
DEPARTAMENTO DE BIOLOGÍA 

CELULAR, FISIOLOGÍA E INMUNOLOGÍA 

 

 

 

 

Functional role and therapeutic 

potential of the somatostatin and ghrelin 

systems and their splicing variants in 

prostate cancer. 

 

PAPEL FUNCIONAL Y POTENCIAL TERAPÉUTICO DE LOS 

SISTEMAS SOMATOSTATINA Y GHRELINA Y SUS VARIANTES DE 

SPLICING EN TUMORES DE PRÓSTATA. 

 

 

Daniel Hormaechea Agulla 

Córdoba 2017 

  



TITULO: Functional role and therapeutic potential of the somatostatin and ghrelin
systems and their splicing variants in prostate cancer

AUTOR: Daniel Hormaechea Agulla

© Edita: UCOPress. 2017 
Campus de Rabanales
Ctra. Nacional IV, Km. 396 A
14071 Córdoba

www.uco.es/publicaciones
publicaciones@uco.es



 

 

  



 

DEPARTAMENTO DE BIOLOGÍA 

CELULAR, FISIOLOGÍA E INMUNOLOGÍA 

 

Functional role and therapeutic 

potential of the somatostatin and ghrelin 

systems and their splicing variants in 

prostate cancer. 

 

PAPEL FUNCIONAL Y POTENCIAL TERAPÉUTICO DE LOS 

SISTEMA SOMATOSTATINA Y GHRELINA Y SUS VARIANTES DE 

SPLICING EN TUMORES DE PRÓSTATA. 

 

Memoria de Tesis Doctoral presentada por Daniel Hormaechea 

Agulla, Licenciado en Biología, para optar al grado de Doctor en 

Biomedicina. 

 

Los directores 

Dr. Raúl M. Luque Huertas y Dr. Justo P. Castaño Fuentes 

Profesores del Departamento de Biología Celular de la 

Universidad de Córdoba 
 

En Córdoba, a 17 de abril de 2017 



 

  





 

  





 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Esta Tesis Doctoral ha sido realizada en el Departamento de Biología 

Celular, Fisiología e Inmunología de la Universidad de Córdoba, bajo la 

dirección de los Dres. Raúl M. Luque Huertas y Justo P. Castaño Fuentes. 

Dicho proyecto fue subvencionado mediante los Proyectos PI13/00651, 

PI16/00264 (Proyectos de Investigación en Salud FIS, funded by Instituto de 

Salud Carlos III and co-funded by European Union (ERDF/ESF, “Investing 

in your future”), BFU2013-43282-R, BFU2016-80360-R (MINECO), BIO-

0139, CTS-1406, (Junta de Andalucía) and CIBERobn. CIBER is an 

initiative of Instituto de Salud Carlos III, Ministerio de Sanidad, Servicios 

Sociales e Igualdad, Spain. 

  



 

  



 

LIST OF ABBREVIATIONS 

aa= Amino acids 

ADT= Androgen deprivation therapy 

AR= Androgen receptor 

BPH= Benign Prostatic Hypertrophy 

CK= Cytokeratin 

CORT= Cortistatin 

CRPC= Castration-Resistant Prostate cancer 

DHT= Dihydrotestosterone 

DRE= Digital Rectal Exam 

ER= Estrogen Receptor 

ERG=ETS-related gene 

ETS=E26 transformation-specific or E-twenty-six 

FFPE= Formalin-Fixed, Paraffin-Embedded   

GHRL=Ghrelin  

GHS-R = Ghrelin receptor 

GOAT = Ghrelin O-acyltransferase 

GR= Glucocorticoid Receptor 

GS= Gleason Score 

MBOAT = Membrane-bound O-acyltransferase 

miRNA= micro-RNA 

SNPs= Single Nucleotide Polymorphisms 

SSAs= Somatostatin analogs 

SST= Somatostatin 

sst= Somatostatin receptors 

PCa= Prostate Cancer 

PCA3=Prostate Cancer Antigen 3 

PIN= Prostatic Intraepithelial Neoplasia 

PSA= Prostate-Specific Antigen  

PR= Progesterone 

PGR= Progesterone Receptor 

  



 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

TABLE OF CONTENTS 

  



 

  



 

TABLE OF CONTENTS 

 

1. Summary/ Resumen………………………………………………………………...1 

2. Introduction .............................................................................................................. 15 

2.1. Prostate gland ........................................................................................................ 17 

2.1.1. Physiological regulation of prostate by hormones and its dysregulation in 

prostate cancer .............................................................................................................. 18 

2.1.1.1. Androgens ...................................................................................... 19 

2.1.1.2. Estrogens ....................................................................................... 20 

2.1.1.3. Progesterone .................................................................................. 21 

2.1.1.4. Glucocorticoids .............................................................................. 21 

2.2. Clinical significance .............................................................................................. 22 

2.2.1. Prostatitis ................................................................................................ 22 

2.2.2. Benign prostatic hyperplasia (BPH) ....................................................... 22 

2.2.3. PIN lesion ............................................................................................... 22 

2.2.4. Prostate cancer ........................................................................................ 23 

2.2.4.1. Epidemiology ................................................................................ 23 

2.2.4.2. Symptoms ...................................................................................... 23 

2.2.4.3. Risk factors .................................................................................... 23 

2.2.4.4. Classification ................................................................................. 23 

2.2.4.5. Types of prostate cancer ................................................................ 27 

2.2.4.6. Pathophysiology ............................................................................ 28 

2.2.4.6.1. Early events in PCa .............................................................. 30 

2.2.4.6.1. Late events in PCa: the development of CRPC (Castration 

Resistant Prostate Cancer) ............................................................................................ 34 

2.2.4.7. Diagnosis ....................................................................................... 35 

2.2.4.8. Treatment ....................................................................................... 36 

2.3. Somatostatin system .............................................................................................. 37 

2.3.1. Somatostatin system in prostate cancer .................................................. 44 

2.4. Ghrelin system ....................................................................................................... 46 

2.4.1. Ghrelin system in PCa ............................................................................ 48 

3. Hypothesis and objectives ........................................................................................ 51 

4. Materials and methods .............................................................................................. 55 

4.1. Patients and samples .............................................................................................. 57 

4.2. RNA, RT and qPCR analysis ................................................................................ 62 



 

4.2.1. RNA isolation from FFPE samples ........................................................ 62 

4.2.2. RNA isolation from fresh tissues (needle biopsies and normal prostate from 

cystoprostatectomy)  ..................................................................................................... 62  

4.2.3. RNA isolation from cell lines ................................................................. 65 

4.2.4. Quantification of RNA concentration and Reverse-Transcription (RT) 65 

4.2.5.  Conventional PCR and quantitative real-time PCR (qPCR) with SYBR 

green ............................................................................................................................. 66 

4.3. sst5TMD4 and GOAT IHQ analysis ..................................................................... 67 

4.4. Analysis of Single Nucleotide Polymorphisms (SNPs) in the sst5 gene sequence

 ...................................................................................................................................... 68 

4.5. Cultures: normal human prostate cells, normal-like prostate cell line and PCa cell 

lines ............................................................................................................................... 68 

4.5.1. Primary cell cultures from human prostate tissues ................................. 68 

4.5.2. Cell lines ................................................................................................. 70 

4.6. Peptides .................................................................................................................. 71 

4.7. Transfections (plasmid and siRNA) ...................................................................... 71 

4.7.1. Stable and transient transfection of ghrelin, In1-ghrelin, sst1 and sst5TMD4

 ...................................................................................................................................... 71 

4.7.2. Silencing of ghrelin, In1-ghrelin and sst5TMD4 by specific siRNA ..... 72 

4.8. Functional assays ................................................................................................... 73 

4.8.1. Measurements of proliferation rate ........................................................ 73 

4.8.2. Measurements of cell migration ............................................................. 74 

4.9. Hormonal measurements (ELISA and RIA techniques) ....................................... 74 

4.9.1. Measurement of PSA levels by ELISA .................................................. 74 

4.9.2. Measurement of GOAT levels by ELISA .............................................. 75 

4.9.3. Measurement of active ghrelin levels by ELISA.................................... 75 

4.9.4. Measurement of active Prepro-In1-ghrelin levels by RIA ..................... 76 

4.10. Mechanistic assays .............................................................................................. 78 

4.10.1. Cancer pathway reporter assay ............................................................. 78 

4.10.2. Measurement of free cytosolic calcium changes .................................. 79 

4.10.2.1. Stable sst5TMD4-PC3 transfected cells treated with SST analogs

 ...................................................................................................................................... 80 

4.10.2.2. Normal human primary prostate cell cultures treated with ghrelin or 

In1-ghrelin .................................................................................................................... 80 

4.10.3. RT2 Prostate Cancer PCR Array .......................................................... 80 

4.10.4. Western blotting ................................................................................... 81 

4.10.4.1. Validation of results from the cancer pathway reporter assay and 

RT2 Prostate Cancer PCR Array by Western blotting ................................................. 82 



 

4.10.4.2. Intracellular signaling pathways trigger after treatment with peptides 

from the ghrelin, somatostatin and insulin/IGF-1 systems in PCa cell lines ................ 82 

4.11. Xenograft model .................................................................................................. 83 

4.12. Statistical analysis ............................................................................................... 83 

5. Results ...................................................................................................................... 85 

5.1. Analysis of the SST-system in PCa ....................................................................... 87 

5.1.1. Presence of different components of the SST-system in human normal and 

PCa tissues and cell lines .............................................................................................. 87 

5.1.2. Presence and functional role of sst5TMD4 in PCa................................. 90 

5.1.2.1. The truncated spliced receptor sst5TMD4 is overexpressed in PCa

 ...................................................................................................................................... 90 

5.1.2.2. sst5TMD4 levels (mRNA and protein) correlate with clinical 

aggressiveness features in PCa. .................................................................................... 91 

5.1.2.3. sst5TMD4 is associated to two SNPs in PCa. ............................... 95 

5.1.2.4. sst5TMD4 overexpression enhances pathophysiological features of 

PCa cell lines and induces larger tumors in nude-mice ................................................ 95 

5.1.2.4.1. Validation of sst5TMD4 overexpression in sst5TMD4-stably-

transfected PCa cell lines. ............................................................................................. 96 

5.1.2.4.2. sst5TMD4 overexpression enhances cell proliferation and 

migration of PCa cell lines ........................................................................................... 96 

5.1.2.4.3. sst5TMD4-stably-transfected PC3-cells induce larger tumors 

than control cells (mock cells) in a preclinical in vivo model. ..................................... 97 

5.1.2.5. sst5TMD4 silencing reverts pathophysiological features of PCa cell 

lines ............................................................................................................................... 98 

5.1.2.6. sst5TMD4 overexpression modulates key cell signaling pathways and 

dysregulates the expression of oncogenes and tumor suppressor genes involved in PCa 

development and progression. ...................................................................................... 99 

5.1.2.6.1. Use of the Cignal Finder Reporter Assay revealed that 

sst5TMD4 overexpression enhances the activity of key cell signaling pathways. 

Validation of the results by qPCR and Western blot .................................................... 100 

5.1.2.6.2. Use of the RT2 Prostate Cancer PCR Array revealed that 

sst5TMD4 overexpression alters the expression of key genes involved in PCa 

development and progression. Validation of the results by qPCR and Western blot. .. 102 

5.1.2.7. PCa cell lines transfected with sst5TMD4 do not respond to SSAs in 

terms of changes in free-cytosolic Ca2+ concentration. .............................................. 103 

5.2. Analysis of the ghrelin-system in PCa .................................................................. 106 

5.2.1. Presence of different components of the ghrelin-system in human normal 

and PCa tissues and cell lines ....................................................................................... 106 

5.2.2. Presence and functional role of GOAT in PCa....................................... 108 

5.2.2.1. GOAT enzyme is overexpressed in PCa tissues ............................ 108 



 

5.2.2.2. GOAT expression levels correlate with metabolic factors (BMI, 

bodyweight and presence of dyslipidemia) in patients with PCa ................................. 109 

5.2.2.3. GOAT protein levels are also up-regulated in PCa tissues ........... 110 

5.2.2.4. GOAT expression is higher in PCa cells vs. normal prostate cells and 

it is secreted and regulated by metabolic factors in normal and tumoral prostate cells 111 

5.2.2.5. Plasma GOAT levels are elevated in patients with PCa in comparison 

with healthy control patients: association with pathophysiological parameters........... 114 

5.2.2.6. Association with clinical-metabolic parameters of plasma GOAT 

levels with metabolic parameters in patients with PCa ................................................ 115 

5.2.2.7. Plasma GOAT levels as non-invasive diagnostic biomarker of PCa in 

non-diabetic individuals ............................................................................................... 118 

5.2.2.8. Urine GOAT levels are elevated in patients with PCa in comparison 

to healthy-control patients: potential as non-invasive biomarker of PCa. .................... 119 

5.2.3. Presence and functional role of In1-ghrelin variants in PCa .................. 121 

5.2.3.1. In1-ghrelin, but not ghrelin, is overexpressed in PCa tissues and its 

levels are associated with GOAT-enzyme and PSA levels. ......................................... 121 

5.2.3.2. In1-ghrelin, but not ghrelin, expression is higher in castration-resistant 

PCa cells compared with androgen-dependent PCa cells and normal prostate cells.... 123 

5.2.3.3. Plasma levels of In1-ghrelin, but not ghrelin, are higher in patients 

with PCa compared with healthy-control patients ........................................................ 124 

5.2.3.4. Effects of In1-ghrelin and ghrelin treatment on normal prostate cell 

function ......................................................................................................................... 125 

5.2.3.5. Effects of In1-ghrelin and ghrelin treatment or overexpression on cell 

viability/proliferation of normal primary prostate cell cultures and normal like prostate 

cell line (RWPE-1) ....................................................................................................... 127 

5.2.3.6. Effects of In1-ghrelin and ghrelin treatment on pathophysiological 

features (cell proliferation and migration) of PCa cells ............................................... 127 

5.2.3.7. In1-ghrelin, but not ghrelin, overexpression enhanced malignant 

features (cell proliferation and migration) of PCa cells ............................................... 129 

5.2.3.8. In1-ghrelin overexpression enhanced the growth rate of PC3-induced 

xenografted tumors ....................................................................................................... 130 

5.2.3.9. In1-ghrelin overexpression evoked a profound dysregulation of key 

genes involved in PCa development and progression. ................................................. 132 

5.2.3.10. In1-ghrelin silencing decreased cell proliferation and PSA secretion

 ...................................................................................................................................... 135 

Results: Appendix .......................................................................................................... 137 

Table 11. Prostate cancer finder RT2 Profiler PCR array data ...................................... 137 

Table 12. Primers Sequences, product sizes obtained and GeneBank accession numbers of 

the primers designed and validated in our laboratory................................................... 141 

6. Discusion .................................................................................................................... 143 



 

6.1. The truncated somatostatin receptor, sst5TMD4, is overexpressed in prostate cancer, 

where it increases malignant features by altering key signaling pathways and tumor 

suppressors/oncogenes ................................................................................................. 145 

6.2. Ghrelin O-acyltransferase (GOAT) enzyme is overexpressed in prostate cancer 

wherein it is associated with the metabolic status: potential value as a non-invasive 

biomarker. ..................................................................................................................... 150 

6.3. In1-ghrelin splicing variant is overexpressed in prostate cancer wherein it increases 

aggressiveness features through regulation of key tumor suppressors/oncogenes ....... 155 

7. Conclusions ................................................................................................................ 161 

8. Bibliography ............................................................................................................... 165 

9. Annex. Article: “Ghrelin O-acyltransferase (GOAT) enzyme is overexpressed in 

prostate cancer, and its levels are associated with patient's metabolic status: Potential 

value as a non-invasive biomarker” 

 

 

 

 

 

 

 



 

 



1 
 

 

 

 

 

 

 

 

 

 

SUMMARY 

 



 

2 
 

 

 

 

 

 



 

3 
 

1. SUMMARY 

 

Cancer is one of the most serious and complex threats to the health of the 

population in the world. Specifically, prostate cancer is the second most common solid 

tumor in men, causing 300,000 deaths each year around the world. Since its appearance 

in the 1990s, the PSA ("Prostate Specific Antigen") test revolutionized the diagnosis of 

prostate cancer by increasing the number of patients diagnosed at an early-stage of the 

disease. However, due to the complex biology and heterogeneity of prostate cancer, most 

of the tumors detected by the PSA test show a low aggressiveness and the likelihood of 

the patient dying because of their development is also relatively low. Unfortunately, the 

treatment of "low-aggressive" tumors can produce more side effects than the tumor itself. 

In addition, because PSA can be elevated by benign causes (prostatitis, medication, etc.), 

it presents a considerable ratio of false positives. Although other biomarkers are currently 

being studied, none of them have shown enough clinical evidence to justify their use, and 

therefore, new biomarkers are required to complement the use of the PSA test. 

Prostate cancer is dependent on androgen stimulation for its survival and cell 

proliferation. Two phases can be differentiated in the clinic of prostate cancer: a first 

phase in which patients are treated hormonally with anti-androgens or with LHRH 

analogs or antagonists, with the aim of blocking the production of androgens, and a 

second phase known as "Castration-Resistant Prostate Cancer" (CRPC), in which tumors 

become resistant to hormone therapy. Currently, it is well accepted that residual 

androgens remaining after castration and the androgen receptor play vital roles in the 

biology of the CRPC. In fact, the appearance of truncated forms of aberrant splicing from 

the canonical androgen receptor gene (i.e. AR-V7) is one of the most important 

phenomena of this phase, and currently, its presence is considered as a marker of 

prognosis and an indicator of resistance to hormone therapy.  

Numerous neuropeptides, such as those belonging to the family of factors 

regulating the hypothalamic-pituitary axis, play multiple roles in various tissues under 

normal conditions and in pathological situations, such as cancer. A common feature of 

many of these altered endocrine-metabolic conditions is the atypical or ectopic presence, 

alteration or the total or partial loss of molecules that, like neuropeptides and their 
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receptors, can control key cellular functions. In fact, numerous studies indicate that the 

processes of alternative splicing, and in particular the appearance of forms of non-

canonical or aberrant splicing, contribute to the development of tumor pathologies, and 

in many cases, are potential biomarkers of the disease, as it is the case of the androgen 

receptor variants in prostate cancer. In this context, the objective of this Doctoral Thesis 

has been to study the presence and functional role of two pleiotropic systems that control 

body homeostasis; specifically, the system formed by somatostatin (SST), cortistatin 

(CORT) and their receptors (sst1-5), including the sst5TMD4/5 splice variants, and the 

ghrelin system and their receptors (GHSR1a/b), including the splice variant In1-ghrelin, 

as well as the enzyme GOAT, in human samples of healthy prostate and prostate cancer. 

In addition, we evaluated the usefulness of some of these molecules as new biomarkers 

of diagnosis and/or prognosis of the disease, and their therapeutic potential in prostate 

cancer. 

Initial evaluation of somatostatin and ghrelin systems expression using the 

quantitative real-time polymerase chain reaction (qPCR) demonstrated a profound 

dysregulation of some of the components of both systems in prostate cancer. Specifically, 

sst1 and sst5TMD4 receptors from somatostatin system, and GOAT enzyme and In1-

ghrelin alternative splicing variant from ghrelin system, were found to be significantly 

overexpressed in prostatic tumor tissues compared to prostate healthy tissues. 

Overexpression of the sst1 receptor has been previously reported and has been related to 

the aggressiveness of the disease. On the contrary, our results are the first to demonstrate 

the overexpression of sst5TMD4, In1-ghrelin, and GOAT in prostate cancer. 

The overexpression of the truncated sst5TMD4 receptor was especially marked in 

patients with metastases and with worse prognosis, and therefore could become a new 

biomarker of aggressiveness. This result was first found with the qPCR technique and 

was subsequently corroborated at the protein level in another cohort of patients using the 

immunohistochemistry technique (IHC). Next, the consequences of sst5TMD4 

overexpression in prostate cancer were analyzed. For this, in vitro models (androgen-

dependent and castration-resistant prostate cancer cell lines) and in vivo models 

(xenografts in immunodeficient mice) were used to demonstrate that sst5TMD4 

overexpression clearly increased the malignancy of prostatic tumor cells (i.e. cell 

proliferation and cell migration), and that such effects were carried out through the 

modulation of various key cellular signaling pathways in the biology of prostate cancer 
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(i.e. MAPK / ERK, MAPK / JNK, MYC / MAX, WNT, RB and TGF-β), and 

dysregulation of the expression of oncogenes (i.e. CAV1, IL-6) and tumor suppressor 

genes (i.e. CDKN2A, APC, SFRP1, NRIP1, RARB, LOXL1). Finally, with the aim of 

demonstrating the therapeutic potential of sst5TMD4 in prostate cancer, endogenous 

expression of sst5TMD4 was silenced by the design, validation and use of a siRNA 

("small interfering RNA") specific for the sst5TMD4 sequence. Silencing decreased cell 

proliferation and migration of these cells compared to control cells. 

In the case of the enzyme GOAT, its expression was increased in prostate tumor 

samples compared to controls, where it was correlated with metabolic parameters of the 

patients, such as weight, BMI or presence of dyslipidemia. This result was corroborated 

at the protein level by IHQ using a GOAT-specific antibody. GOAT overexpression was 

also observed in prostate cancer-cell lines compared to normal prostate-like cell lines. In 

addition, our results demonstrated, for the first time, that prostate tumor cells are able to 

secrete GOAT, and that the treatment with different metabolic signals (i.e. insulin, IGF-

1, ghrelin and/or In1-ghrelin peptides) regulate its expression at the level of the prostate. 

Interestingly, GOAT protein levels were increased in the plasma and urine of patients 

with prostate cancer compared to controls, and correlated with aggressiveness factors of 

the disease and with different metabolic parameters, such as the presence of diabetes and 

dyslipidemia. In addition, we demonstrated that plasma levels of GOAT could serve as a 

new non-invasive biomarker for the diagnosis of prostate cancer, especially in non-

diabetic patients in whom the sensitivity and specificity of plasma levels of GOAT to 

detect the disease were particularly high. 

Likewise, our results demonstrate that In1-ghrelin expression, but not native 

ghrelin, is significantly elevated in prostate cancer biopsies and prostate cancer cell lines, 

as well as in plasma and urine samples from patients with prostate cancer, in comparison 

with normal tissue samples or from healthy patients. Given that both In1-ghrelin and 

native ghrelin were expressed in healthy prostate tissue, we investigated the possible 

functional role that both molecules could have in prostate physiology. For this, cell 

cultures of healthy prostate cells treated with the acylated peptides of Inl-ghrelin or native 

ghrelin were performed. It was interesting to note that the treatment with In1-ghrelin, but 

not ghrelin, peptides increased PSA expression (mRNA) and secretion (protein). In 

addition, overexpression of In1-ghrelin, but not ghrelin, increased the proliferation of 

healthy prostate cells. Next, we analyzed the pathophysiological role that the 
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overexpression of In1-ghrelin could present in prostate cancer. We used different prostate 

cancer-cell lines that represent the broad spectrum of the disease. Both, treatment with 

In1-ghrelin peptides and transfection with an In1-ghrelin expression vector increased cell 

proliferation and migration of the different prostate cancer cell lines. Moreover, this result 

was corroborated in a preclinical model of in vivo xenograft in immunodefficient mice. 

We demonstrate that the pathophysiological effects of In1-ghrelin are likely mediated 

through the modulation of the ERK / kinase pathway activity, increased expression of 

certain oncogenes (i.e. CAV1, CAV2, IGFBP-5, LOXL1) and a decrease in certain tumor 

suppressor genes (i.e. APC, SFRP1, NRIP1). Finally, in order to demonstrate the 

therapeutic potential of In1-ghrelin in prostate cancer, In-1 ghrelin expression was 

silenced by the design, validation and use of two siRNAs ("small interfering RNA") 

specific for the In1-ghrelin sequence in several prostate cancer cell lines; such silencing 

decreased cell proliferation and PSA secretion from those cells in comparison to control 

cells. 

Therefore, the results obtained in this Doctoral Thesis on the expression, 

regulation and the pathophysiological role of sst5TMD4 and In1-ghrelin variants and 

GOAT enzyme in the context of prostate cancer, clearly support the relevance of the 

somatostatin and ghrelin systems, especially their forms of alternative splicing, in the 

development and progression of this cancer type. Specifically, our findings demonstrate 

that the sst5TMD4 and In1-ghrelin splicing variants and the GOAT enzyme are 

overexpressed in prostate cancer where they induce important alterations related to tumor 

aggressiveness. Therefore, these molecules could serve as new diagnostic and/or 

prognostic biomarkers and could represent new therapeutic targets for the treatment of 

prostate cancer. 
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1. RESUMEN 

 

El cáncer es una de las amenazas más serias y complejas para la salud de la 

población mundial. En concreto, el cáncer de próstata es el segundo tipo de tumor sólido 

más frecuente entre los hombres, y causa 300.000 muertes al año en todo el mundo. Desde 

su aparición en la década de los 90, el test del PSA (“antígeno prostático específico”) 

revolucionó el diagnóstico del cáncer de próstata, incrementado el número de pacientes 

diagnosticados en una fase temprana de la enfermedad. Sin embargo, debido a la compleja 

biología y heterogeneidad de los tumores prostáticos, la mayoría de los tumores 

detectados por el test del PSA presentan una baja agresividad, y la probabilidad de que el 

paciente muera debido a su desarrollo también es relativamente baja. 

Desafortunadamente, el tratamiento de tumores de “baja agresividad” puede producir por 

sí mismo más efectos secundarios que el propio tumor. Además, debido a que el PSA se 

puede elevar por causas benignas (prostatitis, toma de medicamentos, etc), presenta un 

elevada proporción de falsos positivos. Aunque se están estudiando en la actualidad otros 

biomarcadores, ninguno de ellos ha mostrado evidencia clínica suficiente como para 

justificar su uso y, por tanto, se requieren nuevos biomarcadores que complementen y/o 

mejoren el uso del test de PSA. 

El cáncer de próstata depende de la estimulación androgénica para su 

supervivencia y proliferación celular. En la clínica del cáncer de próstata se pueden 

diferenciar dos fases: una primera fase en la cual los pacientes se tratan hormonalmente 

con el objetivo de bloquear la producción de andrógenos mediante anti-andrógenos o con 

análogos o antagonistas de LHRH, y una segunda fase conocida como “cáncer de próstata 

resistente a la castración” (en inglés CRPC “Castration-Resistant Prostate Cancer”), en la 

cual los tumores se vuelven resistentes a la terapia hormonal. Actualmente, se concede 

un papel vital a los andrógenos residuales tras la castración y al receptor de andrógenos 

en la biología del CRPC. De hecho, la aparición de formas truncadas de splicing aberrante 

del receptor de andrógenos (AR-V7) es uno de los fenómenos más importantes de esta 

fase, y su presencia se considera como un marcador de prognosis e indicador de 

resistencia a la terapia hormonal.  
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Numerosos neuropéptidos, como los pertenecientes a la familia de factores 

reguladores del eje hipotálamo-hipofisario, desempeñan multitud de funciones en 

diversos tejidos bajo condiciones normales o en situaciones patológicas, como el cáncer. 

Una característica común de muchas de estas situaciones endocrino-metabólicas es la 

presencia atípica o ectópica, la alteración o la pérdida total o parcial de moléculas que, 

como los neuropéptidos y sus receptores, pueden controlar funciones celulares clave. De 

hecho, numerosos estudios indican que los procesos de splicing alternativo, y en 

particular la aparición de formas de splicing no canónico o aberrante, contribuyen al 

desarrollo de las patologías tumorales, y en muchos casos son potenciales biomarcadores 

de la enfermedad, como es el caso de las variantes del receptor de andrógeno en cáncer 

de próstata. En este sentido, el objetivo de la tesis doctoral se ha centrado en estudiar la 

presencia y el papel funcional que ejercen dos sistemas pleiotrópicos de control del 

organismo; en concreto, el sistema formado por la somatostatina (SST), la cortistatina 

(CORT) y sus receptores (sst1-5), incluyendo las variantes de splicing sst5TMD4/5, y el 

sistema de la ghrelina y sus receptores (GHSR1a/b), que incluye la variante de splicing 

In1-ghrelina, y la enzima GOAT, en muestras humanas de próstata sana y de cáncer de 

próstata. Asimismo, se evaluó la utilidad de algunas de estas moléculas como nuevos 

biomarcadores de diagnosis y/o prognosis de la enfermedad, y su potencial terapéutico en 

cáncer de próstata. 

El análisis inicial mediante la técnica de PCR cuantitativa en tiempo real (qPCR) 

de la expresión de los sistemas somatostatina y ghrelina demostró una profunda 

desregulación de algunos de los componentes de ambos sistemas en cáncer de próstata. 

Concretamente, se encontró que los receptores sst1 y sst5TMD4 del sistema 

somatostatina, y la enzima GOAT y la forma de splicing alternativo In1-ghrelina del 

sistema ghrelina, se encuentran significativamente sobreexpresados en tejidos tumorales 

prostáticos. La sobreexpresión del receptor sst1 se ha publicado previamente y se 

relaciona con la agresividad de la enfermedad. Por el contrario, nuestros resultados son 

los primeros que demuestran la sobreexpresión de sst5TMD4, In1-ghrelina y GOAT en 

cáncer de próstata.  

La sobreexpresión del receptor truncado sst5TMD4 fue especialmente 

significativa en los pacientes con presencia de metástasis y con peor prognosis, pudiendo 

ser por ello un nuevo biomarcador de agresividad. Este resultado fue descubierto 

inicialmente con la técnica de qPCR y se corroboró después a nivel proteico en otra 
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cohorte de pacientes mediante la técnica de inmunohistoquimica (IHQ). Posteriormente, 

se analizaron las consecuencias que podría ejercer la sobreexpresión de sst5TMD4 en 

cáncer de próstata. Para ello, se usaron modelos in vitro (líneas celulares de cáncer de 

próstata andrógeno-dependientes y líneas resistentes a la castración) e in vivo 

(xenotransplantes en ratones inmunodeprimidos) para demostrar que la sobreexpresión 

de sst5TMD4 incrementa claramente la malignidad de las células prostáticas tumorales 

(ej. proliferación y migración celular) y que dichos efectos se llevaban a cabo a través de 

la modulación de diversas vías de señalización celular claves en la biología del cáncer de 

próstata (ej. MAPK/ERK, MAPK/JNK, MYC/MAX, WNT, RB y TGF-β), y de la 

desregulación de la expresión de oncogenes (ej. CAV1, IL-6) y genes supresores de 

tumores (ej. CDKN2A, APC, SFRP1, NRIP1, RARB, LOXL1). Finalmente, y con el 

objetivo de demostrar el potencial terapéutico de sst5TMD4 en cáncer de próstata, se 

silenció la expresión endógena de sst5TMD4 mediante el diseño, validación y utilización 

de un siRNA (“ARN pequeño de interferencia”) específico para la secuencia de 

sst5TMD4. El silenciamiento disminuyó la proliferación y migración de las células en 

comparación con células control. 

Por su parte, la expresión de la enzima GOAT se encontró incrementada en 

muestras tumorales prostáticas respecto a controles, y dicha expresión se correlacionó 

con parámetros metabólicos de los pacientes tales como el peso, su índice de masa 

corporal (IMC) o la presencia de dislipidemia. Este resultado se corroboró a nivel 

proteico, mediante IHQ, con un anticuerpo específico de GOAT. La sobreexpresión de 

GOAT se observó también al comparar líneas celulares de cáncer de próstata respecto a 

líneas celulares de próstata normal. Además, por primera vez se demostró que las células 

prostáticas tumorales son capaces de secretar enzima GOAT y que el tratamiento con 

diferentes señales metabólicas (ej. insulina, IGF-1, ghrelina y/o In1-ghrelina) regulan su 

expresión en la próstata. Mediante un ELISA específico se descubrió que los niveles de 

esta enzima están aumentados en el plasma y orina de pacientes con cáncer de próstata 

respecto a controles y que se correlacionan con factores de agresividad de la enfermedad, 

así como con diferentes parámetros metabólicos, tales como la presencia de diabetes y 

dislipidemia. Además, demostramos que los niveles plasmáticos de GOAT podrían servir 

como un nuevo biomarcador no invasivo para el diagnóstico del cáncer de próstata, 

especialmente en pacientes no diabéticos en los que la sensibilidad y especificidad de los 

niveles plasmáticos de GOAT para detectar la enfermedad son particularmente elevadas. 
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Asimismo, nuestros resultados demuestran que los niveles de In1-ghrelina, pero 

no los de ghrelina nativa, se encuentran significativamente elevados en muestras de tejido 

y en líneas celulares de cáncer de próstata, así como en muestras de plasma y orina de 

pacientes con cáncer de próstata en comparación con muestras de tejido normal o de 

pacientes sanos. Dado que tanto In1-ghrelina como ghrelina nativa se expresan en tejido 

sano prostático, investigamos el posible papel funcional que ambas moléculas podrían 

presentar en la regulación de la función prostática. Para ello se realizaron cultivos 

celulares de células prostáticas no tumorales, que se trataron con los péptidos acilados de 

In1-ghrelina o ghrelina nativa. Resultó interesante observar que el tratamiento con los 

péptidos de la In1-ghrelina, pero no con ghrelina aumenta la expresión (mRNA) y 

secreción (proteína) de PSA. Además, la sobreexpresión de In1-ghrelina, pero no de 

ghrelina, aumentó la proliferación de las células prostáticas sanas. Posteriormente 

analizamos el papel patofisiológico de la sobreexpresión de In1-ghrelina en cáncer de 

próstata. Para ello, utilizamos diferentes líneas celulares de cáncer de próstata que 

representan el amplio espectro de la enfermedad. Tanto el tratamiento con péptidos In1-

ghrelina como la transfección con un vector de expresión de In1-ghrelina aumentó la 

proliferación y migración celular de las diferentes líneas celulares de cáncer de próstata. 

Más aún, este resultado se corroboró en un modelo preclínico in vivo de xenotransplante 

en ratones inmunodeprimidos. Se comprobó que los efectos patológicos de la In1-ghrelina 

se llevaban a cabo a través de la modulación de la actividad de la vía de las quinasas ERK, 

de un aumento de expresión de ciertos oncogenes (ej. CAV1, CAV2, IGFBP-5, LOXL1) 

y por una disminución de determinados genes supresores tumorales (ej. APC, SFRP1, 

NRIP1). Finalmente, y con el objetivo de demostrar el potencial terapéutico de In1-

ghrelina en cáncer de próstata, se silenció la expresión endógena de In1-ghrelina mediante 

el diseño, validación y aplicación de dos siRNAs (“ARN pequeño de interferencia”) 

específicos para la secuencia de In1-ghrelina en varias líneas celulares de cáncer de 

próstata; dicho silenciamiento disminuyó la proliferación celular y la secreción de PSA 

de esas células en comparación con células control. 

Por todo ello, los resultados obtenidos en la presente Tesis Doctoral sobre la 

regulación de la expresión y el papel patofisiológico de las variantes de splicing 

sst5TMD4 e In1-ghrelina y de la enzima GOAT en el contexto del cáncer de próstata, 

apoyan claramente la relevancia de los sistemas somatostatina y ghrelina, especialmente 

de sus formas de splicing alternativo, en el desarrollo y progresión tumoral de este tipo 
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de cáncer. Específicamente, nuestros hallazgos demuestran que las variantes de splicing 

sst5TMD4 e In1-ghrelina y la enzima GOAT están sobreexpresadas en cáncer de próstata, 

donde inducen importantes alteraciones relacionadas con la agresividad tumoral. Por 

tanto, estas moléculas podrían servir como nuevos biomarcadores de diagnóstico y/o 

pronóstico y podrían representar nuevas dianas terapéuticas para el tratamiento del cáncer 

de próstata.  
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2. INTRODUCTION 

2.1. Prostate gland 

The prostate is a gland about the size and shape of a walnut (20 g and 4 × 2.5 cm) 

which is part of the male reproductive system [1, 2]. Its physiological function is the 

production of a fluid that, along with sperm cells from the testicles and fluids from other 

glands, makes up semen [3]. The muscles of the prostate ensure that the semen is 

forcefully pressed into the urethra and then expelled outwards during ejaculation. 

The prostate is located directly below the bladder and above the muscles of the 

pelvic floor. The rectum is behind the prostate, making it possible to feel the gland from 

the rectum using the finger. The ducts in the prostate gland flow into the urethra, which 

passes through the prostate. 

The adult human prostate is organized in three zones: central zone, transition zone, 

and peripheral zone (70% of total volume), reflecting three distinct sets of ducts [4] 

(Figure 1A). Most prostatic tumors (70%) start from the peripheral zone, whereas the 

transition zone is the origin in 20% of total cases [5]. Prostatic ducts are lined by a 

pseudostratified epithelium that contains three major cell types: luminal secretory 

epithelial cells, basal epithelial cells, and rare neuroendocrine cells, which can be 

distinguished by their patterns of expression of specific differentiation markers [2, 6] 

(Figure 1B). These cells have an apical–basal polarity and secrete prostatic proteins and 

fluids from their apical surface into the prostatic lumen. Finally, the stromal layer is 

mainly formed by smooth muscle cells, and also contains fibroblastic, neuronal, 

lymphatic, and vascular cell types [2]. Reciprocal interactions between the epithelium and 

stroma are critical for maintaining prostate homeostasis and normal prostate function [7].  

 

 

 

http://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0025017
http://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022072
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http://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0022619


 

18 
 

A. 

 

B. 

 

Figure 1: The human prostate gland .  A)  Sagittal view of the localization of prostate in 

the body, and different zones (peripheral, transition and central) inside the organ. B)  

Structure and cells of a prostatic duct. Each epithelial cell type (basal,  luminal and 

neuroendocrine cells) harbors specific markers (indicated below each cell type) that allow 

its identification.  Figure 1A is taken from https://www.fairview.org/healthlibrary/Article/87095 

while Image 1B is taken from WebPatholohy website : http://webpathology.com/.  

 

2.1.1. Physiological regulation of prostate by hormones and its dysregulation in 

prostate cancer 

Prostate development and function is regulated by multiple hormones [2, 3, 8]. 

Specifically, different classes of steroids hormones (androgens, estrogens, progesterone 

https://www.fairview.org/healthlibrary/Article/87095
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and glucocorticoids) initiate distinct actions via binding to their cognate nuclear receptor 

proteins [9]. However, clinical and laboratory data have shown clear evidence that 

androgens are the most important hormones regulating the prostate gland [2]. 

2.1.1.1. Androgens 

Androgens synthesis and secretion are under the physiological regulation of the 

hypothalamic–pituitary–testicular axis, including the production of testosterone in testis 

(which represents 95% of total testosterone) [10, 11], and the activity of adrenal glands, 

which produce other androgens such as dehydroepiandrosterone sulfate and 

androstenedione [12] (Figure 2). Androgens exert their action through binding to a 

nuclear receptor called Androgen Receptor (AR), which controls the transcription of 

hundreds of genes involved in prostate development, growth, and function [13] (Figure 

2). Specifically, during development, AR drives luminal epithelial proliferation and 

differentiation of the prostate [14]. Moreover, orchiectomy and/or chemical castration 

produces a total inhibition of mice prostate fetal development [15]. Several studies have 

also demonstrated that the Androgen/AR-axis is indispensable for prostate development 

[8, 16, 17] In fact, it has been shown that mice and human with dysfunctional AR 

expression do not develop a functional prostate [3, 16-18]. DHT (5α-dihydrotestosterone; 

the reduced metabolite of testosterone) is the main androgen involved in prostate function 

[19]. Intracellularly, testosterone is converted to DHT by the enzyme 5α-reductase; 

indeed, DHT has 5-10 times higher affinity for the AR than testosterone [20]. In human, 

the deficiency of 5α-reductase enzyme produces a complete absence of prostate 

morphogenesis [21]. There are many genes whose expression is under the regulation of 

AR but KLK3 (kallikrein related peptidase 3, commonly known as PSA; prostatic specific 

antigen) is well-known for being one of the most important factors due to its critical 

function and clinical application. Specifically, PSA is involved in the liquefaction of 

seminal coagulum, presumably by the hydrolysis of semenogelin-1 and Galectin-3 [22-

24]. Remarkably, PSA is almost exclusively expressed in the prostate epithelium (luminal 

cells) and clinically it is used as biomarker of PCa because its serum levels are generally 

higher in patients with PCa [25].  



