization shifts ϕ2 at PAD to more negative values, which enhances the ϕM-

ϕ2 difference (i.e. the driven force for electron tunneling across the SAM), 

compared to the uncharged monolayer. The increase of ionized –COO- groups 

impedes the electroactive ions to approach the Au surface by electrostatic 
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repulsion. This fact causes the redox probe surface concentration to be 

depleted and electrons also impeded to exchange with the electrode. At high 

pHs as a result, electron transfer response is further inhibited and slow down. 

Then, a similar expression to A3 can be derived for the surface and solution 

concentrations of negatively charged ions.47  

This is manifested by the increase of the charge transfer resistance, 

RCT, values determined by EIS and the improved blocking behavior of the SAM 

shown by CV. Assuming that the potential drop at the diffuse double layer is 

pH-independent and constant at the electrolyte solution used, in the presence 

of the double layer effect, RCT can be expressed by the following equivalent 

equations: 47, 80, 81  

 

RCT = RCT
o ·e

[(z‐βn)
F∅2
RT

]
                                                              (A7) 

RCT = e
(A+B

Ka
‐1[H+]

1+Ka[H+]
)
                                                               (A8) 

 

 Similarly, when the potential across the interface (ϕM-ϕS) is changed, as 

occurs in CV experiments, the degree of acid dissociation is altered. For 

example, sweeping potential to negative values to that of the potential zero 

charge (pzc) will favor protonation of –COOH groups by reducing the 

electrostatic repulsion between negative charges located on the metal surface 

and those associated with the –COO- groups located at the PAD (Scheme A1). 

Conversely, positive electrode potentials compared to the Epzc will drive the 

deprotonation of the surface groups. In general, the acid-base equilibrium 

displaces in response to electrode potential to minimize the interfacial free 
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energy. Then, the results obtained for pK1/2
app from the titration curves carried 

out without an external potential applied (i.e. under open circuit equilibrium 

conditions) may differ to those obtained under different applied potentials. 
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CHAPTER 6 

Conformational   Changes    of    Cationized   Myoglobin 
(c-Mb) Tuned by MUA/DT Mixed SAMs: Direct 
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6. Conformational changes of cationized Myoglobin 

(c-Mb) tuned by MUA/DT mixed SAMs: Direct 

implications on ET gating and catalysisIntroduction 

Electron transfer (ET) reactions involving electron shuttling 

metalloproteins are of fundamental importance for life. 1-3 Globins are haem-

proteins that bind O2 and thus play an important role in the animal’s 

respiration and oxidative energy production with an unprecedented diversity 

that has been recently reviewed.4 In this sense, globins may also have other 

functions such as the decomposition or production of NO, the detoxification 

of reactive oxygen species or intracellular signalling.4 They are typically 

comprised by around 150 amino acids and arranged into eight α-helical 

segments (A-H) with a characteristic 3-over-3 α-helical sandwich structure (i.e. 

globin fold) including a haem prosthetic group (protoporphyrin IX type) that 

may bind oxygen or other ligands (Scheme 1). While their overall structures 

are conserved, globin primary sequences are not. In fact, only the proximal 
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histidine (position 8th at helix F, F8) is present in all globins adjacent to the 

heme group with most of them stabilized by a phenylalanine in the inter-

helical region (CD1). Globins are the best-investigated proteins and represent 

a prime tool for studying the function and evolution of genes and proteins. 

 

Scheme 1. (a) Native myoglobin structure (Monomeric hemoprotein with a single 

polypeptide chain of 153 aminoacids). (b) Coordination states of heme group (from 

left to right): 6C-LS, 5C-HS, 6C-HS, 6C-LS. 

    The main biological functions of hemoproteins are the electron 

transport (e.g. cytochromes), oxygen transport and storage (e.g. myoglobin), 

and the catalysis of redox reactions (e.g. enzymes).5 Despite the differences in 

(a) 

(b) 
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the chemistry, the iron protoporphyrin IX (heme) prosthetic group is present 

in all the hemoproteins. Likewise, in photosynthesis this cofactor may function 

either as reaction center (i.e. charge separation) or accessory (i.e. exciton 

transfer) pigments in light harvesting. Differences in the apoprotein 

sequences are not sufficient to explain the drastic different physicochemical 

properties found for the same cofactor in protein complexes. Then, the 

different functions must stem from differences in the 

interaction/coordination and conformational flexibility between the bound 

cofactor and the substrates which are ultimately determined by the interplay 

between the redox center and the respective apoprotein structure in addition 

to hydrogen bonding and electronic effects.6, 7  

 

In this sense, the mechanisms by which the protein controls the 

intrinsic reactivity of the heme are both of theoretical and practical interest. 

For example, heme-iron can be five- or six-coordinate with the axial ligation 

strongly related to protein function (Scheme 1). Six-coordination of heme with 

two strong axial ligands (e.g. His/His) is typical of hemoproteins as electron 

carriers (i.e. Low spin state - 6LS). Penta-coordination or with the sixth 

position available for substrate binding is usually found in globins and redox 

enzymes (i.e. 5HS or 6HS – High spin states). In globins, the imidazole ring of 

the “proximal” histidine (His) residue provides the fifth iron ligand and the 

axial position remains available for substrate coordination. Different ligand 

coordination states are able to modulate the redox potential of the heme iron 

determining the protein function. 
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 Non-native states induced by changes in the native structure and its 

interplay with the heme group may help to evolve new functions of the 

proteins.8 The relationship between function and structure in non-native 

hemoproteins is a very important issue to elucidate the role of these 

macromolecules in biological systems.8 Thus, protein engineering is arising as 

a promising research field for the design of different non-native 

conformations with specific catalytic, ET and photochemical properties.9, 10 

Folded proteins can exist in multiple conformational substates with a distinct 

structure, where each one reflects a local minimum of free-energy landscape. 

These substates may represent non-native states of the folded protein. 

Conformational diversity in proteins may range from fluctuations of side 

chains and movements of active-site loops to secondary structure changes 

and rearrangements of the entire protein fold, which confers new functions 

for the proteins in the non-native states.11 The mechanisms responsible for 

the transition from the native protein to its functional non-native conformers 

is challenging, but ultimately would uncover how proteins execute such 

variety of biological functions.12  

 

In this sense, myoglobin (Mb) is a favorable scaffold protein for 

rational heme protein design either by genetic and/or chemical modifications 

that can exhibit novel functions.13, 14 Even though, X-Ray or NMR structure is 

not available for non-native Mb states with His-His coordination (6C-LS), 

molecular modeling has allowed to study the role of the flexibility of the CDE 

helices in its formation upon introduction of a hydrophilic group (mutation of 

Leu29 to Glu29) in the hydrophobic heme pocket that alters the protein 
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folding behavior of Mb.15 Chemical functionalization of protein residues is a 

sort of engineering of biomolecules that allows generating non-native 

conformer states and new biomaterials.16, 17 It has been recently reported that 

cationized Myoglobin (c-Mb) has been used as a first step to modulate the 

surface charge of the protein and to build solventless liquids of functional 

metalloproteins.18, 19 The cationization of the protein is achieved by the 

carbodiimide-activate coupling of N,N-dimethyl-1,3-propanediamine (DMPA) 

molecules to aspartic and glutamic acid residues on the external surface of 

the native Mb. This chemical modification provokes significant secondary 

structural changes and rearrangements of the entire protein fold,18, 19 and 

consequently the ET, catalytic or substrate transport activities of the Mb are 

probably affected. Based on this assumption, this chapter will be devoted to 

get insight into the ET and catalysis behavior of c-Mb at SAM interfaces. The 

understanding of the influence of the interactions governing the adsorption 

and conformational orientation of c-Mb onto SAMs is crucial to the proper 

design of stable bioelectroactive interfaces for sensing applications.  

 
 Most of the natural reactions of redox proteins occur at or in 

membranes under conditions that are distinctly different from those in 

solution. In this respect, electrochemical interfaces represent a convenient 

model to mimic the interactions and the charge distribution of the 

membrane/solution interface specifically upon proper functionalization of the 

surface of the electrodes.20, 21 Natural processes can tunnel electrons over 

nanometric distances, and most redox macromolecules have sufficiently thick 

protein shells to render the distance between the redox donor and acceptor 
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sites (e.g. other biomolecule or an electrode) so large that the rate of ET could 

be negligible.22-24 However, direct ET between biomolecules takes place which 

is captivating in its own right.24-26  

 
Chemically modified electrodes based in self-assembled monolayers 

(SAMs) appear as ideal platforms to immobilize redox proteins by strategies 

based on non-covalent or covalent attachment interactions.21, 27-30 In the 

particular case of non-covalent attachment, the proteins can adsorb on 

surfaces by electrostatic, hydrophobic and polar interactions. Which of these 

intermolecular forces dominate the interaction will depend on the particular 

protein and surface chemistry involved. This approach leads to protein 

physisorption resulting in adsorbed protein layers usually heterogeneous and 

randomly oriented, since each molecule can form many contacts with 

different orientations by minimizing the repulsive interactions with the 

surface and the previously adsorbed proteins. However, protein 

immobilization into monolayer or submonolayer electroactive assemblies 

provides an adequate platform to elucidate the redox properties and catalytic 

mechanism of enzymes as well as to elucidate mechanism and kinetics of 

protein ET where diffusion processes may be not interfering. In this 

framework, the possibility to facilitate electronic communication, “wiring”, 

between the protein´s redox center and the electrode through SAMs is not 

only a way to reproduce physiological conditions but has also become an 

excellent approach to study biophysical fundamentals of their dynamic 

interactions for better understanding of biological ET processes.31-36  
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ET processes of proteins immobilized on coated electrodes (i.e. 

bioelectrochemistry) can be studied by electrochemical techniques (e.g. 

protein film voltammetry).37 The performance has been substantially 

developed in the last 20 years, to address thermodynamics and dynamics of 

the redox reactions of protein monolayers. 33, 36, 38-43 Then, the electronic 

communication between an electrode and the active center of the redox-

active protein is instrumentally detected as a current-potential profile having 

specific features. The analysis of such voltammetric features provides insight 

into the mechanism of protein interactions with the substrates. In general, the 

Marcus theory 44 has been demonstrated to be valid to consider the possible 

contribution of the electrode surface functionality into the ET kinetics, which 

essentially depends on the electronic coupling between the electrode and 

redox center (HAB), the reorganization energy (λ = λin + λout, sum of the inner 

and outer-sphere contributions) and the activation free energy (ΔGa
*).36, 42 

Thus, the modification of the electrode surface impacts the reorganization 

energy, λout, by controlling solvent or protein reorganization at the interface. 

On the other hand, part of the protein function may be involved in 

overcoming the reorganization energy for the environment around a buried 

redox center to stabilize the redox states and the energy barrier, λin, which is 

associated with changing bond lengths and angles of the reactant to 

accommodate the product (i.e. dynamics). Finally, λout may be also lowered by 

the protein structure upon constraining the coordination geometry of the 

active site to allow rapid ET reactivity. Additionally, as the redox center cannot 

be in close contact with the electrode, the ET coupling (HAB) must also account 

for the molecular structure of the pathway connecting both donor and 
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acceptor sites. Therefore, the efficiency of such coupling is determined by the 

3D protein structure of the intervening medium composed by the peptide 

matrix, which is ultimately regulating ET. As a consequence, ET will be 

modulated by the distance and protein structure that is influenced by the 

specific protein-SAM interactions.  

