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Abstract CAIM (Class-Attribute Interdependence Maximization) is one of the state-

of-the-art algorithms for discretizing data for which classes are known. However, it

may take a long time when run on high-dimensional large-scale data, with large num-

ber of attributes and/or instances. This paper presents a solution to this problem by

introducing a GPU-based implementation of the CAIM algorithm that significantly

speeds up the discretization process on big complex data sets. The GPU-based im-

plementation is scalable to multiple GPU devices and enables the use of concurrent

kernels execution capabilities of modern GPUs. The CAIM GPU-based model is eval-

uated and compared with the original CAIM using single and multi-threaded parallel

configurations on 40 data sets with different characteristics. The results show great

speedup, up to 139 times faster using 4 GPUs, which makes discretization of big

data efficient and manageable. For example, discretization time of one big data set is

reduced from 2 hours to less than 2 minutes.

Keywords Supervised discretization · parallel implementation of CAIM algorithm ·
GPU · CUDA

A. Cano and S. Ventura are with the Department of Computer Science and Numerical Analysis

University of Cordoba, Spain.

S. Ventura is also with the Information Systems Department. Faculty of Computing and Information

Technology. King Abdulaziz University. 21589 Jeddah (Saudi Arabia).

E-mail: {acano,sventura}@uco.es

K. J. Cios is with the Department of Computer Science, Virginia Commonwealth University

Richmond, VA, USA, and the IITiS Polish Academy of Sciences, Poland.

E-mail: kcios@vcu.edu



2 Alberto Cano et al.

1 Introduction

Discretization is a data preprocessing technique which transforms continuous at-

tributes into discrete values by dividing the continuous attribute into intervals, or

bins [13,18,47]. CAIM (Class-Attribute Interdependence Maximization) [28] is a

very popular top-down discretization algorithm that generates good discretization

schemes for data for which the classes are known (supervised discretization). How-

ever, its performance becomes slow when the number of attributes and/or the num-

ber of distinct continuous data values increase, restricting its application to big data,

meaning that they are either highly dimensional or have large number of instances.

The problem of learning from such data is a challenging task that attracted attention

of academia and industry [3,38]. Therefore, there is a need for new parallel solutions

that perform within a reasonable time.

Multi-core parallel implementations have been used to speed up data mining al-

gorithms over the last decade or so [7]. Increasing attention was focused on Graphic

Processing Units (GPUs). GPUs are devices with multi-core architectures and mas-

sive parallel processor units, which provide fast parallel hardware solutions for a frac-

tion of the cost of using traditional systems. Actually, since the introduction of the

Computer Unified Device Architecture (CUDA) [34], researchers all over the world

harnessed the power of the GPUs for general purpose GPU computing (GPGPU) [6,

12,35]. The use of GPGPU has been studied for speeding up algorithms within the

framework of data mining [8,9,24,26], achieving high performance accompanied by

good results. Owing to the great advantages provided by GPGPU, we would like to

explore the performance of a GPU-based parallelization of the CAIM algorithm.

This paper presents a GPU-based implementation of the CAIM algorithm, which

speeds up the discretization process and allows for handling big data. The GPU-

based model is applicable to multiple GPU devices, enhancing its scalability to more

complex and high-dimensional data sets. The GPU-based model takes advantage of

the recent capabilities of Fermi and Kepler NVIDIA GPU architectures to improve

efficiency of parallel computation by means of concurrent kernels execution. Exper-

iments were carried out on 40 data sets to evaluate the run-time performance of the

original CAIM algorithm (on a single-threaded CPU) vs. the multi-threaded CPU-

based CAIM or vs. the GPU-based CAIM. The data sets had different number of

instances, attributes, and classes, representing a varied collection of real-world prob-

lems. Experiments were performed having in mind these two objectives. Namely,

measuring the speedup and analyzing the scalability to big data, regarding to the data

set complexity. Experimental results show that current multi-core CPUs can speed

up the discretization process up to 4 times, whereas great speedups up to 139 are ob-

tained when using 4 GPUs. Results show good scalability of the GPU-based model

to multiple GPU devices, as well as to big high-dimensional data sets, which is a sig-

nificant advantage over the original CAIM. Specifically, the run-time on one of the

most complex data sets evaluated was reduced from 2 hours to less than 2 minutes.