 

20 
 

 

Figure 2: Representative scheme of the association between the h ypothalamic-

pituitary-testicular axis  and adrenal gland with prostate cell intrinsic factors . The 

gonadotropin-releasing hormone (GnRH) is produced in the hypothalamus and stimulates 

the secretion of the luteinizing hormone (LH) from gonadotrope cells of the pituitary gland. 

Eventually, LH will reach the testes where it induces the secretion of testostero ne from 

Leydig cells. When testosterone enters in the prostate , it is rapidly converted to 

dihydrotestosterone (DHT) by the 5α -reductase enzyme (5α -DHT) and binds to androgen 

receptor (AR). The AR-DHT complex enter in the nucleus and binds to AR -target gene 

domains in the DNA in order to regulate their expression. Other source of androgens that 

will be converted to DHT in prostate come from the adrenal glands which produce 

dehydroepiandrosterone sulfate (DHEA-S) and androstenedione (AD).  

 

2.1.1.2. Estrogens 

The majority of estrogens present in men are derived from the peripheric 

conversion, mainly in the adipose tissue, of androstenedione and testosterone to estrone 

and estradiol [26]; however, small amounts are also produced in the testes and directly 

secreted to blood [27]. Together with AR, ER (estrogen receptor) is also important to 

drive luminal epithelial proliferation and differentiation of fetal prostate [28]. Moreover, 

estrogens play a dual role in the regulation of adult prostate due to their antagonistic role, 

increasing or decreasing proliferation depending on the receptor to which it binds to [13]. 

Specifically, it has been shown that estrogens increase proliferation after binding ERα but 

decrease proliferation through ERβ [29]. In addition, there is a growing body of evidence 

supporting the notion that estrogens play a pathophysiological role in PCa mainly by the 

effects trigger binding to ERα, since this receptor is upregulated in PCa [30].  
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2.1.1.3. Progesterone 

Progesterone (PR) is another steroid that controls prostate homeostasis [31]. PR 

exerts its effects through its receptor, PGR, whose two isoforms (PGRA and PGRB) are 

expressed in stromal cells] [31]. Several studies have shown that PR is able to decrease 

cell growth and invasion of normal prostate cells and PCa cell lines by binding to both 

PGR isoforms and through the modulation of different intracellular mechanisms [31, 32]. 

It has also been shown that PR protein levels are decreased in PCa stroma as compared 

with benign tissue, suggesting a putative role of this system in the homeostatic control of 

the prostate as well as in PCa progression [32]. 

2.1.1.4. Glucocorticoids 

Glucocorticoids are produced in the adrenal gland and mediate systemic effects 

through binding to the Glucocorticoid Receptor (GR) [9]. GR is expressed in normal 

prostate, although its physiological role as regulator of prostatic biology is still unclear 

[33]. Mice lacking endogenous expression of GR in prostate do not show any significant 

change in cell growth or morphogenesis [34]. However, GR expression is decreased in 

early stages of human PCa with only 30% of primary prostatic tumors showing GR 

expression [35]. Moreover, some studies using in vitro models have shown a tumor-

suppressor role of GR in PCa in terms of cell proliferation or migration [35]. Additionally, 

GR expression is upregulated in late phases of the disease (androgen ablation PCa/AR 

blockade), and, therefore, it has been suggested that GR overexpression in the prostate 

epithelia may be associated with the response to androgen deprivation therapy [36]. 

Recent studies have shown that AR and GR are capable of binding to the same sites on 

chromatin [36, 37] and that genes induced by GR and DHT are highly overlapping [9]. 

Furthermore, the treatment with AR antagonist increases GR expression in few days [36], 

a process called “Steroid receptor switch”. This observation might be very important from 

a clinical point of view since hormone-refractory PCa patients are treated with 

chemotherapeutic agents (i.e. docetaxel) and with glucocorticoids to ease side-effects by 

chemotherapeutic agents [9]; therefore, the treatment with glucocorticoids could 

represent a tumor alternative pathway to bypass the androgen blockade [9]. 
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2.2. Clinical significance 

2.2.1. Prostatitis 

Prostatitis is a common inflammation of the prostate that usually occurs in men 

under age 50 [38]. The cause can be due to an infection or other causes such as hormones 

dysregulations (i.e. estradiol), physical trauma, urine reflux or dietary habits (i.e. charred 

meat) [39]. Infiltration of immune cells (T cells, B cells, macrophages and mast cells, 

mainly) and production of cytokines (IL-6, IL-1 or TNF-α) are typical features of 

prostatitis [39]. 

Remarkably, some models reflect the possible relationship between inflammation 

and early PCa-onset in which the inflammation caused by different agents would produce 

a precursor lesion in the prostate called PIA (Proliferative Inflammatory Atrophy) that in 

many cases will be healed, but sometimes could be the precursor of other lesions named 

PIN (Prostatic Intraepithelial Neoplasia) and/or PCa [40-42]. In fact, morphological 

transitions between PIA, PIN, and PCa have been reported and some of the genetic 

alterations of prostate are shared with PIA and PIN lesions (i.e. loss of tumor suppressor 

genes such as NKX3.1 and p27, promoter hypermethylation of GSTP1, etc.) [40, 41, 43].  

2.2.2. Benign prostatic hyperplasia (BPH) 

BPH is the most common urological disease in men after 50-year-old [44]. It 

courses as an enlargement of the prostate associated with symptoms like poor urine flow, 

intermittent stream or sensation of poor bladder emptying [44]. Age is the main risk factor 

for developing BPH since 50% of men over 75 ages have this disease [44, 45]. 

Androgen/AR signaling plays key roles in increasing cell proliferation in both stromal 

and epithelial cells, therefore boosting development of BPH [46]. Some patients present 

increased PSA levels in serum due to enlarged organ volume, inflammation and AR 

activity; however, BPH is not considered to be a premalignant lesion [47]. 

2.2.3 PIN 

PIN is the most established precursor of PCa [48]. Indeed, both processes share 

genetic and molecular markers, with PIN representing an intermediate stage between 

benign epithelium and invasive malignant carcinoma [49]. As PCa, PIN is more common 

with advanced age with higher rates of occurrence in the peripheral zone of the prostate. 
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The presence of PIN lesions is associated with 20%-25% of PCa risk in subsequent repeat 

biopsies [49]. Based on how abnormal the patterns of cells look, PIN are classified as: 1) 

Low-grade PIN (LG-PIN; the patterns of prostate cells appear almost normal), and 2) 

High-grade PIN (HG-PIN; the patterns of cells look more abnormal). 

Histologically, HG-PIN presents nuclear cell enlargement, hyperchromasia and 

prominent nucleoli [49]. 

2.2.4. Prostate cancer 

2.2.4.1. Epidemiology 

PCa is the second most common cancer in the male population and the fourth most 

common worldwide [50]. It is estimated that one of seven men will develop PCa in his 

time life [51]. In 2013, 1.4 million of new cases and 293,000 deaths were reported around 

the world, being the leading cause of cancer death for men in 24 countries [50]. The 

incidence is higher in developed countries and in Western population (North America and 

Europe) thanks to the PSA screening [50]. PCa is mainly diagnosed at old age (>60 years) 

and usually when the tumor is localized (81% of the cases; regional lymph nodes: 12%; 

distant: 4%) [51] (Figure 3). The 5-year relative survival is ≥ 99% when the tumor is 

localized or regional lymph nodes but only of 24% when the tumor is already distant at 

the diagnosis [51] (Figure 3).  

Figure 3: PCa stage at primary diagnosis and 5 -year survival depending on stage at 

diagnosis in all races and white and black individuals in EEUU . Adapted from Siegel 

et al.  [51] .   

 

 



 

24 
 

2.2.4.2. Symptoms  

Not everyone experiences symptoms of PCa, especially in early-stages of the 

disease. In many cases, the signs are first detected by a doctor during a routine check-up. 

Some patients will experience changes in urinary or sexual function that might indicate 

the presence of PCa. These symptoms include the need to urinate frequently (especially 

at night), difficulty starting urination or holding back urine, weak or interrupted flow of 

urine, difficulty in having an erection or painful ejaculation 

(http://www.cancer.net/cancer-types/prostate-cancer/symptoms-and-signs). However, 

these symptoms can also indicate the presence of other diseases or disorders (prostatitis 

or BPH). Lymph nodes (LNs) and bones represent the most common locations of 

metastatic disease so patients usually suffer of acute bone pain. 

2.2.4.3. Risk factors  

There are only three established risk factors for PCa: older age, ethnic origin 

(African-American men have the highest incidence rate) [52] and heredity [53, 54]. The 

risk for first-degree relatives is about two times higher than for men in the general 

population [53]. More specifically, it has been shown that this familial risk is four times 

higher for first-degree relatives of men with PCa diagnosed younger than 60 years than 

for the general population [54]. In line with this, only one definite PCa predisposition 

gene, the homeobox gene HOXB13, has been identified [55, 56]. More studies have 

shown that PCa patients with BRCA2 mutations carriers present higher Gleason-score and 

worse prognosis than do non-BRCA2 mutations carriers but the relationship between 

BRCA2 in PCa development is not clear [57]. External factors that, in some ways, may 

be also involved in the development of PCa are the type of diet, pattern of sexual behavior, 

alcohol consumption, exposure to ultraviolet radiation, chronic inflammation, infection 

for pathogens [58] and occupational exposure [59].  

2.2.4.4. Classification  

The classification of PCa is based on the TNM system (tumor–node–metastasis 

cancer staging system; The Union Internationale Contre le Cancer, 2010; 

http://www.uicc.org/resources/tnm), which is one of the most accepted cancer staging 

systems. The TNM system is based on the size and/or extent (reach) of the primary tumor 

(T), the amount of spread to nearby lymph nodes (N), and the presence of  

http://www.cancer.net/cancer-types/prostate-cancer/symptoms-and-signs
http://www.uicc.org/resources/tnm
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045847&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045762&version=Patient&language=English
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metastasis (M) or secondary tumors formed by the spread of cancer cells to other 

parts of the body. A number is added to each letter to indicate the size and/or extent of 

the primary tumor and the degree of cancer spread (Table 1). 

Table 1: TNM system classification of PCa tumors 

PRIMARY TUMOR (T) 

TX Primary tumor cannot be assessed 

T0 No evidence of primary tumor 

T1 Clinically in-apparent tumor not palpable or visible by imaging 

T1a Tumor incidental histologic finding in ≤5% of tissue resected 

T1b Tumor incidental histologic finding in >5% of tissue resected 

T1c 
Tumor identified by needle biopsy (because of elevated prostate specific 

antigen [PSA] level) 

T2 
Tumor confined within prostate; tumors found in 1 or both lobes by 

needle biopsy but not palpable or reliably visible by imaging 

T2a Tumor involves one-half of 1 lobe or less 

T2b Tumor involves more than one-half of 1 lobe but not both lobes 

T2c Tumor involves both lobes 

T3 
Tumor extends through the prostatic capsule; invasion into the prostatic 

apex, or the prostatic capsule is classified not as T3 but as T2 

T3a Extracapsular extension (unilateral or bilateral) 

T3b Tumor invading seminal vesicle(s) 

T4 
Tumor fixed or invades adjacent structures other than seminal vesicles 

(e.g., bladder, levator muscles, and/or pelvic wall) 

Pathologic (pT)* 

pT2 Organ confined 

pT2a Unilateral, involving one-half of 1 lobe or less 

pT2b Unilateral, involving more than one-half of 1 lobe but not both lobes 

pT2c Bilateral disease 

pT3 Extraprostatic extensión 

pT3a Extraprostatic extension or microscopic invasion of the bladder neck 

pT3b Seminal vesicle invasión 

pT4 Invasion of the bladder and rectum 

REGIONAL LYMPH NODES (N) 

NX Regional lymph nodes were not assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in regional lymph node(s) 

Pathologic 

pNX Regional nodes not sampled 

pN0 No positive regional nodes 

pN1 Metastases in regional nodes(s) 

DISTANT METASTASIS (M)* 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046710&version=Patient&language=English
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Pathologic evaluations of prostate cancer is based on Gleason grading [60] 

(Figure 4). This system has evolved since 1966 and, recently, it has been modified with 

a new system already accepted by the World Health Organization for the 2016 (WHO 

2016) edition of Pathology and Genetics: Tumours of the Urinary System and Male 

Genital Organs [61]. The Gleason system is based on the glandular pattern of the tumor 

as identified at relatively low magnification. It comprises from 1 to 5, with 1 being the 

most differentiated and 5 being the least differentiated (Figure 4).  

Gleason score of biopsy-detected PCa comprises the Gleason grade or the most 

extensive pattern (primary pattern), plus the second most common pattern (secondary 

pattern), if two are present. If one pattern is present, it needs to be doubled to yield the 

Gleason score. For three grades, the Gleason score comprises the most common grade 

plus the highest grade, irrespective of its extent [62]. When reporting prostatectomy 

specimens, the Gleason score is the sum of the most and second-most dominant (in terms 

of volume) Gleason grade. If only one grade is present, the primary grade is doubled. If 

a grade comprises < 5% of the cancer volume, it is not incorporated in the Gleason score 

(5% rule). The primary and secondary grades are reported in addition to the Gleason 

score. A global Gleason score is given for multiple tumours, but a separate tumour focus 

with a higher Gleason score should also be mentioned [62].  

 

Figure 4: Representative images of Gleason score classification .  Gleason score 2 : The 

glands have abundant pale cytoplasm and prominent nucleoli; Gleason score 3 : The glands 

have well-formed round, oval, or distorted lumens. There is nuclea r enlargement and 

M0 No distant metastasis 

M1 Distant metastasis 

M1a Nonregional lymph nodes(s) 

M1b Bone(s) 

M1c Other site(s) with or without bone disease 
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hyperchromasia with prominent nucleoli. Basal cells are not seen; Gleason score 4 : 

Glandular fusion is the hallmark feature of Gleason pattern 4. The image shows fused 

glands forming anastomosing irregular cords separated by moderate amou nt of stroma; 

Gleason 5 score : Solid sheet of relatively uniform neoplastic cells diagnostic of Gleason 

score 5+5=10. Images are taken from WebPatholohy website: http://webpathology.com/ .  

 

Due to its misleading clinical implications, Gleason score of 1 + 1 = 2 should not 

be rendered, regardless of the specimen type GS 2–4 should rarely be rendered in needle 

biopsies, if ever (5,6). Therefore, from a practical standpoint, Gleason pattern in 

contemporary practice starts at 3 and GS starts at 6 in prostate biopsy specimens and most 

transurethral resection of the prostate (TURP) and radical prostatectomy (RP). specimens 

[63, 64]. 

 

2.2.4.5. Types of prostate cancers  

Most PCa tumors are adenocarcinomas (around 90%) with a typical luminal 

phenotype common to other epithelial cancers (i.e. breast and colon cancer) with loss of 

the basal layer [65]. Adenocarcinomas express AR and lack the expression of markers of 

basal cells such as CK5, CK14 and p63 [66]. In the past, it was accepted that luminal cells 

were the origin of PCa [67, 68], but nowadays that notion has been questioned since 

multipotent stem and progenitor cells within the basal epithelial are able to give rise to 

basal, luminal and neuroendocrine cells [67, 69]. In fact, with the appropriate oncogenic 

input (i.e. ERG, AKT and AR overexpression), normal basal cells, but not normal luminal 

cells, are able to produce adenocarcinomas [67], and even a mixture of adenocarcinoma 

and neuroendocrine PCa (by means of N-Myc overexpression and constitutive activation 

of AKT pathway) [70]. In addition, PCa origin is commonly multifocal, since about 80% 

of tumors contains >1 disease focus [71], and each of those may harbor different 

molecular alterations [72] which emphasize the intra-tumoral complexity and 

heterogeneity of PCa.  

Rare types of PCa are ductal carcinoma, mucinous PCa, prostate sarcomas, signet 

ring cell PCa and neuroendocrine tumors (small- and large-cell PCa) [65]. The frequency 

of neuroendocrine PCa tumors (NEPC) is low (<2% of total PCa) [73] but normally 

behave very aggressively, since they cannot be detected by PSA screening (there is no 

expression of AR or PSA in neuroendocrine cells), and, therefore, many patients are 

http://webpathology.com/
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diagnosed in an advanced stage of the disease [74, 75]. Loss of RB1 and TP53 tumor 

suppressors and overexpression of MYCN and AURKA (Aurora Kinase A) commonly 

occurs in NEPC [70, 72], and, potentially, can be PCa clinical targets (i.e. AURKA 

inhibitors [70, 76]). Neuroendocrine cell differentiation is a process that helps the tumor 

to keep growing and bypass the castration-hormonal therapy [75]. 

2.2.4.6. Pathophysiology 

PCa evolves from benign tissue to malignant lesion by acquiring, over time, 

several genetic alterations (DNA copy number variations, gene mutations, or 

chromosomal rearrangements), alterations in intracellular signaling (i.e Phosphoinositide 

3-kinase pathway, MAPK kinase pathway), epigenetic changes (DNA methylation, 

histone modification or miRNA dysregulation) and other key molecular alterations (i.e. 

aberrant alternative splicing) [77]. While structural lesions (such as genomic 

rearrangements) are prevalent in PCa, point mutations occur less commonly compared to 

other solid tumors (i.e. colorectal cancer) probably because PCa is not exposed to strong 

exogenous mutagens [78, 79] (Figure 5). Somatic copy number alterations (SCNAs) are 

common in PCa, and imply the gain or loss of segments of genomic DNA, leading to 

amplification of oncogenes (i.e. AR, MYC) and/or deletion of tumor suppressor genes 

(i.e. TP53, PTEN, CDKN1A or APC) [78, 80]. Chromosomal rearrangements can also 

result in gene fusions, with aberrant function promoting oncogenesis (i.e. ETS gene 

fusion). 
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Figure 5: Number of somatic mutations (in parentheses) in representative human 

cancers, detected by genome wide sequencing studies. Adapted from Vogelstein et al. 

[79]. 

 

Growth of adenocarcinomas is androgen-dependent, and therefore, endocrine-

based therapies are targeted towards lowering serum androgens and/or inhibiting AR 

activity, normally known as androgen deprivation therapy (ADT) [81, 82] (Figure 6). 

Due to the PCa complexity, it is necessary to differentiate between the events that occur 

in an early phase of the disease (localized PCa), probably driving the development and 

progression of the disease, and those events that occur in a late phase, which takes place 

after the patient has gone through heavy ADT to control the progression of PCa [CRPC 

(Castration Resistant PCa) or mCRPC (metastatic CRPC)] [78, 80, 82-84] (Figure 6).F 
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Figure 6: Clinical evolution of PCa with therapeutical options and molecular 

mechanism behind the pathology.  AR sig= AR signaling; Mut= Mutation; AR spl: AR 

splicing (i.e. AR-V7); Amplif: Amplification; NE= Neuroendocrin ; Path=pathway. 

Adapted from Prensner et al. [85] and Barbieri et al. [82] 

2.2.4.6.1. Early events in PCa 

The molecular complexity of primary PCa is remarkably high, and it has been 

proposed that 74% of the primary PCa tumors fall into one of seven subtypes defined by 

specific gene fusions (ETS genes with AR-regulated genes) or mutations (SPOP, FOXA1 

and IDH1) [78]. In contrast, a significant subset of PCa tumors (26%) are driven by 

unknown molecular alterations [78]. Androgen signaling is the most relevant pathway in 

both primary and advanced PCa [78, 82, 83] and PCa tumor growth is androgen 

dependent. Although in early stages of the disease the AR gene or its protein product are 

not altered (mutations in AR, amplifications of the gene or appearance of AR splicing 

variants, which are hallmarks of castration resistant PCa), many of its cofactors (i.e. 

NCOA2, NRIP1) or AR-regulated genes are also involved in the appearance of PCa, and, 

in addition, androgens and AR are essential in Early Onset PCa (EO-PCa)-driven ETS 

fusion events [80, 84]. In line with this, Bacca et al. have proposed a ‘‘consensus path’’ 

of progression due to genetic events that could be similar to that in other solid tumors, 

like colorectal tumors [86]. Specifically, this path leading to PCa would begin with the 

deletion of NKX3-1 or FOXP1 and fusion of TMPRSS2 and ERG genes (due to an 
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increase in AR activity), modifying normal prostate epithelial differentiation [87] and 

promoting other oncogenic alterations [83]. Subsequently, lesions, or epigenetic silencing 

in tumor suppressors such as PTEN, CDKN1A, RB or TP53 accumulate [88, 89]; these 

alterations lead to increase cell growth, genomic instability and/or evasion of apoptosis 

[83]. Nevertheless, this vision may be oversimplified, since some events in PCa are 

exclusive (i.e. ETS fusion with presence of SPOP/CDH1 mutations) but others are 

common in the different subtypes. In sum, the complexity of primary PCa reflects, and 

probably underlies the wide range of patient response for established clinical treatments.  

ETS gene fusions 

The fusion between AR-regulated genes with members of the ETS family [78] is 

the most common alteration in primary PCa [90]. The prevalence of those rearrangements 

is 53% in primary PCa, being the fusion involving ERG the most common process 

(occurring in 46% of primary PCa) [78]. Up to 10 androgen-regulated genes have been 

found as 5’ fusion partner of ETS gene [82, 90]. TMPRSS2 is the most common gene 

involve in this fusion, with the transcription factor ERG as 3’ partner, resulting in 

activation of the TMPRSS2-ERG fusion oncogene [90]. Other members of the ETS 

family that serves as 3’ partner included ETS variant 1, 4 and 5 (ETV1, ETV4, ETV5) 

[90].  

In vivo models shows that the expression of ERG in mice prostate epithelial cells, 

at levels that are clinically relevant, is sufficient to cause the slow and partially penetrant 

emergence of age-related prostate tumors, a mechanism that involves the activation of 

Hippo pathway [91]. Consistent with this observation, in vitro experiments with forced 

ERG-overexpression in PCa cell lines increases pathophysiological features (i.e. cell 

migration) [92]. However, patients with ETS fusion tumors do not have a worse clinical 

outcome compared with other subtypes [93]. Most of the ETS positive subclasses harbor 

mutations or loss in PTEN but also in the tumor suppressor TP53 [78, 83]. However, other 

alterations as SPOP mutations, CDH1 deletions or SPINK1 overexpression occur 

exclusively in ETS-negative PCa showing again the molecular heterogeneity of PCa [78, 

80, 83, 94]. 

PTEN 
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PTEN is as a tumor suppressor that negatively regulates intracellular levels of 

phosphatidylinositol-3, 4, 5-trisphosphate, and acts by negatively regulating AKT/PKB 

signaling pathway [95, 96]. It is mutated in a large number of cancers at high frequency; 

in fact, deletions in PTEN occur in 30-60% of primary PCa, with inactivating mutations 

in 5-10% of the cases [80]. Mostly, PTEN deletions occur in ERG-fusion cases [78, 80]. 

PTEN loss is often found in PIN lesions, which indicates that it is a common event in 

early PCa development; however, loss of PTEN is even more acute in advanced disease 

as it is shown in metastatic PCa [78, 94]. Moreover, a growing body of evidence shows 

that deletion of PTEN is associated with PCa aggressiveness [97, 98]. 

TP53 

TP53 is the most commonly mutated gene in human cancer [99]. It is a tumor 

suppressor in many cancers, which induces cell growth arrest or apoptosis depending on 

the physiological context and cell type [99]. Several studies show deletions at the TP53 

locus in approximately 25–40% of PCa samples [82], with point mutations in 5–40% of 

patients. Of note, about 25–30% of clinically localized PCa present alterations in TP53, 

and it is also found in PIN lesions, suggesting that these alterations are common in early 

events in the genomic history of the disease [82]. 

NKX3-1 

NKX3-1 (NK3 Homeobox 1) is a transcription factor that acts as a negative 

regulator of epithelial cell growth in prostate tissue [100]. Moreover, it is crucial in the 

development of fetal prostate [101]. Deletion of NKX3-1 is a common event in early 

phases of PCa and cooperates with the activation of TMPRSS2: ERG [102]. Remarkably, 

in vivo models show that the loss of NKX3-1, in conjunction with the loss of PTEN, 

produces a constitutive activation of PTEN-AKT pathway disrupting normal cellular 

response to DNA damage and promoting PCa development [103].  

SPOP mutations and CDH1 deletions 

SPOP (E3 ubiquitin ligase adaptor speckle-type POZ protein) is one of the most 

frequently mutated genes in PCa (about 6-15% of localized PCa patients harbor point 

mutations in this gene) [78, 104]. PCa with mutant SPOP lacked ETS family gene 

rearrangements and showed a distinct pattern of genomic alterations [104]. PCa cells lines 

transfected with the most common SPOP mutant (the F133V variant) or with SPOP 
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siRNA showed increased invasion capacity compared to controls; however, cell 

proliferation and migration was not significantly altered [104, 105]. Moreover, SPOP can 

act as a tumor suppressor involved in AR signaling. Specifically, SPOP mutated protein 

cannot interact with SRC-3 protein or promote its ubiquitination and degradation (SRC-

3 is a direct regulator of androgen receptor transcriptional activity, cell proliferation, and 

resistance to androgen deprivation therapy) [105]. Therefore, SPOP mutations abrogate 

its naive tumor suppressor role and control of SRC-3 in PCa. 

CHD1 (Chromodomain-helicase-DNA-binding protein 1) is an enzyme that acts 

to remodel chromatin structure [106]. CDH1 is often loss in PCa (about 10-25% of cases) 

but exclusively in ETS negative tumors [78, 107]. Unfortunately, the role of CHD1 in 

PCa is still unclear; however, there is some evidence that CHD1 can act as a tumor 

suppressor, required for efficient recruitment of AR and for the regulation of expression 

of known AR-responsive tumor suppressor genes (i.e. NKX3-1 or FOXO1) [108]. 

AR signaling 

AR undergoes several changes leading to enhanced activity in PCa, such as gene 

amplification, point mutations, and alterations in canonical splicing leading to 

constitutively active, aberrantly spliced variants, but most of these alterations take place 

in late stage metastatic CRPC [82]. Nevertheless, alterations in genes encoding proteins 

that regulate AR are common in early PCa; these include transcriptional co-activators, 

such as the nuclear receptor coactivator 2 gene (NCOA2), and E1A binding protein p300 

gene (EP300), transcriptional co-repressors, like nuclear receptor repressor 2 gene 

(NCOR2), or interacting transcription factors nuclear receptor interacting-protein 1 

(NRIP1-RIP140) [109], and chromatin regulatory elements [82]. FOXA1 (Forkhead Box 

A1), which is commonly overexpressed in PCa, binds to AR regulating its transcriptional 

activity and function [104]. Moreover, point activating mutations are found in this gene, 

and it has been demonstrated that FOXA1 mutants enhance cell growth and invasion in 

the presence of androgens [104]. 

Although AR does not seems to be structurally modified in primary PCa, its 

expression is higher in early onset PCa, an aggressive form of PCa diagnosed at age ≤55 

years [84]. However, the most striking role of AR/androgens in early PCa comes from 

the evidence that this system is able to promote aberrant structural rearrangements (i.e. 

gene fusions), which are one of the first events in PCa [84]. In vitro experiments have 
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also demonstrated that the formation of ERG rearrangements with androgen-dependent 

genes can be induced by serum androgen levels in prostate epithelial cells [84, 110]. 

Therefore, it has been proposed that the increase in androgen levels promote structural 

rearrangements in the prostate (i.e. TMPRSS2: ERG), which initiate a cascade of genetic 

changes (i.e. PTEN or TP53 loss) driving progression and aggressiveness of human PCa.  

 

2.2.4.6.2. Late events in PCa; the development of CRPC (castration resistant-PCa)  

ADT by using anti-androgens and/or GnRH analogs is the gold standard of 

therapy for locally advanced PCa, metastatic PCa, and biochemically recurrent disease 

after the lack of success of localized treatments [111-113]. ADT is known to provide 

remission for a time (24-36 months) of the disease, accompanied with PSA decline [111]. 

However, the disease progresses despite continuous hormonal therapy and PSA levels 

increase again eventually (biochemical recurrence) [111]. This type of cancer is then 

known as castration-resistant PCa (CRPC) [113]. To date, there is no successful cure for 

metastatic castration-resistant PCa (mCRPC), which presents a mean survival time of 

only 16–18 months [111]. The molecular hallmarks of CRPC cancers are divided in I) 

AR-related pathways (Table 2) and, II) Non-AR-related pathways [76, 114].  

I) AR-related pathways: To date, it is widely accepted that AR signaling plays a 

central role in this late phase of the disease, since the increase of PSA during ADT therapy 

reflects the re-activation of AR transcriptional activity [76, 111, 114]. Recently, the 

persistent significance of the AR axis in CRPC was pharmacologically validated by the 

clinical efficacy of androgen synthesis inhibitors (Abiraterone) and novel second-

generation AR antagonist (Enzalutamide) [76, 111, 115-117]. In addition, other signaling 

pathways involved in AR function such as MAPK kinase, PIK3/AKT, Retinoblastoma 

(Rb), MYC/MAX or WNT pathways are dysregulated in CRPC, and contribute to the 

progression of the disease [82, 94, 114, 118] . The main mechanisms involved in the AR-

axis maintenance in CRPC are summarized in Table 2.  

Although not directly related with AR signaling, neuroendocrine differentiation 

is a crucial process driven by ADT therapy, and represents a critical step in the 

progression of PCa from adenocarcinoma to CRPC [70]. Neuroendocrine PCa cells only 

represent 2% of total cells of all primary PCa cells; however, ADT therapy produces an 
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expansion of this cell population, which does not express AR or PSA, and, therefore, is 

not a target for ADT therapy [70, 76]. Remarkably, it has been shown that some factors 

induced by castration (i.e. IL-6) enhance the neuroendocrine phenotype [119].  

Table 2: Molecular mechanisms that promote persistent activation of AR in CRPC 

tumors. 

 

 

II) Non-AR-related pathways. Some of the processes included in these pathways 

include: 1) Overexpression of anti-apoptotic proteins that circumvent the AR pathway 

(i.e. BLC-2[127]); 2) Tumor suppressor dysregulation (i.e. TP53 [128, 129]); 3) 

Alteration in miRNAs expression (i.e. MiR-21, MiR-27a, MiR-141, MiR-375 

[130],[131]); 4) epigenetic changes (i.e. PTEN loss of expression due to CpG islands 

methylation); 5) alternative splicing [77, 132]; and, 6) gene fusions (i.e. ERG genes [10]). 

 

2.2.4.7. Diagnosis  

Most adenocarcinomas are diagnosed during PSA screening and/or digital rectal 

exam (DRE) [53]. Thanks to the PSA screening, almost 80% of PCa patients have tumors 

located in the prostate without metastasis at the time of the diagnosis [51]. If certain 

Mechanisms that promote persistent AR 

axis activation in CRPC cells 
Example 

Persistence of intra-tumoral levels of 

androgens  

Up-regulation and stimulation of 

enzymes involved in androgen synthesis 

(AKR1C3) [120] 

AR overexpression 

AR gene amplification, missense 

mutations in AR ligand-binding domain 

(LBD) [121, 122] 

Expression of AR truncated variants AR-v7, AR-v4 [123-125] 

Changes in the coregulatory components 

of the AR complex (coactivators and 

corepressors) 

SRC1, SRC2, SRC3, NRIP1 [109, 126] 

Activation of the AR complex via cross-

talk with other signaling pathways 

PI3K/AKT, RAS/MAPK, MYC/MAX, 

Retinoblastoma (Rb), TGF-β  
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symptoms or the results of PSA detection test are clearly positive, then a prostate biopsy 

is required. Accordingly, a core needle biopsy by transrectal ultrasound (TRUS)-guided 

biopsy is the main method used to diagnose PCa [53]. In biopsy specimens, 

adenocarcinoma diagnosis can be confirmed by the absence of immunostaining using p63 

and cytokeratin 5/14 antibodies, both of which detect basal cells [133]. In addition, the 

sample will be evaluated for the presence and grade of the tumor (according to the 

Gleason system) and also diagnosed by the status of their primary tumors (T1-4, M0 and 

1a-c, N0 or 1) [134]. 

Unlike most solid tumors, some biomarkers have been typically employed in PCa 

detection. First, PAP (prostatic acid phosphatase) was investigated as a serum biomarker 

of cancer in metastatic prostate patients [135]. In the 1980s, PAP was rapidly replaced by 

PSA, which has become one of the standard marker for the diagnosis of PCa in clinical 

routine. However, PSA value for the prognosis of PCa is controversial, and in many cases, 

leads to overdiagnosis and treatment of indolent cancer that produces more harm than 

good in the patient [136, 137]. Therefore, it is widely accepted that new PCa biomarkers 

should be identified to target unmet clinical needs in PCa management, including: 1) risk 

indicators for disease with low PSA values (<10 ng/ml); 2) prognostic markers to 

distinguish indolent from aggressive disease; and 3) biomarkers for metastatic cancer 

[85]. Therefore, new genetics test have been devised in the last years that may fulfill the 

needs in PCa diagnosis (Figure 7). 

 

Figure 7: New tests for PCa clinical detection and management .  After the identification 

of patients in whom a biopsy is requi red (based on results of specific tests such as PSA 

levels), new tests have been proposed, which are thought to fill out some of the current 

PCa clinical needs (represented as different buckets).  The first bucket shows different 

promising tests, such as PHI, PCA3 and 4KSCORE, which might add specificity and 

sensitivity to PSA test in order to detect PCa patients.  Prostate Health Index (PHI) , is a 

mathematical formula that combines total PSA, free PSA and proPSA [138], while the 

4KSCORE incorporates a panel of four kallikrein protein biomarkers (total PSA, free PSA, 

intact PSA, and human kallikrein-related peptidase 2) and other clinical information in an 
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algorithm [139].. The second bucket shows new tests used to discern if the patient should 

undergo or not re -biopsy on suspicion of false negative in first bi opsy. ConfirmMDx  test 

is based on altered epigenetics factors that occur in the primary tissue (i.e. GSTP1, APC, 

RASSF1)[140]. PCA3 (Prostate cancer antigen 3) expression levels can be measured in 

urine with a commercial kit (Promega ®) [141]. The third bucket shows new tests that give 

information about if the patient should be treated or not when the tumor is localized and 

the Gleason score of the piece is low. Oncotype DX  test measures 12 genes from Androgen 

receptor pathway (AZGP1, KLK2, SRDS12, FAM13C), cellular organization (FLNC, GSN, 

TPM2, GSTM2), proliferation (TPX2) and stromal response (BGN, SFRP4, COL1A1) 

[142]. Likewise, Prolaris  test measures the expression of 46 genes (involved in cell cycle 

progression) that correla te with prostate tumor cell proliferation, to assess the 

aggressiveness of an individual patient’s cancer [143]. Finally, the fourth bucket shows 

tests that inform which patient should be treated after p rostatectomy. Decipher  test 

measures the score obtained with the expression of 22 genes related with different cell 

processes (i.e. cell structure, adhesion, motility, or immune response), and provides 

information on tumors that will probably metastasize a fter radical prostatectomy. [144] 

 

PSA and modifications 

Kallikrein 3 (KLK3) is a gene that encodes PSA protein, a member of the tissue 

kallikrein family, which are serine proteases with diverse physiological functions [145]. 

A growing body of evidence suggests that many kallikreins are implicated in 

carcinogenesis and some have potential as novel biomarkers in cancer and other diseases 

[145]. PSA is expressed almost exclusively by the prostate and, therefore, its expression 

is tightly linked to the presence of prostatic cells [146]. Mature PSA is the result of 

proteolytic cleavages of two inactive precursor peptides, pre-proenzyme PSA (pre-

proPSA) and proPSA [24], and it is secreted into semen in its final form. Under normal 

conditions, only low levels of PSA can be detected in blood, while it is highly secreted in 

urine, and the increase of serum PSA can represent the presence of PCa, because PSA is 

released into the blood as a consequence of disruption of normal prostate architecture 

[147]. As previously mentioned, the level of PSA is a continuous parameter for the 

presence of PCa: the higher the value, the more likely is the existence of the disease [53]. 

The exact cut-off level for what is considered to be a normal PSA value has not been 

universally and absolutely determined, but values of approximately <2-3 ng/ml are often 

used for younger men [53, 148], although low levels can underrate the presence of the 

disease [53] (Table 3). There is a high controversy with the specificity and sensitivity of 

PSA test (i.e. from 20 to 40% and 70 to 90%, respectively), depending on the PSA cutoff 

values used (for example, 2 vs. 3 ng/ml) with an area under the curve (ROC curve) of 

0.55-0.70 for the ability of PSA to discern patients with PCa (1.0 is perfect discrimination 

and 0.5 is a coin toss) [149]. More importantly, the overdiagnosis, mainly by the detection 
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of harmless early-stage tumors with low Gleason score (indolent tumors), and 

consequently overtreatment, is accepted as the most important downside of PSA-test 

[150]. Therefore, there is a global controversy regarding whether PSA test should be used 

or not as a screening method for PCa. As an example, while the Prostate, Lung, Colorectal 

and Ovarian (PLC0) study performed in USA did not find any overall survival benefit 

using PSA-screening [151], the European Randomized Study of Screening for Prostate 

Cancer showed a 21% reduction of mortality based on PSA screening [152].  

Table 3: Risk of PCa presence upon PSA blood levels. 

 

Modifications of PSA test have been reported and may improve PSA specificity 

(Figure 8). These modifications include PSA density, PSA density of the transition zone, 

age-specific reference ranges, and PSA molecular isoforms. One of the most promising 

markers is the use of the percentage of free PSA (% fPSA) to reduce the number of 

unnecessary biopsies and increase the rate of PC detected [153].  
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Figure 8: Use of PSA test and modifications through the different phases of the 

disease .  cPSA: Complexed PSA; fPSA: free PSA; PSADT= PSA Do ubling Time; 

PSAV=PSA velocity.  Modified from Prensner et al. [85]  

Prostate cancer associated 3 (PCA3) 

PCA3 is a non-coding RNA highly overexpressed in prostate cancer [154]. In 

contrast to PSA, PCA3 is exclusively expressed by PCa cells [155]. Although its 

functional role is not clear, it seems to modulate and be regulated by androgen signaling 

[156]. PCA3 expression levels can be measured in urine with a commercial kit (Promega 

®) [141]. The increased specificity of PCA3 is contrasted by a reduced sensitivity and, to 

date, the main application in clinical management of PCA3 could be the measurement of 

its levels in association with PSA levels, which might reduce the number of unnecessary 

biopsies after a negative biopsy in men with suspicion of PCa [157, 158].  

Other promising biomarkers 

In addition to PSA and PCA3, other biomarkers are currently being investigated 

[85]. As mentioned before, TMPRSS2-ERG fusion is one of the most common events in 

PCa [82]. However, TMPRSS2-ERG is absent in about 50% of PCa cases, and therefore, 

its use can be only suitable in multiplexed assays combined with other biomarkers (i.e. in 

conjunction with PCA3 in urine assays) [159]. Use of SNPs associated with PCa [160-

162], metabolites [163], high-throughput approaches (RNA-Seq) [164], circulating tumor 

cells (CTCs) [165], exosomes [166] and miRNAs [167] are new avenues in PCa diagnosis 

and prognosis, although their use in clinical routine assays has not yet been well 
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developed. Interestingly, Taylor et al. [80] found that the level of DNA copy-number 

alterations can predict which group of patients will present biochemical recurrence while 

other groups with lesser DNA copy-number alterations may not even require surgery. 

Other independent study has corroborated this observation showing that the burden of 

DNA copy-number alteration correlates with higher Gleason score and PSA levels [78]. 

Another promising avenue is the use of miRNA in PCa diagnosis [167], since these 

molecules can be reproducibly extracted from a wide range of biological samples, 

accurately quantified by a variety of standard techniques, and are stable under different 

conditions (Table 4 shows some of the most extensively investigated miRNAs in the 

serum of PCa patients) [167]. 

 

Table 4: Promising miRNA biomarkers in the detection of PCa. 

 

2.2.4.8. Treatment 

The type of treatment that is specifically selected for each individual depends on 

several parameters such as the clinical stage, Gleason Grade, and patient preference [168] 

(Table 5).  