 
Such interactions can be manipulated by reconstitution of the heme 

group, changes in the surface coating and the protein´s apparent surface 

charge, and chemical manipulation of the electron tunneling pathways 

between the biomolecules and the electrode.8-10 This sort of protein 

engineering for bioelectrochemistry can alter the formal potentials of the 

redox moieties, define different local environments to control the 

reorganization energy and change electron tunneling pathways between 

redox center and the electrode.9 The information provided by electrochemical 

techniques can be complemented by structural information about the species 

involved in the ET processes by the use of spectroscopic techniques (FT-IRRAS 

and Resonance Raman, RR). 45,46 

 
Many works have focused on determining the parameters that control 

ET efficiency of redox proteins. Several factors influencing ET such as donor-

acceptor distance,22-24, 36, 47 heme plane orientation,48 electron transport 

pathway,49 conformational changes around the heme group,50 the 

reorganization energy involved in spin state changes,51, 52 environmental 

conditions (e.g. solvent, pH and ionic strength effects),53 conformationally 

gated mechanisms 54 and polarization-relaxation processes of the protein 

environment have been reported.55 Among these factors, the ET of redox 
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proteins immobilized on 2-D assemblies is often coupled to non-faradaic 

processes such as reorientation and conformational transitions.40, 56 Non-

faradaic processes are modulated by varying the chemical properties of 

functionalized surfaces, which can directly tune the orientation and/or 

conformation of protein states,57-59 and in turn determine the ET properties of 

the adsorbed proteins.60  

 

Different techniques have been used to explore the relationship 

between the interfacial chemistry of SAMs and the ET properties of 

immobilized redox proteins. Combining electrochemical techniques with 

surface vibrational spectroscopies such RR and IRRAS spectroscopies provides 

a deep understanding of the conformational and structural dynamical changes 

of the adsorbed proteins associated with changes into the ET process.45,46 

Feng et al.51 have reported the use of electrochemical and Raman 

spectroscopy techniques to study native Mb deposited on a Nafion film. They 

ascribed the fast electron transfer of the adsorbed Mb to a change from high 

to low spin state of the heme group when the protein was embedded into the 

film. Similarly, the effect of surfaces properties of hydrophobic and 

hydrophilic mixed SAMs on the adsorption of BSA and fibrinogen has been 

also addressed by Quartz Crystal Microbalance (QCM) coupled to grazing 

angle Fourier transform infrared spectroscopy (GAFTIR) technique.57 

Interestingly, Rocco et al. 61 have recently reported a transition from the low 

to high spin state at the iron coordination of one heme group at a bacterial di-

heme cytochrome C upon protein immobilization on negatively charged 
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SAMs, as characterized by Cyclic Voltammetry (CV), Resonance Raman (RR) 

and SERRS spectroscopies.  

 

In this chapter, the electrochemical behavior of c-Myoglobin non-

covalently attached to biomimetic surfaces composed of pure and mixed 

MUA/DT SAMs is addressed based on conformational, structural and 

orientation changes of non-native states driven by protein-surface 

interactions. Finally, the electrocatalytic activity of c-Mb/SAMs constructs 

towards the reduction of hydrogen peroxide has been evaluated. For this 

purpose, mixed SAMs are built by varying the stoichiometry ratio of 

hydrophilic 11-mercaptoundecanoic (MUA) to hydrophobic 1-decanethiol (DT) 

linkers to attain different surface compositions of –COOH moieties: 100%, 

92%, 62%, 46%, 16% and 0%, and surface charge densities of deprotonated –

COO- groups ranging approximately from 8% to 80% (at pH=7.6). FT-IRRAS and 

RR spectroscopic techniques are used to assess the effects of the surface 

chemistry on the conformational/structural properties of the c-Mb adsorbed. 

Moreover, the electrochemical behavior of the protein assemblies are 

characterized by cyclic voltammetry techniques and their surface coverage 

determined by QCM measurements. CV and chronoamperometric 

measurements are also carried out showing that c-Mb present excellent 

electrocatalytic properties that may be applied to the rational design of 

biosensors. 
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6.2. Materials and methods 

Chemicals reagents. 11-mercaptoundecanoic acid (COOH-(CH2)10-SH, MUA), 

1-decanethiol (CH3-(CH2)9-SH, DT), Triton X-100, myoglobin from horse heart 

(Mb), 3-dimethylamino propylamine (DMAPA), N-(3-dymethylaminopropyl)-N-

ethylcarbodiimide hydrochloride (EDC) and semiconductor grade purity 

potassium hydroxide (KOH) were purchased from Aldrich-Sigma (purity ≥ 

99%). The rest of the reagents, 2,5-dihydroxy acetophenone 

((HO)2C6H3COCH3), trifluoroacetic acid (CF3COOH), phosphoric acid (H3PO4), 

hydrochloric acid (HCl), perchloric acid (HClO4), hydrogen peroxide (H2O2), 

potassium chloride (KCl) and potassium nitrate (KNO3) were from Merck 

analytical grade. Aqueous solutions were prepared with deionized ultrapure 

water produced by a Millipore system. 

 
Methods. A three-electrode cell comprising a platinum coil as the counter 

electrode, a 50 mM KCl calomel electrode as the reference electrode and 

Au(111) textured surfaces as the working electrode were used. Au(111) 

surfaces were cleaned and modified with MUA and/or DT as indicated in the 

protocols described in the Chapter 2 (Sections 2.3.1. and 2.3.2.). The 

adsorption time in lyotropic liquid mixtures was 15 min. Surface compositions 

of the mixed SAMs were determined as described in Chapters 4 and 5. 

 

The chemical modification protocol for cationization of native Mb (Scheme 2), 

the characterization of the product, c-Mb, by MALDI-TOF and UV-visible 

techniques, and the immobilization procedure onto the mixed SAMs are 

described in detail in the Chapter 2 (Sections 2.3.3, 2.3.4 and 2.4.3.1.2). A part 
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of this work was carried out during a 3-months stay in the Electrochemistry 

Group headed by David Fermin at the University of Bristol (UK). 

 

 

 

Scheme 2. (a) Native Myoglobin showing negatively (red) and positively (blue) 

charged regions on the surface structure (b) Cationized Myoglobin prepared by EDC 

coupling of DMAPA to negatively charged surface residues (Asp and Glu) of Mb. 

 
 

Electrochemical characterization was carried out accordingly to the 

specifications and working conditions included, unless otherwise stated, in the 

Chapter 2 (Section 2.4.1.). Characterization of the samples was also performed 

by FT-IRRAS as previously indicated in Chapter 2 (Section 2.4.2.1.2). Raman 

spectra and QCM measurements were performed following the instructions 

included in Chapter 2 (Sections 2.4.2.2.2. and 2.4.3.2.2.). The reproducibility of 

the measurements was checked by testing batches of 3-4 samples. 

 

 

a b 
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6.3. Results and Discussion 

6.3.1 Structural characterization of c-Mb immobilized on SAMs 

6.3.1.1. ATR and FT-IRRAS spectroscopic characterization 

Figure 1 shows the ATR spectrum in the amide I band region of the c-

Mb in solution. The amide I peak corresponds to the vibrational absorption 

band of the -C=O stretching mode of the peptide bond. The overall shape and 

maxima of the amide I peak are directly influenced by the secondary structure 

of the proteins and consequently used for its conformational study.62 The 

peaks in the range of 1654-1660 cm-1, 1640-1650 cm-1, 1670-1680 cm-1, 1610-

1637 cm-1 and 1680-1691 cm-1 have been assigned to the α-helix, random coil, 

β-turn, β-sheet parallel and antiparallel conformations, respectively.63  

 

Figure 1. Infrared ATR spectrum of c-Mb in D2O in the Amide I band region (·—·) 
including the fitting components of the different secondary structure bands 

deconvoluted: (—) β-sheet and unordered, (—) α-helix, (—) β-turn, (—) β-sheet 

antiparallel, and (—) convoluted signal. 
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The deconvolution analysis of the amide I signal reveals that the content 

of α-helical secondary structure of c-Mb in solution decreased drastically to a 

39 % compared to that of 75-80% for native Mb (Table 2).64 This change is 

associated with an increase in the content of β-sheet, β-turn and unordered 

domains from 2, 6 and 11% in Mb to 11, 15 and 35% in c-Mb, respectively. 

These results are in excellent agreement with those reported for c-Mb as 

determined by circular dichroism (SRCD).18 Therefore, the significant changes 

observed on the secondary structure of c-Mb by introducing positive surface 

charges must be related with the absence of disulphide bridges and the 

marked dependence of the globular structure of Mb on inter- and intrahelix 

electrostatic stabilization,65 which involves glutamic (Glu) and aspartic (Asp) 

side chains that are modified in the cationization reaction.66 Such changes in 

the secondary structure of the non-native state of Mb in solution has a strong 

effect on the heme environment which is manifested by the transition from a 

high (6C-HS) to low spin (6C-LS) state of the iron moiety upon cationization 

(Section 2.3.3.1). In fact, these results are consistent with those reported for 

c-Mb adducts where spectral changes and circular dichroism measurements 

have been related to changes in the heme Fe coordination without protein 

denaturation. 19, 67 

 
FT-IRRAS is a sensitive and convenient method to obtain structural 

information about surface-bound proteins. IRRAS measurements have been 

carried out to assess the conformational states and the possible orientation 

changes of c-Mb upon adsorption on surfaces modified with different ratios of 

-CH3 (hydrophobic) and -COOH (hydrophilic) terminal groups. It is worth 
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mentioning that, although the amide II region (1500-1600cm) is less sensitive 

to the conformational changes compared to amide I region (spectra not 

shown), it becomes an useful tool to qualitatively determine the changes in 

orientation of proteins by changes in the amide I/II peaks intensity ratio.68, 69 

This is based on the following considerations: (i) the dipole moments of amide 

I and II are approximately perpendicular each other, and (ii) the metal surface 

selection rules (MSSR), that apply for incident p-polarized radiation at a 

grazing surface angles used in IRRAS experiments, states that the vibrational 

transitions with a dipole component perpendicular to the surface are mainly 

enhanced.  

 

Figure 2 shows the representative examples of the FT-IRRAS spectra for 

immobilized c-Mb while changing the surface ratio of -CH3/-COOH in the 

SAMs.  The position of the maxima of the amide I and amide II bands together 

with their intensity ratio are summarized in the table 1 for c-Mb in solution 

and non-covalently attached to the different MUA:DT SAMs. The shift in the 

position of the amide I band maxima of the c-Mb in solution upon adsorption 

in these 2D assemblies shows that the protein undergoes conformational 

changes in different hydrophobic/hydrophilic environments as a result of the 

surface interactions. Additionally, the changes in the amide I/II intensity ratio 

indicates that the protein is also held in different orientations in average 

depending on the underlying surface chemistry.  
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Figure 2. FT-IRRAS spectra of the Amide I region of c-Mb immobilized on mixed 

MUA/DT SAMs with different surface compositions, XMUA
Surf : (a) 1 , (b) 0.9 and 0.76, 

(c) 0.46, and (d) 0.15 and 0. Experimental Amide I bands (····) with the fitting 

components of the different secondary structures deconvoluted are included: (—) β-

sheet and unordered, (—) α-helix, (—) β-turn, (—) β-sheet antiparallel, and (—) 

convoluted signal (Appendix A). 



Conformational changes of immobilized c-Myoglobin: ET gating         Chapter 6 

273 

 

Table 1. Infrared data obtained for c-Mb from solution and immobilized on SAMs. 

 

Table 2. Conformational analysis of c-Mb immobilized on MUA:DT SAMs with 
different ratios. 

a Data obtained from Synchrotron radiation circular dichroism (SRCD) spectra of c-Mb in water.18  
b Data obtained by the ATR spectra of c-Mb from D2O solution.  
 

 

Curve fitting analysis of the component bands corresponding to the 

protein secondary structures reveals that the c-Mb adsorbed on surfaces 

containing 100%, 16% and 0% –COOH/-COO- groups shows the more striking 

conformational changes (Figure 2 and Appendix A). This fact is manifested by 

     Amide I máxima  

(cm-1) 

Amide II maxima  

(cm-1) 

Amide I/II    

intensity ratio 

c-Mb in solution  1651 1535 1.49 

cMb on MUA/DT XMUA
Surface    

1.00/0.00 (1) 1.00 1671 1547 1.48 

0.70/0.30 (2) 0.90 1671 1545 1.40 

0.50/0.50 (3) 0.62 1670 1547 1.38 

0.45/0.55 (4) 0.46 1664 1546 1.17 

0.05/0.95 (5) 0.16 1670 1545 1.20 

0.00/0.00 (6) 0.00 1668 1545 1.20 

(% secondary 
structure) 

c-Mba c-Mbb c-Mb 
SAM (1) 

c-Mb 
SAMs (2,3) 

c-Mb 
SAM (4) 

c-Mb 
SAMs (5,6) 

β-sheet 13 11 34 30 28 52 

β -sheet/random 45 46 40 ± 3.5 34 ± 6.6 35 ± 4.9 55 ± 0.7 

α-helix 42 39 21 ± 2.8 31 ± 2.9 28 ± 5.7 17 ± 2.1 

β-turn 13 15 40 ± 0.7 30 ± 7.8 37 ± 9.9 29 ± 1.4 
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a significant reduction of the percentage area of the component band 

centered at 1655 cm-1 (α-helix domains) and a concurrent increase of the β-

sheet bands contribution as compared to the protein in solution (Table 1). 

 

Such change in the secondary structure contents suggests that the c-

Mb is partially denatured on highly hydrophobic and hydrophilic surfaces, 

which is consistent with results previously reported for other proteins 

adsorbed on similar monolayers.57 The degree of conformational change is 

mainly dependent on the protein-surface interactions and the internal 

bonding strengths that hold a particular protein conformation. At 

hydrophobic surfaces, a significant increment of the entropy should be 

produced by the loss of water from the c-Mb structure and the monolayer. 

Therefore, the exclusion of water maximizes the surface-protein interactions 

and distorts the protein structure allowing the greater conformational 

changes of the c-Mb. In the case of 100% –COOH/-COO- surfaces, the 

adsorption process should be mainly determined by the electrostatic 

interactions between the carboxylate groups and the positively charged c-Mb 

surface. Then, the high density of negative charge at the MUA surfaces would 

induce a strong adsorption of c-Mb which may cause a deformation of the 

overall protein structure despite the surface-water interaction effects. These 

results suggest that effective protein-surface interactions rather than 

hydration contributions are driving the partial protein unfolding in these 

systems, as it have been also demonstrated by molecular dynamics 

simulations of the GB1 hairpin peptide on SAM surfaces with different 

hydrophobicities.58  
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On the other hand, the degree of conformational change for c-Mb 

deposited onto mixed SAMs with a 90%, 62% and 46% surface content of –

COOH/-COO- groups is less evident than that for the more hydrophobic and 

hydrophilic layers (Table 1), most likely due to the balance of hydrophobic and 

hydrophilic short-range interactions. As already commented, a high 

distribution of different protein orientations is also expected according to the 

changes in the amide I/II intensity ratios observed for the c-Mb on the SAM 

surfaces (Table 1). Nevertheless, the most significant overall change in the 

protein orientation is produced from –COOH/-COO- enriched-surfaces ( 1  

XMUA
Surf  0.62) to –CH3 enriched ones (0.46  XMUA

Surf  0).    

   
6.3.1.2. Resonance Raman (RR) spectroscopic characterization 

RR spectroscopy is an especially useful and highly sensitive technique 

for unravelling the oxidation and spin state, structural features and 

orientation of the heme iron coordination center of metalloproteins 

immobilized on surfaces. The heme group of Mb gives rise to two distinct 

electronic transitions, the so-called Soret (near to 400nm) and α-β bands 

(500-650 nm). Laser excitation in the Soret and α-β (Q) band regions brings 

about different enhancements of the Raman vibrational bands via different 

resonance scattering mechanisms (Chapter 2 - Section 2.4.2.2.1.).70  In a first 

approximation, the heme cofactor of c-Mb can be considered to be of D4h 

symmetry. Since the transition dipole moments of the heme groups lie in the 

porphyrin plane, the RR spectrum of the protein is dominated by the in-plane 

vibrational modes. Upon Soret-band excitation (410 nm) the RR spectrum is 
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preferentially enhanced by the totally symmetric modes (A1g) which gain 

intensity via the A-term enhancement mechanism. Under these 

circumstances, due to the enhanced depolarization of the scattering radiation, 

the RR spectra obtained for the protein at the surface are essentially identical 

to that obtained in solution in terms of band positions, widths and relative 

intensities. Although Soret-band excitation measurements provides the 

highest enhancements are insensitive to protein reorientation.  

 
By contrary, symmetric bands lose intensity upon Q-band (α) excitation 

(510-540 nm) while the non-totally symmetric modes (B1g, B2g, A2g) gain 

intensity via the B-term enhancement mechanism. This much weaker Q-band 

excitation leads to an intermediate situation, where depolarization of the 

scattered radiation is still appreciable but not complete. Thus, a reasonable 

compromise between acceptable enhancement and qualitatively predictable 

selection rules are still applicable. These selection rules rely on the fact that 

the individual components of the scattering tensor are influenced by the 

direction of the electric-field vector and the orientation of the heme plane. 

Thus, totally symmetric (A1g) and non-totally symmetric (B1g, B2g, A2g) modes 

display a different surface enhancement of the Raman scattering under pre-

resonant excitation (e.g. 510-540 nm) depending on the orientation of the 

heme with respect to the metal surface. Although absolute orientations 

cannot be accurately determined, changes in the average orientations can be 

still observed. Therefore, different orientations of the adsorbed protein with 

respect to the surface are expected to lead the variation of the relative 

intensity ratio of modes with different symmetry, i.e., A1g vs B1g (e.g. 
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ν10(B1g)/ν4(A1g)). This is especially interesting for direct monitoring of protein 

dynamics at interfaces. 

 

Figure 3. RR spectra of c-Mb in aqueous solution (a) and immobilized on mixed SAMs 

before (b) and after (c) the addition of a drop of PBS solution (30 mM phosphate 

buffer at pH=7.6). λex= 532nm. 

 
Figure 3 shows the RR spectra of c-Mb in solution and deposited on 

different mixed SAMs upon excitation at 532 nm in the Q-band region. Most 

of the vibrational bands originate from C-C and C-H vibrations of the 

porphyrin macrocycle which are influenced by the conjugated interaction of 

the π electrons between the central metal ion and the porphyrin ring.  The 

most important bands are labelled in table 3, with some of them directly 
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related with the coordination and spin state of the protein cofactor. It is 

widely accepted that the peaks at ≈1350-1370 cm-1 assigned to C-N vibrations 

71, 72 are sensitive to the oxidation state of the heme iron,70  appearing as a 

broad band placed at 1374 cm-1 for ferric Mb species upon Q-band 

excitation.73, 74  Bands at 1610 cm-1 and 1640 cm-1, which are attributed to the 

asymmetrical stretching mode of CαCm of the heme (ν10),75 are considered the 

high and low spin state markers of the heme iron, respectively.72, 76  

 
Table 3. Assignment of RR peaks of c-Mb depicted in wavenumbers (cm-1). 

Experimental Reference 74, 75 Assignment N°/Symmetry 75, 77 

1640 Low spin:1640-1644 ν(CαCm)asym ν10 / B1g 

1614 High spin: 1610-1614 ν(CαCm)asym ν10 / B1g 

1580 1583 ν(CαCm)asym 
ν19 / A2g 

ν37 / Eu 

1557 1563 ν(CβCβ) 
ν11 / B1g 

ν2 / A1g 

1540  1544 ν(CβCβ) ν11 / B1g 

1507 1508 ν(CβCβ) 
ν3 / A1g 

ν38 / Eu 

1374 Fe3+: 1370-1375 ν(pyr half-ring)sym ν4 / A1g 

1345 1341 ν(pyr half-ring)sym ν12 / B1g 

1305 1301 δ(CaH=)2 ν21 / A2g 

1210 1209 ν(CmH) ν13 / B1g 

1170 1169 ν(pyr half-ring)sym ν30 / B2g 
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The RR spectrum of the c-MB in solution is shown in Figure 3a. The 

presence of the bands at 1240, 1374 and 1640 cm-1 corroborates that the 

heme group is in a six-coordinate low spin state (6C-LS) of its ferric form, as 

previously stated by UV measurements (Chapter 2 – Section 2.3.3.1.). 67 These 

results indicate that the distal histidine (H64) is strongly attached to the iron 

center at the sixth position. The RR spectra show remarkable differences 

when the c-Mb is attached to 2D ordered arrays of MUA:DT molecules (Figure 

3b). Interestingly, while the marker band of the oxidation state is maintained 

at 1374 cm-1, the band at 1640 cm-1 disappears with the concurrent 

appearance of a set of bands at 1614 cm-1, 1580 cm-1, 1557 cm-1 and 1540 cm-

1,  which are representative of a six-coordinated high spin state configuration 

(6C-HS) typical of MbH2O structures.75 This low to high spin state conversion 

put forward that direct protein-surface interactions provoke structural 

changes on the His/His ligated heme environment based mainly in the 

swapping of the axial His ligand with a water molecule.  

A similar change in the iron coordination has been recently reported for the 

electrostatically adsorption of a diheme cytochrome C on carboxyl-terminated 

monolayers using SERR spectroscopy.61 Reversible structural changes of the 

heme coordination pattern have also been reported for cytochrome C 

adsorbed on Ag coated electrodes when the Met-80 ligand is specifically 

removed from the sixth coordination site, that remains either vacant (five-

coordinated high spin, 5C-HS) or is occupied by a His (six-coordinated low 

spin, 6C-LS) or a water molecule (6C-HS).78  
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Scheme 3. A general representation of the structural properties of the c-Mb 

prosthetic group is shown as a function of different experimental conditions.  
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Upon adsorption of c-Mb, the salt bridges formed by electrostatic 

interactions between the positively charged regions of the modified Asp and 

Glu residues and the carboxylate groups on the coated electrode, together 

with the hydrophobic interactions between the methyl headgroups and 

hydrophobic aminoacids, may cause a distortion of the heme crevice. This 

probably leads to the removal of the His64 from the distal position of the 

heme iron that allows the subsequent incorporation of a water molecule from 

the surroundings into the prosthetic group structure (Scheme 3).  