 

 

miR Trend Putative targets Pathway-Functional process 

miR-141 Up SHP AR 

miR-375 Up MYC, CCND2 Proliferation 

miR-221 Up p27kip1 Cell cycle, AR 

miR-181a Down LEF1, BCL2 EMT, apoptosis 

miR-21 Up p57kip2, PTEN Proliferation 

AR=androgen receptor; EMT=epithelial-mesenchymal transition 
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Table 5: Treatment options for prostate cancer. 

 

http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#section/_62. 

2.3. Somatostatin system  

Somatostatin (SST) is a neuropeptide expressed in the central nervous system and 

peripheral tissues [169] with an inhibitory functional role in the regulation of endocrine 

secretions in vertebrates [169] (Figure 9). Among others, SST inhibits the secretion of 

growth hormone (GH), thyroid-stimulating hormone (TSH), gastrointestinal (GI) 

hormones, pancreatic enzymes, and neuropeptides from different tissues, such as the 

pituitary, thyroid, stomach or pancreas [169, 170] (Figure 9A). SST acts through binding 

Stage (TNM Staging Criteria)  Standard Treatment Options 

Stage I PCa (T1a, N0, M0, G1 [G1 = 

Well differentiated (slight anaplasia), 

(Gleason score of 2–4)]) 

Watchful waiting or active surveillance  

Radical prostatectomy 

External-beam radiation therapy (EBRT)  

Interstitial implantation of radioisotopes  

Stage II PCa (T1b-d or T2, N0, M0, 

any Gleason) 

Watchful waiting or active surveillance  

Radical prostatectomy 

EBRT with or without hormonal therapy 

Interstitial implantation of radioisotopes  

Stage III PCa (T3, N0, M0, any 

Gleason) 

EBRT with or without hormonal therapy 

Hormonal manipulations (orchiectomy or 

luteinizing hormone-releasing hormone [LH-

RH] agonist) 

Radical prostatectomy with or without EBRT  

Watchful waiting or active surveillance  

Stage IV PCa (T4, any N, M0-1, any 

Gleason) 

Hormonal manipulations  

Bisphosphonates  

EBRT with or without hormonal therapy 

Palliative radiation therapy 

Palliative surgery with transurethral resection 

of the prostate (TURP) 

Watchful waiting or active surveillance  

Recurrent PCa 

Hormone therapy 

Chemotherapy for hormone-resistant prostate 

cancer  

Immunotherapy 

Radiopharmaceutical therapy/alpha emitter 

radiation 

EBRT = external-beam radiation therapy; LH-RH = luteinizing hormone-releasing 

hormone; TURP = transurethral resection of the prostate; T = Primary tumor; N = 

Regional lymph nodes; M = Distant metastasis; G = Gleason score. 

http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#section/_62
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_60
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1830
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1832
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1834
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1836
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1838
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1840
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1842
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_2357
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1848
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1850
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1850
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1850
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1852
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1854
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1869
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_2429
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1871
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1873
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1875
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1875
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_1876
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_2449
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_2449
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_2462
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_2791
http://www.cancer.gov/types/prostate/hp/prostate-treatment-pdq#link/_2791
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to a family of G-coupled receptors encoded by 5 distinct, intronless genes called 

somatostatin receptors (ssts; sst1-5) (Figure 9B). The binding of SST to ssts triggers 

inhibitory cascades that negatively regulate cell proliferation and migration by the 

inhibition of downstream pathways, such as ERK and AKT [169]. SST is also able to 

inhibit cell proliferation of tumoral cells [171]. In line with this, synthetics SST analogs 

(SSAs; octreotide or pasireotide) with higher affinity for ssts and longer half-life than 

natural SST peptide, are a valuable clinical option in the treatment of different tumoral 

pathologies (i.e. pituitary and neuroendocrine tumors) and a new therapeutic avenue in 

other cancer types such as breast cancer or PCa [169, 172-175].  

Somatostatin gene gives rise to a precursor called preprosomatostatin, which 

comprises about 120 aa [176]. After a process of proteolytic hydrolysis, two main 

products arise, SST-28 and SST-14, with 28 and 14aa, respectively. SST-14 and SST-28 

bind to sst1-5 with low nanomolar affinity, with SST-14 having a slightly higher affinity 

for sst1-sst4, and SST-28 showing higher affinity for sst5 [177]. Although both peptides 

present similar physiological functions, SST-14 is predominantly produced in the central 

nervous system (CNS) but also in many peripheral organs, while SST-28 is mainly 

synthesized by mucosal epithelial cells along the gastrointestinal tract (GIT) [178]. 

 

Figure 9: Somatostatin (SST) functional actions are mediate through binding to  SST 

receptor subtypes (sst1-sst5) .  A.  Multiple physiological actions of SST throughout the 
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body; B . sst receptors (sst1-5) are G-protein coupled receptor with seven transmembrane 

domains (TMD); C.  Newly identified non-canonically spliced variants from the sst5 gene 

have recently been reported . Specifically, two variants with five and four TMDs (called 

sst5TMD5 and sst5TMD4, respectively) are generated together with the canonical, full -

length sst5. sst5TMD4 spliced receptor has been associated with malignant features and 

aggressiveness in different types of endocrine-related tumors and cancers.  

The complexity of the SST system increased twenty years after the discovery of 

SST, when a new SST-related peptide encoded by an independent gene was identified 

and named Cortistatin (CORT) [179]. Similarly to the SST gene, a larger precursor of 

105 aa called precortistatin is cleaved to generates cortistatin-17 and cortistatin-29 in 

humans [180]. Interestingly, both peptides, SST and CORT, exhibit a strong structural, 

functional and pharmacological similarity, which may help to explain the ability of CORT 

to bind all canonical sst subtypes with comparable affinity to SST, and also the similar 

capacity of both peptides to regulate a number of common endocrine and non-endocrine 

relevant processes [179]. Nevertheless, it should also be emphasized that CORT actions 

do not always overlap with those of SST, and that CORT, but not SST, also binds and 

activates proadrenomedullin N-terminal peptide receptor (MrgX2) and shows binding 

affinity to ghrelin receptor (GHS-R1a) [181]. 

In addition, the existence of new variants of the sst5 receptor subtype derived from 

non-canonical splicing mechanisms has been recently described by our group in the 

human and other species [182] In particular, two additional truncated spliced variants of 

the human sst5 have been discovered, which display 4 and 5 transmembrane domains 

(TMDs) and were therefore named sst5TMD4 and sst5TMD5, respectively. Of special 

interest has been the study of the sst5TMD4 variant, which seems to play a relevant 

pathophysiological role, for it is barely expressed in normal tissues but markedly 

overexpressed in several endocrine-related tumors and cancers, including pituitary 

adenomas (PAs) [183, 184], breast cancer [185], poorly differentiated cancer and 

medullary thyroid carcinoma [186, 187], and neuroendocrine tumors NETs [188]. In these 

pathologies, sst5TMD4 presence correlates with clinical parameters of aggressiveness or 

bad prognosis, and promotes cell proliferation/migration/invasion and/or hormone 

secretion in primary cell cultures and/or model cell lines [183, 185, 187, 188] (Figure 

9C). In addition, the presence of sst5TMD4 seems to impair the physiological anti-

tumoral actions of SSAs in tumors. Specifically, studies from our group have proven that 

sst5TMD4 expression is negatively correlated with the ability of SSAs to reduce GH-
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secretion in PAs [184], and inhibits the ability of sst2-transfected cells to respond to 

SST/SSAs [185].  

2.3.1 Somatostatin system in PCa 

ssts are expressed in PCa and PCa cell lines [189, 190]. sst1 has been shown to be 

overexpressed in PCa [191-193] and correlates with aggressive prostate cancer phenotype 

[192]. However, the expression of other ssts in normal vs. PCa tissues is more 

controversial. Specifically, sst2 has been reported to be downregulated [194] and 

upregulated [195] in primary PCa, and sst5 expression is expressed in a high proportion 

of PCa tissues, but is also present in normal prostate, and its levels do not seem to 

correspond to the grade of the disease [193, 196]. ssts are localized in secretory cells, 

basal cells, smooth muscle stromal cells and endothelial cells, being the sst1 the more 

frequently expressed in basal and endothelial cell compared with the other subtypes [197]. 

To date, the presence and localization of the truncated splicing variants sst5TMD4 and 

sst5TMD5 in PCa has not been explored. 

The potential pharmacological use of SSAs in PCa has been evaluated in both, in 

vitro and in vivo studies. Specifically, in vitro treatment with SSAs targeting different ssts 

decreases the growth rate and increases cell cycle arrest through p21 in PCa cell lines 

[189]. Interestingly, the combined treatment of Lanreotide and Octreotide with Docetaxel 

enhances the induction of cell death in the PC-3 cell line [198, 199], a cell line with 

neuroendocrine differentiation features [200]. Thus, combining SSAs treatment with 

other therapeutic drugs might decrease tumor growth and provide a potential new avenue 

in PCa-treatment [172, 201], especially in those patients with neuroendocrine carcinoma 

or neuroendocrine differentiation after resistance to ADT therapy. Interestingly, it has 

been suggested that the imaging analysis of the presence of ssts on the cancer cell surface 

may provide a readily available, noninvasive means to distinguish adenocarcinoma from 

NEPC [202]. This distinction is important for therapeutic decision making and might 

open the door for developing novel radionuclide targets for the treatment of this 

aggressive subtype of PCa [202]. Indeed, a recent study focused on the combined used of 

sst scintigraphy technique (a type of radionuclide scan used to find carcinoid tumors using 

radioactive octreotide bound to ssts in the tumor) with docetaxel and octreotide treatment 

in CRPC patient with neuroendocrine differentiation showed a drastic size reduction of a 

lung metastasis with decreased in PSA level [174]. Moreover, SSAs reduces the plasmatic 
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levels of chromogranin A (CGA), a marker of neuroendocrine differentiation, in several 

trials [201, 203]. Somatostatin receptor based radio receptor therapy for treating advanced 

neuroendocrine tumors with somatostatin antagonist (vs. agonist) has been also shown to 

improve the diagnosis of PCa vs. other techniques [204].  

SSAs may mediate their antitumor actions by decreasing the growth of tumors 

through two different mechanisms: 1) by directly targeting the membrane receptors (sst1-

5) at the tumor surface; or 2) through an indirect inhibitory effect on secretory products, 

mainly exerted on growth-promoting factors such as growth hormone (GH) and insulin-

like growth factor I (IGF-I). In fact, some studies have shown that the treatment with 

octreotide acetate significantly lowers IGF-1 levels and raises IGFBP-1 (its plasma 

binding protein) levels in patients with CRPC, with no effect in total PSA levels [203, 

205]. Although the treatment with SSAs alone or in combinations have found some 

valuable clinical benefits (i.e. decrease in IGF-1 and CGA), other studies have not found 

improved overall survival, and the mechanistic reasons for those clinical failures are still 

completely unknown [205]. Therefore, although this system seems a plausible and 

valuable option in the treatment of PCa (especially in neuroendocrine tumors and CRPC 

patients with neuroendocrine differentiation), limited studies have been published 

focusing in the presence and functional role of many of the components of the SST-

system in PCa. Accordingly, new studies focusing on the presence and regulation of the 

components of all the SST-system (including the splicing variants sst5TMD4 and 

sst5TMD5) in PCa are required. 
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2.4. Ghrelin system 

Ghrelin is a hormone of 28-aa identified by reverse pharmacology as the 

endogenous ligand for the growth hormone secretagogue receptor (GHSR) [206]. Ghrelin 

was primarily found in the stomach, but is expressed in a wide range of tissues where it 

exerts multiple endocrine and paracrine actions [207] (Figure 10). Ghrelin requires to be 

acylated by the Ghrelin-o-acyl transferase (GOAT) enzyme [208] to exert most of its 

known functions through the canonical binding to GHSR1a, including stimulation of 

growth hormone release from the anterior pituitary, stimulation of appetite and gut 

motility, regulation of glucose homeostasis, and regulation of memory and of 

cardiovascular and immune systems [207, 209] (Figure 10).  

 

Figure 10: Functional and pathophysio logical functions of ghrelin system through the 

body. The information of the image is taken from Gahete et al. [207].  

On the other hand, although unacylated ghrelin (Des-acyl ghrelin) is the most 

common form of ghrelin in plasma, its functional roles are far from clear [210]. 

Interestingly, ghrelin and its receptor are expressed in a number of cancers and cancer 

cell lines and may play a role in processes associated with cancer progression, including 

cell proliferation, apoptosis, and cell invasion and migration; however, the precise roles 

of each component of the complex ghrelin-receptor system are still to be clearly defined 

(Figure 10) [207, 211, 212].  
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The mature ghrelin peptide results from proteolytic processing of a precursor 

peptide named preproghrelin [207, 213]. In humans, preproghrelin is encoded by a single-

copy gene (GHRL) located on the 3p chromosome, which it is classically accepted to be 

composed of four coding exons (exons 1–4) [213] (Figure 11A). However, recent studies 

have shown the presence of upstream exons in the ghrelin gene (exon -1, exon 0, and 

extended exon 1) that can act as alternative sites for transcription initiation, and therefore, 

add complexity to the ghrelin gene regulation [214]. Indeed, some of these exons combine 

through alternative splicing processes to produce several mRNAs, which are further 

processed to generate functional peptides. In addition, a novel ghrelin variant generated 

by retention of intron 1 (In1), and consequently named In1-ghrelin, has been recently 

identified by our group [215] (Figure 11B). Interestingly, In1-ghrelin variant is 

upregulated in several endocrine-related cancers such as breast, pituitary and NETs [215-

217]. In1-ghrelin variant shares the first 5-amino acids with native-ghrelin, which is the 

minimum sequence required for ghrelin acylation by GOAT and for binding and 

activation of GHSR1a [214] (Figure 11B); however, the amino acid sequence of In1-

ghrelin is further modified by the retention of the intron 1. In line with this, GOAT 

expression has also been reported upregulated in some endocrine-related tumors [188, 

215]. Remarkably, the expression of In1-ghrelin variant and GOAT, but not ghrelin, are 

positively correlated in breast cancer and neuroendocrine tumors [215, 217]. Based on 

these results (i.e. overexpression and correlations between In1-ghrelin, but not ghrelin, 

and GOAT enzyme) it has been suggested that In1-ghrelin variant could be the main 

substrate of GOAT in these endocrine-related tumors. 

The originally orphan, growth hormone secretagogue receptor (GHSR) is encoded 

by a conserved single-copy gene located on chromosome 3 in humans [218] (Figure 

11C). Human GHSR gene is composed of two exons, whose alternative splicing can 

generate two mRNA species, named GHSR1a and GHSR1b. GHSR1a mRNA, which 

includes exons 1 and 2, encodes a 366-amino acid G protein-coupled receptor (GPCR) 

with seven transmembrane domains (TMDs) (Figure 11C). In contrast, GHSR1b mRNA 

results from retention of the intron located between exons 1 and 2, which generates a 289-

amino acid GPCR isoform with only five TMDs, and bearing a dissimilar 24-amino acid 

sequence at the C-terminal region compared with the GHSR1a sequence (Figure 11C). 

To date, the functional activity of truncated GHSR1b remains to be fully elucidated [207, 

218, 219], while it is well-established that GHSR1a is the receptor responsible for 
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transducing the signal of acylated-ghrelin and the family of synthetic GH secretagogues. 

Nevertheless, there is emerging evidence that GHSR1b may exert pathologically-relevant 

actions, particularly by acting as a dominant-negative of its full-length partner GHSR1a 

[219-221]. 

 

Figure 11: The ghrelin system .  A.  Ghrelin is found in plasma in two different forms: 

desacyl-ghrelin and acyl-ghrelin (active). GOAT enzyme is responsible for adding the acyl  

group in Serine 3 to ghrelin. Acyl -ghrelin is the only form able to bind to the growth 

hormone secretagogue receptor (GHS-R1a) and exert the majority of its known 

physiological and pathophysiological functions; B.  Aberrant alternative splicing in the 

GHRL gene generates ghrelin and  the spliced form In1-ghrelin variant which is commonly 

overexpressed and enhances malignant cancer features (i.e. cell proliferation, cell 

migration, hormonal secretion) in different cancer models; C.  Alternative splicing in the 

GHSR gene generates the canonical GHSR1a but also an aberrant form called GHSR1b 

with pathophysiological features in endocr ine tumors 

2.4.1. Ghrelin system in PCa 

Since 2002, several studies have reported the presence and investigated the 

potential pathophysiological role of ghrelin system in PCa [222-235]. These studies have 

shown that the majority of the components of the ghrelin system are locally expressed in 

the prostate gland. Particularly, ghrelin mRNA and protein expression has been reported 

in normal prostate, human benign hyperplasia, and prostate carcinoma [222] as well as in 

PCa cell lines [222, 223, 225]. Ghrelin peptide seems to be secreted from the prostate 
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[225], as it has been detected in the medium of the PC-3 cell line. In line with this, one 

study showed that “active” (acylated) ghrelin levels were higher in the blood of patients 

with PCa [228], but this point is controversial since other reports found no differences 

between patients with PCa and healthy individuals [226, 227]. In the prostate, ghrelin 

peptide is localized in the cytoplasm of glandular epithelial cells with lower staining 

intensity in the normal tissue compared with malignant epithelium [225].  

There is much controversy on the putative physiological and pathological roles 

that ghrelin may play in the normal prostate and in PCa. Specifically, one group (led by 

Dr. L. Chopin) has reported that treatment with ghrelin peptide and/or overexpression of 

the canonical preproghrelin enhanced the growth rate and cell migration of PCa cell lines 

(PC-3 and LnCaP) [223, 225, 235], which could be mediated through the activation of 

key signaling pathways such as MAPK/ERK and/or PI3K/AKT/mTOR [225]. However, 

other studies from different and independent groups have shown opposite effects of 

ghrelin in terms of cell growth [222, 229, 231]. Interestingly, additional reports have also 

reported that other splicing variants generated from the ghrelin gene (i.e. exon 2- deleted 

preproghrelin, exon 3- deleted preproghrelin, in2c-variant) are also present in PCa, where 

they might be involved in controlling PCa malignancy features [225, 235, 236]. However, 

to date no studies have been published focusing in the presence and functional role of 

other components of the ghrelin-system in PCa, as is the case of the In1-ghrelin variant; 

therefore, new studies aimed at establishing the presence, regulation and functional role 

of some components of the ghrelin-system (including the splicing variant In1-ghrelin) in 

PCa are still required. 

GOAT enzyme levels have been reported to be similarly abundant (both mRNA 

and protein) in normal and PCa tissues, although this study also demonstrated that its 

expression was significantly higher in PCa cell lines compared with normal prostate 

epithelial-derived cell lines [233]. This study also showed that acyl-ghrelin peptide 

treatment, but not desacyl-ghrelin, was specifically able to decrease GOAT expression in 

the normal-like RWPE1 cell line and in PC-3, but not in DU-145 or LnCaP, prostate 

cancer cell lines. Although this study shows for the first time that GOAT is expressed in 

PCa, many questions remains unanswered (i.e. the plasmatic expression of GOAT in 

patients with PCa or the regulation of this enzyme by different ghrelin-gene derived 

peptides or by other metabolic factors); Therefore, it is necessary to expand our 

knowledge of the presence and regulation of GOAT in PCa. 
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The presence of ghrelin receptors (GHSR1a and GHSR1b) in prostate cells has 

not been entirely defined, and the information published to date remains controversial 

[222, 223, 234]. Specifically, it has been reported that GHSR1a and GHSR1b expression 

was present in PCa cell lines (ALVA-41, LNCaP, DU145 and PC-3) [223], and that 

GHSR1a, but not GHSR1b, expression was also detected in normal prostate [223]. 

Conversely, another independent study showed that GHS-R1a and GHSR1b were not 

expressed in carcinomas, although GHS-R1b mRNA was present in 50% of hyperplasias 

[222]; moreover, in contrast to that previously reported, this study also showed that GHS-

R1a and GHSR1b were expressed only in DU-145 cells. Recently, GHSR 

hypermethylation at the promoter and first exon was shown to be a common process in 

several cancers, including PCa, supporting the candidature of GHSR methylation as a 

highly accurate pan-cancer marker [234]. Therefore, as mentioned above, new studies 

focusing in the presence (in parallel), regulation and/or functional role of different 

components of the ghrelin-system (including the splicing variant In1-ghrelin, ghrelin, 

ghrelin-receptors and GOAT enzyme) using normal and PCa samples as well as normal 

and PCa cell lines in PCa are still required. 

  



 

51 
 

 

 

 

 

 

 

 

 

 

HYPOTHESIS AND OBJECTIVES 

  



 

52 
 

  



 

53 
 

3. HYPOTHESIS AND OBJECTIVES 

During the last years, our research group has focused much of its efforts in 

studying the role that two pleiotropic regulatory systems, those formed by somatostatin 

(SST)/cortistatin (CORT)/receptors (sst1-5 and sst5TMD4 and sst5TMD5 splicing 

variants), and by ghrelin/In1-ghrelin splicing variant/receptors (GHSR-1a and GHSR-1b) 

and GOAT enzyme, play on different pathological conditions, including several tumors 

and cancers. Although the presence of some receptors for SST/CORT and ghrelin in 

human PCa has been previously described, few studies have examined in detail the 

potential pathophysiological relevance of these regulatory systems. Based on this 

preliminary findings and our prior experience in other cancers, the initial hypothesis of 

this PhD Thesis was that the dysregulation of the SST/CORT and ghrelin systems, and, 

especially, of their splicing variants (sst5TMD4/5 and In1-ghrelin) and GOAT enzyme 

could directly and negatively influence PCa, and consequently, that their levels of 

expression in tumor tissues could provide useful information to improve diagnosis and 

prognosis of these tumors and/or to predict response to treatments. In addition, we thought 

that such molecules might be potential targets for the identification of new drugs (e.g. 

In1-ghrelin and sst5TMD4 receptor antagonists) and for the consequent development of 

future therapeutic strategies to treat these pathologies.  

Based on this hypothesis, the main objective of this thesis was to determine the 

levels of expression and functional role of different components of the SST/CORT and 

ghrelin systems in PCa, especially those of the splicing variants sst5TMD4/5 and In1-

ghrelin and GOAT enzyme, and to establish the possible association between their 

expression levels and: 1) the expression of other components of the SST/CORT and 

ghrelin systems (ligands, receptors and associated enzymes); 2) the expression of other 

regulatory systems and tumoral biomarkers well-known for its potential 

pathophysiological importance (e.g.: markers of proliferation, prognosis, etc.); and 3) the 

clinical information of the patients (e.g. levels of PSA, presence of metastasis, Gleason 

score, etc.). 

Altogether, our ultimate aim was to establish the possible use of these splicing 

variants or other components of the SST/CORT and ghrelin systems, especially the 

GOAT-enzyme, as novel tumor biomarkers and promote their development as new 

diagnostic, prognostic and therapeutic targets. 
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To achieve this main objective, we proposed the following specific objectives: 

1) To determine and analyze the expression levels of the aberrant splicing variants 

sst5TMD4, sst5TMD5 and In1-ghrelin, of GOAT-enzyme as well as others components 

of the SST/CORT and ghrelin systems and molecules of particular pathophysiological 

relevance (e.g. PSA, PCA3, etc.) in a wide, representative and clinically well-

characterized set of human PCa samples, as well as in different human androgen-

dependent and androgen-independent PCa cell lines (LnCAP, 22Rv1, PC-3, VCaP, 

Du145), compared to the expression levels of normal human prostate samples and the 

normal-like prostate cell line (RWPE-1), respectively.  

2) To determine the association between the presence of the truncated receptors 

sst5TMD4/5, In1-ghrelin splicing variant and GOAT-enzyme and the clinical and 

pharmacological characteristics of patients with PCa, and to establish the possible 

quantitative associations between the presence of these splicing variants or GOAT-

enzyme in PCa samples and the expression of other molecules of particular 

pathophysiological relevance in PCa analyzed in the objective 1. 

3) To evaluate the functional response to different peptides of the SST and ghrelin 

systems (e.g. natural ligands, SSA and In1-ghrelin derived peptides) in primary human 

normal prostate cell cultures and in normal and PCa cell lines, and evaluate if this in vitro 

response on key functional processes associated with tumor progression and 

aggressiveness (e.g. cell proliferation, migration, etc.) is associated with the 

presence/absence of the aberrant splicing variants (sst5TMD4/5 and In1-ghrelin).  

4) To explore the consequences of the overexpression/silencing of sst5TMD4/5, 

In1-ghrelin variant and/or GOAT-enzyme and other molecules from the SST and ghrelin 

systems on key functional processes associated with tumor progression and 

aggressiveness (e.g. cell proliferation, migration, PSA secretion, signaling pathways, etc.) 

in primary human normal prostate cell cultures, in normal and PCa cell lines, as well as 

on in vivo pre-clinical models of PCa (immunodeficient mice) that 

overexpressed/underexpressed sst5TMD4, sst5TMD5 or In1-ghrelin variant 
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4. MATERIALS AND METHODS 

 

4.1. Patients and samples 

All the studies involving human samples were approved by the Hospital Ethics 

Committee, conducted in accordance to the principles of the Declaration of Helsinki and 

written informed consent was obtained from all patients. Samples were obtained through 

the Andalusian Biobank (Servicio Andaluz de Salud). Different set of human samples 

obtained from PCa patients and control patients were collected. These samples included: 

1) Formalin-fixed paraffin-embedded (FFPE) PCa tissues (n=45) obtained from radical 

prostatectomies of patient diagnosed with localized PCa (Gleason score 6-7 in final 

pathological evaluation) and their non-tumoral adjacent tissues (N-TAR) used as 

control. Available clinical parameters were collected from each patient (Table 6). 

 

Table 6. Overall clinical and demographics data of patients from who formalin-fixed 

paraffin-embedded (FFPE) prostate pieces with low-intermediate grade tumors were 

obteined. 

Parameter Overall 

Patients n = 45 

Age at diagnosis, Mean ± SD  62.27 ± 5.1 

PSA level, ng/ml, Median (IQR)  4.8 (3.6-7.8) 

Gleason score (%)   

6 12/45 (27%) 

7 33/45 (73%) 

EE, no. (%) 22/45 (48%) 

PI, no. (%) 34/45 (75%) 

VI, no. (%) 8/45(17%) 

No.=number; SD=standard deviation; EE=extraprostatic extension; 

PI=perineural infiltration; VI=vascular invasion; FFPE= formalin fixed 

paraffin embedded; IQR=interquartile range 

 

2) Fresh prostate samples (n=52) obtained by core needle biopsies from patients 

diagnosed with palpable high risk PCa [PSA>20.0 and/or Gleason 8-10 and/or cT3, 

according to National Comprehensive Cancer Network (NCCN) guidelines 

classification] (Table 7). Histology of PCa was always confirmed by a specialized 
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anatomo-pathologist. Several techniques, such as computerized tomography (CT scan) 

and bone scan, were used to determine the presence of metastasis in these patients.  

 

3) Normal prostate samples (NPs, n=14) from donor patients that underwent 

cystoprostatectomy due to bladder cancer. Histology of the normal prostate samples was 

always confirmed by a specialized anatomo-pathologist. Available clinical parameters 

were collected from each of these control patients (Table 7). 

 

Table 7. Overall clinical and demographic data of patients from whom fresh PCa and 

normal prostate samples were obtained (by core needle biopsies or from 

cystoprostatectomy, respectively). 

 

4) Plasma and urine samples from patients with PCa (n=85) and healthy BMI-matched 

controls (n=28) for the evaluation of GOAT as new PCa biomarker (Table 8). 

 

 

 

 

 

 

 

Parameter Overall Control PCa PCa No Met PCa Met 

Patients, no. 66 14 52 28 24 

Age at diagnosis 
     

Median (IQR) 76 (67.5-

81.25) 

70 (62.2-

80.7) 

78 (69-81.7) 79 (69-83) 76 (69-80) 

PSA level, ng/mL     
   

Median (IQR) 
  

54.5 (37.2-212) 45 (22.5-61.5) 101.5 (51.2-

771) 

Gleason score           

7 - - 18/52 (35%) 15/28 (53%) 3/24 (12%) 

>7 - - 34/52 (65%) 13/28 (47%) 21/24 (88%) 

EE - - 17/52 (33%) 5/28 (18%) 13/24 (54%) 

PI - - 27/52 (52%) 12/28 (43%) 15/24 (63%) 

PCa=prostate cancer; No Met= no metastasis; Met= metastasis; nº= number; EE=extraprostatic 

extension; PI= perineural infiltration 
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Table 8. Demographic and clinical characteristic of patients included in the study with 

plasma and urine samples for the evaluation of GOAT as PCa biomarker. 

Parameter Control (n=28) PCa (n=85) p value 

Age, yr, mean (SD) 62.04 (9.6) 68.7 (8.3) 0.0005 

Weight, kg, mean (SD) 84.56 (14.21) 81.5 (11.9) 0.27 

Waist, cm, mean (SD) 105 (10.01) 105.5 (10.07) 0.83 

BMI, mean (SD) 30.46 (4.4) 29.2 (3.8) 0.16 

Ethnicity, (n) 
Caucasian (27); 

Black (1) 

Caucasian (84), 

Black (1) 
- 

Amylase 59 (52-75.3) 56 (46-75) 0.36 

Albumin 4.16 (0.25) 4.20 (0.28) 0.54 

Colesterol, mg/dL, mean (SD) 205.1 (34.69) 194.6 (38.93) 0.20 

Triglycerides, mg/dL, median 

(IQR) 
125.5 (93.25-178.5) 112 (90-151) 0.24 

HDL, mg/dL, median (IQR) 45 (38-51) 45 (38.5-49.5) 0.84 

Glycated hemogobin, (%) 5.6% 5.6% 0.4 

Glucose, mg/dL, median (IQR) 109 (97.25-130.8) 102 (92-121.5) 0.15 

Insulin, m U/L, median (IQR)  6.2 (3.3-10.7) 8.9 (5.5-11.4) 0.045 

Diabetes, n (%) 9/28 (32.12%) 25/85 (29.4%) 0.81 

Dyslipidemia, n (%) 5/28 (17.85%) 20/85 (23.95%) 0.60 

Testosterone 5.3 (4.1-6.7) 4.8 (3.7-5.8) 0.16 

Total PSA, ng/ml, median 

(IQR) 
0,8 (0.4-1.1) 6.3 (3.8-9.5) <0.0001 

Free PSA, ng/mL, median 

(IQR) 
- 0.81 (0.5-1.1) - 

Invasive tumors - 14/85 (16%)  

Gleason score, n (%)    

6 - 41/85 (48%)  

7 - 38/85 (45%)  

8 - 5/85 (6%)  

9 - 1/85 (1%)  

cyfra_211 1,2 (1-1,80) 1,4 (1.1-2.1) 0.18 

ca15_3 12 (7-21.7) 19 (14-24) 0.046 

GOAT, ng/mL, median (IQR) 1.07 (0.9-3.2) 2.26 (1.3-6.1) 0.0002 

PCa: prostate cancer; Yr= year; SD=standard desviation; Kg=kilogram; cm=centimeter.     

BMI=body mass index; n=number; IQR= interquartile range; Parameters with 

significant difference between the groups are indicated in italic letter. 

 



 

60 
 

5) Urine samples from patients with PCa (n=14) before and after prostate massage 

(Table 9). 

 

Table 9. Demographic and clinical characteristics of patients included in the study for the 

analysis of urine GOAT levels before and after prostate massage 

Parameter PCa  

Age, yr, mean (SD) 68.1 (7.1) 

Weight, kg, mean (SD) 79.2 (9.9) 

BMI, mean (SD) 28.8 (3.2) 

Ethnicity, (n) Caucasian (14) 

Glycated hemoglobin, (%) 5.4 (5.2-5.8 %) 

Glucose, mg/dl, mean (SD) 92.7 (8.4) 

Insulin, m U/l, mean (SD)  8.6 (2.6) 

Diabetes, n  0/14 

Dyslipidemia, n  0/14 

Testosterone ng/ml, mean (SD) 4.6 (2.2) 

Total PSA, ng/ml, median (IQR) 5.9 (4.6-9.7) 

Free PSA, ng/ml, mean (SD) 0.9 (0.3) 

Invasive tumors, n
  
(%) 2/14 (14%) 

Gleason score, n (%)  

6 3/14 (21%) 

7 9/14 (64%) 

8 1/14 (7%) 

9 1/14 (7%) 

cyfra_21-1 U/ml, mean (SD) 1.6 (0.8) 

ca_15-3  U/ml, mean (SD) 16.1 (6.9)  

  PCa: Prostate Cancer; Yr=Year; SD=Standard Deviation; Kg=Kilograms; 

cm=Centimeter; BMI=Body Mass Index; n
o
=number; IQR=Interquartile Range.   

 

 

 

 

6) Plasma from another cohort of patients with PCa (n=30) and healthy donor patients 

(n=20) for detection of plasmatic In1-ghrelin and ghrelin levels (Table 10). 
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Table 10. Demographic and clinical characteristic of patients included in the study for 

the analysis of In1-ghrelin and ghrelin levels in the plasma. 

Parameter Control (n=20) PCa (n=30) p value 

Age, yr, mean (SD) 63.8 (9.9) 74.8 (8.1) < 0.0001 

Weight, kg, mean (SD) 82.62 (12.8) 78.7 (12.3) 0.29 

Waist, cm, mean (SD) 103.7 (10.7) 106 (10.9) 0.46 

BMI, mean (SD) 29.8 (4.7) 28,8 (3.6) 0.54 

Ethnicity, (n) Caucasian, n=20 Caucasian, n=30 - 

Amylase, median, (IQR) 60.5 (52.5-72.5) 54.5 (46.7-77.5) 0.26 

Albumin, mean, (SD) 4.1 (0.23) 4.1 (0.33) 0.93 

Colesterol, mg/dL, median, 

(IQR) 
221 (184.3-244.8) 

189.5 (163.5-

206.5) 
0.053 

Triglycerides, mg/dL, mean 

(SD) 
129.4 (39.2) 106.9 (41.5) 0.06 

HDL, mg/dL, mean (SD) 45.8 (7.8) 48.2 (12.5) 0.44 

Glycated hemogobin, (%) 5.5 (5.3-6.1) 5.7 (5.5-6.1) 0.59 

Glucose, mg/dL, median (IQR) 107.5 (98.2-126.3) 97 (92-114) 0.06 

Insulin, m U/L, mean (SD)  7.9 (6.9) 8.3 (3.1) 0.29 

Testosterone 5.8 (1.6) 4.4 (2.1) 0.01 

Total PSA, ng/ml, median 

(IQR) 
0.85 (0.44-1.1) 25 (11.1-83.9) < 0.0001 

Free PSA, ng/mL, mean (SD)  0.74 (0.3) - 

Invasive tumors  14/30 (46,6%) - 

Gleason score, n (%)    

6  8/30 (26,6%) - 

7  9/30 (30%) - 

8  7/30 (23,3%) - 

9  6/30 (20%) - 

cyfra_211, media, (IQR) 1.2 (1-1.8) 1.8 (1.2-2.8) 0.004 

ca15_3, median, (IQR) 14 (7-25.5) 23 (18.7-27) 0.01 

Prepro-In1-ghrelin, pg/mL, 

median (IQR) 
0 (0-0) 4.6 (0-18) 0.03 

PCa: prostate cancer; Yr= year; SD=standard deviation; Kg=kilogram; cm=centimeter.     

BMI=body mass index; n=number; IQR= interquartile range; Parameters with 

significant difference between the groups are indicated in italic letter. 
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4.2. RNA, RT and qPCR assays 

 

4.2.1. RNA isolation from FFPE samples 

 

Total RNA from the FFPE samples was isolated using the RNeasy FFPE Kit 

(Qiagen, Limburg, Netherlands) according to the manufacturer’s instructions. 

Procedure: 

- Place 4 FFPE cores (8µm sections) into a 2 ml microcentrifuge tube and close the lid. 

- Add 1 ml limonene (xylene can also be used). Vortex vigorously for 10s, incubate at 

56ºC for 5 min and centrifuge at full speed for 2 min. Repeat this step at least three times, 

until the paraffin is dissolved. 

- Carefully remove the supernatant by pipetting without disturbing the pellet. 

- Add 1 ml ethanol (96–100%) to the pellet, mix by vortexing, and centrifuge at full speed 

for 2 min. 

- Carefully remove the supernatant by pipetting without disturbing the pellet. Carefully 

remove any residual ethanol. 

- Keep the lid open, and incubate at room temperature (15–25°C) or at up to 37°C. 

Incubate for 10 min or until all residual ethanol has evaporated. 

- Add 240μl Buffer PKD, and mix by vortexing. 

- Add 10μl proteinase K. Mix gently by pipetting up and down. 

- Incubate for 15 min at 56 ºC. 

- Incubate for 15 min at 80 ºC. 

- Place the sample on ice for 3 min and centrifuge for 15 min at full speed. 

- Transfer the supernatant to a new microcentrifuge tube (not disturb the pellet). 

- Mix 16μl DNase Booster Buffer and 10μl DNase I stock solution for sample. Mix by 

inverting the tube. Add 26μl of the mix to the sample. 

-Incubate at room temperature for 15 min. 

- Add 320μl Buffer RBC to break red cells and mix the lysate thoroughly. 

- Add 720μl ethanol (100%) to the sample, and mix well by pipetting. Do not centrifuge.  

-Follow the manufacturers’ instructions for the next steps (column purification). 

 

4.2.2. RNA isolation from fresh tissues (PCa samples by needle biopsies and normal 

prostate from cystoprostatectomy) 
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Total RNA from fresh prostate samples (PCa or normal prostate samples) was 

extracted using the AllPrep DNA/RNA/Protein Mini Kit followed by deoxyribonuclease 

treatment using RNase-Free DNase Set (Qiagen, Limburg, Netherlands). 

 

Procedure: 

Before starting: 

*Kit DNase:  

- Prepare DNase I stock solution by dissolving the lyophilized DNase I in 550µl 

RNase-free water. 

*Kit extraction: 

- Prepare a mix of β-mercapto + buffer RLT (10ul β-ME + 1ml RLT (this mix 

can be stored 1 month a RT) 

- Add dithiothreitol (DTT) to buffer ALO (8mg DTT for each ml of buffer). 

- Add ethanol (96-100%) to RPE, AW1 and AW2 buffers. 

- Preheat EB buffer at 70ºC. 

Protocol: 

- Add suitable volume of RLT buffer + B-ME and homogenize (360-600ul if sample 

<20mg, or 600ul if sample >20mg) 

- Centrifuge 3 min at full speed. 

- Transfer to a DNA column (violet color) 

- Centrifuge 30 sec at 10.000 rpm. 

- Place column in a new 2ml tube. 

- DNA is retained in the column while the liquid contains the RNA and proteins.  

- Store column with DNA at 4ºC, 

- Add ethanol 100% to the liquid in order to purify the RNA. Add 250ul if we started with 

350ul, or 430ul if we used 600ul. 

- Mix by pipetting, no vortex/centrifuge. 

- Transfer up to 700ul to the RNA column (pink) 

- Centrifuge 15 s at 10.000 rpm 

- Transfer the liquid to a 2 ml tube and stored at 4ºC (Proteins). 

- RNA is retained in the column. 

 

RNA 

- Add 350ul of RW1 buffer to the column. 
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- Centrifuge 15 sec at 10.000 rpm 

- Discard the liquid 

- Add 10ul DNase to 70ul RDD buffer, mix by inversion, spin. 

- Add 80ul of this mix to the center of the column 

- Incubate 15 min at RT 

- Add 500ul of RPE buffer 

- Centrifuge 15 sec at 10.000 rpm 

- Discard the liquid 

- Add 500ul RPE buffer 

- Centrifuge 2 min at 10.000 rpm 

- Place the column in a new 2-ml tube.  

- Centrifuge 1 min at full speed. 

- Place the column in a new 1.5-ml tube.  

- Add 30-50ul of RNA-free water 

- Centrifuge 1 min at 10.000 rpm 

- Store RNA at -80ºC 

Proteins 

- Add 700ul of APP buffer to the liquid stored at 4ºC. 

- Vortex and incubate 10 min at RT 

- Centrifuge 10 min to full speed 

- Discard supernatant with a pipette 

- Add 500ul of 70% ethanol  

- Centrifuge 1 min to full speed 

- Discard supernatant with a pipette 

- Incubate 5-10 min at RT in order to dry the protein-pellet. 