 

Remarkably, when the immobilized c-Mb assemblies are exposed to a 

phosphate buffer solution at pH 7.6, the low spin marker band at 1640 cm-1 

partially returns to the RR spectra (figure 3c) indicating that a significant 

population of cationized proteins (6C-HS) swap back to the six-coordinate low 

spin state (6C-LS) under these experimental conditions. It have been 

demonstrated that the binding of phosphate anions to positively charged 

surface domains of cytochrome C located close to the heme pocket may cause 

significant structural changes in the hydrogen-bonding network of the heme 

cavity and in turn in the strength of the Fe3+-Met80 bond and its geometry.79 

It is also worth mentioning that in this particular case the relative intensity 

ratio of the modes with different symmetry, ν10(B1g)/ν4(A1g) increases 

compared to that of the c-Mb directly immobilized on surfaces from water 

(i.e. absence of dissolved ionic species). Then, this fact is probably related with 

a change in orientation of the heme of a part of the global population of the 

immobilized proteins with respect to the surface upon addition of phosphate 

anions. In this sense, it is proposed that the interaction of phosphate anions in 



Conformational changes of immobilized c-Myoglobin: ET gating         Chapter 6 

282 

 

the close proximity of the prosthetic group is likely facilitated when the 

proteins are oriented towards the protein/electrolyte interface in an upside 

down position by making the heme groups accessible to the buffer solution. 

Such electrostatically-driven binding of phosphate anions to positively 

charged domains of adsorbed proteins in an upside down orientation should 

give rise to relevant structural changes in the heme cavity which may involve 

the strengthening of the Fe-His64 interaction and in turn a high to low state 

transition of the iron coordination (Scheme 3).  

 

On the basis of these results, it is concluded that c-Mb immobilised on 

MUA:DT mixed monolayers mainly adopts two heme configuration states 

linked to different surface orientations when phosphate ions are 

incorporated: (I) protein populations in a high-spin state configuration (6C-HS) 

with the heme groups probably facing towards the functional groups of the 

monolayers which coexists with (II) protein populations in a low-spin state 

(6C-LS) whose heme groups are probably turned upside down facing towards 

the solution interface.  

 

6.3.2. Electrochemical response of c-Mb immobilized on SAMs 

CV is used to evaluate the redox behavior of the native and c-Mb upon 

varying the negative charge density at the protein/SAMs interface. Figure 4 

shows the ET response of the c-Mb non-covalently immobilized on 2-D 

assemblies of MUA and DT at different surface mixing ratios. In the case of 

native Mb, the electrochemical response of the adsorbed protein was absent 
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for all the experimental conditions and mixed SAMs tested. However, a 

significant influence of the SAM´s surface composition on the ET behavior of 

the c-Mb is observed. Three regions could be distinguished according to the 

electroactive response of the c-Mb adsorbed at the top of the monolayers 

studied. 

 

Figure 4. Cyclic voltammograms of c-Mb deposited on MUA:DT mixed SAMs in 30mM 

phosphate buffer at pH=7.6. MUA:DT surface ratio: (a) 1.00:0.00; (b) 0.90:0.10; (c) 

0.62:0.24; (d) 0.46:0.54; (e) 0.30:0.70 and (f) 0.16:0.84 and 0:1. Scan rate: 0.1 V/s.  

 

The first region is constituted by the c-Mb/MUA interface (figure 4a) in 

which the ET reaction is completely hindered. This behavior seems to 

contradict that of some authors have reported for the ET response of redox 

proteins through carboxylic acid-terminated self-assembled monolayers , and 
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whose native structure is mainly preserved upon immobilization. 49, 54, 55 15,20,21 

However, the lack of electrochemical activity of c-Mb on MUA SAMs can be 

understood on the light of its significant conformational changes due to the 

high electrostatic forces between the positively charged protein surfaces and 

the negatively charged assemblies.  Then, it is argued that the partially 

unfolded architecture of the c-Mb on MUA monolayers may induce the heme 

center to be displaced from the hydrophobic pocket, thus the electrostatic 

repulsion between the propionate groups of the prosthetic groups and the –

COO- groups of the layers could favor the protein reorientation into non-

active ET configurations. This idea would be consistent with those proposed in 

literature concluding that the electrochemical response of metalloproteins is 

modulated by the surface charge properties.  In this sense, Wang et al.27, 60 

suggested that the poor ET activity of the cytochrome C attached to 6-amino-

1-hexanethiol SAMs was linked to a decrease of the content of α-helix 

domains. Lojou et al. 80 have also claimed that the direct electron transfer 

(DET) of nickel-iron hydrogenase enzymes can be controlled by the 

electrostatic interactions through the acidic path of aminoacids that tunes the 

orientation of the enzymes by adopting upside down configurations as a 

function of the charge on the electrochemical interface.  

 

In the interval of MUA surface compositions between 90% and 46% 

(Figure 4 b-d), well-defined voltammetric responses are obtained indicating a 

better electronic coupling (i.e. “wiring”) between the redox center and the 

metal surface. As it has been previously demonstrated by IRRAS analysis, c-Mb 

immobilized on these mixed SAMs undergoes the lesser conformational 
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change as compared to the native structure of the protein in solution. These 

findings display that the electrochemical properties of the c-Mb can be tuned 

by the interactions at the protein/surface interface, which directly modulate 

the conformation and/or orientation promoting the most efficient ET 

configurations. 

 
At the third region of surface compositions where c-Mb is deposited 

on –CH3 enriched and pure DT monolayers, the protein electroactivity decays 

considerably until the disappearance of the current peaks associated to its 

redox response (Figure 4e,f). In these surfaces, FT-IRRAS measurements 

showed that the c-Mb structure experienced the greater increase of β-sheet 

content from 13% in solution to 52 % in the adsorbed state, and the higher 

reduction of α-helix content from 42% to 17%, respectively. FT-IRRAS and RR 

results also indicated a significant reorientation of the adsorbed proteins on 

the surfaces with the highest hydrophobic environments. Then, similarly to 

what happens on pure hydrophilic surfaces, and taking into account that is 

generally accepted that α-helix domains are more compact that other 

secondary structures such as β-sheet, it is expected that a remarkable 

unfolding of the c-Mb architecture and/or a significant surface reorientation 

of the proteins would be responsible for the inhibition of the ET function. 

 
The formal redox potential, E°’, of c-Mb in solution has been recently 

reported by spectroelectrochemical measurements.81 It was observed that a 

wide distribution of redox potentials landscape of +0.02 V (17%), -0.08 V 

(38%) and -0.160 V (45%) vs Ag/AgClsat arises upon cationization of native Mb 

with DMAPA molecules. Authors argued that such differences in the redox 
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potential values were due to populations of c-Mb proteins with a different 

number of DMAPA molecules attached to their surface, and consequently 

distinct microenvironments on the c-Mb/electrolyte interface were induced in 

the prosthetic group surroundings. The more positive value of E°’ found for 

the smallest population of proteins (17%) was assigned to native-like Mb 

unsuccessfully cationized by DMAPA molecules. The shift of E°’ to negative 

potentials corresponding to the largest protein populations (83%) was 

ascribed to subtle structural changes due to a high to low spin state transition 

(i.e. 6C-HS to 6C-LS) driven by the insertion of DMAPA moieties in aminoacid 

residues positioned at the surroundings of the heme pocket.  

 

 

Figure 5. Apparent formal potential, E°’, of c-Mb immobilized onto different MUA:DT 

mixed SAMs/Au(111) surfaces. The potential values are referred to the 0.05M 

calomel reference electrode (EEC 50mM = EAg/AgCl -0.12 V). Scan rate: 0.1 V/s. 
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There are several factors that can affect the redox potential of 

metalloproteins such as changes on the electrostatic potential in the 

proximities of the heme group, 82 different heme orientation of the heme 

pocket  and conformational or/and structural changes involving the heme 

area and its surroundings produced by perturbations in the axial ligand or in 

the orientation of the imidazole plane. 83 Among them, structural changes 

around the Fe3+-distal ligand bond constitute a key factor that controls the 

redox potential behavior of the heme group.  

 
Figure 5 shows the apparent formal redox potential, E°’, determined as 

the midpoint of anodic and cathodic peak potentials of the redox waves of the 

c-Mb immobilized on the different mixed SAMs. The values obtained display a 

large positive potential shift approximately of +0.3-0.45V in comparison with 

both the formal redox potentials of the predominant c-Mb populations at the 

6C-LS state and native Mb observed in buffer solutions.83, 84 A similar 

remarkable increase in the E°’ has been recently attributed to a coordination 

transition of the heme center of di-heme cytochrome C from the low to high 

spin state (6C-LS → 6C-HS) as a result of an adsorption-induced swapping of 

the axial ligand with a water molecule on carboxyl-terminated SAMs.61 In fact, 

these findings have been also supported by molecular dynamics simulations 

showing that the communication of the heme center with bulk solvent though 

the opening of cavities/channels at the cytochrome c structure facilitates the 

increase of  E°’ due to the shielding of the negative charges of the heme 

propionates by water molecules.85 It is also worth highlighting that His64 

residue plays an important role in the binding properties of ligands in the 6C-
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HS heme structure of Mb as it forms an H-bond with the H2O that is 

coordinated to the Fe(III) form. 86 This interaction creates a highly ordered 

distal pocket H-bonding “lattice/network” extending to the heme periphery 

and bulk solvent via N of His64 and Arg45 where the negative charge density 

of propionate groups is screened. 87 This H-bond makes the ET kinetics of the 

protein electrochemistry sluggish compared to Mb mutants with the distal 

pocket in polar environments where H2O is heme coordinated but non H-

bonded to the His64. 87 Consequently, it can be concluded that the population 

of c-Mb immobilized on the mixed SAMs at the 6C-HS state (i.e. H2O 

coordinated and probably non H-bonded) are mainly contributing to the redox 

response while those at the 6C-LS state (i.e. distal His64 coordinated) would 

be electrochemically inactive (Absence of redox response at negative 

potentials). c-Mb redox properties seem to be not only determined by the 

redox couple coordination state, but also likely by the accessibility of the bulk 

solvent molecules to the heme pocket and the lower reorganization 

requirements for the ET activation energy of heme Fe(III)-H2O coordinated 

excluding H-bonding of solvent molecules near its periphery.  

 
The electrochemically active and total surface coverage of c-Mb 

immobilized on surface composition-dependent MUA:DT SAMs were 

determined either from the integrated charge of both cathodic (Qc) and 

anodic (Qa) voltammetric peaks of the surface-confined monoelectronic redox 

reaction of the c-Mb at low scan rates (10 mV/s) upon background correction 

by subtraction of the double-layer charge contribution or by QCM 

measurements, respectively (Figures 6 and 7).  
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Figure 6. Total (○ ― ) and electroactive (○ ― ) surface coverage determined* for c-

Mb attached to MUA:DT mixed SAMs of variable composition in 30 mM phosphate 

buffer at pH=7.6. *Scan rate: 10 mV/s. ΓET =Q/nF (n=1e-, F=96484 C/mol e-) 

 

Figure 7. Time resolved frequency changes of a 5 MHz quartz crystal surface covered 

by gold upon addition of c-Mb to a MUA:DT coated surface with a 0.62:0.38 surface 

mole ratio.  
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It is observed that both the electroactive, ΓET, and the total, Γt, surface 

coverage of c-Mb depends on the surface composition of the layers (Figure 6). 

ΓET increases to reach a maximum value of 12 pmol/cm2 on surfaces with 

XMUA
Surface = 0.62, and then decay to zero either drastically or progressively at 

pure MUA and DT enriched-surfaces (XMUA
Surf < 0.3), respectively. A similar 

trend is also observed for the Γt values of c-Mb with the surface composition 

of the layers. The highest Γt values are also preferentially obtained at 

hydrophilic surfaces (XMUA
Surf > 0.50) where a full monolayer coverage of 26 

pmol/cm2 is reached at XMUA
Surface = 0.62, instead of hydrophobic ones where 

Γt decay to a value of 13 pmol/cm2.  

 

Table 4. Electroactive and total surface coverage of c-Mb onto mixed SAMs.(a) 

(a) The data included are the average of experimental results obtained for different repetitions. The 
coverage values are reported in pmol/cm2 (b) Abbreviations used: ΓET = electroactive surface coverage, 
Γmax

end-on= theoretical maximum coverage of Mb in edge-on orientation, Γmax
side-on= theoretical maximum 

coverage of Mb in side-on orientation. (c) Theoretical coverages were obtained from Mb dimensions (4.3 
nm X  3.5 nm X 2.3 nm) reported from ref.88 Similar sizes have been assumed for native and c-Mb. 

 

Therefore, on the basis of the maximum theoretical coverage 

estimated for the end-on and side-on configurations of c-Mb on surfaces 

(Table 4) is reasonable to assume that end-on binding models would be 

compatible for c-Mb at hydrophilic surfaces. On the other hand, side-on 

MUA/DT    XMUA
Surf  ΓET

 (b)   Γtotal
 Γmax end-on (b,c) Γmax side-on (b,c) 

1.00/0.00 1.00 0 18 26 14 

0.70/0.30 0.90 9 22   

0.50/0.50 0.62 12 26   

0.00/1.00 0.00 0 13   
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configurations of c-Mb would be more prone in hydrophobic surfaces. It is 

important to highlight that Γt is higher than ΓET in all the cases, being the 

difference between both values approximately of 13 pmol/cm2.  This clearly 

indicates that a significant population of non-active ET configurations of c-Mb 

is always present at hydrophobic and hydrophilic films. The amount non-

electroactive proteins accounts approximately to the total coverage of c-Mb 

on DT and MUA layers which could be linked to the partial denaturalization of 

the adsorbed proteins. On the other hand, the total population of c-Mb on 

mixed monolayers at intermediate surface compositions (0.9 > XMUA
Surf > 0.30) 

is composed by distributions of both inactive and active ET configurations that 

are coexisting.  
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Figure 8. Normalized current density by the scan rate cyclic voltammograms of c-Mb  

adsorbed onto mixed MUA/DT SAMs with different surface compositions, XMUA
Surf: (A) 

0.46, (B) 0.9 and (C) 0.46. Dependence of the apparent surface coverage, ΓET, (D) and 

current density (E) vs the scan rate of the redox response of immobilized c-Mb.  

D E 
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Figure 8 shows the evolution of the anodic and cathodic peak current 

and the electroactive surface coverage of the surface-confined redox 

processes of c-Mb with the scan rate. Unusually, the peak current (ip) 

evolution is not linearly dependent on scan rate and the electrochemically 

active surface coverage of c-Mb display is inversely-dependent on the scan 

rate. This behavior is qualitatively distinct from that commonly observed for 

redox molecules, proteins or enzymes involved in surface-confined 

electrochemical processes, where a linear dependence of the current peak 

and constant ΓET values on the scan rate are usually found.36, 41, 42, 89 The 

apparent ΓET of immobilized c-Mb progressively decreases while increasing the 

scan rate (0.01 to 8 V/s) from a maximum value of 12, 9 and 7 pmol/cm2 to 2, 

1.5 and 0.4 pmol/cm2 for mixed SAM surface compositions of XMUA
Surf =0.62, 

0.90 and 0.46 ,respectively (Figure 8a). For the shorter time scales (i.e. higher 

scan rates) the number of electrochemically active proteins diminishes 

exponentially upon reaching limiting values approximately of an 5-15% of the 

maximum electroactive coverage. Then, at the larger time scales of the CV 

experiments (i.e. lower scan rates) a significant fraction of the population of 

adsorbed c-Mb that initially appears to be latent in stable binding non-active 

ET configurations, becomes electrochemically active by its reorientation to 

more efficient ET configurations. Such behavior strongly suggests that an 

outstanding fraction of the ET active proteins display a dynamic nature, likely 

by conformational rearrangements of the c-Mb driven by electric fields at the 

top of the SAMs.32, 40 Therefore, it is proposed that kinetics of the ET gating 

process are essentially controlled by the protein dynamics instead of the non-

adiabatic ET tunneling step through the SAMs.  
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Scheme 4. Relationship between structure and electroactive function of c-Mb 

attached to MUA:DT mixed SAMs. 
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Bearing in mind all these ideas and that related with the structural analysis of 

the interfaces by spectroscopic techniques, the ET behavior of c-Mb on the 

different SAM constructs can be explained in the basis of the substantial 

variety of binding orientations of the immobilized proteins that are sorted in 

three well-defined populations and two different heme iron coordination 

patterns as follows (Scheme 4):  

 
(1) Electrochemically inactive proteins with the iron center in a six-

coordinated low spin state (6C-LS) 

(2) Electrochemically active proteins with the iron center in a six-coordinated 

high spin state (6C-HS) 

(3) Conformational/Configurational dynamic proteins in a six-coordinated high 

spin state (6C-HS) that must reorient from thermodynamically stable but 

redox-inactive configurations to redox-active ones allowing efficient ET.  

 
As far as we know, there has only been reported a similar behavior to 

that described here in the voltammetric response of dehaloperoxidase (DHP) 

adsorbed on –COOH/-OH mixed alkanethiols monolayers. 90, 91 Bowden et al. 

have proposed a dynamic docking scheme as a model to explain the non-

linearity of ip vs scan rate, and the unusual scan rate dependence of the 

apparent surface coverage observed at DHP/monolayer interfaces. 90, 91 The 

electrochemical behavior of immobilized DHP was divided according to three 

different types of protein populations: a) active, b) dynamic that are able to 

reorient from inactive to active ET states, and c) inactive ones. The direct 

correlation between binding and protein function/reactivity has been usually 

accepted at interprotein ET studies. 92, 93 
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 However, Hoffman et al. 94 have investigated the ET reaction between 

the Mb and the cytochrome b5 disclosing a new paradigm in protein-protein 

dynamic interactions designated as Dynamic Docking (DD) landscape, in which 

reactivity and binding are decoupled due to a large ensemble of weakly bound 

protein-protein configurations where only a few are ET active. This model can 

be extrapolated to the scheme of redox proteins tied to biomimetic surfaces 

by electrostatic binding. Avila et al. 54 have proposed that the gated ET of the 

cytochrome C attached to ω-carboxyl alkanethiol SAMs is directly tuned by 

the interconversion rate of 2 configurations: a) thermodynamically stable but 

ET inactive and b) ET active complexes that are statistically disfavored.  

 

 Experimental data of the interfacial ET processes of redox proteins 

have shown that the redox reaction can be kinetically controlled by two 

different regimes: (i) Distance-independent gating or (ii) distance-dependent 

non-adiabatic electron tunneling.33, 36, 46 In this sense, Murgida et al. 32, 95 have 

addressed by time-resolved SERR and SEIRA spectroscopies that the average 

orientation of Cytochrome C in electrostatic complexes with SAM-coated 

surfaces is dependent on electrode potential and the charge density of the 

coatings. They argue that protein reorientation is very fast for long alkyl chain 

carboxyl-terminated SAMs (i.e. low interfacial electric fields) but slows down 

dramatically and becomes ET rate-limiting at shorter distances in SAMs with 

usually less than 10 methylene units (i.e. higher interfacial electric fields). 

Thus, they ascribed that while the measured ET rates are determined by 

electron tunneling probabilities at longer distances, the ET reaction kinetics is 

gated by electric-field-controlled protein dynamics (ET gated) at shorter ones.  
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The picture emerging from these studies is that local electric fields determine 

both mean orientation and mobility of Cyt C in electrostatic complexes. Thus, 

the ET rates represent a convolution of dynamic sampling in search of 

favorable ET pathways and electron tunneling probabilities at each surface 

configuration. 

 
 Even though c-Mb is linked to MUA and DT SAM surfaces that are 10 

methylene units long, it is proposed that the most feasible scenario for ET 

reaction kinetics is still gating by electric-field-controlled protein dynamics 

rather than electron tunneling probabilities as described in thinner carboxyl-

terminated SAMs surfaces. This is based on the direct observation by CV that 

the redox processes are clearly controlled by protein dynamics in these 

assemblies. Moreover, the electrochemically active c-Mb coverage decreases 

on mixed SAMs while diminishing the –COOH contents, which implies that a 

significant reduction of the number of –COO- groups takes place 

concomitantly, considering that such assemblies display similar surface pKa 

values. This fact in turn provokes the interfacial electric field strength to 

diminish at these SAM/electrolyte interfaces.  

 
 Then, the charge densities or local electrical fields should be higher 

than expected at the top part of the ω-carboxyl substituted C10 SAMs in order 

to explain such results based on ET gating controlled by the c-Mb dynamics. It 

worth to mention that the ET rate constants values and the onset of the 

distance-independent gating region for the transition from the “low” to the 

“high electric field” regime may also vary depending on the intrinsic 

physicochemical properties of the proteins, such as dipole moments and 
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distribution of charge at the protein surfaces, as well as other factors related 

to the coatings and the metallic support.40, 96, 97  

 
  Electrodes coated with specifically adsorbed sulfate ions or phosphate 

terminated SAMs have shown a substantial increase of the interfacial charge 

density and stronger electric fields.40 In this sense, ET constant rates for Cyt C 

adsorbed on SO4-Ag and PO3-SAM are significantly lower than for COOH-

CnSAMs for comparable distances.40 Then, an increase of the local 

concentration of PO4
3- ions at the SAM/electrolyte interface might be driven 

by the uniformly distributed positive surface charges of the immobilized c-Mb 

molecules. As a consequence, an increase of the interfacial electric fields 

would be compatible with the control of conformational/configurational 

dynamics on ET of the adsorbed c-Mb, even at ω-carboxyl substituted C10 

SAMs with lower –COO- surface contents.  
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Figure 9. Variation of the apparent ET rate constant versus XMUA
Surface for cationized 

Myoglobin immobilized onto MUA:DT mixed SAMs/Au(111) electrodes. 

 

Table 5. Apparent ET rate constants data for cationized Myoglobin immobilized on 

different mixed MUA/DT mixed monolayers.(a) 

(a) The data included are the average of experimental results obtained for different repetitions. (b) The 
surface composition of the mixed monolayers was calculated by the potentials of the reductive 

desorption peaks assuming a simple weighted average from the individual components.98  

MUA/DT    XMUA
(b)   kET

app (s-1) 

1.00/0.00 1.00 0.00±0.00 

0.70/0.30 0.90 0.30±0.29 

0.50/0.50 0.62 2.90±0.40 

0.45/0.55 0.46 8.30±0.29 

0.05/0.95 0.15 0.00±0.00 

0.00/0.00 0.00 0.00±0.00 



Conformational changes of immobilized c-Myoglobin: ET gating         Chapter 6 

300 

 

Figure 9 displays the apparent ET rate constants, kET
app, calculated by 

using the Laviron´s model for c-Mb immobilized on MUA:DT mixed SAMs 

(Appendix B).99 The lack of electrochemical response of c-Mb onto the pure 

MUA and DT SAMs is again justified by conformational changes involving a 

heme reorientation process on MUA surfaces and by the unfolding of the 

protein on DT monolayers or hydrophobic-enriched surfaces. The best 

electronic coupling of c-Mb is attained on SAMs with intermediate MUA molar 

fractions while ET rates are drastically lowered out this interval (Figure 9 and 

Table 5). An approximated monotonically increase of the kET
app is appreciated 

in the range of MUA surface compositions from 92% to 46%, where the 

adsorbed proteins almost preserve the conformation of its native-like species 

in solution. This fact would be in accordance with the idea that ET processes 

of the c-Mb are mainly tuned by its reorientation dynamics and influenced by 

surface charge density effects at the monolayer/electrolyte interface. 