- Add up to 100ul of ALO buffer and vortex 

- Incubate 5 min at 95ºC 

- Chill at RT 

- Centrifuge 1min at full speed 

- Transfer the supernatant into a new 1,5-ml tube. 

- Store proteins at -20 ºC. 

 

Genomic DNA 

- Add 500ul of buffer AW1 to the column at 4 ºC 
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- Centrifuge 15 sec to 10.000 rpm 

- Discard the liquid 

- Add 500ul of AW2 buffer 

- Centrifuge 2 min at full speed. 

- Place column in a new 1.5-ml tube. 

- Add 100ul of preheated-EB buffer 

- Incubate 2 min at RT  

- Centrifuge 1min at 10.000 rpm 

- Store genomic DNA at 4ºC 

 

4.2.3. RNA isolation from prostate cell lines 

 

Total RNA from PCa and normal prostate cell lines was extracted with Trizol 

reagent (Thermo Scientific, Wilmington, NC, USA). Briefly, cells were seeded until 

confluence in 6 o 12-well-plates. Then, wells were washed two times with PBS buffer 

and, subsequently, 0.6ml Trizol was added and collected with lysed cells. RNA isolation 

was carried out by adding chloroform, centrifuging and collecting the aqueous phase. 

RNA was recovered and concentrated with 2-propanol precipitation and 70% ethanol 

washing steps. Finally, samples were dried and resuspended with 8μl of DEPC-treated 

water. Subsequently, samples were treated with 1μl (1 unit) of DNase (Promega, 

Barcelona, Spain) and incubated 30 min at 37°C, stopping the reaction by adding a Stop 

Solution and incubating at 65°C for 5 min.  

 

4.2.4. Quantification of RNA concentration and Reverse-Transcription (RT) 

 

Total RNA concentration and purity was assessed using Nanodrop 2000 

spectrophotometer (Thermo Scientific, Wilmington, NC, USA), and subsequently retro-

transcribed using random hexamer primers and the cDNA First Strand Synthesis kit (MRI 

Fermentas, Hanover, MD, USA).  

Procedure: 

- Add the following reagents in the order indicate below (RNA-free tubes). 

- Template RNA: from 0.1 ng to 2.0 µg. 

- 1 µl of Random Hexamer primer  

- Water nuclease-free up to a volume of 12 µl. 
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- Mix gently, spin down and incubate at 65°C for 5 min. 

- Cool on ice for 3 min.  

 

Prepare a mix the following components in each sample: 

- 5X Reaction buffer: 4µl 

- RiboLock RNase Inhibitor (Enzime 1): 1µl. 

- 10 mM dNTP Mix: 2µl 

- RevertAid M-MuLV RT (200 U/µL; Enzime 2): 1µl. 

 

Total volume of 20 µl. Then: 

- Mix gently and centrifuge briefly.  

- Incubate for 5 min at RT and then 60 min at 42 ºC.  

- Finish the reaction by heating the sample 5 min at 70 ºC. 

 

4.2.5. Conventional PCR and quantitative real-time PCR (qPCR) with SYBR green 

Primers were designed using the bioinformatics tool Primer Blast 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) or Primer3 online tool 

(http://bioinfo.ut.ee/primer3-0.4.0/) with specific conditions to optimize the results in the 

downstream applications: 

- Melting temperature of 60 ºC. 

- Primer size: 20 pair of bases (range from 18-24) 

- Primer % GC: Min: 40; Max: 60. 

- Max. Self. Complementary: 4 (Ideally 0) 

- Max. 3’Self. Complementary: No more than 1 (Ideally 0) 

- Amplified sequence of 75 to 200pb 

- Primers designed between different exons to prevent genomic amplification 

 

Each set of primers was always evaluated for specificity by BLAST alignment 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearc

h&LINK_LOC=blasthome).  

 

Conventional PCR has been routinely used along this work to validate qPCR 

primers, using the “DreamTaq DNA Polymerase” (Thermo Scientific, Wilmington, NC, 

USA) and the thermocycler “Supercycler Gradient Cycler” (Kyratec, Belgium). 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://bioinfo.ut.ee/primer3-0.4.0/
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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In qPCR assays, cDNAs were amplified with the Brilliant III SYBR Green Master 

Mix (Stratagene, La Jolla, CA, USA) using the Stratagene Mx3000p system. qPCR of 

samples was always run in parallel with a standard curve to estimate the absolute mRNA 

copy number. Thermal profile consisted of an initial step at 95ºC for 3 min, followed by 

40 cycles of denaturation (95ºC for 20 seconds), annealing (60ºC for 20 sec) and finally, 

a dissociation cycle to verify that only one product was amplified (by the melting curve). 

Expression levels were reported as absolute mRNA copy number/50ng of sample. For 

fresh samples a normalization factor was calculated with the expression levels of ACTB 

and GAPDH using GeNorm 3.3. For in vitro assays (normal prostates cell cultures and 

PCa cell lines) result were adjusted according to the value of ACTB. 

 

4.3. sst5TMD4 and GOAT IHC analysis 

sst5TMD4 immuno-histochemical staining was performed on 30 FFPE prostate 

samples with regions of normal prostate tissue and PCa tissue using a custom-made and 

previously validated polyclonal rabbit anti-human sst5TMD4 antibody (1:400) [188] 

(clone name:66498) using standard procedures [183, 185, 188]. In the case of GOAT, 

validation of IHC was implemented in formalin-fixed, FFPE prostate tissue samples 

obtained from radical prostatectomies, which have normal and tumoral regions from 

patients diagnosed with localized PCa (Gleason score 6-7 in final pathological 

evaluation). Finally, GOAT IHC staining was performed on biopsies pieces obtained 

from patients diagnosed with clinical high grade PCa (Gleason 7-10; n=16) and in 

normal-benign prostate samples. GOAT staining was analyzed using a commercially 

available human GOAT antibody that recognizes the middle region of the enzyme (AA 

257-287; ABIN953340, Acris antibodies GmbH, Herford, Germany) using standard 

procedures (1:400).  

Deparaffinized sections were incubated with sst5TMD4 and GOAT antibodies 

overnight at 37C, followed by incubation with the appropriate HRP-conjugated secondary 

antibody (Envision system, Dako, Barcelona Spain). Finally, sections were developed 

with 3,3´-diaminobenzidine (Envision system 2-Kit Solución DAB), contrasted with 

hematoxylin and mounted in an automatic mounter (Tissue-Tek® Film®, Sakura, Japon). 

A series of concentration-response tests were tested in order to determine the ideal 

concentration of antibody that need to be used to perform these analyses in prostate 

samples. For GOAT IHQ, pancreatic tissue was used as positive control. Two 



 

68 
 

independent pathologists performed the histopathological analysis of the tumors 

following a blinded protocol. In the analysis, +, ++, +++ stand for low, moderate, and 

high intensities of the tumoral region staining compared to the normal-adjacent region. 

 

4.4. Analysis of Single Nucleotide Polymorphisms (SNPs) in the sst5 gene 

sequence  

As previously mentioned, genomic DNA (gDNA) from tumoral (n=41) and 

control (normal prostates; n=9) samples were extracted using the AllPrep 

DNA/RNA/Protein Mini Kit (Qiagen, Madrid, Spain) following manufacturer’s 

instructions and subsequently quantified with Nanodrop 2000 spectrophotometer 

(Thermo Scientific, Wilmington, NC, USA). In order to identify SNPs that could be 

associated with the presence of sst5TMD4, specific primers to amplify the 5’ and 3’ ends 

of the cryptic intron spliced to generate the sst5TMD4 variant were designed and 

validated, and the resultant PCRs were further sequenced. Only variations located at the 

3’ ends side of the genomic sequence of the cryptic intron spliced to generate the 

sst5TMD4 were identified, where two previously reported SNPs were found among the 

samples analyzed. These SNPs were previously described in PubMed database as 

rs197055 [there are 3 different forms described for this SNP (A/C/T); however, in our 

studies we only found C and A variant] and rs12599155 [there are 2 different forms 

described (C and T); both of them were found in our samples]. 

 

4.5. Cultures: normal human prostate cells, normal-like prostate cell 

line and PCa cell lines. 

 

4.5.1 Primary cell cultures from human prostate tissues 

Normal prostate tissue was resected from donor patients after radical 

cytoprostatectomy surgery and transferred to the cell culture room in sterile cold (4ºC) 

culture medium (S-MEM, Gibco, Madrid, Spain) supplemented with 0.1%, BSA, 0.01% 

L-glutamine, 1% antibiotic-antimycotic solution, and 2.5% HEPES (Sigma-Aldrich, 

Madrid, Spain). Then, the tissue was washed three times in sterile culture medium and 

cut into small pieces. A portion of these pieces was rapidly frozen in liquid nitrogen ad 

stored at -80 ºC for RNA extraction. The remaining tissue was dispersed into single cells 

by enzymatic and mechanical disruption as previously reported [237] (see procedure 
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below). Dispersed cells were cultured onto tissue culture plates in PrEGM Prostate 

Epithelial Cell Growth Medium (Clonetics, cc-3165).  

 

Procedure of enzymatic and mechanical disruption of prostate tissue 

1. Transfer the prostatic tissue to a Petri dish (recommended size: 100 mm x 20 mm) 

with sterile culture medium. 

2. Cut the tissue in small portions using sterile bladders and transfer to a sterile tube 

with PBS.  

3. Centrifuge for 5 min at 1800 rpm. Aspire the supernatant and resuspend the cell 

pellet in 30 ml of PBS. Repeat this step one more time. 

4. Discard the supernatant and resuspend the pellet in 20-30 ml of complete DMEM 

medium (supplemented with 10% Fetal Bovine Serum, 4 mM glutamine and 1% 

antibiotic-antimycotic solution). If the sample is collected in the morning, store at 4ºC 

until late afternoon. 

5. Centrifuge for 5 min at 1800 rpm. Discard the supernatant. 

6. Add the collagenase/dispase digestion medium (final concentration of both 

enzymes of 1mg/ml in complete DMEM medium). Incubate overnight at 37ºC in 

rotational movement. 

7. Early in the morning, centrifuge for 5 min at 1800 rpm. 

8. Discard the supernatant, wash cells in PBS buffer and centrifuge for 5 min at 1800 

rpm. Discard the supernatant, resuspend the cell in 5 ml of Trypsin/EDTA solution and 

incubate for 5 min at 37ºC with occasional shaking.  

9. Add 15 mL of DNase I solution (1 mg of recombinant DNase I in 50 mL of 

DMEM medium). Mix with Trypsin/EDTA solution. Centrifuge 5 min at 1800 rpm. 

10. Discard the supernatant and resuspend in 10 mL of DMEM. Pass the cells through 

a sterile, siliconized glass pippete.  

11. Pass the cells through a 100 µm filter. Centrifuge for 5 min at 1800 rpm. 

12. Discard the supernatant and resupend the cells in 5 mL red blood cell lysis buffer. 

Incubate for 5 min on ice. Next, add 25 mL of PBS and centrifuge for 5 min at 1800 rpm. 

13. Discard the supernatant and resupend the cell pellet in 10 mL of complete DMEM 

medium. Pass the solution through a 40 µm filter. Centrifuge for 5 min at 1800 rpm. 

14. Discard the supernatant and resupend the cell pellet in 1-3 ml of complete PrEGM 

(PrEGM medium is supplemented with bovine pituitary extract, Insulin, Hydrocortisone, 

GA-1000, retinoic acid, transferrin, T3, Epinephrine and recombinant EGF). 
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15. Count the number of cells using the trypan blue method. 

 

4.5.2. Cell lines 

Normal-like prostate cell line (RWPE-1) as well as androgen dependent (22Rv1, 

LnCaP, VCaP) and independent (C4-2b, PC-3, DU-145) PCa cell lines were used in 

different assays. Each cell line was obtained from ATCC and cultured and maintained 

following manufacturers’ instruction. All cell lines were validated by analysis of STRs 

(GenePrint® 10 System, Promega, Barcelona, Spain) and checked for mycoplasma 

contamination once a month by PCR as previously reported [238]. 

RWPE-1: Epithelial cells (markers cytokeratins 8 and 18) derived from the 

peripheral zone of a histologically normal adult human prostate from a 54-year old man, 

transfected with a single copy of the human papilloma virus 18 (HPV-18). This c ell line 

does not develop tumors in nude mice, and expresses AR and PSA (mRNA and protein 

levels) upon stimulation with DHT [239]. Doubling time: 58 h. 

22Rv1: Human prostate carcinoma epithelial cell line derived from a xenograft 

that was serially propagated in mice after castration-induced regression and relapse of the 

parental. It develops tumors in nude mice, expresses AR (H874Y mutation) and PSA 

(both at RNA and protein levels) [240]. Cells express the following CKs: CK-8, CK-18. 

Other molecular markers: CD44, DD3 mRNA. Doubling time: 56 h. 

LnCaP: Isolated from a needle aspiration biopsy of the left supraclavicular lymph 

node of a 50-year old man with metastatic-PCa. It develops tumors in nude mice and 

expresses high basal levels of PSA and AR (T877A mutation). Cells express the following 

CKs: CK-8, CK-18. Other molecular markers: DD3 mRNA. Constitutive activation of 

AKT pathway (inactivation of PTEN) [241]. Doubling time: 60 h. 

VCaP: Cell line from a vertebral bone metastasis from a 59-year old patient with 

hormone-refractory PCa. It expresses high basal levels of AR (without mutations) and 

PSA (both at mRNA and protein levels), and develops tumors in nude mice. Cells express 

the following CKs: CK-8, CK-18. Other molecular markers: Rb, p53, DD3 mRNA. 

Double time: 5-6 days [242, 243]. 

PC-3: Cell line isolated from a bone metastasis of a grade IV prostatic 

adenocarcinoma from a 62-year old male. It develops tumors in nude mice and lacks 

expression of AR and PSA. Cells express the following CKs: CK-5, CK-8, CK-18. Other 

molecular markers: vimentin, NSE, BA-16, b-catenin, g-catenin, CBP. It lacks PTEN 
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expression. Doubling time: 33 h. Reported as cell line with neuroendocrine differentiation 

characteristics [200]. 

DU145: Derived from a metastatic brain lesion from a 69 years old Caucasian 

man. Develop tumors in nude mice. Does not express AR or PSA. Cells express the 

following CKs: CK-5, CK-8, CK-18. Other molecular markers: vimentin. Doubling time: 

30 h [243]. 

 

4.6. Peptides  

Human acylated ghrelin (SC1357, PolyPeptide Laboratories, Limhamn, Sweden), 

octreotide (GP-Pharm, Barcelona, Spain), IGF-1, insulin, paclitaxel and Ionomycin 

peptides (Sigma-Aldrich, Madrid, Spain) were purchased, while human acylated In1-

ghrelin derived peptides (In1-19 and In1-40) were synthesized in collaboration with Ipsen 

Bioscience (Cambridge, MA, USA) and developed by CPC Scientific (Chinese Peptide 

Company, Hangzhou, China; see below). Pasireotide was generously provided by Herbert 

A. Schmid (Novartis Pharma AG, Basel, Switzerland).  

 

4.7. Transfections (plasmid and siRNA) 

 

4.7.1. Stable and transient transfection of ghrelin, In1-ghrelin, and sst5TMD4. 

PC-3 and VCaP cell lines were stably transfected while DU145 was transiently 

transfected with pCDNA3.1 vector (Life Technologies, Madrid, Spain) empty (mock) or 

containing ghrelin, In1-ghrelin or sst5TMD4 transcripts and selected as previously 

reported [185]. Transfection was confirmed in all cases by qPCR and also by Western 

Blot (in the specific case of sst5TMD4). 

 

Protocol 

1. Seed the cells in a 6-well culture plate 

2. When 70% of confluence is reached, change the medium for 500µl of Opti-

MEM. 

3. Prepare 500 ng of each plasmid in a 1.5-ml Eppendorf. 

4. Add 50 µl of Opti-MEM to each plasmid. 

5. Prepare an additional mix of 50µl of optimum + 3µl of Lipofectamine-2000 

(Gibco, Barcelona, Spain) for each transfection. Incubate the mix for 5 min at RT. 
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6. Add 50µl of the optimum-lipofectamine mix to the plasmid (with the 50µl of 

optimum) for an approximate total volume of 100µl. 

7. Incubate for 30 min at RT. 

8. Add to the seeded cells and incubate for 6-8 h at 37ºC. 

9. Change the medium for normal growth medium (supplemented with 10% FBS). 

If a stable transfection is required, next day add genetic antibiotic (500μg/ml; Gibco, 

Barcelona, Spain), which selectively eliminates non-transfected cells. 

 

 

4.7.2. Silencing of ghrelin, In1-ghrelin and sst5TMD4 by specific siRNA 

For silencing assays, LnCaP (In1-ghrelin), PC-3 (sst5TMD4, In1-ghrelin) and 

DU-145 (sst5TMD4) cell lines were used. Cells were transfected with specific siRNAs 

designed and previously validated against In1-ghrelin (siRNA-1: 5’-

GAGTCCTAAACAGACTGTT-3’; siRNA-2: 5’-CACUGUUUCUGGAAGGACATT-

3’) and sst5TMD4 (5’-CACAAAUCCUGGCAGGAGATT-3’), or scramble control 

(Catalog # 4390843, Invitrogen) using Lipofectamine RNAiMAX (Invitrogen) following 

the manufacturer’s instructions. After 48h, cells were collected for validation of the 

transfection (mRNA and/or Western Blot) and seeded for proliferation assays. 

 

Protocol 

1. Seed 200.000 cells in a 6-well plate (duplicate or triplicate for each transfection) 

2. Incubate cells until 70% of confluence is reached. 

3. Transfect the cells with the desired siRNA concentration (25-100 nM). 

4. Change the medium for 500µl of complete medium without antibiotics. 

5. If the transfection is with 100 nM of siRNA, add 1 µl of siRNA (stock 

concentration of 50µM) to 50 µL of Opti-MEM medium in a 1.5 ml Eppendorf tube for 

each reaction. 

6. Add 3,5µl of Lipofectamine RNAiMAX (Catalog # 13778-075, Thermo 

Scientific, Wilmington, NC, USA) to 50µl of optimum medium in another 1,5 ml 

Eppendorf tube for each reaction. 

7. Add Lipofectamine mix to siRNA mix (dilution 1:1) 

8. Incubate for 5 min at RT.  

9. Add 100µl of this mix to the seeded cells.  
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10. Incubate for two days at 37ºC and 5% CO2. 

 

4.8. Functional assays 

 

4.8.1. Measurements of proliferation rate 

Cell proliferation was measured by Alamar Blue reagent (Biosource International, 

Camarillo, CA, USA), MTT tetrazolium salt colorimetric assay (Sigma-Aldrich, Madrid, 

Spain), and/or Tripan blue growth assay. Results were expressed as percentage referred 

to control (vehicle treated medium or mock transfected cells). All experiments were 

performed at least with three independent cell preparations. 

 

Protocol for Alamar blue reagent 

1. Seed 3000 cells per well for each treatment (triplicate or quadruplicate) with 

complete medium (10% of FBS). Incubate 1 day at 37ºC and 5% CO2. 

2. Change medium for complete growth medium without FBS in order to 

synchronize the cells. Incubate for 24 h. 

3. Next day, dilute 10X Alamar blue stock with complete growth medium without 

FBS. Change the cell medium for the mix of Alamar blue 1x with complete growth 

medium without FBS for 3 h (100µl). 

5. Read fluorescence at 560 nm (exciting) and 590 nm (reading) in a FlexStation 

system plate reader (Molecular Devices). This measurement will be the time 0h 

6. Change medium for complete fresh medium with 10% FBS immediately after 

each measurement. In experiments using treatments, the medium will be changed 

immediately after each measurement for complete fresh medium alone with 10% FBS 

(control) or with different treatments at the selected concentration. 

7. Repeat this process after 24 h, 48 h and 72 h. 

 

Protocol for MTT assay 

1. Seed 3000 cells per well for each treatment (triplicate or quadruplicate) with 

complete medium (10% of FBS). Incubate 1 day at 37ºC and 5% CO2. 

2. After the incubation, change medium for complete growth medium without FBS 

in order to synchronize the cells. Incubate for 24 h. 
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3. Next day, remove the cell medium and add 0.25% MTT reagent (Sigma Aldrich) 

resuspended in dPBS (Sigma Aldrich). Incubate for 3 h at 37ºC and 5% CO2. 

4. Discard the MTT solution from each well, and add acid-SDS solution (1g SDS, 

10ml DMSO, 57.2µl glacial acetic acid) to lysate the cells. 

5. Read absorbance at 570 nm in a FlexStation system plate reader (Molecular 

Devices). 

6. Change medium for complete fresh medium with 10% FBS immediately after 

each measurement. 

 

 

4.8.2. Measurements of cell migration  

Cell migration was evaluated by Wound Healing assay as previously described 

[185]. Specifically, 500.000 cells were seeded in 6-well culture plates and incubate at 

37ºC and 5% CO2. When cells were completely confluents, a scratch was made with a 

sterile 200ul tip. Then, cells were incubated overnight at 37ºC and 5% CO2 in complete 

medium without FBS in order to minimize cell proliferation effects on wound recovery. 

Next day, cell medium was replaced for medium with the specific treatment (or only with 

medium alone, used as control) and cells were incubating for 12h. At least, three 

independent and different pictures of the scratch were taken at 0 and 12h to monitor the 

wound healing. Wound healing was calculated as the area of a rectangle centered in the 

picture 1 h after the wound vs. the area of the rectangle just after doing the wound. 

 

4.9. Hormonal measurements (ELISA and RIA techniques) 

 

4.9.1. Measurement of PSA levels by ELISA 

PSA (in human plasma or cell culture medium) was measured by a commercial 

ELISA kit (cat number: EIA-3719; Springfield, NJ, USA).  

Protocol  

1. Place all reagents and samples to RT 

2. Format the required microplate wells. 

3. Pipette 25 μL of standards, controls or samples into each well and incubate for 5 min 

at RT.  

4. Add 100μL of PSA conjugate into each well, mix by moving the plate 
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5. Incubate 1h at RT with moderate shaking 

6. Remove solution from the wells by aspirating the liquid or by decanting it.  

7. Wash wells with distilled water (repeat this process five or six times) 

10. Pipette 100μL of TMB-substrate solution into each well in darkness and cover the 

plate. 

11. Incubate 20 min at RT (18 °C - 25 °C) with moderate shaking. At this point, it is 

necessary to evaluate the changes in the color of the wells in order to stop the reaction 

before if this is necessary (to avoid saturation). 

12. Add 100 μL/well of the stop solution (same order as substrate solution). 

13. Read absorbance (OD) at 450 nm (blanking 630 nm). 

 

4.9.2. Measurement of GOAT levels by ELISA 

For the determination of GOAT protein level (serum, urine or cell culture 

medium), a commercial ELISA was used following the manufacturers’ instructions 

(MyBioSource, San Diego, USA). 

Protocol 

1. Place all reagents, samples and standard at RT in order to pre-warm up all the 

reactive. 

2. Calculate the wells required for standard curve (7 wells from 50 ng/ml to 0.78 ng/ml), 

blank and samples. 

3. Add 100µl of standard or sample to each well. Protect from light. Incubate for 2h at 

37 ºC in agitation. 

4. Discard the liquid and add 100µl of the prepared Detection Reagent A. Incubate for 

1h at 37 ºC. 

5. Discard the liquid and wash for at least 3 times. 

6. Add 100µl of the prepared Detection Reagent B. Incubate 30 min at 37ºC in agitation. 

7. Discard the liquid and wash 5 times. 

8. Add 90µl of the Substrate solution (in darkness). Protect from light. Incubate 10-20 

min at 37 ºC in agitation. 

9. Add 50µl of the Stop solution. Read at 450nm immediately. 

 

4.9.3. Measurement of active ghrelin levels by ELISA 
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For the determination of active ghrelin (acylated at serine-3) protein level, a 

commercial ELISA kit was used following the manufacturers’ instructions (Cat number: 

EZGRA-88K; Millipore, Madrid, Spain). 

Protocol 

1. Pre-warm all reagents to RT immediately before setting up the assay. 

2. Calculate the wells required for the ELISA. 

3. Wash each well with 300µL of diluted Wash Buffer (repeat this step 2 more times) 

4. Add 20µL of the Matrix Solution to Blank, Standards and Quality Control (QC) 

wells  

5. Add 30µL of the assay buffer to each of the Blank and sample wells 

6. Add 10µL of the assay buffer to each of the Standard and QC wells. 

7. Add in duplicate 20µL of Ghrelin Standards in the order of ascending 

concentrations to the appropriate wells. 

8. Add in duplicate 20µL of QC1 and QC2 to the appropriate wells. 

9. Add sequentially 20µL of the unknown samples in duplicate to the remaining 

wells. 

10. Cover the plate with plate sealer and incubate at RT for 2 h with agitation 

11. Remove plate sealer and decant solutions from the plate.  

12. Wash wells 3 times with the diluted Wash Buffer (300 µL per well per wash).  

13.  Add 100 µL of the Enzyme Solution to each well. Cover plate with sealer and 

incubate with moderate shaking at RT for 30 min on the micro-titer plate shaker. 

14. Remove sealer, decant solutions from the plate and tap plate to remove the 

residual fluid.  

15. Wash wells 6 times with diluted Wash Buffer (300µL per well per wash). Decant 

and tap after each wash to remove residual buffer.  

16. Add 100µL of Substrate solution to each well, cover plate with sealer and shake 

in the plate shaker for approximately 5-20 min. 

17. Read absorbance at 450 nm (set 590 nm as control) 

 

4.9.4. Measurement of active Prepro-In1-ghrelin levels by RIA 

For the measurement of Prepro-In1-ghrelin levels, a competitive 

radioimmunoassay (RIA) was used following the manufacturers’ instructions (cat 
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number: RK-032-42; Phoenix, Burlingame, CA, USA). Briefly, the assay is based upon 

the competition of 125I-peptide and prepro-In1-ghrelin peptide binding to the limited 

quantity of antibodies specific for prepro-In1-ghrelin peptide in each reaction mixture. 

As the quantity of sample in the reaction increases, the amount of 125I-peptide able to 

bind to the antibody is decreased. By measuring the amount of 125I-peptide bound as a 

function of the concentration of prepro-In1-ghrelin peptide (in standard reaction 

mixtures), it is possible to construct a “standard curve” from which the concentration of 

prepro-In1-ghrelin in the unknown sample can be determined.  

Protocol 

1. Dilute the RIA buffer with distilled water.  

2. Reconstitute the standard peptide with 1ml of RIA buffer. Mix well and keep 

on ice.  

3. Reconstitute the rabbit anti-peptide serum with 13ml of RIA buffer, mix well 

and keep on ice. 

4. Reconstitute the positive Controls with 1ml of RIA buffer. Mix well and keep 

on ice. 

5. Reconstitute samples with RIA buffer  

6. Prepare dilutions of the standard as follows: 

Tube Sample RIA Buffer Std. Conc. Stock Powder 1.0ml 12.8 µg/ml 

0 10µl of Stock 990µl 128,000 pg/ml 

A 10µl of 0 990µl 1,280 pg/ml 

B 500µl of A 500µl 640 pg/ml 

C 500µl of B 500µl 320 pg/ml 

D 500µl of C 500µl 160 pg/ml 

E 500µl of D 500µl 80 pg/ml 

F 500µl of E 500µl 40 pg/ml 

G 500µl of F 500µl 20 pg/ml 

H 500µl of G 500µl 10 pg/ml 

7. Set up initial RIA reactions in 12 x 75 mm polystyrene tubes. 

 a) Number tubes TC-1, TC-2, NSB-1, NSB-2, TB-1, TB-2 and #7 - #22 for 

the standards. 

 b) Number tubes #23, #24 for the positive controls. 

 c) Number tubes #25 up to #125 for the unknown samples. 
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 d) Pipette 200µl of RIA buffer into each NSB tube. 

 e) Pipette 100µl of RIA buffer into each TB tube. 

 f) Pipette 100µl of standards H through A into duplicate tubes #7-#22. 

g) Pipette 100µl of positive control in tubes #23 & #24. 

 h) Pipette 100µl of unknown sample into duplicate tubes: tube #25 and up.  

i) Pipette 100µl of primary antibody (rabbit anti-peptide serum) into all tubes 

except TC and NSB tubes. 

 j) Vortex the contents of each tube. 

 k) Cover and incubate all tubes for 16-24 h at 4°C. 

8. Reconstitute the 125I-peptide with 13ml of RIA buffer and mix well to make 

tracer solution.  

9. Add 100µl of the tracer solution to each tube. 

10. Vortex the contents in each tube. 

11. Cover and incubate all tubes for 16-24 h at 4°C. 

12. Reconstitute the Goat Anti-Rabbit IgG serum (GAR) with 13ml of RIA buffer 

13. Reconstitute the Normal Rabbit Serum (NRS) with 13ml of RIA buffer. 

14. Add 100µl of GAR to each tube except the TC tubes. 

15. Add 100µl of NRS to each tube except the TC tubes. 

16. Vortex the contents of each tube. Incubate all tubes at RT for 90 min. 

17. Add 500µl of RIA buffer to each tube except the TC tubes and vortex. 

18. Centrifuge all tubes (except the TC tubes) at 3,000 rpm for 20 min at 4°C. 

19. Aspirate the supernatant (without touching the pellet) immediately following 

centrifugation. 

20. Use a γ-counter to count the cpm of the pellet. 

 

4.10. Mechanistic assays 

4.10.1. Cancer pathway reporter assay 

To evaluate the intracellular signaling pathways modulated by sst5TMD4 

overexpression, a Cignal Finder 10-Pathway Reporter Array (Qiagen, Limburg, 

Netherlands) was initially used to simultaneously analyze ten relevant pathways that are 

critical regulators of cancer biology. Specifically, 40.000 sst5TMD4 stable-transfected 

PC-3 or mock cells were seeded in duplicates in a 96 well-array plate with Opti-MEM 

serum free medium and reverse transfected with the transcription factors-responsive 
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firefly luciferase construct specific for each pathway using Attractene Transfection 

Reagent (Qiagen), following the manufacturer’s instructions. Cells were incubated for 

24h at 37°C and 5% CO2, under sterile conditions. Next day, medium was changed to 

complete growth medium (RPMI 1640 medium complemented with 10% fetal bovine 

serum, 2mM L-glutamine, and 0.2% of antibiotic) and cells were grown for an additional 

24h. Subsequently, a Dual-Glo Luciferase assay (Promega, Barcelona, Spain) was 

performed under manufacturer’s recommendations to monitor the activity of the different 

pathways. Relative firefly luciferase activity was measured and normalized to the 

constitutively expressed Renilla luciferase. 

 

4.10.2. Measurement of free cytosolic calcium changes 

Changes in free cytosolic calcium concentration ([Ca2+]i) in single cells were 

determined using fura-2AM dye (Molecular Probes, Eugene, OR).  

 

Protocol 

1. Seed 50,000 cells/coverslip (35-mm plates) in complete growth medium. 

Incubate for 24-48h until cells are 70% confluent. 

2. Prepare medium with fura-2AM: 2 ml of phenol red-free DMEM containing 20 

mM NaHCO3 (pH 7.4) + 2µl of pluronic acid + 5µl of FURA. 

3. Remove the medium from the wells (red phenol interferes with the reaction), and 

add 1 ml of medium with FURA. 

4. Incubate for 30 min at 37 ºC. 

5. Remove the medium and add calcium medium.  

6. Incubate for 15 min at RT. 

7. Prepare treatments in this 15 min-incubation time. 

8. Add 300µl of calcium medium. Set up the protocol in the computer. 

9. Zoom with a 40X objective with Immersion Oil Type NF (Nikon, Tokyo, Japan) 

with the inverted microscope Eclipse TE2000-E (Nikon, Tokyo, Japan) coupled to 

a digital camera ORCA II BT (Hamamatsu Photonics, Hamamatsu, Japan). 

10. Add 300µl of medium with the treatment. 

11. Changes in free cytosolic calcium concentration ([Ca2+]i) are monitored over 

time after exciting the cells at 340nm (excitation peak of FURA binding to Ca2+) 
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and 380nm (excitation peak of FURA Ca2+-free) and collecting the emission 

intensity at 510nm in the MetaFluor software. 

12. Ionomycin (Sigma-Aldrich, Madrid, Spain) was always used as positive control.  

 

4.10.2.1. Stable sst5TMD4-transfected PC-3 cells treated with SST analogs. 

Mock- or sst5TMD4-stably-transfected PC-3 cells were grown onto glass cover 

slips and [Ca2+]i was evaluated in response to SSA treatment (octreotide and pasireotide).  

 

4.10.2.2. Normal human primary prostate cell cultures treated with ghrelin or In1-

ghrelin. 

[Ca2+]i was evaluated also in normal human primary prostate cell cultures in 

response to ghrelin or In1-ghrelin peptides (In1-19 and In1-40). 

4.10.3. RT2 Prostate Cancer PCR Array  

Total RNA was extracted from 4 consecutive passages of mock, ghrelin, in1-

ghrelin or sst5TMD4-stably-transfected PC-3 cells using the Absolutely RNA RT-PCR 

Miniprep Kit (Agilent, La Jolla, CA, USA). Total RNA quality was assessed using the 

Agilent's 2100 Bioanalyzer (Agilent technologies). 

 

Protocol 

1. Total RNA (0.75µg, obtained from the mixture of RNA from 4 consecutive 

passages) was incubated for 5 min at 42ºC with genomic DNA elimination mix (see 

mix below) and cooled on ice for 1 min.  

Genomic DNA elimination mix 

Component                                            Amount/volume for 1 reaction 

RNA……………………………………………………………0.75 µg 

Buffer GE (genomic DNA elimination) ……………………….….2 μl 

RNase-free water…………………………………………...Variable μl 

Total volume………………………………………...…………...10 μl 

 

2. Next, first-strand cDNAs were synthesized using the RT2 First Strand kit (catalog 

number 330401, Qiagen). The reaction mixtures (see below, total final reaction with 

the genomic DNA elimination mix= 20μl) were incubated at 42°C for 15 min, 
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followed by incubation at 95°C for 5 min and 91 µl of water was added and then 

cooled on ice.  

Reverse transcription mix 

Component                                                               Volume for 1 reaction 

-5X Buffer BC3………………………………………………………4 μl 

-Control P2…………………………………………………………...1 μl 

-RE3 Reverse Transcription Mix…………………………………….2 μl 

-RNase-free water……………………………………………………3 μl 

Total volume………………………………………………………...10 μl 

 

3. RT2 Prostate Cancer PCR array was used to simultaneously examine the mRNA 

levels of 84 genes associated with PCa development, including five “control genes” 

in a 96-well plate (catalog number 330231 PAHS-135ZA, Qiagen). A mix of 1350 

µl of 2x RT2 SYBR Green Mastermix, 102µl of cDNA and 1,248µl of RNase-free 

water (total volume=2700 µl) was prepared and 25µl of the mix was added into 

each well in a 96-well PCR-array plate (containing a panel of 84 genes).  

4. Thermal profile consisted of an initial step at 95ºC for 10 min, followed by 40 

cycles of denaturation (95ºC for 15 seconds), annealing (60ºC for 1 min) and finally, 

a dissociation cycle (melting curve) to verify that only one product was amplified.  

5. Values from each gene were obtained for the threshold cycle (Ct) and normalized 

using the average of five housekeeping genes on the same array (HPRT1, B2M, 

RPLP0, GAPDH, and ACTB).  

6. Relative amounts were calculated by the ΔΔCT method and further normalized 

to the values of their corresponding mock samples. The resulting values were 

reported as fold change; only genes showing a change of 2-fold or greater were 

considered for further validation.  

7. The negative controls ensured a lack of DNA contamination and set the threshold 

for the absent/present calls.  

8. The validation of the genes that showed some significant change in the array was 

carried out by qPCR with a different set of custom-designed primers (see below) 

 

4.10.4. Western blotting  
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4.10.4.1. Validation of results from the cancer pathway reporter assay and RT2 

Prostate Cancer PCR Array by Western blotting 

PC-3 cells overexpressing ghrelin, In1-ghrelin, sst5TMD4 and its respective 

control (mock-cells) were cultured (500,000 cells/experimental condition) in 6-well 

plates and incubated for 24h in complete growth medium (supplemented with 10% FBS). 

Then, medium was removed and cells were washed and lysed with SDS-DTT buffer as 

previously reported [185, 216]. Proteins were separated by SDS-PAGE and transferred to 

nitrocellulose membranes (Millipore). Membranes were blocked with 5% non-fat dry 

milk in Tris-buffered saline with 0.05% Tween-20 and incubated O/N at 4ºC with the 

primary antibodies for phospho-ERK1/2 (ref: 4370), phospho-cRAF (ref: 9421), 

phospho-AKT (ref: 9271), anti-DAXX (ref: 4533), anti-SFRP1 (ref:3534), anti-APC 

(ref:2504) and anti-B-tubulin (ref:2128) from Cell Signaling (Danvers, MA, USA), anti-

ZNF185 (ref: ab83100), anti- IL-6 (ref:667) and anti-CDKN2A/p16INK4a (ref: ab81278) 

from Abcam (Cambridge, UK); anti-LOXL1 (ref: sc-166632), anti-NRIP1 (ref: sc-8997) 

and IGFBP5 (ref: sc-13093) from Santa Cruz (CA, USA); phospho-JNK from R&D 

system (ref: AF1205, Minneapolis, USA) and c-myc (ref: CSB-MA000041M0m. Wuhan, 

China). Secondary anti-rabbit (ref: 7074) and anti-mouse were purchased from Cell 

Signaling (Danvers, MA, USA). Proteins were developed using an enhanced 

chemiluminescence detection system (GE Healthcare, UK) with dyed molecular weight-

markers. A densitometry analysis of the bands was carried out with Image J software. 

 

4.10.4.2. Intracellular signaling pathways trigger after treatment with peptides from 

the ghrelin, somatostatin and insulin/IGF-1 systems in PCa cell lines. 

LnCaP, 22Rv1 or PC-3 cells (250,000) were cultured in 6-well plates and 

incubated for 24 h in complete growth medium (supplemented with 10% FBS). Then, 

medium was removed and cells were starved overnight in HBSS medium (Gibco, Madrid, 

Spain). Next day, medium was replaced with FBS-free growth medium and treated with 

ghrelin and In1-ghrelin (In1-19/In1-40) peptides at 100nM concentration for 5-30 min, 

or IGF1 and insulin peptides at 100nM for 24 h. Medium without treatment was used as 

control vehicle. Then cells were washed and lysed with SDS-DTT buffer as previously 

reported [13, 33]. In the specific cases of cells treated with ghrelin and In1-ghrelin 

peptides, blots were incubated overnight at 4ºC with the primary antibodies for phospho-
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ERK1/2, phospho-AKT, total ERK (ref: SC-154; Santa Cruz, CA, USA) and total AKT 

(ref: 9272S; Cell Signaling; Danvers, MA, USA). 

 

4.11. Xenograft model 

All experiments with mice were carried out following the European Regulations 

for Animal Care under the approval of the University of Cordoba Research Ethics 

Committee. Ten-week-old male athymic BALB/cAnNRj-Foxn1nu mice (Janvier Labs, 

Le Genest St Isle, France) were subcutaneously grafted in both flanks with 2x106 of mock, 

ghrelin, In1-ghrelin or sst5TMD4-stably-transfected PC-3 cells (n=4-5 mice per 

condition) resuspended in 100µl of basement membrane extract (ref: 3432-005-001. 

Trevigen, Maryland, USA). Tumor growth was measured once per week during 3 months 

by using a digital caliper and calculating tumor volume. When the mouse was sacrificed, 

each tumor was dissected, fixed and sectioned for histopathological examination after 

hematoxylin–eosin staining and for necrosis and mitosis measurements. Another piece 

from the tumor was kept at -80ºC for later RNA extraction using Trizol reagent (Thermo 

Scientific, Wilmington, NC, USA).  