Accordingly, within the best coupling ET region, those MUA surface 

compositions (XMUA
Surf =0.46) leading to the lower surfaces charge densities 

facilitate the mobility of the immobilized proteins and in turn faster 

reorientation dynamics which may contribute to attaining of the most ET 

efficient configurations and higher ET rates. However, the influence of redox-

state rearrangements in the ET kinetics should not be discarded to occur 

during the electrochemical experiments. This information could be accessed 

by time-resolved SERR and SEIRA spectroelectrochemical measurements.  

 

Briefly, it has been confirmed that the non-native states of the Mb and 

the underlying surface chemistry plays a crucial role on the ET function of the 



Conformational changes of immobilized c-Myoglobin: ET gating         Chapter 6 

301 

 

c-Mb deposited on biomimetic surfaces. The variation in the balance of 

electrostatic and hydrophobic interactions at the top of the SAMs directly 

impinges on the control of the surface density coverage of the immobilized 

proteins, overall protein conformational changes and heme coordination state 

transitions, and in protein dynamics under interfacial electric fields, which are 

key factors to determine the direct ET function of the metalloproteins and 

enzymes in bioelectrochemistry and bioelectronics. 45, 80, 100, 101 

 

6.3.3 Electrocatalysis of c-Mb adsorbed on mixed SAMs/Au 

surfaces  

 
The dynamic motion of enzymes during catalytic events is one of the 

many aspects of protein chemistry that is still in its infancy.102-104 During the 

cationization process, Mb changes its global conformation due to the chemical 

modification of glutamic and aspartic acid chains, which play a key role on 

inter and intra helix electrostatic stabilization. This kind of non-native state of 

the Mb is provided with structural flexibility and a considerable increment of 

the positive charge density at the protein surface. This conformational state 

may enhance the protein-protein and protein-SAM electrostatic interactions 

and the capacity of the c-Mb to undergo structural rearrangements and to 

open of new access pathways/channels for catalytic processes. In fact, native 

Mb is electrochemically inactive onto the SAMs constructs studied in this 

work. By contrary, the c-Mb immobilized on the SAM coated surfaces recovers 

the ET function under the experimental conditions previously described. 
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Figure 10. a) CV of c-Mb attached on a mixed monolayer with 0.62:0.38 MUA:DT 

surface ratio upon successive additions of 1mM of H2O2: b) to g). Scan rate: 0.1V/s. 

 
To investigate how the structure and dynamics of the cationized non-

native state of the Mb and the heme coordination pattern can affect the 

electrocatalytic activity towards the reduction of the H2O2, the voltammetric 

response of surface-confined c-Mb/SAM complexes has been investigated at 

surface compositions (XMUA
surf=0.90, 0.62 and 0.46) showing the higher ET rate 

constants and better wiring efficiency with the electrode (Figure 10). When 

H2O2 is added to the phosphate buffer solution (pH 7.8), the cathodic current 

sharply increases at negative potentials in contrast to what happens to the 

anodic current. The c-Mb heme Fe(II)/Fe(III) couple is proposed to participate 

in the mechanism of catalytic reduction of H2O2 as follows (Scheme 5): 
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c-Mb-heme Fe (III)+  H+ +  e- c-Mb-heme Fe (II)   (1) 

H2O2 + 2H+ + 2c-Mb-heme Fe (II)           2c-Mb-heme Fe (III)+H2O  (2) 

 

Scheme 5. Representation of the electrocatalytic mechanism of c-Mb attached to 

mixed monolayers towards reduction of hydrogen peroxide. 

 

In the presence of H2O2, Mb–heme Fe(II) would be converted to its 

oxidized form, Mb–heme Fe(III). Consequently, Mb–heme Fe(III) is reduced at 

the electrode surface by the direct electron transfer (DET). Noteworthy, the 

onset of the electrocatalytic response towards hydrogen peroxide is shifted 

approximately by -200 mV compared to reduction peak of the ET response of 

the heme group of the immobilized c-Mb. This might be a consequence of the 

large electrostatic repulsion energy barrier created at the protein-

SAM/electrolyte interface by the patches of positive charge at the c-Mb 
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surface which probably decreases the local concentration of H+ hindering their 

accessibility and subsequent reduction of the H2O2 to H2O at the heme group.  

The c-Mb/mixed SAMs/Au electrodes have been employed for the 

chronoamperometric determination of H2O2 in solution. The amperometric 

response of the biosensors was recorded at a fixed potential of -0.35 V upon 

successive additions of H2O2 to the buffer solution at pH 7.8 under continuous 

stirring (Figure 11A). The fabricated biosensors with mixed SAMs of XMUA
surf = 

0.90, 0.62 and 0.46 exhibit linear response in the concentration range of 5-

800 μM, 5-120 μM and 5-150 μM, respectively. The sensitivity of each sensor 

was calculated from the slope of the steady-state current versus the H2O2 

concentration plots (figure 11B) and the values obtained were 0.17, 0.63 and 

0.37 μAmM−1cm−2, respectively. From these calibration curves, the detection 

limits values were determined to be 3.1, 1.8 and 4.9 μM , based on a signal-to-

noise ratio of 3 (Table 6). 
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Figure 11. (A)  The amperometric response (A) and the corresponding calibration 

curves of steady-state currents versus [H2O2] (B) of the c-Mb/mixed SAMs modified 

electrodes: ( ▬) XMUA
surf = 0.90,  ( ▬) XMUA

surf = 0.62 and ( ▬) XMUA
surf = 0.46 upon 

successive additions of 25μl of 10mM of H2O2. Applied potential: -0.35V in phosphate 

buffer pH 7.8.  
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Table 6. Electroanalytical performance of Mb-biosensors towards the catalysis of H2O2 

 

 

Modified 

material 

electrode 

Applied 

Potential  

(V) 

Lineal 

Range 

(μM) 

ΓET 

(pmol/cm2) 

LOD 

(μM) 

kET 

(s-1) 

KM 

(mM) 
Ref 

c-Mb/0.70:0.30 

 

-0.35 

vs EC 
5-800 11 3.1 0.30 0.6 

This 

work 

c-Mb/0.50:0.50 
-0.35 

vs EC 
5-120 16 1.8 2.90 1.4 

This 

work 

c-Mb/0.48:0.52 
-0.35 

vs EC 
5-150 4 4.9 8.30 0.3 

This 

work 

Mb/Au-PTy-f-

MWCNT/GCE 

-0.3 

(Ag/AgCl) 
1-5000 2120 0.01 4.86 0.12 105 

Mb/ZrO2/MWCNT

/GCE 

-0.4 

(Ag/AgCl) 
1-116 136 0.53 1.52 0.085 106 

Chitosan-

MWNTs/Mb/AgNP

s/GCE 

-0.3 

(Ag/AgCl) 
25-200 4160 1.02 5.47 0.024 107 

Mb-CeO2/Indium 

tin oxide 

-0.3 

(Ag/AgCl) 

200-

5000 
51 0.6 1.01 3.15 108 

Nafion/Mb/AuNPs

/GCE 

-0.45 

(SCE) 
1.5-90 - 0.5 - - 109 

Mb- titanium 

carbide NPs- 

Chitosan/GCE 

-0.3  

(SCE) 
0.5-50 586 0.2 3.8 0.07 110 

Nafion/Mb/ionic 

liquid/GCE 

-0.45 

(Ag/AgCl) 
1-180 58.9 0.14 - 0.022 111 

Nafion/f-

MWCNTs/MB/Car

bon ionic liquid 

- 8-196 4640 6 0.332 0.0001 112 

Clay- [bmim][BF4] 

/ 

Mb/GCE 

- 3.9-259 4.9·1011 0.73 3.58 0.0176 113 

Mb- 

[EMIM][BF4])/GCE 
- 

110-

1600 
95.6 0.6 4.21 0.29 114 
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The calibration curves tended to level off at higher concentrations of 

H2O2, which denotes that catalytic current and the concentration of H2O2 are 

related by the Michaelis-Menten kinetics. The apparent Michaelis-Menten 

constant (Km), which gives an indication of the enzyme substrate kinetics, can 

be obtained from the Lineweaver-Burk equation: 115  

= +  

where Iss is the steady-state current after addition of the substrate, Imax is the 

maximum current measured under saturated substrate conditions and C is the 

bulk concentration of the substrate. Km was obtained by analysis of the slope 

and intercept of the plot of the reciprocals of the steady-state current versus 

the H2O2 concentration. The Km values of the c-Mb/binary SAMs/Au (111) 

electrodes were evaluated to be 0.6, 1.4 and 0.3 mM for XMUA
surf = 0.90, 0.62 

and 0.46, respectively. These results are compared to those reported for 

other Mb modified electrodes in the table 6. These findings indicate that the 

c-Mb attached to binary assemblies of MUA and DT molecules retains its 

electrocatalytic activity and possesses a high biological affinity towards the 

H2O2 catalytic reduction process. 

Very low detection limits values of H2O2 in biosensors formed by Mb 

entrapped within nanocomposites of modified multi-walled carbon nanotubes 

(MWCNTs) have been recently reported for loadings of Mb of 2120 pmol/cm2. 

105 It is worth noting that if the protein surface loading could be also increased 

up to 2120 pmol/cm2 while keeping the electroanalytical performance of the 

c-Mb biosensors, the detection limits might be decreased to the level of 0.01-

0.015 μM. This put forwards very efficient electrocatalytic behaviour of the 

ssI

1

max

1

I CI

K m

max
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heme-cMb per unit of concentration without considering other synergistic 

effects arising in complex nanocomposite materials (see table 6). This 

efficiency may be related to the structural features of the c-Mb and supported 

by two main considerations: (i) non-native c-Mb architecture provides to the 

protein of sufficient flexibility that may allow the conformational gating 

processes to sample efficient pathways and (ii) the interactions at 

SAM/protein interfaces for certain MUA:DT compositions may facilitate the 

dynamic motion of the protein during the catalytic event and the opening of 

new gates/channels. Both considerations would be compatible with the 

enhancement of the affinity of the heme group for substrate molecules and 

the improvement of the “wiring” with the electrode. The ability of ligands to 

pass through these pathways can be controlled by size discrimination at the 

molecular scale, geometrical constraints like the curvature of the pathway, 

and specific molecular interactions such as hydrogen bonds, electrostatic 

interactions, and hydrophobic interactions with the residues comprising the 

access pathway.116  

The stability of the c-Mb biosensors response were also analysed. The 

operational stabilities of the biosensors were examined with intermittent 

measuring of the current response to 1mM H2O2 additions every 5 days in the 

period of 1 month. Figure 12 illustrates the remaining activity of c-Mb/film 

electrodes related to the initial enzyme activity. The results show that the 

biosensor maintains practically constant activities during a long period of 

time. 
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Figure 12. Dependence of the remaining activity to 1mM H2O2 in c-Mb biosensors on 

operational time. 

 

The relative long response times (≈50s) may be ascribed to the large 

amplitude of the conformational rearrangements of the c-Mb adsorbed onto 

binary films to achieve optimal catalysis. Finally, the repeatability of the 

biosensors were also investigated and the relative standard deviation to 

successive additions of H2O2 10 mM were found to be 4.2% (n = 5), 6.6% 

(n=10) and 3.8% (n=10) for the c-Mb immobilized on monolayers containing 

XMUA
surf =0.90, 0.62 and 0.46, respectively. In general, the biosensors 

constructed have demonstrated to have good repeatability and stability for 

electrochemical detection. 
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6.4. Conclusions 

- The cationization of Mb brings about a non-native Mb state where the 

content of α-helical secondary structure is drastically reduced to a 39 

% and the β-sheet, β-turn and unordered domains increased when 

compared to native Mb. These results are in excellent agreement with 

those reported for Mb cationized by similar methodologies. 

 
- The significant changes in the secondary structure of the non-native 

Mb state in solution has a strong effect on the heme environment 

which is manifested by the transition from a high (6C-HS) to low spin 

(6C-LS) state of the iron moiety upon cationization. 

 
- Upon adsorption of c-Mb on SAM coated gold surfaces, proteins are 

partially denatured on highly hydrophobic and hydrophilic interfaces. 

Effective protein-surface interactions rather than hydration 

contributions are proposed to drive such structural rearrangement. 

 
- Less-evident conformational changes are present for c-Mb deposited 

on mixed SAMs with intermediate surface compositions of –COOH and 

–CH3 terminal groups, which is likely due to the balance between 

hydrophobic and hydrophilic short-range interactions at the 

protein/SAMs interface. 

- A significant overall change in the protein orientation is produced from 

–COOH/-COO- enriched-surfaces (1  XMUA
Surf  0.62) to –CH3 enriched 

ones (0.46  XMUA
Surf  0). 
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- Independently of the degree of the structural/conformational changes 

observed for the immobilized c-Mb, a total conversion from 6C-LS to 

6C-HS state is shown by RR spectroscopy. Then, direct protein-surface 

interactions provoke structural changes on the His/His ligated heme 

environment based on the swapping of the axial His64 ligand with H2O. 

 
- The contact of the c-Mb surface assemblies with phosphate buffered-

solutions causes an additional structural rearrangement to a partial 

population of confined proteins that swap back again to a 6C-LS heme 

configuration by strengthening of the Fe-His64 interaction.  

 
- Electrostatically-driven interactions of PO4

2- ions with the positive 

charge patches in close proximity to the prosthetic group of the 

protein provoke a heme cavity rearrangement that is likely facilitated 

when the proteins are oriented in an upside down configuration. Both 

6C-HS and 6C-LS heme states coexist probably in differently oriented 

protein populations, by facing the heme crevice mainly towards either 

the surface or the electrolyte solution interface, respectively. 

 
- Native Mb deposited on pure and mixed MUA/DT SAMs becomes 

electrochemically inactive and ET coupling inefficient. Similarly, the 

redox activity of c-Mb is totally hindered at pure MUA and highly DT-

enriched surfaces due to strong protein-surface interactions that 

induce notable conformational and orientational changes. However, at 

intermediate –COOH/-CH3 surface ratios, where the c-Mb native 
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conformation is almost preserved, ET wiring is efficiently promoted 

between hemeproteins in the 6C-HS state and the electrode. 

 
- A ET gating mechanism driven by conformational dynamics of the c-

Mb at the surfaces is directly observed from the CV experiments. 

  
- The analysis in detail of the evolution of different parameters 

determined from voltammetric features (e.g. E°’, ΓET and kET) help to 

draw two main additional conclusions: 

 

 Three main populations are present at the surfaces:  

(i) always ET-active proteins 6C-HS coordinated to H2O  

(ii) Conformational dynamic proteins 6C-HS that must reorient from 

thermodynamically stable but redox-inactive configurations to 

redox-active ones allowing efficient ET  

(iii) ET non-active proteins 6C-LS coordinated to His64. 

 

 The influence of interfacial electric fields is compatible with the 

control of conformational/configurational dynamics on ET of the 

adsorbed c-Mb depending on the underlying surface chemistry. 

 
- c-Mb shows high efficiency and affinity towards the catalysis of H2O2. 

Again, this fact is directly linked to the c-Mb structure and the dynamic 

conformational/configurational properties of the protein and the 

heme group tuned by surface chemistry, which allows promoting 

efficient pathways contributing to the enhancement of the protein-

substrate affinity and the ET rate processes.  
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6.5. Appendix 

A. Second derivative/Deconvolution of IRRAS spectra for c-Mb/SAMs 

 

Figure A1. Representative second derivative analysis for the amide I bands of the 
cationized Myoglobin anchored to MUA:DT mixed monolayers at XMUA/DT :A) 1:0, B) 
0.90:0.10 and 0.62:0.38, C) 0.46:0.54, and D) 0.16:0.84 and 0:1. Fitting component 
domains: β-sheet parallel (▬), unordered (▬), α-helix (▬),β-turn bands (▬) and β-
sheet antiparallel (▬). Second-derivative signal values are divided by a factor of 250 
for comparison with the absorbance values of the experimental spectra. 

D) C) 

A) B) 
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Table A1. Full width at half maximum (FWHM) for the fitting Gaussian functions of 

the individual components used in the second derivative and deconvolution analysis 

Secondary 
structure: 

FWHM Amide I (a) 

Second derivative 
FWHM amide I (b) 

Deconvoluted Amide I (a) / amide I (b) 

α-helix 9 22 2.44 

β-sheet 6 15 2.50 

β-turn 6 15 2.50 

unordered 5.5 15 2.73 

 

 The contents of the different protein secondary structures of c-Mb 

were obtained by following the protocols described in literature. 117,118  

Firstly, a linear baseline correction was performed at the amide I band region 

between 1600-1710 cm-1. Derivative analysis was carried out to separate 

overlapping bands without arbitrarily choosing deconvolutional parameters. 

For protein secondary structure determination, the second-derivative spectra 

were obtained by using a baseline-corrected seven-point Savitsky-Golay 

derivative function which covers a spectral window region with less than the 

half-bandwidth at half-height (FWHM) and minor distortion of the amide I 

components. The data obtained were used to determine the number of bands 

and their positions in order to resolve the spectra into its components. In a 

second-derivative spectrum, the peak wavenumber of the components is 

identical with the original peak frequency while the  FWHM is reduced by a 

factor of 2.7.117,118 Then, the curve fitting process is mainly determined by the 

characteristics of the individual components that were fitted with 

Gaussian/Lorentzian functions and their positions were determined to be in 

good agreement with those reported in literature. Once the position and 

FWHM of the bands for each component were set by the best second-
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derivative iterative fitting using non-linear least squares, the experimental 

data were fitted with Gaussian/Lorentzian functions usually with half-

bandwidths varying in the range of 15-25 cm-1 for each secondary structure 

element (Table A1). 118 The best fits for the second-derivative analysis of the 

amide I region are presented at Figure A1 and for the experimental data at 

the Figure 2 of this chapter.  Finally, the band area for each component peak 

is used to calculate its relative contribution to a particular protein secondary 

structure. 

 
B. Determination of kET by Laviron analysis 

 
The Laviron method is widely used for determining the electron 

transfer rate constant, kET, of species adsorbed to an electrode in many 

electrochemical systems. 99 This method relies on 𝛼, the transfer coefficient, 

which is a measure of the symmetry of the energy barrier of the redox 

reaction. Ideally, 𝛼 =  0.5 for all overpotentials, however in many cases 

deviates from 0.5. Therefore, determination of α is crucial to determine kET. 

To obtain 𝛼, the peak potential Ep is plotted vs. ln 𝜈 where Epa and Epc are 

plotted separately to give two branches (figure 10). In our particular case, the 

values of E°’ were subtracted at each scan rate due to its apparent 

dependence with this parameter. At higher scan rates where η > 100 mV, the 

data follow an almost linear dependence where 𝛼 can be obtained from the 

slope of cathodic branch by using the Equation B1: 

 

slope = -
2.3RT

αnF
       (B1) 
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Similarly, α can be also determined from the slope of the anodic branch. The 

values obtained from the experimental results were similar and consistently 

close to 0.5. 

Then, the kET is determined by the y axis-intercepts of the lines for the anodic 

and the cathodic branches through the equation B2: 

 

Ep = E°-
RT

αnF
ln (

αnF

RTkET
) -

RT

αnF
lnυ      (B2) 

 

 

Figure 10. Typical trumpet curve for the variation of the cathodic and anodic peak 
potentials (η=Ep-E°’)  vs the logarithm of the scan rate. The data represented 
corresponds to the case of a c-Mb/mixed SAMs with XMUA

Surf = 0.62. 

 

 The average values obtained by this treatment are included in Table 5 

of this chapter.  
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7. Conclusions 

 
Capítulo 3: 

1. Se ha llevado a cabo la formación y la caracterización de monocapas 
autoensambladas de ácido 11-mercaptoundecanoico (MUA-SAMs) 
sobre superficies de Au(111) mediante tres métodos diferentes de 
deposición.    
 

2. La organización estructural de dichas SAMs se basa en una disposición 

vertical de las moléculas formando una superestructura del tipo 

(√3x√3) R30o conmensurada con la superficie atómica del oro. 

 
3. La caracterización mediante FT-IRRAS revela que tanto las monocapas 

formadas a partir de un medio micelar como aplicando un potencial 

electroquímico presentan un ordenamiento cristalino, mientras que 

aquellas formadas desde etanol poseen un menor grado de 

organización molecular.  

 
4. Los cambios en las propiedades ácido-base de la interfase MUA-

SAM/electrolito se deben principalmente a las diferencias en la 

organización estructural de las cadenas alquílicas y de interacción de 

los grupos carboxilato con iones de carga opuesta.  En el caso 

particular de las monocapas formadas desde etanol, no se puede 

descartar la posibilidad de que las propiedades ácido/base de la SAM 

se vean afectadas por la formación de grupos terminales acetilo. 



 

 

 

 

Capítulo 4: 

5. Se ha llevado a cabo la caracterización estructural de monocapas 

mixtas de MUA y decanotiol (DT) sobre Au(111) formadas desde un 

medio liotrópico a diferentes tiempos de modificación mediante CV, 

EIS y FT-IRRAS.  

 
6. Dichas monocapas mixtas exhiben un elevado grado de ordenamiento, 

donde las moléculas se encuentran en una disposición vertical y la 
adsorción del componente con el grupo terminal más polar (-COOH) 
desde el medio micelar esta favorecida sobre el sustrato de Au(111). 
 

7. La desorción reductiva de las SAMs mixtas muestran un único pico en 
los voltamogramas, lo cual es típico de películas cuyas moléculas están 
distribuidas en la superficie de forma homogénea desde un punto de 
vista macroscópico. 
 

8. Las técnicas de CV, EIS e IRRAS han puesto de manifiesto un aumento 
de la homogeneidad en la distribución a nivel molecular de las 
moléculas de MUA y DT en dichas capas para tiempos de modificación 
mayores, lo cual se puede atribuir a que en condiciones cercanas a 
alcanzar el equilibrio termodinámico predominan las interacciones 
intermoleculares entre componentes distintos (MUA/DT).   
 

9. El grado de miscibilidad, y por tanto la distribución espacial de las 

moléculas de MUA y DT en la superficie, puede controlarse variando  

el tiempo de modificación lo que da lugar a dos tipos de patrones:  

a) El primero consiste en pequeños dominios de moléculas del mismo 

tipo (MUA-MUA o DT-DT) de tamaño nanométrico que se forman 

probablemente por estados donde ambos componentes quedan 

atrapados en configuraciones metaestables desde un punto de 

vista cinético.   

b) El segundo patrón consiste en una distribución homogénea a 
escala molecular de ambos componentes que está favorecida por 
la interacción entre moléculas de diferente tipo (MUA-DT).   