 

4.12. Statistical analysis 

Expression data obtained from fresh normal prostate samples and PCa biopsies 

(mRNA and protein) as well as plasma and urine samples from control and PCa patients 

(ELISA assays) were evaluated for heterogeneity of variance (if values had a Gaussian 

distribution) using the Kolmogorov–Smirnov test. Statistical differences were assessed 

by Mann–Whitney U test or by one-way or two-way ANOVA (comparison of tumor 

growth in xenografts) followed by Fisher’s test. ROC curve was performed for evaluation 

of sensibility and specificity of GOAT, In1-ghrelin and sst5TMD4 in the different tissues 

and fluids analyzed [217]. Correlations between different molecules were studied using 

Spearman correlation test. Chi-Square test was used to compare the differences between 

the genomic frequencies of the different haplotypes of sst5 gene and the differences 

between groups of PCa patients with low/high sst5TMD4 and GOAT expression (samples 

were categorized in low and high sst5TMD4/GOAT levels according to median GOAT 

levels). P-values <0.05 were considered statistically significant. When p-values ranged 



 

84 
 

between <0.1 and >0.05, a trend for significance was indicated where appropriate. All 

statistical analyses were performed using the GraphPad Prism (La Jolla, CA, USA).  
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5. RESULTS 

 

The results of this thesis have been subdivided in two main sections corresponding 

to the presence of different components of the SST-system (section 5.1) and Ghrelin-

system (section 5.2) in human normal and PCa tissues and cell lines. Part of the results 

included in these two sections has been included in three independent manuscripts. The 

first one describing the presence and functional role of the truncated somatostatin 

receptor, sst5TMD4, in PCa (Title: “The truncated somatostatin receptor, sst5TMD4, is 

overexpressed in prostate cancer, where it increases malignant features by altering key 

signaling pathways and tumor suppressors/oncogenes”; under review). The second 

manuscript has been published in the journal “Cancer Letters” and it is focused on the 

identification of Ghrelin-O-acyl transferase (GOAT) enzyme as a potential non-invasive 

biomarker in PCa [Title: “Ghrelin O-acyltransferase (GOAT) enzyme is overexpressed 

in prostate cancer wherein is associated with the metabolic status: potential value as 

non-invasive biomarker”; Cancer Lett. 2016; 383(1):125-134]. The third manuscript is 

focused on the presence and functional role of the splicing variant In1-ghrelin in PCa 

(Title: “In1-ghrelin splicing variant is overexpressed in prostate cancer wherein it 

increases aggressiveness features through regulation of key tumor 

suppressors/oncogenes”; under review). It should also be mentioned that part of the 

results included in this thesis have been already patented [Patent-1: Title: “Ghrelin-O-

acyl transferase (GOAT) and its uses” (registry number: PCT/ES2016/070844; Patent-2: 

Title: “Non-invasive diagnostic method of cancer” (registry number: P201631606)].  

 

5.1. Analysis of the SST-system in PCa 

5.1.1. Presence of different components of the SST-system in human 

normal and PCa tissues and cell lines 

- Analyses in fresh prostate tissues (normal and PCa samples): The expression of the 

different components of SST-system [ligands (SST and CORT) and receptors (sst1-sst5 

and truncated sst5TMD4-5)] was evaluated in a battery of PCa biopsies from patients 

with high risk PCa (n=52) and in a set of normal prostate biopsies from healthy donor 
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patients (n=12) (Table 7). Although, SST and CORT peptides were expressed in normal 

(Figure 12A) and PCa samples (Figure 12B), CORT expression was higher than SST 

both in normal and PCa samples. sst2 was the canonical sst receptor expressed at highest 

levels in normal tissues, followed by sst5 and sst1 (Figure 12A), while sst1 was the most 

expressed sst in PCa (significantly overexpressed compared to normal tissues) followed 

by sst5 and sst2 (Figure 12B). The expression of sst3 and sst4 was not detectable in 

normal or PCa samples. When we analyzed the truncated sst5 (sst5TMD4 and 

sst5TMD5), only sst5TMD4 expression was significantly detected in prostate samples, 

and, remarkably, its expression was upregulated in PCa samples compared to normal 

prostate samples (Figure 12A-B). Interestingly, overexpression of sst1 in PCa samples 

compared with normal prostate samples, and its association with the aggressiveness of 

the disease has been already reported [192]. In contrast, it should be mentioned that this 

is the first study that demonstrates the presence and overexpression of sst5TMD4 in PCa 

compared with normal prostate tissues. Therefore, based on these results, we decided to 

further analyze the presence and functional role of this truncated sst5TMD4 in PCa (see 

below: section 4.1.2).  

 

Figure 12: Expression of all the components of the SST-system in normal prostate and 

PCa samples. Expression levels of the different SST components in a batter y of 52 fresh 

PCa samples compared to the expression found in 14 fresh normal prostates (Control).  

Absolute mRNA levels were determined by qPCR and adjusted by a normalization factor 

(NF) calculated from the expression levels of two housekeeping genes (ACT B and 

GAPDH). Data represent mean ± SEM. Asterisks (*p<0.05) indicate values that 

significantly differ between PCa samples and normal samples.  
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- Analyses in a normal prostate-like cell line and in different PCa cell lines: The 

expression of the SST-system was also analyzed in the normal-like prostate cell line 

(RWPE-1) and in different androgen-dependent (22Rv1, LnCaP, VCaP) and androgen-

independent (PC-3, DU-145) cell lines, which represent several stages of the disease 

(Figure 13). While SST expression was barely detected in the different cell lines, CORT 

expression was detected in normal and PCa cell lines (Figure 13). Only sst5 and sst2 

receptors were expressed in RWPE-1 (low expression of sst2) and PCa cell lines, with 

the exception of 22Rv1, which also expressed sst1. No expression was detected for 

sst5TMD4 and sst5TMD5 in RWPE-1, while sst5TMD4 (but not sst5TMD5) was 

expressed at low levels in all the PCa cell lines studied (Figure 13). 

 

Figure 13: Expression of all the components of the SST-system in the normal-

like (RWPE-1) and PCa cell lines (androgen dependent: 22Rv1, VCaP, LnCaP; 

androgen independent:  PC-3, DU-145) . Absolute mRNA levels from different passages 

(n≥3) were determined by qPCR and adjusted by ACTB. Data represents mean ± SEM.  
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5.1.2. Presence and functional role of sst5TMD4 in PCa 

5.1.2.1. The truncated spliced receptor sst5TMD4 is overexpressed in PCa 

sst5TMD4 expression was evaluated by qPCR technique in two independent 

cohorts of samples from PCa patients in different clinical stages [Table-6 (FFPE samples) 

and table-7 (fresh tissues; results previously indicated in Figure 12B)]. Specifically, 

sst5TMD4 expression was firstly measured in a cohort of 45 FFPE prostate samples from 

patients with low and intermediate grade tumours (Gleason Score 6-7) representing an 

early-stage of the disease (Table 6). Importantly, FFPE prostatic pieces harbor a tumoral 

region (PCa) and an adjacent free tumor region (N-TAR) defined by two expert anatomo-

pathologists, which allows to compare sst5TMD4 expression in both regions from the 

same prostatic piece. These results revealed that sst5TMD4 expression was significantly 

higher in tumoral vs. N-TAR (p= 0.003; Figure 14A).  

Next, expression of sst5TMD4, and of sst2 and sst5 (the two main 

pharmacological targets of SSA) was analyzed in a cohort of fresh PCa-biopsies collected 

from patients with high risk PCa [according to D’ Amico classification (i.e. PSA > 20.0 

and/or Gleason 8-10 and/or cT2c-T3); n=52)] representing a more aggressive and 

advanced form of the disease, and in 14 fresh normal prostate (NP)-tissues from patients 

that underwent cystoprostatectomy due to bladder cancer (absence of malignant glands 

was classified by two expert anatomo-pathologists) (Table 7). Consistent with the results 

obtained in FFPE samples, the overall expression of sst5TMD4 was higher in tumoral 

fresh-samples compared to NP-tissues (p=0.017; Figure 14B) while sst2 and sst5 

expression was not significantly altered. Of note, sst5TMD4 expression was detected in 

more PCa-samples than sst2 or sst5 [88% (n=46/52) vs. 81% (n=42/52) or 77% 

(n=40/52), respectively], and its mRNA levels were significantly higher than those of sst2 

or sst5 (Figure 14C). Interestingly, sst5TMD4 expression correlated with sst2 and sst5 

expression levels in PCa but not in normal tissues (Figure 14D). 
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Figure 14: sst5TMD4 expression in two different cohorts of samples from patients with 

PCa. A.  Paired analysis of sst5TMD4 expression in tumoral and non -tumoral adjacent 

regions (N-TAR) of formalin-fixed paraffin-embedded (FFPE) prostate pieces (n=45) from 

low/intermediate grade tumors  (cohort-1). Absolute mRNA levels were dete rmined by 

qPCR and adjusted by GAPDH (used as housekeeping gene); B.  Expression levels of 

sst5TMD4 in a battery of 52 fresh PCa samples compared to the expression found in 14 

fresh normal prostates (Control)  (Cohort-2). Absolute mRNA levels were determined  by 

qPCR and adjusted by a normalization factor (NF) calculated from the expression levels 

of two housekeeping genes (ACTB and GAPDH); C.  Comparison of sst2, sst5 and 

sst5TMD4 expression in fresh PCa samples (n=52; cohort-2); D.  Correlation of sst5TMD4 

mRNA levels with sst5 and sst2 expression levels in fresh PCa samples (n=52; cohort-2). 

Asterisks (*p<0.05; **p<0.01) indicate values that significantly differ from the 

corresponding controls (A and B) or differences between the expression levels of 

sst5TMD4 and sst2 or sst5 (C).  

 

5.1.2.2. sst5TMD4 levels (mRNA and protein) correlate with clinical 

aggressiveness features in PCa. 

The mRNA levels of sst5TMD4, but not of sst2 or sst5 (Figure 15A-C), were 

elevated in patients with higher Gleason-score, a marker of PCa aggressiveness [244]. 
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Furthermore, sst5TMD4 (but not sst2 or sst5) expression was significantly higher in 

metastatic vs. non-metastatic PCa or control samples (Figure 15A-C). Indeed, ROC-

analysis indicated that sst5TMD4, but not sst2 or sst5, expression significantly 

discriminated between patients with and without metastasis (Figure 15A-C). When PCa 

patients were divided according to low or high sst5TMD4 expression (based on median 

expression), a greater proportion of patients with high sst5TMD4 expression presented 

metastasis, higher Gleason-score and extraprostatic extension compared with patients 

with low sst5TMD4 expression, while no such associations were observed for sst2 or sst5 

expression (Figure 15A-C). 

Figure 15: sst5TMD4 mRNA expression, but not sst5 -sst2, is higher in patients with 

high Gleason score (GS) and metastasis (MET) . Expression levels of sst5TMD4 (A) , sst5 

(B) and sst2 (C) in patients with intermediate (7) Gleason score (GS) compared with 

patients with high GS (8-10); Comparison of sst5TMD4 (A), sst5 (B) and sst2 (C) 
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expression levels found in fresh normal prostate samples (Control) and in PCa samples 

from patients with and without presence o f metastasis (MET and NO MET, respectively); 

Receiver operating characteristic (ROC) curve analysis to determine the accuracy of 

sst5TMD4 (A) , sst5 (B) and sst2 (C) expression as diagnostic test to discriminate between 

patients with presence of metastasis;  Frequencies observed between two groups of PCa 

patients with low (L) or high (H) sst5TMD4 ( A), sst5 (B) and sst2 (C)  expression levels 

in terms of presence of metastasis, Gleason score level and presence of extraprostatic 

extension (EE).  Asterisks (*p<0.05; *p<0.01; ***p<0.001) indicate values that 

significantly differ from the corresponding controls (GS of 7 vs. 8 -10; MET samples vs. 

control or NO MET samples;  samples from patients with low vs. high sst5TMD4 

expression) .  

Additionally, sst5TMD4 immuno-histochemical staining was performed on 12 

FFPE-prostate pieces from radical prostatectomy (Gleason score 6-7) and in 18 FFPE-

biopsies pieces obtained by needle biopsy (Figure 16). sst5TMD4 cell staining was 

predominantly granular and located at or close to the apical membrane (Figure 16). The 

analysis revealed that sst5TMD4 staining was always weaker in benign prostate-gland 

epithelium (BG; Figure 16A; staining of stromal regions was negligible) than in 

cancerous prostate-glands (BG vs. CG; Figure. 16C). Notably, although only one FFPE-

prostate harboring a high-grade prostatic intraepithelial neoplasia (HG-PIN) lesion was 

available, sst5TMD4 staining was stronger in the pre-malignant lesion than the normal-

adjacent region (Figure 16B), which suggests that sst5TMD4 overexpression could be 

associated with an early event in PCa. Consistent with sst5TMD4 mRNA results, 

sst5TMD4 staining was significantly stronger in samples from patients with higher 

Gleason-score pieces and in patients with metastasis (Figure 16D).  
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Figure 16: sst5TMD4 protein expression is higher in cancerous glands and correlates 

with higher Gleason score (GS) and presence of metastasis (MET). A -C. IHC analysis 

of sst5TMD4 in 12 FFPE prostate samples from patients w ith low-intermediate grade 

tumors and 18 prostate samples from high-risk PCa patients. Images are representative 

examples of sst5TMD4 staining in benign prostate glands (BG) ( A)  high-grade prostatic 

intraepithelial neoplasia (HG-PIN) (B) and prostates samples obtained from patients wi th 

PCa which include areas with normal -benign and PCa glands (BG and CG, respectively) 

(C) at 40X, 200X and 800X magnification. D.  Correlation of sst5TMD4 IHC score (i.e.  

low, moderate, and high sst5TMD4 staining) with Gleason score ( GS: 6, 7, 8-9 score; left-

panel) and with presence of metastasis  (MET: no or yes; right -panel).  Data represent 

median (IQR) or mean ± SEM. Asterisks (*p<0.05; **p<0.01) indicate values that 

significantly differ from the corresponding controls  (i.e. GS of 6 vs. 7 vs. 8-9; MET 

samples vs. NO MET samples) .  

 

D
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5.1.2.3. sst5TMD4 is associated to two SNPs in PCa. 

To analyze the putative implication of certain SNPs in sst5 splicing regulation, we 

sequenced the 5’- and 3’-ends of the cryptic intron spliced to generate sst5TMD4 and 

compared the frequencies of the observed SNPs (rs197055/rs12599155; Figure 17). We 

found significant differences in the frequencies observed for both SNPs between PCa vs. 

control-samples (Figure 17A), and also between PCa-samples with high and low 

sst5TMD4/sst5 mRNA ratio (Figure 17B). Indeed, two specific recessive homozygous 

haplotypes (AA for rs197055 and TT for rs12599155) were only found in PCa-samples, 

wherein they seem to be associated to a higher sst5TMD4/sst5 mRNA ratio (Figure 17B). 

Figure 17: Analysis of SNPs in the sst5 gene sequence .  Genomic DNA (gDNA) from PCa 

tissues (n=41) and normal prostate tissues (control; n=9) were used to identify SNPs that  

could be associated with the presence of sst5TMD4. A.  Differences in the frequencies 

observed for both SNPs between PCa vs. control -samples; B. Differences in the frequencies 

observed for both SNPs between PCa-samples with high and low sst5TMD4/sst5 mRNA 

ratio. Asterisks (*p<0.05; ***p<0.001) indicate values that significantly differ from the 

corresponding controls (control normal vs PCa samples; samples with low vs. high 

expression of sst5TMD4/sst5 ratio).  

 

5.1.2.4. sst5TMD4 overexpression enhances pathophysiological features of 

PCa cell lines and induces larger tumors in nude-mice.  

Since sst5TMD4 expression was clearly increased in PCa tissues compared with 

normal prostate tissues at the mRNA and protein level (Figures 14-16), we next sought 

to determine the functional effects of sst5TMD4 overexpression on PCa 

pathophysiological features (i.e. cell proliferation and cell migration) using in vitro cell 
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models (PCa cell lines stably transfected with sst5TMD4) and a preclinical in vivo model 

(xenografts).  

 

5.1.2.4.1. Validation of sst5TMD4 overexpression in sst5TMD4-stably-transfected 

PCa cell lines. 

As mentioned before, the expression level of sst5TMD4 was low in all prostate 

cell lines studied, including the VCaP, DU-145 and PC-3 (Figure 18A). Therefore, these 

cell lines represent adequate working models to analyze the effect of sst5TMD4 

overexpression on PCa-associated pathophysiological processes. Successful 

overexpression of sst5TMD4 in transfected cells was confirmed by qPCR and Western 

Blot (Figure 18B). 

Figure 18: sst5TMD4 presence and validation of stable transfection of sst5TMD4 in 

PCa cell lines .  A.  sst5TMD4 mRNA levels in different PCa cell lines (VCaP, PC-3 and 

DU145). Absolute mRNA levels were determined by qPCR and adjusted by ACTB. B .  

Representative figures showing validation of  sst5TMD4 overexpression in PC-3 cells (by 

qPCR and western-blot; one cell-passage with 3-technical replicates).  Data represent mean 

± SEM. Asterisks (***p<0.001) indicate values that significantly differ from the 

corresponding controls (mock-transfected cells) .  

 

5.1.2.4.2. sst5TMD4 overexpression enhances cell proliferation and migration of 

PCa cell lines. 

s
s

t5
T

M
D

4
 m

R
N

A
 e

x
p

r
e

s
s

io
n

a
d

ju
s

te
d

 b
y

 A
C

T
B

0 .0 0 0 0 0

0 .0 0 0 0 1

0 .0 0 0 0 2

0 .0 0 0 0 3

0 .0 0 0 0 4

%
 s

s
t5

T
M

D
4

 p
r
o

te
in

 a
d

ju
s

te
d

 b
y


-t

u
b

u
li

n

0

5 0 0

1 0 0 0

1 5 0 0 * * *

s s t5 T M D 4

 - tu b u lin

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

* * *

V C a P D U -1 4 5 P C -3 M o c k s s t5 T M D 4 M o c k s s t5 T M D 4

A . B .

P r o te inm R N AP C a  c e ll l in e s



 

97 
 

sst5TMD4 stable overexpression increased cell proliferation in VCaP and PC-3 

cell lines at 48h and/or 72h, and the results were further confirmed with a transient 

transfection in the DU145 cell line in which cell proliferation was increased at 24h and 

48h (Figure 19A). Moreover, the pathophysiological role of sst5TMD4 in PCa was 

further analyzed by measuring the effect of sst5TMD4 overexpression on cell migration 

by wound-healing assay in the PC-3 cell line (Figure 19B). sst5TMD4 overexpression 

evoked a significant increase in the migration of PC-3 cells at 12h (Figure 19B). 

Figure 19: Functional effects of sst5TMD4 overexpression on pathophysiological 

parameters in PCa cell lines.  A. Cell proliferation in sst5TMD4 stably -transfected-VCaP 

and PC-3, and in sst5TMD4 transiently-transfected DU145 cells, compared with their 

corresponding control (mock-transfected); B .  Migration capacity level (Wound -healing) 

observed in sst5TMD4-stably-transfected PC-3 cells compared with control-cells (mock-

transfected) (representative images showing the higher migration capacity of sst5TMD4 -

transfected cells 12h after the wound compared with mock -transfected cells are also 

included). All experiments were repeated at least three -times (n≥3). Data represent mean 

± SEM. Asterisks (*p<0.05; **p<0.01) indicate values that significantly differ from the 

corresponding controls.  

 

5.1.2.4.3. sst5TMD4-stably-transfected PC-3-cells induce larger tumors than control 

cells (mock cells) in a preclinical in vivo model.  
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The effect of the presence of sst5TMD4 on cell-proliferation was further evaluated 

on an in vivo model of subcutaneous xenograft induction in nude-mice (Figure 20). The 

overall size of the subcutaneous tumors induced by sst5TMD4-transfected PC-3-cells 

were significantly larger than those induced by mock-cells (p<0.001; Figure 20A). 

Although all tumors exhibited similar histotypes, tumors derived from sst5TMD4-

transfected PC-3-cells showed a significantly higher necrosis, but not mitosis, grade 

(Figure 20B). 

 

Figure 20: sst5TMD4 stable overexpression enhances tumor growth in preclinical 

models (NUDE mice). A. Growth-rate of subcutaneously inoculated mock - and sst5TMD4-

transfected PC-3-derived tumors in nude-mice followed up to 12 -weeks after inoculation. 

Below, representative images of mock and sst5TMD4-derived tumors after 12 weeks of 

growth. B.  % of necrosis and number of mitosis (positive cells per 10 field) in mock - and 

sst5TMD4-transfected PC-3-derived tumors. Representative -images of hematoxylin–eosin 

(H/E) staining showing diffuse cell-proliferation and large areas of necrosis in sst5TMD4 -

trasfected PC-3-derived tumors compared with mock-derived tumors (with diffuse cell -

proliferation and lower % of necrosis).  Data represent  mean ± SEM. Asterisks (*p<0.05; 

***p<0.001) indicate values that significantly differ from the mock group.  

 

5.1.2.5. sst5TMD4 silencing reverts pathophysiological features of PCa cell 

lines  

Inasmuch as sst5TMD4 expression is upregulated in PCa and its overexpression 
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whether sst5TMD4 silencing could be a suitable clinical target in the disease (Figure 21). 

To this end, a specific siRNA against the specific region of sst5TMD4 was designed and 
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validated in our laboratory (successful silencing was validated by Western blot analysis; 

Figure 21A). Remarkably, sst5TMD4 silencing decreased proliferation rate (Figure 

21B) and migration (Figure 21C) in PC-3 and DU145 cells  

 

Figure 21: sst5TMD4 silencing decreases cell prolife ration and migration of PCa cell 

lines. A.  Validation by western-blot of sst5TMD4 silencing in PC-3 cells and 

representative-images showing this silencing (below). B.  Proliferation of sst5TMD4-

silenced PC-3 and DU145 cells compared with control scramble -transfected cells; C.  

Migration rates measured by the wound-healing technique of sst5TMD4 -silenced PC-3 and 

DU145 cells compared with control scramble -transfected cells. Data represent mean ± 

SEM. Asterisks (*p<0.05; **p<0.01; ***p<0.001) indicate values tha t significantly differ 

from the mock groups.  

 

5.1.2.6. sst5TMD4 overexpression modulates key cell signaling pathways and 
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cell proliferation and cell migration), we next studied the consequences of sst5TMD4 

overexpression on 10 key cancer-related pathways using a dual-luciferase reporter system 

(Cignal Finder Reporter Assay, Qiagen) and the RT2 Prostate Cancer PCR Array 

comprising 84 genes involved in PCa development and progression.  

5.1.2.6.1. Use of the Cignal Finder Reporter Assay revealed that sst5TMD4 

overexpression enhances the activity of key cell signaling pathways. Validation of 

the results by qPCR and Western blot. 

The differences in the relative expression of various key signaling pathway 

between sst5TMD4-stably-transfected and mock-transfected PC-3 cells are shown in 

Figure 22A. Specifically, the pathways more drastically activated in sst5TMD4-stably-

transfected PC-3 cells compared with mock cells were Myc/Max (2.81-fold), MAPK/c-

Jun (AP1; 2.61-fold), hypoxia (HIF1α; 2.51-fold), TGFβ (SMAD 2/3/4; 2.4-fold), pRB-

E2F (E2F/DP1; 2.38-fold), Wnt (TCF/LEF; 2.05-fold) and MAPK/ERK kinase (ELK-

1/SRF; 1.87-fold) with minor changes in the activation of Notch (RBP-Jk; 1.53-fold), p53 

(1.23-fold) and NFKβ (1.08-fold). Remarkably, those pathways are usually dysregulated 

in PCa and are crucial in the pathophysiology of the disease [82].  

Consistent with the increased activation of ELK-1/SRF and AP-1 transcription 

factors observed with the Cignal Finder Reporter Assay, several components from the 

MEK/ERK signaling pathway such as ERK (p=0.026) and JNK (p=0.042) exhibited 

increased basal phosphorylation (Figure 22B). Moreover, total protein level of the 

protooncogene c-myc, was clearly increased in sst5TMD4-stably-transfected PC-3 cells 

(p=0.0076, Figure 22B), which was in agreement with the activation of the transcription 

factor MYC/MAX (Figure 22A). Additionally, sst5TMD4-transfected PC-3-cells 

expressed higher TGF-β levels without changes in NOTCH (Figure 22C). In addition, 

due to the close relationship of PI3K/AKT pathways with tumoral pathologies, we also 
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analyzed the basal phosphorylation of AKT but did not find any alteration in the 

phosphorylation levels of this protein (data not shown). 

Figure 22: sst5TMD4 overexpression activates key intracel lular signaling pathways in 

PCa cells.  A.  Results from the dual -luciferase Cignal Finder reporter assay of 10 cancer -

related pathways. The ratio of bioluminisence (RLU) signal of sst5TMD4-stably-

transfected PC-3 cells adjusted to control -mock cells (set at a 100%) is shown as increased 

fold change; B.  Protein expression levels of total -myc, phospho-ERK1/2 and phospho-JNK 

(adjusted by β-tubulin levels) in sst5TMD4-stably-transfected PC-3 cells compared with 

control-mock PC-3 cells.  A representative western blots image of all these proteins (one 

passage with tree technical replicates) are also shown; C. Expression of TGF-β and 

NOTCH in sst5TMD4-stably-transfected PC-3 cells. Absolute mRNA levels (% of 

variation compared to control -mock transfected-PC-3 cells) of TGF-β and NOTCH were 

measured in 4 consecutive passages (mock- and sst5TMD4-stably-transfected PC-3 cells). 

Absolute mRNA levels were determined by qPCR and adjusted by ACTB (used as 
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housekeeping gene). Values represent mean ± SEM. Asterisks (*p<0.05; **p<0.01) 

indicate values that significantl y differ from the control.  

 

5.1.2.6.2. Use of the RT2 Prostate Cancer PCR Array revealed that sst5TMD4 

overexpression alters the expression of key genes involved in PCa development and 

progression. Validation of the results by qPCR and Western blot. 

To identify the downstream consequences of the changes in signaling-pathways 

observed using the dual-luciferase Cignal Finder reporter assay, we performed a qPCR-

array comprising 84 genes involved in PCa (see Table 11 at the end of the results section). 

The results showed a total of 10 genes whose expression was altered more than 2-fold in 

sst5TMD4-stably-transfected PC-3 cells compared with control-mock (Figure 23A; 

upregulated: GCA/CAV2/RASSF1; downregulated: SFRP1/NRIP1/LOXL1/ 

CDKN2A/RARB2/APC/IGFBP5). Further validation of these changes [i.e. genes found 

heavily altered (>2-fold) and some showing smaller changes (i.e. CAV1/IL-

6/DAXX/ZNF185)] by qPCR using cDNA from several cell-passages and different 

primers sets (see Table 12 at the end of the Results section) indicated that 5 genes were 

significantly upregulated (GCA/CAV1/CAV2/IL-6/DAXX) and 8 genes downregulated 

(SFRP/NRIP1/LOXL1/CDKN2A/RARB2/APC/IGFBP5/ZNF185) by sst5TMD4 

overexpression (Figure 23B). Additionally, some of these changes were confirmed by 

Western-Blot (IL-6/SFRP1/NRIP1/LOXL1/CDKN2A/IGFBP5/ZNF185; Figure 23C). 

Interestingly, sst5TMD4-stably-transfected PC-3 cells-derived tumors (in vivo xenograft-

model; previously presented in section 4.1.2.5.3 and figure 20) exhibited increased IL-6 

and decreased SFRP1/IGFPB5 expression compared to mock-induced tumors (Figure 

23D), which further validates the results observed previously in the PCR array. 
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Figure 23: Mechanistic downstream consequences of sst5TMD4 overexpression in 

PCa-cells. A. Results from the RT2 Prostate Cancer PCR Array showing changes in 

expression levels of  some of the 84 genes involved in PCa in sst5TMD4 -stably-transfected 

PC-3 cells compared with control -mock PC-3 cells; B.  Validation by qPCR of genes 

dysregulated in the RT 2 Prostate Cancer PCR Array using different cell preparations and 

new sets of specific primers designed and validated by our group; C.  Confirmation at the 

protein expression level (using Western Blot) of some of the changes observed in gene 

expression using the RT 2 Prostate Cancer PCR Array in sst5TMD4 -stably-transfected PC-

3 cells compared with control -mock PC-3 cells.  Representative western blots image of all 

these proteins are also shown. Data are expressed as percent of control (“mock”, set at 

100%) within experiment; D. IL-6, SFRP1 and IGFBP5 mRNA expression levels in mock - 

and sst5TMD4-transfected PC-3-derived tumors ( in vivo  xenograft model).  Results were 

normalized according to the value of ACTB (used as housekeeping gene).  Asterisks 

(*p<0.05; **p<0.01; ***p<0.01) indicate values that significantly differ from the control.  
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Evaluation of changes in free-cytosolic Ca2+ concentration (pathway tightly 

associated to SST-signaling) in PC-3 cells showed that whereas 21% and 28% of the cells 

not expressing sst5TMD4 (control-mock PC-3 cells) responded to SSAs (octreotide and 

pasireotide; Figure 24A-B), an evident blockade in this response was observed in 

sst5TMD4-overexpressing PC-3 cells (0% and 5% of the cells responded to octreotide 

and pasireotide, respectively). A similar response was found in the androgen-dependent 

LnCaP cells transiently-transfected with sst5TMD4, in that 16% and 14% of the control-

mock cells responded to SSAs (Figure 24C), while sst5TMD4-overexpressing LnCaP 

cells barely responded to SSAs (4% and 2%, respectively). 

A. 

B.  

C. 

Type of cell SST 

analog 

No. 

responsive 

cells 

Total cells 

(%) 

responsive 

cells 

% Resp. 

Max. 
Error 

Time of 

max.response 
Error 

Mock Pasireotide 10 73 14% 110.69 3.29 46.50 12.23 

Mock Octreotide 9 57 16% 147.03 23.87 38.33 17.78 

sst5TMD4 Pasireotide 3 144 2% 110.79 7.01 8.33 2.72 

sst5TMD4 Octreotide 5 132 4% 126.54 5.01 120.00 21.26 
 

Figure 24: Effect of octreotide and pasireotide in kinetics of [Ca2 +] i in the presence 

and absence of sst5TMD4 in stably-transfected PC-3 cells and in transient transfected 

LnCaP cells (sst5TMD4 or mock-transfected, respectively; n≥3). A. Representative 

profiles of changes in [Ca 2+] i in mock or sst5TMD4-stably-transfected PC-3 cell cultures 

in response to octreotide (Oct), pasireotide (Pas) and Ionomycin (positive control) 

Type of cell 
SST 

analog 

No. 

responsive 

cells 

Total 

cells 

(%) responsive 

cells 

% Resp. 

Max. 
Error 

Time of 

max.response 
Error 

Mock Pasireotide 32 114 28.1% 166.58 45.32 11.56 5.38 

Mock Octreotide 16 74 21.6% 150.67 19.83 8.44 2.18 

sst5TMD4 Pasireotide 5 104 4.8% 185.30 18.72 8.00 0.68 

sst5TMD4 Octreotide 0 74 0.0% - - - - 
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administration (arrows) are shown; B-C.  The number of responsive cells, total number of 

cells measured, percentage of responsive cells showing changes in [Ca 2 +] i  in response to 

octreotide and pasireotide, percentage of maximum response (±error) and time of maximal 

response (±error) to octreotide or pasireotide administration are indicated in stably -

transfected PC-3 cells (B) and in transiently-transfected LnCaP cells (C) .  
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5.2. Analysis of the ghrelin-system in PCa 

5.1.1. Presence of different components of the ghrelin-system in human 

normal and PCa tissues and cell lines 

- Analyses in fresh prostate tissues (normal and PCa samples): The expression of the 

different components of ghrelin system [ligands (Ghrelin and In1-ghrelin), receptors 

(GHSR-1a and GHSR-1b) and GOAT enzyme] was measured in a battery of PCa biopsies 

from patients with high risk PCa (n=52) and in a set of normal prostate biopsies from 

healthy donor patients (n=12) (Table 7). Specifically, ghrelin, In1-ghrelin and GOAT 

were expressed both in normal and PCa samples (Figure 25A-B). Interestingly, In1-

ghrelin and GOAT levels were upregulated in PCa compared with normal tissues (Figure 

25A-B). In contrast, the expression of ghrelin receptors (GHSR-1a and GHSR-1b) was 

barely detected in both normal and tumor tissues (Figure 25). Based on these results, we 

decided to further analyze the presence and functional role of GOAT enzyme and In1-

ghrelin variant in PCa (see below: sections 4.2.2 and 4.2.3). 

Figure 25: Expression of the components of the ghrelin-system in normal prostate and 

PCa samples. Expression levels of the different components of the ghrelin system in a 

battery of 52 fresh PCa samples compared to the expression found in 14 fresh normal 

prostates (Control). Absolute mRNA levels were determined by qPCR and adjusted by  a 

normalization factor (NF) calculated from the expression levels of two housekeeping genes 

(ACTB and GAPDH). Data represent mean ± SEM. Asterisks (*p<0.05) indicate values 

that significantly differ between PCa samples and normal samples.  

 

- Analyses in a normal prostate-like cell line and in different PCa cell lines: The 

expression of ghrelin-system was also analyzed in the normal-like prostate cell line 
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independent (PC-3, DU-145) PCa cell lines, which represent several stages of the disease 

(Figure 26). Our results revealed that GOAT and In1-ghrelin were the most expressed 

components of the ghrelin system in PCa cell lines (Figure 26). The expression of ghrelin 

was low or absent in the majority of the PCa cell lines analyzed. Moreover, the expression 

of the ghrelin receptors (GHSR1a and GHSR1b) was barely detected in both normal and 

PCa cell lines. 

Figure 26: Expression of different components of the ghrelin system in normal-like 

(RWPE-1) and PCa cell lines (androgen dependent: 22Rv1, VCaP, LnCaP; androgen 

independent: PC-3, DU-145) . Absolute mRNA levels from different passages (n≥3) were 

determined by qPCR and adjusted by ACTB. Data represents mean ± SEM.  
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5.2.2 Presence and functional role of GOAT in PCa 

It should be mentioned that the results of this section have been published in the journal 

“Cancer Letters” [Title: “Ghrelin O-acyltransferase (GOAT) enzyme is overexpressed 

in prostate cancer wherein it is associated with the metabolic status: potential value as 

non-invasive biomarker”; Cancer Lett. 2016; 383(1):125-134]. A copy of this manuscript 

is included at the end of this thesis document. 

5.2.2.1. GOAT enzyme is overexpressed in PCa tissues  

Expression of GOAT enzyme was analyzed in a cohort of fresh PCa-biopsies 

collected from patients with high risk PCa [according to D’ Amico classification (PSA > 

20.0 and/or Gleason 8-10 and/or cT2c-T3); n=52)] and controls (n=12). Demographic and 

clinical parameters of the patients are detailed in Table 6. GOAT expression was 

increased in PCa tissues compared with normal tissues (p=0.047; Figure 27A). 

Remarkably, GOAT expression was able to discern between patients with presence of 

PCa and controls (ROC curve; p=0.028; Figure 27B). 

Figure 27: GOAT expression is upregulated in PCa tissues. A. Expression levels of 

GOAT in a battery of 52 fresh PCa samples compared to the expression found in 12 fresh 

normal prostates (Control). Absolute mRNA levels were determined by qPCR and adjusted 

by a normalization factor (NF) calculated from the expression levels of two housekeeping 

genes (ACTB and GAPDH). B.  Receiver operating characteristic (ROC) curve analysis to 

determine the accuracy of GOAT expression as diagnostic test to discriminate between 

patients with presence of PCa. Data represents mean ± SEM. Asterisks (*p<0.05) indicate 

values that significantly differ from the control.  
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5.2.2.2. GOAT expression levels correlate with metabolic factors (BMI, body-

weight and presence of dyslipidemia) in patients with PCa 

We found that GOAT expression was positively correlated with body weight and 

BMI in PCa patients (Figure 28A) but not in controls (Figure 28B). In addition, GOAT 

expression tended to be higher in PCa patients with dyslipidemia (p=0.084; Figure 28C), 

and, a greater proportion of patients with high GOAT expression presented dyslipidemia 

compared with patients with low GOAT expression (Figure 28D). No correlations were 

found between GOAT expression and presence of metastasis, Gleason Score or 

circulating PSA (Figure 28E). 

Figure 28: GOAT expression correlates with metabolic factors in patients w ith PCa .  

A.  GOAT expression and BMI and body weight correlations in PCa patients; B.  GOAT 

expression and BMI and body weight correlations in control patients;  C.  GOAT expression 

in patients without (NO) and with (YES) dyslipidemia; D.  frequencies observed between 

two groups of PCa patients with low or high GOAT expression levels in terms of 

dyslipidemia; E.  Comparison of GOAT expression in terms of presence of metastasis and 

Gleason Score. Graphs represent mean ± SEM. Asterisks (***p<0.001) indicate values that 

significantly differ from the corresponding controls.  DL=dyslipidemia; NDL=non 

dyslipidemia.  
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5.2.2.3. GOAT protein levels are also upregulated in PCa tissues. 

IHC for GOAT enzyme was also performed on FFPE-prostate samples harboring 

normal and tumoral regions, obtained from radical prostatectomies (n=4) of patients 

diagnosed with localized PCa (Gleason score 6-7), which revealed stronger GOAT 

staining in the tumoral vs. benign glands (Figure-29A). Interestingly, high-magnification 

images showed perineural-infiltration by tumoral prostate glands with high cytoplasmic 

(granular) and nuclear GOAT-staining, suggesting that GOAT overexpression could be 

associated with a malignant event in PCa. Due to the small set of FFPE samples available, 

we next implemented IHC analyses in a subset of samples (biopsies) from a cohort of 

clinically high-grade PCa samples already described above (n=16), which included PCa 

and normal-benign prostate regions. These analyses revealed that GOAT staining was 

very weak in normal-benign prostate samples (cytoplasmic-staining; Figure-29B) 

compared with the intense staining found in PCa samples [staining located at cytoplasmic 

(granular-staining) and nuclear level of the cancerous prostate-glands; Figure-29B-C). 

This staining in PCa samples seems to be specific for tumoral regions since the staining 

of the stromal cells within the tumor microenvironment was negative for GOAT (Figure-

29C). Moreover, the comparison between the mRNA expression levels of GOAT in 

samples with moderate and high expression of GOAT by IHC suggests a relationship 

between mRNA and protein levels since samples with high GOAT by IHC presented 

higher (non-significant) levels of GOAT mRNA (data not shown). Interestingly, GOAT 

staining tended to be stronger in patients with higher Gleason-score (p=0.088; Figure-

29D) and in patients with metastasis (p=0.079; Figure-29E).  
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Figure 29: GOAT protein expression is increased in cancerous glands. A. IHC analysis 

of GOAT in a representative FFPE-PCa sample with benign and tumor glands at 40-400X 

magnification. The images show higher intensity of GOAT staining in tumor glands vs .  

benign glands, and intense GOAT staining in nerves infiltrated by tumor cells;  B-E.  GOAT 

IHC analysis in 16 biopsies from patients with high risk PC a; B.  GOAT IHC staining in 

prostate biopsies with benign glands (BG; left -panel) or tumor glands (TG; right -panel) at 

100-200X magnification; C. Cytoplasmic and nuclear GOAT staining in a tumoral gland 

at 800X magnification; D.  Comparison of GOAT IHC score  [low (1), moderate (2) or high 

(3) GOAT staining] with Gleason-score; E.  Comparison of GOAT IHC score with presence 

of metastasis. In all cases, data represent mean ± SEM.  
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GOAT expression was significantly higher in PCa cell lines (LnCaP, 22Rv1 and 

DU145) compared with the normal-like prostate cell line RWPE-1, and with human 

normal primary prostate cell cultures (Figure 30A). Remarkably, PCa cell lines were 

capable to secrete GOAT protein into the media, being this secretion higher in 22Rv1 vs. 

PC-3 cells (Figure 30B; 1.641 vs. 1.163 ng/ml, respectively; p=0.005, n> 3), which is in 

agreement with the higher GOAT mRNA levels observed in 22Rv1 vs. PC-3 (Figure 

30A). To determine whether the expression of GOAT could be directly regulated by 

metabolic factors, normal human prostate cell cultures were treated with different 

metabolic factors [including its endogenous targets (acylated-ghrelin peptides: ghrelin 

and In1-ghrelin) and insulin and IGF1]. Particularly, In1-ghrelin peptide (In1-19), but not 

ghrelin, significantly increased GOAT expression in 22Rv1, but not in PC-3 cells (Figure 

30C), and in normal prostate primary cell cultures (Figure 30D). Conversely, treatment 

with key metabolic factors such as insulin and IGF1, or their combination, significantly 

reduced GOAT expression in PC-3 cells (p<0.001; Figure 30E). 
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Figure 30: Regulation of GOAT expression by metabolic factors in normal prostate and 

PCa cell cultures .  A.  GOAT expression in normal -like prostate cell line (RWPE-1) or 

prostate cancer cell lines (androgen-dependent: LnCaP, 22RV1 and VCaP , or androgen-

independent: PC-3 and DU145) from different passages (n≥3) .  Asterisks (*p < 0.05) 

indicate values that significantly differ between normal RWPE-1 cells and PCa cell lines, 

while dashed (##p < 0.01; ### p < 0.001) indicate differences in GOAT expression between 

normal prostate primary cell cultures and PCa cell lines; B.  Basal GOAT protein secretion 

measured by ELISA (after 24h-culture) in 22Rv1 and PC-3 cell lines (n=3). Asterisks 

**p<0.01) indicate values that significantly differ from 22Rv1 cells; C-D.  Regulation of 

GOAT expression after treatment (10nM) with  ghrelin or In1-ghrelin (In1-19) peptide in 

22Rv1 or PC-3 PCa cell lines (C) and in normal prostate cell cultures  (D) (24h, n≥3); E.  

Regulation of GOAT expression after treatment (10 nM) with IGF-1, insulin or both (IGF-

1+insulin; n≥3). In these expression experiments in response to treatments,  a sterisks (*p 

< 0.05; ***p<0.001) indicate values that significantly differ fr om controls.  Data represent 

mean ± SEM. Absolute mRNA levels of GOAT were determined by qPCR and adjusted by 

the expression levels of a housekeeping gene ( ACTB). 
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5.2.2.5. Plasma GOAT levels are elevated in patients with PCa in comparison 

with healthy control patients: association with pathophysiological parameters 

Since GOAT is overexpressed in PCa tissues, secreted from PCa cell lines and can 

be detected in blood [245],  we evaluated, for the first time, the presence of GOAT in 

plasma of PCa patients (n=85) and compared with the levels in healthy control patients 

(n=28) (Clinical/pathological features of this patient cohort are summarized in Table 8). 

Remarkably, plasmatic GOAT levels were significantly elevated in PCa patients 

compared with controls (Figure 31A). It should be noted that PCa-patients had similar 

body-weight and BMI but presented a slightly higher age than control-patients (6 years; 

Table 8). Nevertheless, we implemented general linear models, which demonstrated that 

this difference was not responsible for the differences observed in plasmatic GOAT 

levels. Furthermore, when plasma GOAT levels were corrected by age, higher GOAT 

levels were clearly evident in PCa vs. control-patients (p-value=0.002; Figure 31A). 

Moreover, ROC-analysis showed the diagnostic potential for GOAT at the plasma level 

(p<0.0001; AUC=0.752; Figure 31B), wherein a value of 1.22ng/ml of GOAT plasma 

levels could discriminate between PCa vs. control-patients with a specificity of 67,8 % 

and a sensitivity of 81,1%. 

Interestingly, plasmatic GOAT levels were associated with several 

pathophysiological factors. Specifically, GOAT levels were directly associated with total 

PSA levels and inversely correlated with free PSA (Figure 31C), and also associated 

positively with two cancer biomarkers (ca_15-3 and cyfra_21-1; Figure 31D). Moreover, 

a higher frequency of infiltrative tumors was found in patients with higher plasmatic 

GOAT levels (Figure 31E).  
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Figure 31: Analysis of the presence of GOAT in the plasma of patients with PCa and 

controls and association with pathophysiological parameters. A. GOAT plasmatic 

levels were determined by ELISA in a cohort of 85 PCa patients and 28 controls ; B. 

Receiver operating characteristic (ROC) curve analysis to determine the accuracy of GOAT 

plasmatic levels as diagnostic test to discriminate between patients with PCa and controls ; 

C. Correlation of plasma levels of GOAT and total PSA (tPSA) and free PSA (F PSA) levels 

in PCa patients;  D. Correlation of plasma levels of GOAT with ca_15 -3 and cyfra_21-1 

tumor markers in PCa patients;  E. Frequencies of infiltrative tumors observed in PCa 

patients with low vs. high GOAT plasmatic levels (according to median GOAT  levels; 

IN=infiltrating tumors; NI=No infiltrating tumors). Values represent mean ± SEM. 

Asterisk (*p < 0.05) indicate values that significantly differ between groups.  
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We next analyzed the putative relationship between plasmatic levels of GOAT 
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patients with diabetes, but not with dyslipidemia, was found in control-patients with high 

plasmatic GOAT levels compared to those with low GOAT levels (Figure 32G). In 

contrast, plasmatic GOAT levels were similar in diabetic vs. non-diabetic patients with 

PCa (Figure 32H). A trend for elevation in plasmatic GOAT levels was found in patients 

with PCa that had dyslipidemia compared to those without dyslipidemia (p=0.06; Figure-

32I). A positive correlation between plasmatic GOAT levels was also found with HbA1c, 

but not with glucose levels in PCa-patients (Figure 32J and 32K, respectively). Indeed, 

a higher proportion of patients with diabetes as well as with dyslipidemia were found in 

PCa-patients having high plasmatic GOAT levels vs. PCa-patients with low GOAT levels 

(Figure-32L).  
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Figure 32: Association of GOAT levels with clinical-metabolic parameters in control and PCa 

patients. A-B. Correlations of plasma GOAT levels with metabolic factors (BMI and body weight) of 

control patients (A) and patients with PCa (B). C-D. Correlations of plasma GOAT levels with diabetes or 

dyslipidemia in controls patients (C-NDM: Controls without diabetes mellitus; C-DM: Controls with 

diabetes mellitus; C-NDL: Controls without dyslipidemia; C-DL: Controls with dyslipidemia). E-F. 

Correlations of plasma GOAT levels with HbA1c (E) and glucose (F) levels in control patients. G. 

Frequencies of diabetes and dyslipidemia observed in control patients with low vs. high GOAT plasmatic 

levels (Low GOAT: patients with low plasmatic GOAT levels; High GOAT: patients with high plasmatic 

GOAT levels). H-I. Correlations of plasma GOAT levels with diabetes or dyslipidemia in PCa patients 

(PCa-NDM: PCa patients without diabetes mellitus; PCa-DM: PCa patients with diabetes mellitus; PCa-

NDL: PCa patients without dyslipidemia; PCa-DL: PCa patients with dyslipidemia). J-K. Correlations of 

plasma GOAT levels with HbA1c (J) and glucose (K) levels in PCa patients. L. Frequencies of diabetes 

and dyslipidemia observed in PCa patients with low vs. high GOAT plasmatic levels. Data represent mean 

± SEM. Asterisks (**p < 0.01, ***p<0.001) indicate values that significantly differ between groups. 
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5.2.2.7. Plasma GOAT levels as non-invasive diagnostic biomarker of PCa in 

non-diabetic individuals  

Based on the previous results, we next interrogated whether plasmatic GOAT 

levels could be a more specific PCa marker in non-diabetic patients. In fact, we found 

that plasmatic GOAT levels were higher in non-diabetic PCa-patients vs. control-patients 

(p<0.001; Figure 33A). Indeed, the area under curve was considerably improved when 

analyzing only non-diabetic PCa-patients [value of 0.854 (Figure 33B; only non-

diabetic) vs. 0.752 (Figure 31B; diabetic+non-diabetic)]. In addition, the 

specificity/sensitivity to discriminate the presence of PCa was significantly higher when 

only the non-diabetic individuals were considered [a cut-off value of 1.142 ng/ml 

presented a specificity and sensitivity of 84.2% and 86.7% (Figure 33A/B) vs. 67.8% and 

81.1% analyzing non-diabetic+diabetic patients (Figure 31A/B)]. Interestingly, 

plasmatic GOAT levels also positively correlated with total PSA, negatively with free 

PSA levels and positively with the cancer biomarker ca_15-3 (Figure-33C), and also 

exhibited a similar positive tendency with HbA1c (p=0.080; Figure-33C). 

Figure 33: GOAT plasmatic levels in non-diabetic PCa patients compared to non-

diabetic controls. A. GOAT plasmatic levels in non-diabetic PCa patients (n=60) 

compared to non-diabetic controls (n=19) were determined by ELISA. B.  Receiver 

operating characteristic (ROC) curve analysis to determine the accuracy of GOAT 

plasmatic levels as diagnostic test to discrimi nate between PCa and controls patients within 

the population without diabetes.  C.  Correlations between plasma GOAT levels and total 
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PSA, free PSA, ca-153 and HbA1c in non-diabetic patients with PCa. Data represent mean 

± SEM. Asterisks (***p<0.001) indicate values that significantly differ between groups.  

5.2.2.8. Urine GOAT levels are elevated in patients with PCa in comparison 

to healthy-control patients: potential as non-invasive biomarker of PCa. 

Urine GOAT levels were also significantly elevated in the same cohort of PCa-

patients vs. control-patients (Figure 34A; Table 8). Actually, ROC-curve analysis 

showed that urine GOAT levels could discriminate between PCa vs. control-patients 

(Figure 34B; p<0.001, AUC= 0.716; a cut-off value of 1.061 ng/ml presented a 

sensitivity of 75% and specificity of 61%). Remarkably, this sensitivity/specificity was 

lower than that found with plasmatic GOAT levels, and the underlying reasons (which 

may involve sampling procedures, urine processing, etc.) are still not defined, and, 

therefore, warrant further investigation. Interestingly, no correlations were found between 

GOAT urine levels and metabolic parameters (BMI, body weight, diabetes or 

dyslipidemia) in control (Figure 34C) or PCa patients (Figure 34D), suggesting that 

GOAT urine levels are not relevantly influenced by these parameters Furthermore, urine 

GOAT secretion was increased after a prostate-massage in an additional cohort of PCa-

patients (Table 9) compared to the same cohort of subjects before prostate-massage 

(Figure 34E). 
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Figure 34: Evaluation of GOAT levels as a non-invasive PCa diagnostic marker in 

urine. A.  GOAT urine levels in a population of  85 PCa patients compared to 28 normal 

controls determined by ELISA. B.  ROC curve analysis to determine the accurac y of GOAT 

urine levels to discriminate between PCa and control patients; C-D.  Correlations between 

urine GOAT levels and BMI and body weight in control patients (C) and PCa patients (D). 

E. Percentage of increase of urine GOAT secretion after prostate mass age in PCa patients.  

Data represent Mean ±SEM. Asterisks (*p < 0.05; ***p<0 .001) indicate values that 

significantly differ between groups.   
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5.2.3. Presence and functional role of In1-ghrelin variants in 

PCa 

5.2.3.1. In1-ghrelin, but not ghrelin, is overexpressed in PCa tissues and its 

levels are associated with GOAT-enzyme and PSA levels. 

Expression of the In1-ghrelin variant and ghrelin was analyzed in a cohort of 

patients with high-risk PCa (n=52) and compared to normal prostate (NP) control samples 

(n=12) (Figure 35). Demographic and clinical characteristics of these cohorts of patients 

are included in Table 6. Specifically, ghrelin and In-ghrelin mRNA was detected in 

83.3% and 66.6% of control patients and in 90% and 88.5% of PCa samples, respectively. 

Remarkably, In1-ghrelin, but not ghrelin mRNA was significantly overexpressed in PCa 

samples (Figure 35A). Indeed, ROC curve analysis demonstrated that In1-ghrelin, but 

not ghrelin expression could significantly discriminate between patients with or without 

PCa (Figure 35B). Moreover, In1-ghrelin, but not ghrelin expression was positively 

correlated with GOAT-enzyme expression (Figure 35C) and with PSA expression 

(Figure 35D). No further associations were found between In1-ghrelin or ghrelin and 

other pathological features, such as Gleason score or presence of perineural infiltration 

(data not shown). We also analyzed the expression levels of ghrelin receptor in this cohort 

of patients and found that GHSR1a was only detected in one tumor sample, while 

GHSR1b expression was detected in 6 control and 10 tumor samples, although its 

expression levels were very low (Figure 35E). 
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Figure 35: mRNA expression of ghrelin system in PCa.  A.  Ghrelin and In1-ghrelin 

expression in biopsies from patients with high -risk PCa (n=52) and normal prostates from 

patients that underwent cystoprostatectomy (n=12). Expression levels were determined by 

qPCR and adjusted by a normalization factor (NF) calculated from ACTB and GAPDH 

expression levels; B.  ROC curve analysis to determine the accuracy of ghrelin or In1 -

ghrelin expression as diagnostic test to discriminate between high -risk PCa patients and 

controls using the same cohort; C.  Correlations between ghrelin or In1 -ghrelin expression 

with GOAT enzyme expression PCa samples (n=52);  D.  Correlations between ghrelin or 

In1-ghrelin with PSA in PCa samples; E.  GHSR-1a and GHSR-1b mRNA levels in the same 

cohort of fresh samples. Values represent mean ± SEM. Asterisks (*p < 0.05) indicate 

values that significantly differ between groups . 
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5.2.3.2. In1-ghrelin, but not ghrelin expression is higher in castration-

resistant PCa cells compared with androgen-dependent PCa cells and normal 

prostate cells. 

Evaluation of mRNA expression of ghrelin-system in androgen-dependent and 

castration-resistant PCa cell-lines compared with the normal-like prostate cell line 

RWPE1 revealed that while native-ghrelin was expressed in normal RWPE1-cells and in 

LNCaP and VCaP PCa-cells (Figure 36A), its expression was almost undetectable in the 

other PCa cell-lines analyzed (Figure 36A). However, In1-ghrelin expression was 

commonly higher in all PCa cell-lines compared with the normal RWPE1-cells (Figure 

36B), which is consistent with the data obtained from fresh PCa samples (Figure 35A). 

Moreover, In1-ghrelin expression was higher in castration-resistant cells (DU145/PC-3) 

compared to androgen-dependent cells (LNCaP/22Rv1/VCaP), suggesting that In1-

ghrelin expression may vary through the different stages of PCa. Conversely, GHSR1a/b 

were barely expressed in PCa cell lines (Figure 36C-D), which is in contrast with 

previous studies showing the presence of GHSR1a in some of these PCa cell lines [223]. 

Therefore, in order to corroborate these data, we used different primers sets [designed 

from our group and validated in other samples, including a primer set used in the 

previously mentioned work [223], but again we did not find any evidence of detectable 

GHSR1a expression in PCa cell lines (Figure 36E). 
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Figure 36: Study of the Ghrelin system expression in normal prostate and PCa cell 

lines. Ghrelin (A), In1-ghrelin (B) and GHSR1a (C) and GHSR1b (D) expression levels in 

normal-like prostate cell line (RWPE-1) and PCa cell lines (androgen-dependent: LnCaP, 

22RV1 and VCaP or androgen-independent: PC-3 and DU145). Absolute mRNA levels 

from different passages (n≥3) were determined by qPCR and adjusted by ACTB. Data 

represents mean ± SEM. Asterisks (*p < 0.05; **p < 0.01) indicate values that significantly 

differ between a PCa cell line vs. the normal-like prostate cel l line RWPE-1. E.  Further 

analysis of GHSR1a expression on  different PCa cell lines (22Rv1, DU -145, LnCaP, PC-

3), normal-like prostate cell line (EPN) and PCa samples using several pairs of primers. 

As positive control, cDNA from a pituitary tumor with GHS R1a expression was used.  

 

5.2.3.3. Plasma levels of In1-ghrelin, but not ghrelin, are higher in patients 

with PCa compared with healthy-control patients 

We next studied the presence and regulation of circulating levels of native-ghrelin 

and In1-ghrelin in an independent patient’s cohort. Demographic and clinical parameters 

of the patients are detailed in Table 10. Specifically, we found for the first time that 
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acylated In1-ghrelin was detected in plasma and its levels, but not those of native-ghrelin, 

are significantly higher in PCa-patients (n=30) compared to controls (n=20) (Figure 

37A). Remarkably, ROC-curve analysis demonstrated that only acylated In1-ghrelin 

plasmatic levels could discriminate between patients with or without PCa (p=0.05; 

Figure-37B). 

Figure 37: Ghrelin and In1-ghrelin levels in plasma. A.  Circulating plasmatic levels of  

In1-ghrelin (by ELISA, n=30) and ghrelin (by RIA, n=20) in control -healthy patients 

compared with patients with PCa; B.  ROC curve analysis to determine the accuracy of 

plasmatic acylated In1-ghrelin or acylated ghrelin levels as diagnostic test to discriminate 

between PCa patients and controls . Data represent mean ± SEM. Asterisks (*p<0.05) 

indicate values that significantly differ from controls patients .  

 

5.2.3.4. Effects of In1-ghrelin and ghrelin treatment on normal prostate cell 

function. 

To test the capacity of In1-ghrelin derived peptides (In1-19 and In1-40) and ghrelin to 

induce functional responses in normal prostate cells, we first measured the changes in 

[Ca2+]i levels in single cells derived from primary normal prostate (NP) cell cultures (from 

men that underwent cystoprostatectomy for bladder cancer; Figure 38). Specifically, we 

found that ghrelin and In1-ghrelin could induce a stimulatory response in [Ca2+]i in NP 

cell cultures; however, the percentage of responsive cells was different upon treatment 

(i.e. whereas 36.5% of NP-cells responded to In1-19 treatment, only 8.6% and 7.1% 

responded to ghrelin or to In1-40, respectively) (Figure 38). Moreover, In1-ghrelin 

peptides evoked a higher stimulatory response compared with ghrelin (i.e. an increase of 

58% and 59% in response to In1-19 and In1-40 vs. an increase of 28% with ghrelin). 
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 Cells analyzed % cell respond % Max Error T resp Error 

Ghrelin 151 8.6 128.2 10.3 8.4 1.4 

In1-19 252 36.5 159.8 9.4 11.8 1 

In1-40 98 7.1 159.1 16.1 12.5 2 

 

Figure 38: Effects of ghrelin and In1-ghrelin derived peptides (In1-19 and In1-40) on 

the levels of [Ca2+] i  in normal prostate cell cultures Total number of cells measured, 

percentage of responsive cells (% of cells resp.), percentage of maximum response (±error) 

and time of maximal response (±error) are indicated. Representative profiles of changes in 

[Ca2 +] i in response to ghrelin, In1 -19 and In1-40 are also depicted.  All treatments were 

used at 10nM (n≥3).  

 

We next evaluated whether In1-ghrelin peptides or ghrelin could regulate other 

functional parameters such as PSA expression and secretion in primary NP cell cultures. 

Remarkably, In1-ghrelin treatment, but not native-ghrelin, increased PSA expression and 

secretion in NP-cell cultures at 4h and 24h, being In1-19 the most effective peptide (In1-

40 only increased PSA expression/secretion at 4h with a non-significant increase in 

secretion) (Figure 39A-B).  

 

Figure 39: PSA secretion (A) and expression (B) after 4h or 24h of treatment with 

ghrelin or In1-ghrelin derived peptides (10nM) . Data represent mean ± SEM. Asterisks 

(*p < 0.05; **p < 0.01)  indicate  values that significantly differ  between normal prostate 

cell cultures treated with vehicle -control and ghrelin or In1 -ghrelin derived peptides.  
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5.2.3.5. Effects of In1-ghrelin and ghrelin treatment or overexpression on cell 

viability/proliferation of normal primary prostate cell cultures and normal-

like prostate cell line (RWPE-1) 

Ghrelin or In1-ghrelin derived peptides treatment did not affect cell viability in 

primary NP-cell cultures or cell proliferation in normal RWPE1-cells (Figure 40). 

However, In1-ghrelin, but not native-ghrelin, overexpression increased the cell viability 

of primary NP-cell cultures after 48 of culture compared to mock (control)-transfected 

cell cultures (Figure 40).  

 

Figure 40: Cell viability of normal prostate cell cultures in response to ghrelin or In1-

ghrelin treatment or overexpression . Cell viability of normal prostate cell cultures 

transfected with empty (mock), ghrelin or In1 -ghrelin vectors and determined after 24 -48h 

(left-panel; n≥3). Cell viability of normal prostate cell cultures (middle–panel) and cell 

proliferation of normal-like prostate RWPE-1 cell line (right-panel) after treatment with 

vehicle-control,  ghrelin or In1 -ghrelin derived peptides (In1-19 and In1-40) for 4-24h 

(n≥3). Asterisk represents significant differences (*p < 0.05; ***p < 0.001) between 

control and ghrelin or In1 -ghrelin treatment or transfection. Values represent mean ± SEM.  

 

5.2.3.6. Effects of In1-ghrelin and ghrelin treatment on pathophysiological 

features (cell proliferation and migration) of PCa cells 

We next examined the effect of the treatment with ghrelin or In1-ghrelin peptides 

on cell proliferation of different PCa cell lines. Specifically, administration of native-

ghrelin only increased cell-proliferation of 22Rv1 (at 24h) and PC-3 (24-48h) cell-lines, 

whereas it did not exert any significant effect in the rest of PCa cell-lines studied (i.e. 

LNCaP, VCaP or DU145; Figure 41A-B). However, In1-ghrelin peptides were able to 

increase cell-proliferation in several PCa cell-lines, both androgen-dependent 
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(22Rv1/VCaP/LNCaP) and -castration resistant cells (PC-3/DU145) (Figure 41A-B). 

Indeed, the effect of In1-ghrelin peptides treatment was more consistent and pronounced 

in castration-resistant PCa cell-lines (PC-3/DU145), wherein both peptides significantly 

increased cell-proliferation at 24-48h (Figure 41A-B). However, in androgen-dependent 

PCa cell-lines, both peptides increased proliferation at 24h in 22Rv1-cells, while only 

In1-40 increased proliferation at 48h in LNCaP/VCaP-cells (Figure 41A-B). In addition, 

we found that In1-ghrelin peptides, but not native-ghrelin, were able to increase migration 

of PC-3 cells (Figure 41C).  

Figure 41: Effects of ghrelin and In1-ghrelin on PCa pathophysiological processes . 

Cell proliferation of androgen dependent (22Rv1, LnCaP and VCaP) ( A), and  androgen-

independent (PC-3 and DU-145) (B)  PCa cell lines cell lines after treatment with ghrelin 

or In1-ghrelin derived peptides  (In1-19 and In1-40) for 4-24h (10nM; n≥3). Treatment with 

IGF-1 and paclitaxel (PCX) were used as positive and negative controls, respectively. Data 

represent mean ± SEM. Asterisks (*p < 0.05; **p < 0.01, ***p < 0.001) indicate differences  
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of a specific treatment  with vehicle-treated controls within each time point.  C.  Migration 

capacity on PC-3 cells in response to ghrelin and In1-ghrelin peptides treatment determined 

by wound healing assay (12h; n≥3). Representative images showing the higher migration 

capacity of PC-3 cells after treatment with In1-ghrelin peptides are shown. Data represent 

mean ± SEM. Asterisks (*p < 0.05; **p < 0.01) indicate differences with vehicle -treated 

controls.  

 

Finally, we demonstrated that In1-ghrelin peptides induced the phosphorylation 

on ERK1/2 in PC-3 and LNCaP cell-lines (Figure 42), with almost no detectable effect 

on AKT-phosphorylation 

 

 

 

 

 

 

 

Figure 42: Phospho-ERK and phospho-AKT time-course activation after treatment 

with In1-ghrelin peptides (5-30 min) in LnCaP and PC-3 cell lines . Protein levels of 

phospho-ERK and phospho-AKT were adjusted by total ERK and AKT, respectively. Data 

represent mean ± SEM. Asterisks (**p < 0.01) indicate differences between In1 -19 and 

vehicle-treated controls, and dashes  (#< 0.05; ##p < 0.01) indicate differences between 

In1-40 and vehicle control treatment . Representative blots in LnCaP cell line are shown. 

 

5.2.3.7. In1-ghrelin, but not ghrelin overexpression enhanced malignant 

features (cell proliferation and migration) of PCa cells 

In order to examine the putative association between In1-ghrelin overexpression 

and malignant features in PCa cells, we selected one androgen-dependent (VCaP) and 

one independent (PC-3) cell line. First, we confirmed by qPCR the ghrelin or In1-ghrelin 

stable transfection in these cells (Figure 43A). Interestingly, we found that In1-ghrelin, 

but not ghrelin overexpression increased cell proliferation in VCaP and PC-3 cell lines at 

48h (Figure 43B). Moreover, In1-ghrelin, but not ghrelin overexpression increased the 

migration of PC-3 cells after 12h by wound-healing assay (Figure 43C). Strikingly, the 
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overexpression of both ghrelin and In1-ghrelin variants increased the basal 

phosphorylation state of ERK, with no changes in Akt phosphorylation (Figure 43D). 

 

Figure 43: Effect of ghrelin and In1-ghrelin overexpression on PCa-cells 

pathophysiological processes.  A.  Validation of ghrelin and In1 -ghrelin overexpression in 

PC-3-cells by qPCR technique; B.  Cell proliferation of empty (mock), ghrelin and In1 -

ghrelin vectors stably transfected PC-3 and VCaP cell lines for 24-48h (n≥3); C.  Cell 

migration of mock, ghrelin and In1 -ghrelin stably-transfected PC-3 cell line after 12h by 

wound-healing assay (n≥3). Representative images showi ng the migration capacity of PC-

3 cells transfected with mock, ghreli n and In1-ghelin are also indicated. D.  phospho-ERK 

and phospho-AKT basal activation in PC-3 stably transfected cells (n≥3). Blots are 

representative of one cell passage with three technical replicates Data represent mean ± 

SEM (n≥3). Asterisks (*p<0.05 ; ***p<0.001) indicate values that significantly differ from 

the mock control  cells.  

 

5.2.3.8. In1-ghrelin overexpression enhanced the growth rate of PC-3-induced 

xenografted tumors 
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To further interrogate the pathophysiological effect of In1-ghrelin overexpression 

in PCa, an in vivo preclinical model was generated by subcutaneously inoculating ghrelin 

and In1-ghrelin stably-transfected or mock-control-transfected PC-3 cells in the flanks of 

immunodeficient mice and monitored the tumor growth for 12 weeks (Figure 44). 

Consistent with in vitro data, subcutaneous tumors induced by In1-ghrelin overexpression 

were larger than those induced with mock or ghrelin-transfected cells (p=0.0001 in both 

cases; Figure 44A). Moreover, histological-analysis revealed that tumors with stably-

transfected ghrelin and In1-ghrelin cells showed a higher necrosis-grade (Figure 44B), 

without changes in percentage of mitotic cells (Figure 44C), compared to mock-induced 

tumors. Interestingly, tumors with stably-transfected ghrelin cells presented higher grade 

of inflammation than mock or In1-ghrelin derived tumors (Figure 44D). 

Figure 44: In1-ghrelin, but not ghrelin overexpression enhances tumor growth in NUDE mice. A. 

Growth rate of subcutaneously inoculated mock, ghrelin and In1-ghrelin-transfected PC-3-derived tumors 
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in nude mice (n=5) followed up to 12 weeks after inoculation. Statistical significance was evaluated by 

two-way ANOVA (***p<0.001 indicate differences between In1-ghrelin and mock, while #p<0.001 

indicates differences between In1-ghrelin and ghrelin stably transfected cells). B. Percentage of necrosis in 

xenografted PC-3-derived tumors. Representative images of hematoxylin–eosin (H/E) staining are shown 

below. C. Number of mitosis/10 fields in xenografted PC-3-derived tumors. D. Grade of inflammation in 

xenografted PC-3-derived tumors measured as score 1-3. Data represent mean ± SEM (n≥3). Asterisks 

(**p<0.01; *p<0.05) indicate values that significantly differ from the mock control cells. 

 

5.2.3.9. In1-ghrelin overexpression evoked a profound dysregulation of key 

genes involved in PCa development and progression. 

In order to discover the molecular changes induced by In1-ghrelin overexpression 

in PCa, we performed a qPCR array comprising 84 key genes involved in PCa 

development and progression (For details of this array see Table 11 at the end of the 

Results section). Specifically, we found 18 genes whose expression was altered more than 

1.5-fold in In1-ghrelin stably-transfected PC-3-cells (13 upregulated genes: CAV1, 

CAV2, CDKN2A, DDX11, DLC1, FASN, GCA, IGFBP5, LOXL1, RASSF, SOX4, 

TFPI2 and USP5; and 5 downregulated genes: APC, GNRH1, RARB, SFRP1 and SHBG; 

Figure-45A), as well as 17 genes whose expression was altered in native-ghrelin stably-

transfected PC-3-cells (7 upregulated: CASP3, CAV1, CAV2, CCND2, GCA, IL6 and 

VEGFA; and, 10 downregulated: CCNA1, CCND1, CDKN2A, DLC1, LOXL1, NRIP1, 

SFRP1, SOX4, TIMP2 and ZNF185; Figure 45A).  

Next, we used qPCR analysis using cDNA from different passages of native-

ghrelin and In1-ghrelin stably-transfected PC-3-cells and different sets of primers (for 

details of the specific primers see Table 12 at the end of the Results section) to validate 

the results of the array. Thus, we observed that CAV1, CAV2, CDKN2A, IGFBP5 and 

LOXL1 were upregulated while APC, NRIP1 and SFRP1 were downregulated in In1-

ghrelin stably-transfected PC-3-cells (Figure 45B). Similarly, we confirmed that IL6 was 

upregulated while CDKN2A, IGFBP5, LOXL1, NRIP1, SFRP1, SOX4 and ZNF185 

were downregulated in native-ghrelin stably-transfected PC-3 (Figure 45B). 

Additionally, we confirmed some of these changes at the protein level [i.e. up-regulation 

of IGFBP5 and LOXL1 and downregulation of NRIP1 and SFRP1 in In1-ghrelin, and 

upregulation of IL6 and downregulation of CDKN2A, IGFBP5, LOXL1, NRIP1, SFRP1 

and ZNF185 in native-ghrelin stably-transfected PC-3-cells (Figure 45C)]. Remarkably, 

some of the changes observed in the qPCR-array, real-time qPCR, and/or western-blot 

analyses, such as those observed for CAV1, LOXL1, IL-6 and SFRP1 were also further 
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validated in the xenografted-tumors (Figure-45D). Interestingly, as mentioned before, we 

also found a higher inflammatory cell-infiltration in the native-ghrelin, but not In1-

ghrelin, stably-transfected PC-3-tumors (Figure 44D) which, together with the increase 

in IL-6 expression (Figure 45B-D), suggest a role of native-ghrelin in tumor 

inflammation. 

 

Interestingly, some of these changes in mRNA and protein expression were 

similar in the In1-ghrelin and native-ghrelin stably-transfected PC-3-cells (e.g. SFRP1 

and NRIP1 downregulation; Figure 45B-D); but, most noteworthy, some of the observed 

changes were regulated oppositely in both PCa cell-models (i.e. downregulation in native-

ghrelin and up-regulation in In1-ghrelin stably-transfected PC-3-cells of LOXL1 and 

IGFBP5; Figure 45B-D). Therefore, these findings are reminiscent of the similar vs. 

disparate effects observed previously with native-ghrelin and In1-ghrelin in PCa-cells, 

respectively. 
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Figure 45: Gene and protein expression effects of ghrelin and I n1-ghrelin 

overexpression in PC-3-cells and derived xenografted tumors. A.  Results from the RT 2  

Prostate-Cancer PCR-Array, which evaluates the expression of 84 genes involved in PCa 

development and progression performed in ghrelin and In1 -ghrelin-stably transfected PC-

3-cells compared with control -mock PC-3-cells. The tables indicate those genes whose 

expression change ≥ 1.5 folds; B.  Validation by qPCR of genes dysregulated in the RT 2 

Prostate-Cancer PCR Array using different cell preparations (n≥3) and new sets of primers. 

C.  Validation by Western blot of the changes obs erved in the previous analysis.  D. CAV1, 

LOXL1, SFRP1 and IL-6 mRNA expression levels in mock, ghrelin and In1-ghrelin transfected PC-3-
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derived xenografted tumors. Results were normalized with ACTB. All preparations were repeated at least 

three times (n≥3). Values represent mean (±SEM).  Asterisks (*p<0.05; **p<0.01; 

***p<0.001) indicate values that significantly differ from the mock control.  

It is also worth noting that In1-ghrelin stably-transfected PC-3-cells showed an 

overall increase in the expression of proangiogenic-factors (i.e. ANG1/ANG2/HIF1) as 

compared to mock- and native-ghrelin stably-transfected PC-3 cells (Figure 46A); being 

these differences only statistically significant for ANG1). Similar results were observed 

on the In1-ghrelin stably-transfected PC-3 derived xenografted-tumors (Figure 46B). 

Figure 46: A. Expression of angiogenic factors in In1-ghrelin-stably transfected PC-3-cells and ghrelin-

stably transfected PC-3 cells compared with control-mock PC-3-cells; B. Expression of angiogenic factors 

in xenografted tumors of stably transfected-PC-3 cells. Results were normalized with ACTB. All 

preparations were repeated at least three times (n≥3). Values represent mean (±SEM). Asterisks (*p<0.05; 

**p<0.01) indicate values that significantly differ from the mock control. 
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3 and LnCaP cell lines at 24h and/or 48h [Figure-47B; siRNA-2 tended to decrease cell 

proliferation at 48h (p=0.06) but this difference did not reach statistical significance]. 

Moreover, In1-ghrelin silencing significantly decreased PSA secretion in LnCaP cell line 

using both siRNAs (Figure-47C).  

Figure 47: Effect of In1-ghrelin silencing on cell proliferation and PSA secretion. A. Validation by 

qPCR of In1-ghrelin silencing in PC-3 and LnCaP cells; expression levels were adjusted by a normalization 

factor (NF) calculated from ACTH and GAPDH expression levels. B. Proliferation rates of In1-ghrelin-

silenced PC-3 and LnCaP cells compared with control scramble-transfected cells; C. PSA secretion of In1-

ghrelin-silenced LNCaP cells compared with control scramble-transfected cells. All experiments were 

repeated at least three times (n≥3). Data represent mean ± SEM. Asterisks (*p<0.05; **p<0.01; 

***p<0.001) indicate values that significantly differ from the scramble-control.  
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RESULTS: APPENDIX 

Table 11. Prostate cancer finder RT2 Profiler PCR array data. In blue: gene 

expression increased ≥1,5; in red: gene expression decreased ≥1.5; in orange: gene 

expression increased 2 or more folds; in green: gene expression decreased 2 or more folds.  