 

 

 

 

10. En función del tipo de aplicación que se desee ambos patrones 
resultan de gran interés, bien sea en el diseño de interfases de 
contacto a escala nanométrica para su utilización en el estudio del 
transporte electrónico y de carga moleculares (Ejemplo: Electrónica 
molecular) o en el diseño de plataformas que mimetizan interfases 
biológicas mediante la inmovilización de biomoléculas de forma 
específica en superficies (Ejemplo: Diseño de biosensores, 
biomateriales y nanomateriales biocompatibles). 
 

   Capítulo 5: 

11. Los experimentos realizados mediante EIS indican que los grupos –

COOH ionizables de la interfase SAM/disolución no contribuyen 

significativamente a que la capacidad, C, varíe con el pH. Se ha 

determinado la composición superficial de ambos componentes (MUA 

y DT) en las SAM mixtas a partir de los valores promedio de C 

obtenidos, estando dichos resultados en concordancia con los 

obtenidos por el método de desorción reductiva (Capítulo 4).    

 
12. Los cambios en los valores de resistencia de transferencia de carga, 

RCT, y las curvas de valoración de las bandas de IR en función del pH 

reflejan claramente la ionización y el cambio en el grado de disociación 

de los grupos –COOH terminales, lo cual permite la determinación de 

los valores de pK1/2 superficial aparentes tanto en SAMs puras de MUA 

como mixtas de MUA/DT. 

 
13. El valor de pK1/2 determinado para las monocapas de MUA con 

ordenamiento cristalino es mayor que el predicho por el modelo 

teórico basado exclusivamente en el campo electrostático. Por lo 

tanto, es necesario asumir que existe una influencia adicional en el 

proceso de ionización debida a efectos asociados con la formación de 

enlaces por puente de hidrógeno, solvatación de iones e 

hidrofobicidad en la vecindad de los grupos carboxy-terminales.   

 



 

 

 

 

14. El comportamiento ácido-base de las interfases de MUA/DT-SAMs se 

corresponde con el típico de mezclas homogéneas de dos 

componentes. No obstante, dicho comportamiento depende del grado 

de homogeneidad en la distribución espacial de las moléculas de MUA 

y DT según su organización en distintos patrones superficiales.   

 
15. Para las monocapas mixtas con composiciones superficiales de MUA  

χMUA
surf  > 0.3  (t=15 min) y χMUA

surf  > 0.60  (t=18 h) se produce una 

disminución progresiva de los valores de pK1/2, pKa, y el parámetro de 

interacción, βE̅ (para un valor de pKa fijado), los cuales son obtenidos a 

partir de los mejores ajustes del modelo 1-pK a los resultados 

experimentales, a medida que se diluye la cantidad de MUA en la 

superficie con DT. Esto es consistente con el efecto predominante de 

la disminución de las interacciones repulsivas que se establecen entre 

los grupos –COO- terminales. En ambos casos, las curvas de valoración 

se caracterizan por la presencia de un único pK1/2, lo que se relaciona 

con la presencia de grandes dominios de grupos -COOH que 

experimentan similares microambientes al de un capa de MUA pura.  

 

16. Por el contrario, para composiciones de χMUA
surf  < 0.3  (t=15 min) y 

χMUA
surf  < 0.60 (t=18 h), los valores de pK1/2 aumentan varias unidades de 

pH cuando la cantidad de MUA en la superficie de estas capas se diluye 
aún más. En este caso, predomina el efecto local de la disminución de 
la constante dieléctrica en la ionización de grupos –COOH vecinos.   
 

17. En el caso de las SAMs formadas a bajos tiempos de modificación, la 

heterogeneidad en la distribución de tamaños de los dominios de MUA 

determina la aparición de dos valores de pK1/2 superficiales aparentes. 

Así pues, los grupos –COOH coexisten en distintos microambientes en 

función de su ubicación en nanodominios de diferente tamaño. Los 

nanodominios de MUA de menor tamaño y aquellas moléculas de 

MUA situadas en los límites de dominios en contacto con DT se 

desprotonan a valores de pKa más elevados debido a la disminución 



 

 

 

 

significativa que experimenta la constante dieléctrica en la vecindad 

de los grupos -COOH. Por el contrario, aquellos grupos –COOH que se 

encuentran en el interior de dominios de MUA lo suficientemente 

grandes como para no experimentar localmente el ambiente 

hidrofóbico de los grupos –CH3 son los responsables de la aparición de 

un pKa a valores más bajos dentro de la misma curva de valoración. 

 
18. En las SAMs formadas a altos tiempos de inmersión, los grupos -COOH 

parecen distribuirse homogéneamente prácticamente a nivel 
molecular. En este caso, solamente aparece un único pK1/2 a valores 
altos. Eso puede explicarse por el microentorno hidrofóbico similar 
que experimentan los grupos –COOH una vez alcanzada una relación 
de composición crítica de MUA/DT en la superficie, a partir de la cual 
se puede asumir que las moléculas de MUA se asocian en dominios 
muy pequeños, dímeros o que incluso están aisladas individualmente.    
 

19. La formación de interacciones por puente de hidrógeno entre 

moléculas de MUA se observa tras la reorganización estructural de las 

SAMs. Se sugiere que la asociación más probable entre moléculas 

vecinas de MUA es mediante la formación de especies diméricas (-

COOH···HCOO-), tanto dentro de nanodominios de mayor extensión 

(SAMs formadas a bajos tiempos) como para mezclas homogéneas de 

dímeros ya preexistentes (SAMs formadas a altos tiempos). 

 

20. Las monocapas mixtas formadas a 15 minutos son las más adecuadas 

para el estudio de su interacción con biomoléculas a pH fisiológico 7, 

ya que permiten disponer de un intervalo más amplio de proporciones 

de grupos -COO- y –COOH en la superficie (8-45%) para evaluar el 

efecto de las interacciones electrostáticas (influencia de los campos 

electrostáticos interfaciales) y por puentes de hidrógeno, así como del 

efecto de las interacciones hidrofóbicas al poder controlar la inserción 

de grupos –CH3  ajustando su porcentaje entre un 10-85%.  

 



 

 

 

 

Capítulo 6: 

21. Al cationizar la Mb se forma un estado no nativo donde el contenido 
de estructura secundaria α-hélice se reduce significativamente hasta 
un 39 % junto con el aumento del de láminas β, giros β y dominios 
desordenados. Estos resultados concuerdan perfectamente con los 
publicados para metodologías similares de cationización de la Mb.   
 

22. Los cambios estructurales que se producen en la Mb cationizada (c-
Mb) en relación con la Mb nativa son tan importantes que provocan 
un efecto en el ambiente y la coordinación del grupo hemo, lo cual se 
refleja en la transición desde el estado de alto spin (6C-HS) presente 
en la Mb nativa al de bajo spin (6C-LS) para la c-Mb en disolución.  

 
23. La inmovilización de c-Mb en superficies de oro modificadas con SAMs 

exclusivamente con grupos hidrofílicos (MUA) o hidrofóbicos (DT) 
provoca su desnaturalización parcial. Este cambio estructural se 
achaca al efecto predominante que ejercen las interacciones efectivas 
proteína/superficie en lugar de la solvatación o hidratación de la 
proteína en la interfase.   
 

24. Aunque también se producen cambios conformacionales en la c-Mb 
depositada en SAM mixtas con composiciones superficiales 
intermedias de grupos –COOH y –CH3 son de menor extensión. Esto se 
debe probablemente al balance adecuado entre las interacciones 
hidrofóbicas e hidrofílicas de corto alcance presentes en la interfase 
proteína/SAM.  
 

25. Se produce un cambio significativo global en la orientación de la 

proteína desde las superficies enriquecidas con COOH/-COO- (1  

XMUA
Surf  0.62) hasta las enriquecidas con –CH3 (0.46  XMUA

Surf  0). 
 

26. Independientemente del grado del cambio estructural/conformacional 
observado para la c-Mb inmovilizada, ésta sufre una conversión total 
en la coordinación del grupo prostético desde un estado 6C-LS en 
disolución a 6C-HS en superficie, según se demuestra mediante 



 

 

 

 

espectroscopia Raman (RR). Este resultado se explica considerando 
que las interacciones proteína-superficie provocan un cambio 
estructural de forma que una de las histidinas ligadas al grupo hemo 
(His64)  se intercambia por una molécula de H2O.  
 

27. Cuando los ensamblajes de proteínas ya inmovilizadas se ponen  en 
contacto con disoluciones de tampón fosfato se producen alteraciones 
estructurales adicionales que permiten que una parte de la población 
de proteínas adsorbidas cambie de nuevo a una configuración del 
grupo hemo 6C-LS, como consecuencia de un fortalecimiento de las 
interacciones Fe-His64.  
 

28. Las interacciones impulsadas electrostáticamente entre los iones PO4
2- 

y las regiones cargadas positivamente de la proteína colocadas en las 
proximidades del grupo protésico inducen un reordenamiento de la 
cavidad del grupo hemo, lo cual es probable que se facilite cuando las 
proteínas se orienten con la hendidura del grupo redox hacia la 
disolución. Ambos estados de spin, 6C-HS y 6C-LS, coexisten 
probablemente en poblaciones de la proteína orientadas de manera 
diferente, bien con la cavidad del grupo hemo orientada hacia la 
superficie de las SAMs o hacia la disolución, respectivamente.    
 

29. Las proteínas de Mb nativa depositadas sobre SAMs puras o mixtas no 
dan en ningún caso una respuesta electroquímica. De la misma forma, 
la actividad redox de la c-Mb inmovilizada se suprime completamente 
en SAMs de MUA puras o enriquecidas con DT, lo que se achaca a los 
cambios notables observados en su conformación y orientación. Sin 
embargo, en superficies con composiciones intermedias de –COOH/-
CH3, donde la que la c-Mb conservaría prácticamente su conformación 
nativa, la transferencia electrónica se promueve de forma eficiente 
entre las hemoproteínas en el estado 6C-HS y el electrodo. 
 

30. Mediante medidas electroquímicas es posible observar directamente 
la presencia de un mecanismo de transferencia electrónica (TE) 
interrumpida (“gated”), el cual está regulado por la dinámica 
conformacional de la c-Mb.   
 



 

 

 

 

31. A partir del análisis de la evolución de diferentes parámetros con la 
velocidad de barrido obtenidos a partir de los perfiles voltamétricos ( 
E°’, ΓET y kET) es posible concluir lo siguiente: 
 

 Hay tres tipos de poblaciones en la superficie:  
 

(iv) Proteínas que son siempre electroactivas con una configuración 
del grupo hemo 6C-HS. 

(v) Proteínas dinámicas desde un punto de vista conformacional en 
un estado 6C-HS, las cuales debe reorientarse desde 
configuraciones termodinámicamente estables pero inactivas 
electroquímicamente hasta configuraciones activas 
electroquímicamente que favorecen la TE de forma efectiva. 

(vi) Proteínas no electroactivas con una configuración 6C-LS. 
 

 El control de la dinámica conformacional sobre la transferencia 
electrónica de la c-Mb es compatible con la influencia ejercida por 
el campo eléctrico interfacial en función de la química superficial 
subyacente.   
 

32. La c-Mb presenta una alta eficiencia hacia la catálisis de H2O2. Este 

hecho está directamente relacionado con las propiedades de la 

dinámica conformacional de la proteína y del grupo hemo que son 

controlados a su vez por la química superficial de las SAMs, y que 

promueve caminos más eficientes que contribuyen a favorecer la 

afinidad proteína/sustrato y los procesos de transferencia electrónica.  
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