    2^(-Avg.(Delta(Ct)) Fold change 

Gene symbol Official full name Mock 
In1-

ghrelin 
Ghrelin sst5TMD4 

In1-

ghrelin 
Ghrelin sst5TMD4 

ACACA 
Acetyl-CoA 

carboxylase alpha 
0.0220 0.0179 0.0196 0.0228 -1.23 -1.13 1.04 

AKT1 

V-akt murine 

thymoma viral 

oncogene homolog 1 

0.0260 0.0324 0.0250 0.0323 1.24 -1.04 1.24 

APC 
Adenomatous 

polyposis coli 
0.0011 0.0005 0.0009 0.0005 -2.02 -1.22 -2.19 

AR Androgen receptor 0.0000 0.0002 0.0001 0.0001 # # # 

ARNTL 

Aryl hydrocarbon 

receptor nuclear 

translocator-like 

0.0040 0.0028 0.0054 0.0045 -1.45 1.34 1.13 

BCL2 
B-cell 

CLL/lymphoma 2 
0.0012 0.0014 0.0012 0.0015 1.13 1 1.25 

CAMKK1 

Calcium/calmodulin-

dependent protein 

kinase kinase 1, 

alpha 

0.0009 0.0006 0.0007 0.0012 -1.48 -1.17 1.34 

CAMSAP1 

Calmodulin 

regulated spectrin-

associated protein 1 

0.0153 0.0148 0.0140 0.0144 -1.03 -1.09 -1.06 

CASP3 

Caspase 3, 

apoptosis-related 

cysteine peptidase 

0.0191 0.0177 0.0318 0.0329 -1.08 1.67 1.73 

CAV1 
Caveolin 1, caveolae 

protein, 22kDa 
0.0397 0.0728 0.0659 0.0706 1.83 1.66 1.78 

CAV2 Caveolin 2 0.0058 0.0099 0.0096 0.0121 1.7 1.65 2.07 

CCNA1 Cyclin A1 0.0001 0.0002 0.0001 0.0001 1.72 -2.77 1 

CCND1 Cyclin D1 0.0273 0.0252 0.0165 0.0204 -1.08 -1.66 -1.34 

CCND2 Cyclin D2 0.0004 0.0003 0.0013 0.0006 -1.33 3.25 1.61 

CDH1 

Cadherin 1, type 1, 

E-cadherin 

(epithelial) 

0.0000 0.0002 0.0001 0.0001 # # # 

CDKN2A 
Cyclin-dependent 

kinase inhibitor 2A  
0.0024 0.0186 0.0002 0.0008 7.75 -10.2 -2.91 

CLN3 

Ceroid-

lipofuscinosis, 

neuronal 3 

0.0083 0.0089 0.0073 0.0077 1.07 -1.13 -1.07 

CREB1 

CAMP responsive 

element binding 

protein 1 

0.0096 0.0127 0.0134 0.0127 1.32 1.39 1.33 

DAXX 
Death-domain 

associated protein 
0.0131 0.0186 0.0148 0.0185 1.42 1.13 1.41 

DDX11 

DEAD/H (Asp-Glu-

Ala-Asp/His) box 

polypeptide 11 

0.0012 0.0022 0.0014 0.0019 1.76 1.12 1.54 
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DKK3 Dickkopf homolog 3  0.0000 0.0002 0.0001 0.0001 # # # 

DLC1 
Deleted in liver 

cancer 1 
0.0001 0.0002 0.0001 0.0001 # # # 

ECT2 

Epithelial cell 

transforming 

sequence 2 oncogene 

0.0269 0.0404 0.0346 0.0406 1.5 1.28 1.51 

EDNRB 
Endothelin receptor 

type B 
0.0000 0.0002 0.0001 0.0001 # # # 

EGFR 
Epidermal growth 

factor receptor 
0.0236 0.0198 0.0239 0.0253 -1.19 1.01 1.07 

EGR3 
Early growth 

response 3 
0.0052 0.0049 0.0066 0.0040 -1.05 1.27 -1.29 

ERG 

V-ets 

erythroblastosis 

virus E26 oncogene 

homolog (avian) 

0.0000 0.0002 0.0001 0.0001 # # # 

ETV1 Ets variant 1 0.0131 0.0093 0.0103 0.0106 -1.41 -1.27 -1.23 

FASN Fatty acid synthase 0.0293 0.0529 0.0228 0.0426 1.81 -1.28 1.45 

FOXO1 Forkhead box O1 0.0004 0.0003 0.0003 0.0002 -1.5 -1.48 -1.75 

GCA Grancalcin 0.0010 0.0026 0.0023 0.0025 2.65 2.28 2.57 

GNRH1 
Gonadotropin-

releasing hormone 1  
0.0013 0.0007 0.0013 0.0007 -1.85 1.04 -1.79 

GPX3 
Glutathione 

peroxidase 3  
0.0000 0.0002 0.0001 0.0001 # # # 

GSTP1 
Glutathione S-

transferase pi 1 
0.7505 0.7320 0.8100 0.6625 -1.03 1.08 -1.13 

HAL 
Histidine ammonia-

lyase 
0.0000 0.0002 0.0001 0.0001 # # # 

HMGCR 

3-hydroxy-3-

methylglutaryl-CoA 

reductase 

0.0309 0.0278 0.0231 0.0266 -1.11 -1.34 -1.17 

IGF1 
Insulin-like growth 

factor 1  
0.0000 0.0002 0.0001 0.0001 # # # 

IGFBP5 

Insulin-like growth 

factor binding 

protein 5 

0.0001 0.0003 0.0001 0.0001 5.01 -1.1 -2.14 

IL6 Interleukin 6  0.0005 0.0004 0.0008 0.0003 -1.19 1.84 -1.39 

KLHL13 Kelch-like 13 0.0008 0.0007 0.0004 0.0004 -1.11 -1.84 -1.88 

KLK3 
Kallikrein-related 

peptidase 3 
0.0000 0.0002 0.0001 0.0001 # # # 

LGALS4 
Lectin, galactoside-

binding, soluble, 4 
0.0001 0.0002 0.0002 0.0001 2.12 1.39 -1.19 

LOXL1 Lysyl oxidase-like 1 0.0003 0.0022 0.0001 0.0001 7.28 -5.9 -2.93 

MAPK1 
Mitogen-activated 

protein kinase 1 
0.0392 0.0396 0.0392 0.0486 1.01 -1 1.24 

MAX 
MYC associated 

factor X 
0.0196 0.0195 0.0183 0.0188 -1 -1.07 1.04 

MGMT 

O-6-methylguanine-

DNA 

methyltransferase 

0.0146 0.0161 0.0147 0.0168 1.1 1.01 1.15 
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MKI67 

Antigen identified by 

monoclonal antibody 

Ki-67 

0.0619 0.0629 0.0546 0.0510 1.02 -1.13 -1.21 

MSX1 Msh homeobox 1 0.0019 0.0025 0.0027 0.0024 1.31 1.4 1.25 

MTO1 

Mitochondrial 

translation 

optimization 1 

homolog  

0.0121 0.0110 0.0154 0.0135 -1.1 1.27 1.12 

NDRG3 
NDRG family 

member 3 
0.0155 0.0138 0.0124 0.0137 -1.12 -1.25 -1.13 

NFKB1 

Nuclear factor of 

kappa light 

polypeptide gene 

enhancer in B-cells 

1 

0.0077 0.0071 0.0078 0.0080 -1.08 1.01 1.04 

NKX3-1 NK3 homeobox 1 0.0018 0.0017 0.0024 0.0018 -1.05 1.29 -1.02 

NRIP1 
Nuclear receptor 

interacting protein 1 
0.0039 0.0031 0.0009 0.0005 -1.26 -4.26 -7.21 

PDLIM4 
PDZ and LIM 

domain 4 
0.0062 0.0092 0.0073 0.0102 1.5 1.18 1.66 

PDPK1 

3-phosphoinositide 

dependent protein 

kinase-1 

0.0154 0.0160 0.0159 0.0118 1.04 1.04 -1.3 

PES1 
Pescadillo homolog 

1 
0.0164 0.0187 0.0165 0.0197 1.14 1.01 1.21 

PPP2R1B 

Protein phosphatase 

2, regulatory subunit 

A, beta 

0.0145 0.0153 0.0143 0.0157 1.05 -1.01 1.08 

PRKAB1 

Protein kinase, 

AMP-activated, beta 

1 non-catalytic 

subunit 

0.0051 0.0048 0.0052 0.0066 -1.07 1.01 1.28 

PTEN 
Phosphatase and 

tensin homolog 
0.0196 0.0115 0.0200 0.0160 -1.7 1.02 -1.22 

PTGS1 

Prostaglandin-

endoperoxide 

synthase 1  

0.0000 0.0002 0.0001 0.0001 # # # 

PTGS2 

Prostaglandin-

endoperoxide 

synthase 2  

0.0000 0.0002 0.0001 0.0001 # # # 

RARB 
Retinoic acid 

receptor, beta 
0.0005 0.0003 0.0004 0.0002 -1.6 -1.35 -2.79 

RASSF1 

Ras association 

(RalGDS/AF-6) 

domain family 

member 1 

0.0006 0.0011 0.0008 0.0013 1.98 1.43 2.2 

RBM39 
RNA binding motif 

protein 39 
0.0610 0.0497 0.0574 0.0645 -1.23 -1.06 1.06 

SCAF11 
SR-related CTD-

associated factor 11 
0.0227 0.0182 0.0184 0.0175 -1.24 -1.23 -1.29 

SEP7 Septin 7 0.1027 0.0842 0.0900 0.1013 -1.22 -1.14 -1.01 

SFRP1 
Secreted frizzled-

related protein 1 
0.0013 0.0002 0.0001 0.0001 -5.16 -24.42 -9.78 

SHBG 
Sex hormone-

binding globulin 
0.0004 0.0002 0.0003 0.0003 -1.64 -1.18 -1.53 
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SLC5A8 

Solute carrier family 

5 (iodide 

transporter), 

member 8 

0.0000 0.0002 0.0001 0.0001 # # # 

SOCS3 
Suppressor of 

cytokine signaling 3 
0.0006 0.0005 0.0006 0.0010 -1.11 1.08 1.79 

SOX4 

SRY (sex 

determining region 

Y)-box 4 

0.0002 0.0006 0.0001 0.0001 2.5 -4.47 -1.84 

SREBF1 

Sterol regulatory 

element binding 

transcription factor 

1 

0.0056 0.0080 0.0040 0.0078 1.43 -1.41 1.4 

STK11 
Serine/threonine 

kinase 11 
0.0026 0.0019 0.0032 0.0039 -1.4 1.2 1.47 

SUPT7L 
Suppressor of Ty 7 

(S. cerevisiae)-like 
0.0258 0.0194 0.0258 0.0201 -1.33 1 1.28 

TFPI2 
Tissue factor 

pathway inhibitor 2 
0.0029 0.0083 0.0021 0.0021 2.88 -1.39 -1.37 

TGFB1I1 

Transforming 

growth factor beta 1 

induced transcript 1 

0.0012 0.0012 0.0012 0.0020 -1.05 1 1.67 

TIMP2 

TIMP 

metallopeptidase 

inhibitor 2 

0.1255 0.0947 0.0794 0.0789 -1.33 -1.58 -1.59 

TIMP3 

TIMP 

metallopeptidase 

inhibitor 3 

0.0001 0.0002 0.0001 0.0001 # # # 

TMPRSS2 
Transmembrane 

protease, serine 2 
0.0000 0.0002 0.0001 0.0001 # # # 

TNFRSF10D 

Tumor necrosis 

factor receptor 

superfamily, member 

10d, decoy with 

truncated death 

domain 

0.0075 0.0067 0.0071 0.0088 -1.12 -1.06 1.18 

TP53 Tumor protein p53 0.0894 0.0890 0.0999 0.1212 -1 1.12 1.36 

USP5 

Ubiquitin specific 

peptidase 5 

(isopeptidase T) 

0.0099 0.0158 0.0099 0.0139 1.61 1.01 1.4 

VEGFA 
Vascular endothelial 

growth factor A 
0.0273 0.0259 0.0438 0.0366 -1.05 1.6 1.34 

ZNF185 
Zinc finger protein 

185 (LIM domain) 
0.0009 0.0013 0.0001 0.0005 1.41 -6.23 -1.78 
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Table 12. Primers Sequences, product sizes obtained and GeneBank accession numbers 

of the primers designed and validated in our laboratory. 

Template 
GenBank 

Accession 
Sense Antisense  

Product 

length 

(bp) 

ACTB NM_001101 ACTCTTCCAGCCTTCCTTCCT CAGTGATCTCCTTCTGCATCCT 176 

ANG1 NM_001146.3 GACAGATGTTGAGACCCAGGTA TCTCTAGCTTGTAGGTGGATAATGAA 89 

ANG2 NM_001147.2 GGATGGAGACAACGACAAATG GGACCACATGCATCAAACC 78 

APC NM_000038 GAACCAAGGTGGAAATGGTG AAAGCTGGATGAGGAGAGGAA 153 

AR NM_000044.3 GCAGGAAGCAGTATCCGAAG GTTGTCAGAAATGGTCGAAGTG 112 

CAV1 NM_001753 CGACCCTAAACACCTCAACG CAGCAAGCGGTAAAACCAGT 148 

CAV2 NM_001233 ACGACTCCTACAGCCACCAC  CAGCTTGAGATGCGAGTTGA 107 

CDKN2A NM_000077 ACCAGAGGCAGTAACCATGC ACCTTCGGTGACTGATGATCTAA 121 

DAXX NM_001350 AAGCCTCCTTGGATTCTGGT  CTGCTGCTGCTTCTTCCTCT 237 

GAPDH NM_002046.5 AATCCCATCACCATCTTCCA AATCCCATCACCATCTTCCA 122 

GCA NM_012198 ACAGCCAGTGCCAGAAACA  TCCACTTCACCATCCTGTCC  138 

GHRL NM_016362.3 CACCAGAGAGTCCAGCAGAGA CCGGACTTCCAGTTCATC 215 

GHSR-1a NM_198407.2 TGAAAATGCTGGCTGTAGTGG AGGACAAAGGACACGAGGTTG 168 

GHSR-1b NM_004122.2 GGACCAGAACCACAAGCAAA AGAGAGAAGGGAGAAGGCACA 107 

HIF1A NM_001530.3 TTAGATTTTGGCAGCAACGAC GGGTGAGGGGAGCATTACA 87 

IGFBP5 NM_000599 TGTGACCGCAAAGGATTCTAC AAAGTCCCCGTCAACGTACTC 129 

IN1-GHRL GU942497.1 TCTGGGCTTCAGTCTTCTCC GCTTGGCTGGTGGCTTCTT 132 

IL6 NM_000600 GGCAGAAAACAACCTGAACCT CTCAAACTCCAAAAGACCAGTGA 115 

KLK3 NM_001030047 GTGCTTGTGGCCTCTCGT CAGCAAGATCACGCTTTTGT 108 

LOXL1 NM_005576 CATTACCACAGCATGGACGA GCCCTGGGTATGAGAGGTG 159 

MBOAT4 NM_001100916.1 TTGCTCTTTTTCCCTGCTCTC ACTGCCACGTTTAGGCATTCT 161 

NRIP1 NM_003489 TCACAGGTCACAGCCAAAGA GGGCGAGAAGCATTATTTCC 110 

PCA3 NR_015342.2 CAGAGGGGAGATTTGTGTGG TGTCATCTTGCTGTTTCTAGTGATG 172 

RARB NM_000965 TGCCTGGACATCCTGATTCT GCATTGTGCATCTGAGTTCG 107 

SFRP1 NM_003012 CATGCAGTTCTTCGGCTTCT GTTGTCACAGGGAGGACACAC 145 

SST1 NM_001049 CACATTTCTCATGGGCTTCCT ACAAACACCATCACCACCATC 165 

SST2 NM_001050 GGCATGTTTGACTTTGTGGTG GTCTCATTCAGCCGGGATTT 185 

SST5 NM_001053.3 CTGGTGTTTGCGGGATGTT GAAGCTCTGGCGGAAGTTGT 183 

sst5TMD4 DQ448304 TACCTGCAACCGTCTGCC AGCCTGGGCCTTTCTCCT 98 

TGF-β NM_000660.5 CACGTGGAGCTGTACCAGAAA CAACTCCGGTGACATCAAAAG 112 

VEGFA NM_001171623.1 TTAAACGAACGTACTTGCAGATG GAGAGATCTGGTTCCCGAAA 93 

ZNF185 NM_007150 CTGGCTACAAGATGACCACTGA CCTCTGACCTCCGTTTCTGTT 144 
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6. DISCUSSION 

 

6.1. The truncated somatostatin receptor, sst5TMD4, is 

overexpressed in prostate cancer, where it increases malignant 

features by altering key signaling pathways and tumor 

suppressors/oncogenes 

Substantial progress in PCa medical treatment has been possible in recent years, 

owing to the emergence of novel therapies [246]. However, the available strategies are 

still clearly limited, emphasizing the critical need to identify new molecular biomarkers 

for PCa, to better diagnose, predict their prognosis and tumor behavior, and to provide 

tools to develop novel therapeutic strategies. SST/ssts are involved in body homeostasis 

regulation through inhibition of multiple cellular process, such as hormone secretion and 

cell proliferation, migration, and invasion [169]. In PCa, ssts are expressed and are 

capable of mediating such functions [189]; however, some initial, but limited, studies 

using SSAs reported no benefits in overall survival in PCa patients [205, 247], and the 

mechanistic reasons of this clinical failure are still unknown. Given that aberrant 

alternative splicing is one emerging cancer hallmark [132, 248], and that our group has 

demonstrated the presence and relevant pathological function of the spliced sst5TMD4 

variant in other cancer types [183, 185, 187, 188, 249], we hypothesized that sst5TMD4 

could be present and play a role in the development and progression of PCa or in the 

response to SSAs in PCa.  

 

Our results demonstrated, for the first time, that sst5TMD4, but not sst2 or sst5 

(the two main pharmacological targets of SSA), is overexpressed (mRNA- and protein-

level) in PCa samples compared with non-tumoral adjacent regions (N-TAR) or normal 

prostates (NPs) tissues, and, importantly, that sst5TMD4 is strikingly elevated in 

patients with higher Gleason-Score, and in those with metastasis. Indeed, ROC curve 

analysis revealed that only sst5TMD4 expression (but not sst2 or sst5) could discriminate 

between patients that developed metastasis compared to those that did not develop them. 

These results suggest that sst5TMD4 might represent a new biomarker of metastatic 
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risk and exert a functional role in PCa pathology. These observations compare 

favorably with previous reports indicating that sst5TMD4 expression is consistently 

increased in several endocrine-related tumors compared with control-tissues, including 

neuroendocrine tumors (NETs) [188], breast [185] and pituitary [183] tumors. Indeed, 

sst5TMD4 association with poor prognosis markers and/or aggressiveness is a common 

observation in other tumors since sst5TMD4-expression was strongly correlated with 

lymph-node metastasis in breast cancers [185], and was also higher in invasive pituitary 

adenomas [183] and in lymph-node metastases of NETs compared with their 

corresponding primary tumors [188]. Accordingly, our present results further 

demonstrate that sst5TMD4 is the sst variant predominantly expressed in PCa-tissues 

(compared with sst2 and sst5), both in terms of number of PCa samples and expression 

levels (i.e. 2.2-fold higher). Thus, it is not unreasonable to suggest that sst5TMD4 

overexpression might be a common cellular/molecular signature across various 

endocrine-related tumors.  

 

Genomic approaches implemented herein demonstrated the existence of two 

SST5 gene SNPs strongly associated to PCa-risk and sst5TMD4 expression. 

Specifically, rs197055 AA and rs12599155 TT SNPs were only observed in PCa-samples 

(but not in NP-samples), wherein they correlated with higher sst5TMD4/sst5 ratio, 

suggesting a putative relationship of these SNPs with PCa pathogenesis. Additionally, we 

demonstrate, for the first time, that sst5TMD4-stably-transfected PC-3 cells and 

transiently-transfected LnCaP cells were not responsive to SSA-treatment 

(octreotide/pasireotide), while PC-3 and LnCaP cells without sst5TMD4 showed a clear 

change of [Ca2+]i in response to these SSAs. This finding, together with the positive 

association found between expression levels of sst2/sst5/sst5TMD4 in PCa-tissues, might 

suggest a potential functional association between sst2/sst5/sst5TMD4 in PCa, and that 

the high sst5TMD4-expression in PCa-cells could help, in part, to explain the 

inefficiency of SSA-therapy in the scarce and limited PCa clinical trials implemented 

hitherto. Indeed, the downregulation of tumor suppressor pathways (CDKN2A, 

SFRP1/NRIP1/APC) elicited by sst5TMD4 overexpression (as will be discussed below) 

is coherent with the inhibitory role of sst5TMD4 on the negative signals normally initiated 

by SSAs through somatostatin receptors [250, 251]. Obviously, further work will be 

required to evaluate if the presence of sst5TMD4 might interfere with the effect of SSA 
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and/or other drugs currently used for the treatment of PCa (i.e. abiraterone or 

enzalutamide). 

 

Based on these previous results, we further explored the functional role of 

sst5TMD4 in PCa-cell models. sst5TMD4 overexpression evoked increased 

proliferation and migration in PCa-cells, whereas, in contrast, sst5TMD4 silencing 

decreased proliferation and migration in PC3-cells. This demonstrates that this splice 

variant is functionally active in PCa-cells and that its presence is directly associated with 

aggressiveness features. In support of this notion, sst5TMD4 overexpression promoted 

tumor growth in an in vivo preclinical-model, wherein it increased tumor necrosis, 

likely due to higher tumor-volume. These results support and extend previous data 

showing that sst5TMD4 also influences aggressiveness features in other cancer cell 

models [i.e. breast (MCF7-cells); pancreas (BON1-cells) [185, 188]], suggesting that 

sst5TMD4 overexpression might be a common signature across different cancer types, 

which is directly associated to their aggressiveness features. 

 

To investigate the signaling-pathways and mediators involved on sst5TMD4 

actions in PCa cells, we used PC-3 cells as a suitable model. This demonstrated that 

sst5TMD4 likely exerts its oncogenic functions through modulation of several 

pathways, including an increased activation (basal-phosphorylation) of MAPK-signaling 

(ERK/JNK) pathways, which have been shown to cooperate in other tumoral pathologies 

to promote malignancy [252]. Additionally, this is consistent with previous reports 

showing that sst5TMD4 increases basal pERK/ERK-ratio in MCF7-cells [185]. 

Moreover, sst5TMD4 increased IL-6 expression, a positive regulator of ERK-activation 

[253] (Figure 48), while decreasing APC and SFRP1 expression, which are negative 

regulators of MAPK cascade [254, 255]. These results have special relevance because 

25% of PCa cases have actionable lesions in MAPK pathway [256], and the biological 

consequences of MAPK substrate phosphorylation include increased proliferation, 

migration, differentiation, survival, angiogenesis, motility, and invasiveness [257].  

 

sst5TMD4 overexpression also decreased the expression of some additional tumor 

suppressor candidates, including ZNF185, LOXL1 and NRIP1/RIP140 [109, 258, 259]. 

The decrease in NRIP1 expression is especially relevant because this transcriptional 

cofactor for nuclear receptors (i.e. androgen/estrogen/progesterone-receptors [109]) is a 
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negative regulator of androgen receptor expression in PCa [109], and, therefore, loss of 

NRIP1 expression induced by sst5TMD4 in PCa cells could increase the activity of 

androgen receptor in hormone-naïve but also in castration-resistant PCa, promoting the 

progression of the disease and reducing the response to androgen-deprivation therapies 

or AR-antagonists (i.e. enzalutamide). Moreover, NRIP1 is associated to WNT-pathway 

regulation, by increasing the APC-protein expression in colorectal cancer [260]. Indeed, 

sst5TMD4 overexpression decreased NRIP1 and APC and also SFRP1 (another candidate 

tumor-suppressor from WNT-pathway) expression, and was associated to the increased 

activation of TCF/LEF (a key WNT-pathway transcription factor), which altogether 

indicates that sst5TMD4 might affect the function of the WNT-pathway in PCa (Figure 

48). Accordingly, sst5TMD4 enhanced the activation of c-MYC, a proto-oncogene 

associated to MEK/ERK [261] and WNT [262] pathways that control cell-cycle 

progression, cell-survival, and tumorigenesis, which is commonly amplified as an 

oncogene in PCa [80]. Finally, sst5TMD4 overexpression also enhanced the activation of 

RB pathway and decreased expression of CDKN2A (Figure 48), which is involved in the 

control of the RB pathway through the inhibition of cdk4/6, a kinase that ultimately 

controls the phosphorylation status of RB protein, a known tumor suppressor commonly 

lost in cancer [263]. Interestingly, sst5TMD4 overexpression has been associated to 

increased activity of c-Myc and JNK, two of the main negative regulators of CDKN2A 

[264], which could provide a plausible explanation for the drastic downregulation of 

CDKN2A gene in sst5TMD4-overexpressing cells. Consequently, when CDKN2A is 

down-regulated, cdk4/6 phosphorylates RB (an inactivating phosphorylation) leading to 

the activation of E2F-regulated genes involved in cell-cycle progression [263]. Therefore, 

since CDK4/6 inhibitors are being tested in PCa patients [76], this result should be 

considered to appropriately evaluate the efficiency of these drugs in patients with reduced 

CDKN2A and altered RB activity. 
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Figure 48: Working model summarizing the intracellular effects triggered by 

sst5TMD4 in human PCa cells . The data presented herein using several in vivo and in 

vitro PCa models suggest that the high expr ession of sst5TMD4 observed in human PCa, 

especially in metastatic PCa samples, might enhance the activation of MAPK (ERK/JNK), 

Myc/Max, WNT, TGF-β and retinoblastoma (RB) signaling pathways, which are known to 

be critical regulators of cancer biology. Spe cifically, sst5TMD4 might act at different 

regulatory levels by increasing the phosphorylation of proteins (i.e. MAPK cascade 

elements), modifying gene expression levels (i.e.  APC, SFRP1, CDKN2A, NRIP1) and 

protein levels (i.e. MYC, SFRP1, CDKN2A, NRIP1) a nd/or by increasing the activation of 

transcription factors from several signaling pathways (i.e. TCF/LEF, E2F -DP1). Our data 

also indicate that the final impact of sst5TMD4 overexpression (and the regulation of the 

signaling pathways associated to sst5TMD4) in human PCa cells resulted in a significant 

promotion of aggressiveness features (i.e. increased proliferation, and migration) and also 

in the hampering of the normal response to SSAs in PCa cells.  

 

Altogether, our findings demonstrate that the spliced variant sst5TMD4 is 

overexpressed in PCa, especially in metastatic-PCa, wherein it promotes in vitro and in 

vivo aggressiveness features by dysregulating key PCa signaling pathways and hampering 

the normal response to SSAs. Hence, these results suggest that sst5TMD4 could 

represent a valuable tool to identify novel biomarkers to refine diagnosis and predict 

prognosis, and a promising player in the future development of therapeutic 

approaches involving SSAs (alone or in combination with other therapeutic drugs) in 

PCa patients. 
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6.2. Ghrelin O-acyltransferase (GOAT) enzyme is 

overexpressed in prostate cancer wherein it is associated with 

the metabolic status: potential value as a non-invasive 

biomarker. 

The introduction of PSA as a routine clinical marker led to an improved early 

detection of PCa and, thus, to an increase in PCa survival [50]. However, PSA-based 

screening for PCa has generated considerable debate because its diagnostic performance 

is relatively poor, considering that elevated PSA levels may be driven by benign 

conditions (i.e. prostatic hyperplasia or prostatitis) [85]. Prostate cancer antigen 3 (PCA3) 

has been proposed as the most prominent biomarker emerging as a non-PSA-based 

diagnostic test for PCa; however, unfortunately, PCA3 has also serious limitations (i.e. 

reduced sensitivity compared to PSA) [157]. Therefore, identification of novel, 

alternative, biomarkers for clinical diagnosis of PCa (ideally non-invasive) is urgently 

needed to improve and/or complement PSA/PCA3 screening.  

 

Current evidence supports the necessity of implementing more personalized 

diagnosis and management strategies for cancer patients, in that inter-individual 

differences such as alterations in metabolic environment (i.e. diabetes and/or metabolic-

syndrome) could be key to identify and deploy novel diagnostic biomarkers [85]. In this 

scenario, the enzyme GOAT might become of particular relevance in PCa [265, 266], for 

its critical role in whole body metabolism [267], and its wide bodily expression, which is 

finely regulated by changes in the metabolic environment in human tissues [215, 268], 

and is clearly dysregulated in different tumoral tissue types (i.e. breast cancer) compared 

with normal tissues [215-217]. In line with this, we demonstrate herein, for the first time, 

that GOAT expression is markedly altered in PCa samples (at the mRNA and 

protein level) compared with control prostate samples (normal/benign tissues). 

Indeed, ROC curve analysis indicated that GOAT mRNA could predict PCa with a high 

sensitivity and specificity, suggesting that GOAT levels might represent a novel, 

promising PCa biomarker. GOAT protein expression showed a trend to be higher in 

PCa tissues with high Gleason-score and with metastasis, suggesting that GOAT might 

be associated to malignant features in PCa. These results partially differ from those 

reported in a previous study where GOAT mRNA expression was not altered in PCa 
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tissues vs. control samples [233]. However, it is possible that such differences may be 

related to the type of control sample used (i.e. healthy prostate-samples in our study vs. 

adjacent non-tumoral region of adenocarcinomas of prostate used in the previous study, 

which could be derived, at least in some cases, from prostates harboring high-grade 

multifocal PCa), or to the different primer set used to amplify GOAT in the qPCR, and/or 

to the precise characteristic of the primers (length, product-size, GC-content, etc.), which 

were not fully reported in that study. Nevertheless, our current observations are also 

partially consistent with this report [233] because both studies observed that GOAT 

enzyme is significantly overexpressed in several PCa cell lines vs. normal prostate 

cells, supporting the idea that GOAT expression might be up-regulated in different 

stages of the PCa disease. Moreover, our data compares favorably with previous reports 

indicating that GOAT is overexpressed in other tumoral tissues compared with normal 

tissues, including human neuroendocrine [217], pituitary [216], and breast [215] tumors, 

suggesting that GOAT overexpression could be a common cellular signature across 

various endocrine-related tumors.  

 

Interestingly, our data revealed that GOAT is secreted by PCa-cells, and that its 

expression might be directly associated with its release, since GOAT secretion was 

significantly higher in the culture medium of 22Rv1 vs. PC3-cells, in a manner consistent 

with their expression levels (22Rv1>PC3). Indeed, IHC-analysis of GOAT in PCa 

samples revealed that GOAT staining at the cytoplasmic level was granular, 

supporting the idea that this enzyme could be associated to a secretory mechanism 

in PCa cells. Importantly, GOAT expression was found to be specifically regulated 

by endocrine/metabolic factors (i.e. In1-ghrelin, but not ghrelin) in PCa-cells and in 

normal prostate cell cultures, suggesting that GOAT production could be 

functionally linked to In1-ghrelin at the prostate level. In fact, this close relationship 

between In1-ghrelin and GOAT expression has been reported previously in other cancers 

[215, 217]. Hence, since In1-ghrelin is usually overexpressed in several endocrine-related 

tumors [215-217], it is conceivable that In1-ghrelin, rather than ghrelin, could be the 

main substrate of GOAT in these cancers, including PCa. Furthermore, other key 

metabolic factors (i.e. insulin/IGF-1) also modulated GOAT expression levels in PCa-

cells, which might be associated with the positive correlation found in this study between 

GOAT expression levels and body weight and BMI in PCa patients, a similar association 

to that recently reported for circulating GOAT levels in normal weight, anorectic and 
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obese subjects [245]. Interestingly, GOAT expression was higher in PCa-patients with 

dyslipidemia, and a greater proportion of PCa-patients with dyslipidemia presented high 

GOAT mRNA levels compared with patients with low GOAT expression levels. 

Altogether, our results suggest the existence of a clear association between changes in 

GOAT expression levels and alterations in metabolic conditions in PCa-patients (i.e. 

body-weight, BMI and dyslipidemia), an idea that is in accordance with previous studies 

demonstrating the link between GOAT levels, lipid metabolism and whole body energy 

balance [269-271]. 

 

The results obtained hitherto prompted us to question whether GOAT levels could 

represent a suitable non-invasive biomarker for PCa under normal and/or altered 

metabolic conditions (e.g. diabetes or dyslipidemia). In fact, plasmatic and urine GOAT 

levels were higher in PCa patients compared with healthy control individuals. 

Moreover, in PCa patients, plasma GOAT levels correlated positively with 

circulating total PSA (and negatively with free PSA) as well as with other cancer 

markers (ca_15-3/cyfra_21-1) used to monitor other tumors (breast and lung cancer, 

respectively), and which have been proposed as possible PCa biomarkers in conjunction 

with PSA [272, 273]. Therefore, although we could not unequivocally establish a direct 

association between prostate and plasma/urine GOAT levels, due to the use of different 

patient’s cohorts, the results presented herein indicate that prostate GOAT tissue-

expression (mRNA and protein) and plasma/urine GOAT protein levels are 

consistently and concomitantly elevated in PCa samples. Indeed, ROC-curve analysis 

demonstrated that GOAT mRNA levels could predict PCa with a high 

sensitivity/specificity, and, most importantly, that plasma and urine GOAT levels also 

showed a good sensitivity (81.1% and 75%, respectively) and specificity (67.8% and 

61%, respectively) for PCa detection. Altogether, our data indicate that GOAT levels 

could represent a promising novel diagnostic biomarker (invasive and non-invasive) 

for PCa.  

 

There is increasing evidence that the alterations in the endocrine/metabolic milieu 

should be considered to appropriately stratify the patients, as well as to evaluate the 

diagnostic, prognostic and therapeutic potential of novel biomarkers in tumoral 

pathologies, including PCa. In this context, there is evidence that circulating GOAT levels 

depend on the metabolic environment (e.g. low levels in anorexic and high levels in 
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obese-patients [245]), and, most importantly, as shown here, that GOAT expression is 

directly associated with dysregulations in metabolic-conditions (i.e. 

BMI/dyslipidemia) in PCa, an observation that is in line with reports showing that 

altered endocrine/metabolic status (i.e. diabetes/metabolic-syndrome/BMI, etc.) is 

associated with the development/progression of several cancer-types [274], including 

PCa [275]. Accordingly, we hypothesized that plasmatic GOAT levels in PCa patients 

could also be linked to the metabolic status. Interestingly, we did find that GOAT plasma 

levels were higher in individuals with alterations in glucose-metabolism (i.e. diabetes 

and/or dyslipidemia), and were positively correlated with the percentage of 

glycated-hemoglobin, a gold standard for monitoring glycemic control [276], in both 

control and PCa individuals. Actually, irrespective of the presence of PCa, high plasma 

GOAT levels were associated with a higher proportion of diabetic and/or dyslipidemic 

patients, suggesting that dysregulated glucose-metabolism (diabetes) might be a 

confounding factor masking the potential of GOAT to discriminate between control and 

PCa patients when the whole population (non-diabetic plus diabetic patients) is 

considered. Therefore, we then sought to determine the potential of GOAT as a PCa 

biomarker after stratification of the patient cohort based on the presence of diabetes. 

Remarkably, when only non-diabetic individuals are considered, we discovered that 

plasmatic GOAT levels are able to precisely discriminate the presence of PCa with 

high sensitivity and specificity. These data clearly support the notion that alterations in 

endocrine/metabolic milieu is a critical factor to ensure an adequate patient 

stratification and to assess the diagnostic, prognostic and therapeutic potential of 

novel biomarkers in cancer, including PCa, as it is strongly suggested by the data 

presented herein for plasma GOAT levels as a novel, suitable complementary PCa 

diagnostic test, especially for non-diabetic individuals. 

 

A final point of interest relates to the presence of GOAT in urine. After the 

discovery that prostate cells are able to secrete GOAT, being this secretion significantly 

higher in PCa cell-lines, we posited whether there is a potential utility of GOAT urine 

levels for the diagnosis of PCa, in that proteins in urine are mainly derived from epithelial 

cells in the urinary-tract [277, 278]. Indeed, changes in urine protein can reflect a 

dysfunction of cells within the urinary-tract better than those in blood samples, which are 

deeply influenced by homeostatic mechanisms [277, 278]. In support to this notion, our 

results demonstrate that urine GOAT levels were also higher in PCa-patients 
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compared with controls, showing a high specificity and sensitivity to diagnose PCa-

patients. Thus, the data presented herein indicate that GOAT might represent a novel 

non-invasive PCa biomarker in urine (wherein it is not severely influenced by the 

metabolic status). 

 

In sum, to the best of our knowledge, the present data provides the first systematic 

analysis of the presence of the enzyme GOAT in different types of human prostate 

samples (invasive and non-invasive) obtained from patients with and without PCa, and in 

relation to the clinical and metabolic parameters of the patients (i.e. presence of 

metastasis, diabetes, dyslipidemia, etc.). Altogether, our results show, that GOAT can be 

directly secreted by PCa cells and is consistently overexpressed in samples from PCa 

patients (tissue, plasma and urine), where its expression is drastically conditioned 

by the metabolic status. Since GOAT expression showed a high sensitivity/specificity 

in PCa-detection, especially in non-diabetic patients, we propose that GOAT might be 

considered as a novel non-invasive PCa biomarker alone or in combination with 

other biomarkers to provide a better PCa diagnosis.  

In fact, it should be mentioned that the results included in this section has been 

already patented for this purpose [Title of the patent: “Ghrelin-O-acyl transferase 

(GOAT) and its uses”; registry number: PCT/ES2016/070844] and also published in the 

journal “Cancer Letters” [Title: “Ghrelin O-acyltransferase (GOAT) enzyme is 

overexpressed in prostate cancer wherein is associated with the metabolic status: 

potential value as non-invasive biomarker”; Cancer Lett. 2016; 383(1):125-134]. A copy 

of this manuscript is included at the end of the Thesis document. 
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6.3. In1-ghrelin splicing variant is overexpressed in prostate 

cancer, wherein it increases aggressiveness features through 

regulation of key tumor suppressors/oncogenes 

Previous studies have shown that ghrelin is expressed in both normal prostate (NP) 

and PCa tissues and cell lines with an increased staining of ghrelin peptide in malignant 

prostate epithelium compared with normal glandular tissue [225]. Interestingly, 

additional reports have shown that other ghrelin gene derived splicing variants are also 

present in PCa, where they could be involved in PCa malignancy [225, 235, 236]. Herein, 

we have expanded those results by demonstrating, for the first time, that In1-ghrelin 

mRNA levels are overexpressed in a battery of PCa biopsies from patients diagnosed 

with high-risk PCa, compared to NP samples, which is consistent with previous results 

indicating that In1-ghrelin overexpression is a common hallmark shared by other 

endocrine-related tumors, such as breast-cancer, pituitary tumors and NETs [215-217]. 

Nevertheless, although the expression of ghrelin was higher than that of In1-ghrelin in 

NPs, in our study cohort, ghrelin mRNA levels were not significantly elevated in PCa 

samples. Indeed, ROC-curve analysis revealed that only In1-ghrelin expression (but not 

ghrelin) could discriminate between patients with or without PCa, suggesting that In1-

ghrelin merits further study as a potential novel biomarker in PCa. Interestingly, In1-

ghrelin, but not ghrelin levels positively correlated with GOAT-expression in PCa, 

an association that has also been previously found in other endocrine-related tumors [215-

217], and suggests that In1-ghrelin may be the main ghrelin-gene variant functionally 

linked to GOAT in those tumors, which also reinforces the idea that an 

autocrine/paracrine-circuit involving these two components of the ghrelin-system 

may operate in PCa. Indeed, this association might be particularly relevant in PCa 

pathology, as we have also demonstrated herein that GOAT is overexpressed in PCa 

patients, that it can be secreted by PCa cells, and its levels exhibit high 

specificity/sensitivity to predict PCa presence compared with other PCa biomarkers 

[279]. 

 

Remarkably, analysis carried out in an additional cohort of PCa patients and controls 

demonstrated that acylated In1-ghrelin peptide could be detected in plasma, and that 

these levels, but not those of ghrelin are significantly higher in PCa patients than in 
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healthy controls, which again would suggest the possible utility of In1-ghrelin levels 

as a novel biomarker for PCa patients by using non-invasive (liquid) biopsies. 

Moreover, consistent with the results found in PCa-biopsies, In1-ghrelin mRNA 

expression was higher in PCa cell lines compared with the NP cell line. Interestingly, 

we observed that In1-ghrelin, but not ghrelin expression seemed to be higher in 

castration-resistant than in androgen-dependent cell lines, which would suggest that 

In1-ghrelin might play a role in the late PCa stages and/or in the progression of the 

disease. 

 

The fact that In1-ghrelin, and also ghrelin, were expressed at substantial levels in NP- 

and PCa-cells suggested that they could be exerting a functional role in the normal and 

pathological physiology of the prostate. Therefore, NP cell-cultures were used to test 

whether In1-ghrelin peptides and ghrelin can modulate signaling and functional 

parameters (such as PSA production and cell viability) in these cells. In1-ghrelin 

peptides and ghrelin treatment evoked a signaling response in terms of changes in 

[Ca2+]i, a key second messenger that has been previously linked to ghrelin system 

signaling [216, 280], and is functionally associated to PCa pathophysiology. Specifically, 

it has been shown that ion channel remodeling alters the nature of PCa cells Ca2+ influx, 

switching from an apoptotic to a pro-proliferative stage [281]. Nevertheless, it should be 

noted that the proportion of responsive cells and the magnitude of the stimulatory increase 

were consistently higher after In1-ghrelin than after ghrelin treatment in all experiments 

performed on primary NP cells. This observation suggests that In1-ghrelin variant could 

be playing a more pronounced function than ghrelin in prostate cells. Nonetheless, our 

results demonstrate a direct action of ghrelin-system splicing variants on NP-cells, which 

would imply the existence of receptors for In1-ghrelin, but also for ghrelin, in these cells. 

However, such putative receptors, likely, ought to be different from the classical 

GHSR1a, as we found that GHSR1a expression is virtually absent in the human prostate 

samples and PCa cell-lines analyzed herein. The existence of uncharacterized receptor(s) 

that mediate some of the biological effects of ghrelin, and likely of In1-ghrelin, has also 

been previously postulated in human prostate neoplasms and related cell-lines [222]. 

Interestingly, In1-ghrelin, but not ghrelin overexpression clearly increased cell-

viability, and In1-ghrelin treatment also increased PSA secretion and expression in 

NP cell-cultures, which is consistent with data previously reported indicating that In1-

ghrelin treatment enhances hormone-secretion in other cell-types (i.e. serotonin  in NET 
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cells [217], GH in somatotropinoma cells, and ACTH in corticotropinoma cells [216]), 

and may suggest a relevant role of In1-ghrelin in the malignization of NP cells. 

 

Ghrelin gene-derived variants, especially the In1-ghrelin variant, exerted a relevant 

effect on the pathophysiology of PCa cells. In particular, In1-ghrelin treatment evoked 

an increase in proliferation on most of the PCa cell-lines tested, being its effect 

especially marked in castration-resistant cell-lines. Similarly, In1-ghrelin peptides 

significantly enhanced the migration-capacity of PC-3 cells. The ability of In1-ghrelin 

peptides to increase cell-proliferation has been previously reported in human pituitary 

tumors (and in mouse AtT-20 cell-line) [216]. However, ghrelin administration only 

increased cell proliferation in LNCaP and PC-3 cell lines, which is in agreement with 

previous studies [225]. These actions of In1-ghrelin peptides may be mediated, at least 

in part, through the activation of ERK signaling pathways, as previously reported in 

other tumoral pathologies [216, 225]. Consistent with these data, stable overexpression 

of In1-ghrelin, but not ghrelin enhanced cell proliferation, migration capacity and 

basal phosphorylation levels of PCa cells (PC-3/VCaP cells). In line with this, In1-

ghrelin overexpression has been shown to increase the cell proliferation of pituitary 

tumors [216], MDA-MB-231 breast cancer cell line [215] and BON-1 pancreatic cell line 

[217], and the migration capacity of NETs cell lines [217]. Moreover, to further explore 

this notion, we generated nude mice xenografted with In1-ghrelin or with ghrelin stably-

transfected PC-3 cells, and found that In1-ghrelin, but not ghrelin overexpression 

enhanced tumor growth in this in vivo preclinical model (i.e. larger tumors), wherein 

it increased tumor necrosis, likely due to higher tumor volume, supporting the idea 

that In1-ghrelin would increase the malignant features of PCa-cells.  

 

To gain further insight on the mechanisms underlying the actions of the ghrelin 

variants on PCa cells, we explored changes in the expression of a set of selected genes 

related to PCa. Specifically, In1-ghrelin increased malignant features of PCa cells by 

altering the expression of key oncogenes, tumor-suppressor genes and genes 

associated to PCa pathophysiology such as APC, CAV1, SFRP1, NRIP1, CDKN2A, 

IGFBP5 and LOXL1 [89, 282-286], which could help to explain the functional changes 

triggered by In1-ghrelin over-exposition (treatment and/or overexpression). Indeed, some 

changes were further confirmed at the protein-level (i.e. SFRP1, NRIP1, IGFBP5 and 

LOXL1) and in the In1-ghrelin stably-transfected PC-3-tumors, which showed an 
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increase in CAV1 and LOXL1, and a decrease in SFRP1 expression compared to mock 

cell-induced tumors. Intriguingly, ghrelin treatment and/or overexpression elicited the 

phosphorylation of ERK-pathway in PCa-cells and induced significant changes in the 

expression of certain oncogenes, tumor-suppressor genes and in genes associated to PCa-

pathophysiology. Some of these changes were different (i.e. IL-6, SOX4 and ZNF185), 

common (i.e. decreased in SFRP1 and NRIP1) or opposite (i.e. LOXL1 and IGFBP5) to 

those observed by In1-ghrelin overexpression. However, our study demonstrates a 

marginal effect of ghrelin on the functional endpoints measured (in vitro proliferation 

and/or migration and in vivo proliferation and inflammation) compared to In1-ghrelin 

effects, suggesting that ghrelin could be playing a role on other endpoints not measured 

herein, and that In1-ghrelin splice variant has a more relevant role than ghrelin in 

the aggressiveness of PCa-cells. In line with this, the increase in LOXL1 and IGFBP5 

expression observed in PCa-cells overexpressing In1-ghrelin could be 

pathophysiologically relevant and could be associated to the unique capacity of In1-

ghrelin to enhance the malignancy features in PCa cells, since both factors have been 

shown to increase the aggressiveness of PCa cells [285-288]. Specifically, LOXL1 is able 

to enhance tumorigenesis and metastasis through active remodeling of tumor 

microenvironment [285, 287]. Moreover, IGFBP5 has been shown to play an important 

role in the castration phase of the disease, since upregulation in its expression accelerates 

progression to androgen-independence in PCa models [288], and enhances proliferation 

of PCa cells [286]. Accordingly, it is tempting to speculate that the upregulation of 

LOXL1 and IGFBP5 observed in PCa cells overexpressing In1-ghrelin might be 

associated to the increased aggressiveness features observed in PCa cells (i.e. in vitro 

and/or in vivo cell proliferation, migration, tumor growth and PSA secretion). 

 

Finally, we further explored the utility of In1-ghrelin as a putative target to reduce 

PCa progression by analyzing the effect of In1-ghrelin silencing on PCa cell lines 

functional parameters. Remarkably, In1-ghrelin silencing decreased cell proliferation 

of PC-3 and LNCaP cells, and PSA secretion from LNCaP cells, which, overall, 

suggest that In1-ghrelin could be considered as a novel target for the development 

of new and more specific therapies in PCa.  

Thus, when viewed together, our results indicate that In1-ghrelin splicing 

variant is overexpressed in PCa, where it can regulate cell proliferation, migration, 
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tumor growth and PSA secretion, through the modulation of the activation of 

certain signaling pathways (ERK-phosphorylation) and the expression of several 

oncogenes and tumor-suppressor genes, thereby suggesting a possible 

pathophysiological role for this splice variant in human PCa. The fact that the ghrelin 

system, particularly its In1-ghrelin variant, was strongly altered in PCa supports the idea 

that this system could contribute to PCa tumorigenesis, and may provide novel tools to 

explore diagnostic/therapeutic targets in this pathology. 

 

In fact, it should be mentioned that the results included in this section, together 

with other results obtained in other endocrine-related tumoral pathologies, are part of a 

new patent recently presented by the research group [Title of the patent: “Non-invasive 

diagnostic method of cancer”; registry number: P201631606)].  
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7. CONCLUSIONS 
 

1) The splice variant sst5TMD4 is overexpressed in prostate cancer, especially in 

patients with metastatic disease and high Gleason score, and promotes aggressiveness 

features (e.g. cell proliferation, migration) in in vitro and in vivo models, through the 

dysregulation of key prostate cancer signaling-pathways (e.g. ERK/JNK, MYC/MAX, 

WNT and RB), tumor suppressors (e.g. APC, SFRP1, CDKN2A, ZNF185) and 

oncogenes (e.g. CAV1, IL-6, DAXX).  

2) The presence of sst5TMD4 hampers the normal response of prostate cancer cells to 

SSAs (octreotide and pasireotide), which might be one of the mechanism underlying 

the inefficiency of SSA therapy in the limited PCa clinical trials implemented hitherto. 

3) Altogether, our results on sst5TMD4 suggest that it could represent a valuable tool 

to identify novel biomarkers to refine diagnosis and predict prognosis, and a promising 

player in the future development of therapeutic approaches involving SSAs in prostate 

cancer. 

4) GOAT can be directly secreted by prostate cancer cells and is consistently and 

concomitantly elevated in samples from prostate cancer patients, including tumor 

tissue, plasma and non-invasive fluids (urine) compared with healthy-control patients. 

Elevated GOAT levels are associated to malignant features in prostate cancer and are 

severely influenced by the metabolic status (e.g. BMI, diabetes and dyslipidemia). 

 

5) GOAT levels showed high sensitivity and specificity in prostate cancer detection, 

especially in non-diabetic patients. Thus, GOAT might represent a valuable novel 

biomarker for prostate cancer, alone or in combination with other biomarkers (e.g. 

PSA, PCA3), to improve prostate cancer diagnosis. Moreover, our data indicate that 

alterations in endocrine/metabolic milieu is a critical factor to ensure an adequate 

patient stratification and to assess the potential of novel biomarkers in prostate cancer. 

 

6) The splice variant In1-ghrelin, but not ghrelin, mRNA levels are overexpressed, and 

positively correlated with GOAT expression, in prostate cancer, thus reinforcing the 

idea that an autocrine/paracrine-circuit involving these two components of the ghrelin-

system may operate in prostate cancer.  
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7) In1-ghrelin could play a pathological role in late prostate cancer stages and/or in the 

progression of the disease, since its expression, but not that of ghrelin, is higher in 

castration-resistant than in androgen-dependent prostate cancer cell lines, and In1-

ghrelin treatment or overexpression increases malignization of prostate cancer cells in 

vitro and in vivo (e.g. cell proliferation, migration, and/or PSA expression/secretion). 

These actions of In1-ghrelin are likely exerted by altering the expression of key 

oncogenes, tumor suppressor genes, and genes associated to prostate cancer 

pathophysiology (i.e. SFRP1, NRIP1, IGFBP5 and LOXL1).  

8) Acylated In1-ghrelin peptide can be detected in plasma and its levels, but not those 

of ghrelin, are significantly higher in patients with prostate cancer than in healthy-

controls, thus suggesting the possible utility of In1-ghrelin levels as a novel non-

invasive diagnostic and prognosis biomarker for prostate cancer patients. 

9) Taken together, our results reveal the existence of a marked, concomitant 

dysregulation of the expression of key components of the somatostatin and ghrelin 

systems, specially their splicing variants, in prostate cancer, wherein they might play 

a pivotal role in the regulation of pathophysiological processes associated with prostate 

cancer malignancy, and provide new clinical tools in the diagnosis, prognosis, and 

treatment of this tumoral pathology.  
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a b s t r a c t

Ghrelin-O-acyltransferase (GOAT) is the key enzyme regulating ghrelin activity, and has been proposed
as a potential therapeutic target for obesity/diabetes and as a biomarker in some endocrine-related
cancers. However, GOAT presence and putative role in prostate-cancer (PCa) is largely unknown. Here,
we demonstrate, for the first time, that GOAT is overexpressed (mRNA/protein-level) in prostatic tissues
(n ¼ 52) and plasma/urine-samples (n ¼ 85) of PCa-patients, compared with matched controls [healthy
prostate tissues (n ¼ 12) and plasma/urine-samples from BMI-matched controls (n ¼ 28), respectively].
Interestingly, GOAT levels in PCa-patients correlated with aggressiveness and metabolic conditions (i.e.
diabetes). Actually, GOAT expression was regulated by metabolic inputs (i.e. In1-ghrelin, insulin/IGF-I) in
cultured normal prostate cells and PCa-cell lines. Importantly, ROC-curve analysis unveiled a valuable
diagnostic potential for GOAT to discriminate PCa at the tissue/plasma/urine-level with high sensitivity/
specificity, particularly in non-diabetic individuals. Moreover, we discovered that GOAT is secreted by
PCa-cells, and that its levels are higher in urine samples from a stimulated post-massage vs. pre-massage
prostate-test. In conclusion, plasmatic GOAT levels exhibit high specificity/sensitivity to predict PCa-
presence compared with other PCa-biomarkers, especially in non-diabetic individuals, suggesting that
GOAT holds potential as a novel non-invasive PCa-biomarker.

© 2016 Elsevier Ireland Ltd. All rights reserved.

Introduction

Prostate cancer (PCa) is the secondmost common cancer type in
men [1]. PCa detection and management is mainly based in the use

of circulating biomarkers. Specifically, prostate specific antigen
(PSA) is the main biomarker used in clinical diagnosis of PCa; how-
ever, its use is controversial because, in many cases, leads to over-
diagnosis and unnecessary treatment of indolent cancers [2,3].
Consequently, identification of novel, more specific and sensitive
diagnostic/prognostic PCa biomarkers seem to be necessary [2].

There is now compelling evidence that severe metabolic alter-
ations (i.e. metabolic-syndrome/diabetes/obesity) are tightly linked
to increased risk of cancer [4e7], including PCa [8]. Actually, recent
studies claim that presence of metabolic-syndrome should be
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included in clinical assays for predicting PCa-risk, and diabetes
should be one of the main parameters to be considered [9]. In line
with this, several endocrine/metabolic factors known to be altered
in diabetes/obesity, such as some components of the ghrelin-
system, have also been associated to PCa [10,11]; however, their
potential utility as biomarkers in PCa management has not been
established hitherto.

The ghrelin system comprises a pleiotropic and complex
network composed of several peptides, including native-ghrelin
and In1-ghrelin [12], and receptors (GHSR1a/b), involved in the
regulation of multiple patho-physiological processes (i.e. glucose/
insulin-homeostasis, hormonal-release, cell-proliferation, etc.)
[13]. Native-ghrelin and In1-ghrelin peptides share the initial 13
aminoacids (aa) sequence, which can be acylated (addition of an
octanoyl-group at the Ser-3) by the ghrelin-O-acyl-transferase
(GOAT) enzyme [12,14,15]. This acylation is required for native-
ghrelin to bind and activate GHSR1a, and to exert thereby many

of its functions [14,15]. Interestingly, several studies demonstrate
that GOAT could play a key role in obesity/diabetes [16,17] [18e21],
and may be relevant in coordinating the neuroendocrine response
to metabolic stress, in that its expression can be finely regulated by
the energy status (i.e. expression elevated in fasting and inhibited
in obesity [22]), and by key metabolic factors (i.e. leptin increases
[22] while insulin decreases GOAT expression [23]).

GOAT is mainly expressed in stomach and pancreas, but also in a
number of additional tissues, including the prostate [24,25], and its
levels are directly correlated with body mass index (BMI) in plasma
[26]. Of note, our group and others have demonstrated that GOAT is
overexpressed in some tumoral tissues, like breast [24], pituitary
[12,27] and neuroendocrine tumors (NETs) [28], compared with
normal tissues. However, very limited data is still available on GOAT
in PCa [25]. Therefore, here we sought to analyze, for the first time:
1) the presence of GOAT in selected PCa-samples [invasive (bi-
opsies; mRNA and protein levels) and non-invasive (protein levels

Table 1
Demographic, clinical, anatomopathological characteristics and qPCR data from patients with high-risk PCa (needle biopsies) and normal prostate controls
(Cystoprostatectomy).

Overall Control PCa p-value

Patients, n� 64 12 52 e

Age at diagnosis
Median (IQR) 76 (68.2e81.7) 70 (61.5e81) 78 (69e81.7) 0.39

Weight
Mean (SD) 77.5 (12.6) 76.9 (12.4) 77.7 (13) 0.87

BMI
Mean (SD) 28.1 (4.7) 27.9 (4.5) 28.2 (4.9) 0.85

PSA level, ng/ml
Median (IQR) e e 54.5 (37.2e212) e

Dyslipidemia 17/64 (26%) 3/12 (25%) 14/52 (27%) 0.99
Diabetes 15/64 (23%) 3/12 (25%) 12/52 (23%) 0.99
Gleason score
7 e e 18/52 (35%) e

>7 e e 34/52 (65%) e

Extraprostatic extension e e 17/52 (33%) e

Perineural infiltration e e 27/52 (52%) e

Metastasis e e 24/52 (46%) e

N� samples (%) in which GOAT was detected 60/64 (96%) 12/12 (100%) 48/52 (92%) 0.99

PCa ¼ prostate cancer; n� ¼ Number.

Table 2
Demographic and clinical characteristic of patients included in the study of plasmatic and urine levels of GOAT.

Parameter Overall Control (n ¼ 28) PCa (n ¼ 85) p value

Age, yr, mean (SD) 67.11 (9.1) 62.04 (9.6) 68.7 (8.3) 0.0005
Weight, kg, mean (SD) 82.31 (12.52) 84.56 (14.21) 81.5 (11.9) 0.27
BMI, mean (SD) 29.52 (4.01) 30.46 (4.4) 29.2 (3.8) 0.16
Ethnicity, (n�) Caucasian (111), Black (2) Caucasian (27), Black (1) Caucasian (84), Black (1) e

Glycated hemoglobin (%), median (IQR) 5.6 (5.3e6.1%) 5.6% (5.3e6.7%) 5.6% (5.2e6%) 0.4
Glucose, mg/dl, median (IQR) 105 (93.5e125.5) 109 (97.25e130.8) 102 (92e121.5) 0.15
Insulin, m U/l, median (IQR) 7.05 (4.8e11.3) 6.2 (3.3e10.7) 8.9 (5.5e11.4) 0.045
Diabetes, n� (%) Non-diabetics (84), diabetics (34) 9/28 (32.12%) 25/85 (29.4%) 0.81
Dyslipidemia, n� (%) Non-dislipidemic (88), dislipidemic (25) 5/28 (17.85%) 20/85 (23.95%) 0.60
Testosterone ng/ml 5.14 (3.72e5.93) 5.3 (4.1e6.7) 4.8 (3.7e5.8) 0.16
Total PSA, ng/ml, median (IQR) 5 (1.77e8.23) 0.8 (0.4e1.1) 6.3 (3.8e9.5) <0.0001
Free PSA, ng/ml, median (IQR) e e 0,81 (0.5e1.1) e

Invasive tumors e e 14/85 (16%)
Gleason score, n� (%) e

6 e e 41/85 (48%)
7 e e 38/85 (45%)
8 e e 5/85 (6%)
9 e e 1/85 (1%)

cyfra_21-1 U/ml, mean (SD) 1.4 (1.1e1.9) 1.2 (1-1,80) 1,4 (1.1e2.1) 0.18
ca_15-3 U/ml, mean (SD) 17 (12e23) 12 (7e21.7) 19 (14e24) 0.046

PCa: prostate cancer; Yr ¼ year; SD ¼ standard deviation; Kg ¼ kilograms; cm ¼ centimeter; BMI ¼ body mass index; n� ¼ number; IQR ¼ interquartile range.
Italic values represent significant difference in the parameter between PCa patients and control patients.
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in plasma and urine)] compared with normal-control samples; 2) if
GOAT expression/levels correlated with clinical/metabolic status
(body-weight, BMI, diabetes, etc.) and with aggressiveness features
(PSA levels, metastasis, etc.) of the patients; and 3) if GOAT is
secreted from prostate cells, and whether its expression levels in
prostate can be regulated by relevant metabolic factors (i.e. ghrelin,
insulin, IGF-I) by using primary normal prostate cell cultures and/or
PCa cell lines as model.

Materials and methods

Patients and samples

Three different sets of samples were included in the study. First, fresh PCa pieces
(n ¼ 52) obtained by core needle biopsies from patients diagnosed with clinical
high-grade PCa (NCNN-guidelines) and samples from control patients without PCa
(n¼ 12), who underwent cystoprostatectomy due to bladder-cancer, were collected.
Experienced pathologists classified all these samples as normal/tumoral (Table 1).
Second, plasma and urine samples from PCa patients (n¼ 85) and from healthy BMI-
matched controls (n ¼ 28) were collected (Table 2). Third, urine samples were
collected before and after prostate massage in another cohort of PCa-patients
(n ¼ 14) (Table 3). In all cohorts, demographic/clinical parameters regarding tu-
mor aggressiveness andmetabolic status were collected. The study was approved by
the Hospital/University Ethics-Committees and written informed consent from
patients was obtained. All samples were obtained through the Andalusian-Biobank
(Servicio Andaluz de Salud).

For more details of this and others materials/methods used (Reagents; Primary
normal prostate cultures; GOAT IHC analysis; Normal-like prostate cell-line and
prostate cancer cell-lines, Determination of GOAT expression in prostatic tissues by
quantitative real-time RT-PCR (qPCR) and of plasma/urine levels by ELISA; Statis-
tics), see Supplemental-Information [27e31].

Results

GOAT is overexpressed in PCa tissues in comparison to normal
tissues wherein it is associated with metabolic-clinical parameters

qPCR analysis performed in PCa-tissues from patients diagnosed
with clinical high-grade PCa revealed that GOAT was expressed in
92% (n¼ 48/52; Table 1) of the samples, and that its expressionwas
markedly increased in PCa compared to non-tumor control tissues
(p ¼ 0.024; Fig. 1A). ROC analysis showed that GOAT expression
significantly discriminated between PCa and controls subjects

(AUC ¼ 0.714; p ¼ 0.021; a cut-off of 262 mRNA copies/50 ng cDNA
presented 70.59% sensitivity and 66.67% specificity; Fig. 1B). The
clinical/pathological features of this cohort of patients are included
in Table 1. No correlation was found between GOAT mRNA levels
and presence of metastasis, Gleason-score or circulating PSA levels
(Supplemental Fig. S1A); in contrast, GOAT expression was directly
correlated with some metabolic-clinical parameters, such as body-
weight and BMI, in PCa-patients (Fig. 1CeD), but not in controls
(Supplemental Fig. S1B). Moreover, GOAT expression tended to be
higher in PCa patients with dyslipidemia (p ¼ 0.084; Fig. 1E) and in
fact, a significantly greater proportion of patients with high GOAT
expression levels presented dyslipidemia (Fig. 1F).

Subsequently, GOAT-IHC was performed on FFPE-prostates
harboring normal and tumoral regions obtained from radical
prostatectomies (n ¼ 4) of patients diagnosed with localized PCa
(Gleason score 6e7), which revealed stronger GOAT staining in the
tumoral vs. benign glands (Fig. 1G). Interestingly, high-
magnification images showed perineural-infiltration by tumoral
prostate glands with high cytoplasmic (granular) and nuclear
GOAT-staining, suggesting that GOAT overexpression could be
associated with a malignant event in PCa. Due to the small set of
FFPE samples available, we next implemented IHC analyses in a
subset of the biopsies from the cohort of clinical high-grade PCa
samples described above (n ¼ 16), which included normal-benign
prostate regions. These analyses revealed that GOAT staining was
very weak in normal-benign prostate samples (cytoplasmic-stain-
ing; Fig. 1H) compared with the intense staining found in PCa
samples [staining located at cytoplasmic (granular-staining) and
nuclear level of the cancerous prostate-glands; Fig. 1HeI]. This
staining in PCa samples seems to be specific for tumoral regions
since the staining of the stromal cells within the tumor microen-
vironment was negative for GOAT (Fig. 1I). Interestingly, GOAT
staining appeared to be associated to GOAT mRNA levels and,
tended to be stronger in patients with higher Gleason-score
(p ¼ 0.088; Fig. 1J) and in patients with metastasis (p ¼ 0.079;
Fig. 1K).

GOAT is expressed, secreted and regulated by metabolic factors in
normal and tumoral prostate cells

GOAT mRNA expression was higher in PCa cell-lines (LnCaP/
22Rv1/DU-145) compared with normal prostate cell line RWPE1 or
normal prostate primary cells (Fig. 2A; n � 3 from different cell
preparations), supporting our previous data indicating that GOAT is
overexpressed in PCa-tissues compared to normal-tissues (Fig. 1A).
Moreover, PCa-cells (22Rv1 and PC3) were capable to secrete GOAT
protein into the media (Fig. 2B), being this secretion higher in
22Rv1 vs. PC3-cells (1.641 vs. 1.163 ng/ml, respectively; p ¼ 0.005;
n > 3), which is in agreement with the higher GOAT mRNA levels
observed in 22Rv1 vs. PC3 (Fig. 2A). Interestingly, treatment with
In1-ghrelin (In1-19) [27], but not native-ghrelin significantly
increased GOAT expression in 22Rv1, but not in PC3 cells (Fig. 2C-D;
n ¼ 3), and in normal prostate primary cell cultures (Fig. 2E; n ¼ 3).
Conversely, treatment with key metabolic factors such as insulin
and IGF-I, or their combination, decreased GOAT expression in PCa-
cells (p < 0.001; Fig. 2F; n � 3).

Plasma GOAT levels are elevated in patients with PCa in comparison
to healthy controls: association with clinical-metabolic parameters

Plasmatic GOAT levels were elevated in PCa patients compared
with controls (Fig. 3A). Clinical/pathological features of this patient
cohort are summarized in Table 2. It should be noted that PCa-
patients had similar body-weight and BMI but presented a
slightly higher age than control-patients (~6 years; Table 2).

Table 3
Demographic and clinical characteristic of patients included in the study of
urine GOAT levels after prostate massage.

Parameter PCa

Age, yr, mean (SD) 68.1 (7.1)
Weight, kg, mean (SD) 79.2 (9.9)
BMI, mean (SD) 28.8 (3.2)
Ethnicity, (n�) Caucasian (14)
Glycated hemoglobin, (%) 5,4 (5.2e5.8%)
Glucose, mg/dl, mean (SD) 92.7 (8.4)
Insulin, m U/l, mean (SD) 8,6 (2.6)
Diabetes, n� 0/14
Dyslipidemia, n� 0/14
Testosterone ng/ml, mean (SD) 4.6 (2.2)
Total PSA, ng/ml, median (IQR) 5.9 (4.6e9.7)
Free PSA, ng/ml, mean (SD) 0.9 (0.3)
Invasive tumors, n� (%) 2/14 (14%)
Gleason score, n� (%)
6 3/14 (21%)
7 9/14 (64%)
8 1/14 (7%)
9 1/14 (7%)

cyfra_21-1 U/ml, mean (SD) 1.6 (0.8)
ca_15-3 U/ml, mean (SD) 16.1 (6.9)

PCa: prostate cancer; Yr ¼ year; SD ¼ standard deviation; Kg ¼ kilograms;
cm ¼ centimeter; BMI ¼ body mass index; n� ¼ number; IQR ¼ interquartile
range.
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Nevertheless, we implemented general linear models, which
demonstrated that this difference was not responsible for the al-
terations in plasmatic GOAT levels observed. Furthermore, when
plasma GOAT levels were corrected by age, higher GOAT levels were
clearly evident in PCa vs. control-patients (p ¼ 0.002). Moreover,
ROC-analysis showed the diagnostic potential for GOAT at the
plasma level (p < 0.0001; AUC ¼ 0.752; Fig. 3B), wherein a value of
1.22 ng/ml of GOAT plasma levels could discriminate between PCa
vs. control-patients with a specificity of 67,8% and a sensitivity of
81,1%.

Interestingly, plasmatic GOAT levels were associated with
several pathophysiological factors. Specifically, GOAT levels were
directly associated with total PSA levels and inversely correlated
with free PSA (Fig. 3C), and also associated positively with two
cancer biomarkers (ca_15-3 and cyfra_21-1; Fig. 3D). Moreover, a
higher frequency of infiltrative tumors was found in patients with
higher plasmatic GOAT levels (Fig. 3E).

We next analyzed the putative relationship between plasmatic
levels of GOAT and several metabolic parameters (i.e. BMI, diabetes,
dyslipidemia, etc.). Although we did not find correlations between
GOAT plasma levels and BMI or weight in control and PCa patients
(Supplemental Fig. S2A), we observed that GOAT levels of control-
patients (without PCa) were significantly higher in diabetic sub-
jects compared with non-diabetic patients (Fig. 3F), whereas no
differences were found in plasmatic GOAT levels in control-patients
with and without dyslipidemia (Fig. 3G). Consistent with these
results, plasmatic GOAT levels in control-patients were positively
correlated with the levels of glycated hemoglobin (HbA1c; Fig. 3H)
and glucose (Fig. 3I), two well-known clinical markers of diabetes.
Accordingly, a significantly higher proportion of patients with
diabetes, but not with dyslipidemia, was found in control-patients
with high plasmatic GOAT levels compared to those with low GOAT
levels (Fig. 3J). In contrast, plasmatic GOAT levels were similar in
diabetic vs. non-diabetic patients with PCa (Fig. 3K). A trend for
elevation in plasmatic GOAT levels was found in patients with PCa
that had dyslipidemia compared to those without dyslipidemia
(p ¼ 0.06; Fig. 3L). A positive correlation between plasmatic GOAT
levels was also found with HbA1c, but not with glucose levels in
PCa-patients (Fig. 3M and N, respectively). Indeed, a higher pro-
portion of patients with diabetes as well as with dyslipidemia were
found in PCa-patients having high plasmatic GOAT levels vs. PCa-
patients with low GOAT levels (Fig. 3O).

Plasma GOAT levels as a non-invasive diagnostic marker of PCa in
non-diabetic individuals

Based on the previous results, we next interrogated whether
plasmatic GOAT levels could be a more specific PCa marker in non-
diabetic patients. Plasmatic GOAT levels were higher in non-
diabetic PCa-patients vs. control-patients (p < 0.001; Fig. 3P).
Indeed, the area under curve was considerably improved when
analyzing only non-diabetic PCa-patients [value of 0.854 (Fig. 3P/Q;
only non-diabetic) vs. 0.752 (Fig. 3A/B; diabeticþ non-diabetic)]. In

addition, the specificity/sensitivity to discriminate the presence of
PCa was significantly higher when only the non-diabetic in-
dividuals were considered [a cut-off value of 1.142 ng/ml presented
a specificity and sensitivity of 84.2% and 86.7% (Fig. 3Q/P) vs. 67.8%
and 81.1% analyzing non-diabetic þ diabetic patients (Fig. 3A/B)].
Interestingly, plasmatic GOAT levels also positively correlated with
total PSA (Fig. 3R), negatively with free PSA levels (Fig. 3S) and
positively with the cancer biomarker ca_15-3 (Fig. 3T) and, also
exhibited a similar positive tendency with HbA1c (p ¼ 0.080;
Fig. 3U).

Urine GOAT levels are elevated in patients with PCa in comparison to
healthy-control patients: potential value as non-invasive biomarker

Urine GOAT levels were also significantly elevated in the same
cohort of PCa-patients vs. control-patients (Fig. 4A; Table 2).
Actually, ROC-curve analysis showed that urine GOAT levels could
discriminate between PCa vs. control-patients (Fig. 4B; p < 0.001,
AUC ¼ 0,716; a cut-off value of 1.061 ng/ml presented a sensitivity
of 75% and specificity of 61%). Remarkably, this sensitivity/speci-
ficity was lower than that found with plasmatic GOAT levels and,
although the underlying reasons (likely, sampling procedures,
urine processing, etc.) are still not defined, and thus further
investigation is warranted. Interestingly, no correlations were
found between GOAT urine levels and metabolic parameters (BMI,
body weight, diabetes or dyslipidemia) in control or PCa patients
(Supplemental Fig. S2B), suggesting that GOAT urine levels are not
influenced by these parameters. Furthermore, urine GOAT secretion
was increased after a prostate-massage in an additional cohort of
PCa-patients (Table 3) compared to the same cohort of subjects
before prostate-massage (Fig. 4C).

Discussion

The introduction of PSA as a routine clinical marker led to an
improved early detection of PCa and, thus, to an increment in PCa
survival [1]. However, PSA-based screening for PCa has generated
considerable debate because its diagnostic performance is poor,
considering that elevated PSA levels may be driven by benign
conditions (i.e. prostatic hyperplasia or prostatitis) [2]. Prostate
cancer antigen 3 (PCA3) has been proposed as the most prominent
biomarker emerging as a non-PSA-based diagnostic test for PCa;
however, unfortunately PCA3 has also serious limitations (i.e.
reduced sensitivity than PSA) [32]. Therefore, identification of
novel, alternative, biomarkers for clinical diagnosis of PCa (ideally
non-invasive) is urgently needed to improve and/or complement
PSA/PCA3 screening.

Current evidence supports the necessity of implementing
more personalized diagnosis and management strategies for
cancer patients, in that inter-individual differences such as al-
terations in metabolic environment (i.e. diabetes and/or
metabolic-syndrome) could be key to identify and deploy novel
diagnostic biomarkers [2]. In this scenario, the enzyme GOAT

Fig. 1. Analyses of the presence of GOAT in PCa tissues. A. GOAT mRNA expression was determined in a battery of 52 PCa samples compared to 12 normal prostates (Control).
Absolute mRNA levels were determined by qPCR and adjusted by a normalization factor (NF) calculated from the expression levels of two housekeeping genes (ACTB and GAPDH);
B. Receiver operating characteristic (ROC) curve analysis to determine the accuracy of GOAT expression as diagnostic test to discriminate between patients with PCa and controls; C.
GOAT mRNA expression and body weight correlation in patients with PCa; D. GOAT mRNA expression and BMI correlation in patients with PCa; E. GOAT mRNA expression in
patients with dyslipidemia; F. Frequencies of dyslipidemia observed in two groups of PCa patients with low or high GOAT expression levels (according to median GOAT levels)
(DL ¼ patients with dyslipidemia, NDL ¼ Patients without dyslipidemia); G. IHC analysis of GOAT in a representative FFPE-PCa sample with benign and tumor glands at 40e400�
magnification. The image shows higher intensity of GOAT staining in tumor glands vs benign glands, and intense GOAT staining in nerves infiltrated by tumor cells. HeK. GOAT IHC
analysis in 16 biopsies from patients with high risk PCa; H. GOAT IHC staining in prostate biopsies with benign glands (BG; left-panel) or tumor glands (TG; right-panel) at
100e200� magnification; I. Cytoplasmic and nuclear GOAT staining in a tumoral gland at 800� magnification; J. Comparison of GOAT IHC score [low (1), moderate (2) or high (3)
GOAT staining] with Gleason-score; K. Comparison of GOAT IHC score with presence of metastasis. In all cases, data represent mean ± SEM. Asterisks (*p < 0.05; **p < 0.01;
***p < 0.001) indicate values that significantly differ from the corresponding controls.
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Fig. 2. Regulation of GOAT expression by metabolic factors. A. GOAT mRNA expression in normal prostate primary cell cultures, normal-like prostate cell line (RWPE-1) or PCa cell
lines (androgen-dependent: LnCaP, 22Rv1 and VCaP or androgen-independent: PC3 and DU-145). Asterisks (*, p < 0.05) indicate differences in GOAT mRNA expression between
RWPE-1 and PCa cell lines, while dashes (##, p < 0.01; ###, p < 0.001) indicate differences in GOAT mRNA expression between normal prostate primary cell cultures and PCa cell
lines; B. GOAT protein secretion from 22Rv1 and PC3 cell lines (after 24 h-culture) determined by a specific ELISA kit (n ¼ 3). Asterisks (**, p < 0.01) indicate values that significantly
differ from 22Rv1; C. Regulation of GOAT mRNA expression after treatment (10 nM) with ghrelin or In1-ghrelin (In1-19) peptides in 22Rv1 (n ¼ 3); D. Regulation of GOAT mRNA
expression after treatment (10 nM) with ghrelin or In1-ghrelin (In1-19) peptides in PC3 (n ¼ 3); E. Regulation of GOAT mRNA expression after treatment (10 nM) with ghrelin or
In1-ghrelin (In1-19) peptides in normal prostate primary cell cultures, (n ¼ 3); F. Regulation of GOAT mRNA expression after treatment (10 nM) with IGF-1, Insulin or both (IGF-
1 þ Insulin; n � 3). Absolute mRNA levels of GOAT were determined by qPCR and adjusted by the expression levels of a housekeeping gene (ACTB). In expression experiments in
response to treatment, asterisks (*, p < 0.05; ***, p < 0.001) indicate values that significantly differ from controls. In all cases, data represent mean ± SEM of n � 3 independent
experiments.
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might become of particular relevance in PCa [14,15], for its
critical role in whole body metabolism [18], and its wide bodily
expression, which is finely regulated by changes in the metabolic
environment in human-tissues [22,24], and is clearly dysregu-
lated in different tumoral-tissue types (i.e. breast cancer)
compared with normal-tissues [24,27,28]. In line with this, we
demonstrate herein, for the first time, that GOAT expression is
markedly altered in PCa-samples (mRNA/protein) compared
with control prostate samples (normal/benign-tissues). Indeed,
ROC curve analysis indicated that GOAT mRNA could predict PCa
with a high sensitivity and specificity, suggesting that GOAT
levels might represent a novel, promising PCa biomarker. GOAT
protein expression showed a trend to be higher in PCa-tissues
with high Gleason-score and with metastasis, suggesting that
GOAT might be associated to malignant features in PCa. These
results partially differ from those reported in a previous study
where GOAT mRNA expression was not altered in PCa-tissues vs.
control-samples [25]; however, it is possible that such differ-
ences may be related to the type of control sample used (i.e.
healthy prostate-samples in our study vs. adjacent non-tumoral
region of adenocarcinomas of prostate used in the previous
study, which could be derived, at least in some cases, from
prostates harboring high-grade multifocal PCa), or to the
different primer set used to amplify GOAT in the qPCR, and/or to
the precise characteristic of the primers (length/product-size/
GC-content, etc.), which were not fully reported in that study.
Nevertheless, our current observations are also partially consis-
tent with this report [25] because both studies observed that
GOAT-enzyme is significantly overexpressed in several PCa cell-
lines vs. normal prostate cells, supporting the idea that GOAT
expression might be up-regulated in different stages of the PCa-
disease. Moreover, our data compares favorably with previous
reports indicating that GOAT is overexpressed in other tumoral-
tissues compared with normal-tissues, including human neuro-
endocrine [28], pituitary [27] and breast [24] tumors, suggesting
that GOAT overexpression could be a common cellular signature
across various endocrine-related tumors.

Interestingly, our data shows that GOAT is secreted by PCa-
cells, and that its expression might be directly associated with
its release, since GOAT secretion was significantly higher in the
culture medium of 22Rv1 vs. PC3-cells, in a manner consistent
with their expression levels (22Rv1 > PC3). Indeed, IHC-analysis
of GOAT in PCa-samples revealed that GOAT-staining at the
cytoplasmic level was granular, supporting the idea that this
enzyme could be associated to a secretory mechanism in PCa-
cells. Importantly, GOAT expression was found to be specifically
regulated by key endocrine/metabolic factors (i.e. In1-ghrelin,
but not native-ghrelin) in PCa-cells and in normal prostate cell-
cultures, suggesting that GOAT production could be functionally
linked to In1-ghrelin at the prostate level. In fact, this close
relationship between In1-ghrelin and GOAT expression has been
reported previously in other cancers [24,28]. Hence, since In1-
ghrelin is usually overexpressed in several endocrine-related
tumors [24,27,28], it is conceivable that In1-ghrelin, rather
than native-ghrelin, could be the main substrate of GOAT-
enzyme in these cancers, including PCa. Furthermore, other
key metabolic factors (i.e. insulin/IGF-1) also modulated GOAT
expression levels in PCa-cells, which might be associated with
the positive correlation found in this study between GOAT
expression levels and body-weight/BMI in PCa patients, a similar
association to that recently reported for circulating GOAT levels
in normal weight, anorexic and obese subjects [26].

Interestingly, GOAT expression was higher in PCa-patients with
dyslipidemia, and a greater proportion of PCa-patients with
dyslipidemia presented high-GOAT mRNA levels compared with
patients with low-GOAT expression levels. Altogether, our results
suggest the existence of a clear association between changes in
GOAT expression levels and alterations in metabolic conditions
in PCa-patients (i.e. body-weight/BMI/dyslipidemia), an idea that
is in accordance with previous studies demonstrating the link
between GOAT levels, lipid-metabolism and whole body-energy
balance [21,33,34].

The results obtained hitherto prompted us to questionwhether
GOAT levels could represent a suitable non-invasive biomarker for
PCa under normal and/or altered metabolic conditions (i.e. dia-
betes or dyslipidemia). In fact, plasmatic and urine GOAT levels
were higher in PCa-patients compared with healthy-control in-
dividuals. Moreover, in PCa-patients, plasma GOAT levels corre-
lated positively with circulating total-PSA (and negatively with
free-PSA) as well as with other cancer markers (ca_15-3/
cyfra_21-1) used to monitor other tumors (breast and lung cancer,
respectively), and which have been proposed as possible PCa
biomarkers in conjunction with PSA [35,36]. Therefore, although
we could not unequivocally determine a direct association be-
tween prostate and plasma/urine GOAT levels, due to the use of
different patient's cohorts, the results presented herein indicate
that prostate GOAT tissue-expression (mRNA/protein) and
plasma/urine GOAT protein levels are consistently and concomi-
tantly elevated in PCa samples. Indeed, ROC-curve analysis
demonstrated that GOAT mRNA levels could predict PCa with a
high sensitivity/specificity and, most importantly, that plasma and
urine GOAT levels also showed a good sensitivity (81.1% and 75%,
respectively) and specificity (67.8% and 61%, respectively) for PCa-
detection. Altogether, our data indicate that GOAT levels could
represent a promising novel diagnostic biomarker (invasive and
non-invasive) for PCa.

There is increasing evidence that the alterations in the
endocrine/metabolic milieu should be considered to appropri-
ately stratify the patients, as well as to evaluate the diagnostic,
prognostic and therapeutic potential of novel biomarkers in tu-
moral pathologies, including PCa. In this context, there is evi-
dence that circulating GOAT levels depend on the metabolic
environment (i.e. low levels in anorexic and high levels in obese-
patients [26]), and, most importantly, as shown here, that GOAT
expression is directly associated with dysregulations in
metabolic-conditions (i.e. BMI/dyslipidemia) in PCa, an observa-
tion that is in line with reports showing that altered endocrine/
metabolic status (i.e. diabetes/metabolic-syndrome/BMI, etc.) is
associated with the development/progression of several cancer-
types [8], including PCa [9]. Accordingly, we hypothesized that
plasmatic GOAT levels in PCa-patients would also be linked to the
metabolic status. Interestingly, we did find that GOAT plasma
levels were higher in individuals with alterations in glucose-
metabolism (i.e. diabetes and/or dyslipidemia), and were posi-
tively correlated with the percentage of glycated-hemoglobin, a
gold standard for monitoring glycemic control [37], in both
control and PCa-individuals. Actually, irrespective of the pres-
ence of PCa, high plasma GOAT levels were associated with a
higher proportion of diabetic and/or dyslipidemic patients, sug-
gesting that dysregulated glucose-metabolism (diabetes) might
be a confounding factor masking the potential of GOAT to
discriminate between control and PCa-patients when the whole
population (non-diabetic/diabetic-patients) is considered.
Therefore, we then sought to determine the potential of GOAT as
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PCa-biomarker after stratification of the patient cohort based on
the presence of diabetes. Remarkably, when only non-diabetic
individuals are considered, we discovered that plasmatic GOAT
levels are able to precisely discriminate the presence of PCa with
high sensitivity and specificity. These data clearly support the
notion that alterations in endocrine/metabolic milieu is a critical
factor to ensure an adequate patient stratification and to assess
the diagnostic, prognostic and therapeutic potential of novel
biomarkers in cancer, including PCa, as it is strongly suggested by
the data presented herein for plasma GOAT levels as a novel,
suitable complementary PCa diagnostic test, especially for non-
diabetic individuals.

A final point of interest relates to the presence of GOAT in urine.
The discovery that prostate cells are able to secrete GOAT, being this
secretion significantly higher in PCa cell-lines, we posited whether
there is a potential utility of GOAT urine levels for the diagnosis of
PCa, in that proteins in urine are mainly derived from epithelial
cells in the urinary-tract [38,39]. Indeed, changes in urine protein
can reflect a dysfunction of cells within the urinary-tract better
than those in blood samples, which are deeply influenced by ho-
meostatic mechanisms [38,39]. In support to this notion, our results
demonstrate that urine GOAT levels were also higher in PCa-
patients compared with controls, showing a high specificity and
sensitivity to diagnose PCa-patients. Thus, the data presented
herein indicate that GOAT might represent a novel non-invasive
PCa-biomarker in urine (wherein it is not severely influenced by
the metabolic status).

To the best of our knowledge, the present report provides the
first systematic analysis of the presence of the enzyme GOAT in
different types of human prostate samples (invasive and non-
invasive) obtained from patients with and without PCa, and in

relation to the clinical andmetabolic parameters of the patients (i.e.
presence of metastasis, diabetes, dyslipidemia, etc.). Altogether, our
results show, for the first time, that GOAT-enzyme can be directly
secreted by PCa-cells and is consistently overexpressed in samples
from PCa-patients (tissue/plasma/urine), where its expression is
drastically conditioned by the metabolic-status. Since GOAT
expression showed a high sensitivity/specificity in PCa-detection,
especially in non-diabetic patients, we propose that it might be
considered as a novel non-invasive PCa-biomarker alone or in
combination with other biomarkers to provide a better PCa-
diagnosis.
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