The remainder of this paper is organized as follows. The next section presents

related work about GPU implementations of data mining techniques. Section 3 intro-

duces the CAIM discretization scheme. Section 4 describes the GPU discretization
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model. Section 5 presents the results of the experimental study. Finally, Section 6

presents some concluding remarks.

2 Background

Data discretization is a challenging task that comprises a vast literature background,

which has recently been reviewed by Garcı́a et al. [18] using both theoretical and em-

pirical perspectives. The foundations of the CAIM algorithm [28] have been consid-

ered in multiple research articles to propose new discretization methods. Specifically,

Sriwanna et al. [43] proposed an enhanced CAIM discretization which addressed

a new stopping criterion which eventually improved the accuracy. Li et al. [29] pro-

posed an improvement of the CAIM algorithm based on the class-attribute coherence.

The increasing size of data sets increase the runtime of the data mining algo-

rithms, and specifically, the data discretization methods. The use of parallel archi-

tectures has been a traditional approach to overcome the scalability of algorithms to

large data sets. Mining very large databases with parallel processing addresses the

problem of large-scale data mining [17,49].

Over the last few years, the use of GPUs to speed up computationally intensive

algorithms has become a major niche for researchers [35]. Proof of this trend is the

high number of research works about the use of GPU computing applied to general

purpose computation [33]. GPUs demonstrated to achieve high performance on solv-

ing complex problems on physics [5], medicine [40,41,44], and computer science [6,

12,21]. Specifically, we focus on GPU implementations of data mining [24] and ma-

chine learning [45] algorithms. The use of GPU computing is justified due to the

increasing size of databases, which requires parallel solutions capable of handling

such data in reasonable time.

Classification and clustering are two common tasks in data mining which have

been accelerated using GPU environments [9,46,50]. There are many works propos-

ing GPU parallel implementation of algorithms on such tasks. However, there are

few works addressing parallel implementations of discretization methods and none

of them are on GPUs. Therefore, we think that it would be very interesting to analyze

the performance of the GPU computing on speeding up the data discretization task.

Cerquides and Lopez [11] proposed a discretization method based on a distance

metric between partitions that can be easily implemented in parallel. This similarity

based method was very effective and efficient in very large data sets. Yulong et al. [48]

proposed an efficient two-step parallel discretization algorithm by dynamic cluster-

ing. The algorithm first creates a decision table using a dynamic clustering algorithm,

and then discretizes using cut importance breakpoints.

Parthasarathy and Ramakrishnan [36] proposed a parallel and incremental dis-

cretization algorithm for stream data, which dynamically maintains the required in-

formation even in the presence of data updates without re-executing the algorithm on

the entire data set. Zhao et al. [51] presented a parallel discretization algorithm based

on the Z-score idea of mathematical statistics. This algorithm reflected the dynamic

semantic distance for different numerical attributes and significantly enhanced the

precision rate and recall rate of data prediction algorithms.
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Table 1: Quanta Matrix for Attribute F and Discretization Scheme D.

Class
Interval

Class Total
[f1,f2) ... [fk-1,fk) ... [fn-1,fn]

C1 q11 ... q1k ... q1n M1+

: : ... : ... : :

Ci qi1 ... qik ... qin Mi+

: : ... : ... : :

CS qS1 ... qSk ... qSn MS+

Interval Total M+1 ... M+k ... M+n M

3 CAIM discretization

The CAIM algorithm defines a discretization scheme D on every continuous attribute

F of a data set consisting of M instances, where each instance belongs to only one of

the S classes (supervised discretization). Scheme D discretizes a continuous attribute

F into n discrete intervals bounded by the pairs of numbers arranged in ascending

order:

D : {[f 1, f 2), [f 2, f 3), ..., [f n-1, f n]} (1)

where f1 is the minimal value and fn is the maximal value of the continuous attribute

F .

The quanta matrix shown in Table 1, represents a two-dimensional frequency ma-

trix containing the number of instances that belong to each discretization interval and

data class, where qik is the total number of continuous values belonging to the i-th

class that are within interval [fk−1, fk). Mi+ is the total number of instances belong-

ing to the i-th class and M+k is the total number of continuous values of attribute F
that are within the interval [fk−1, fk), for i = 1, 2, ..., S and k = 1, 2, ..., n.

The Class-Attribute Interdependency Maximization (CAIM) criterion measures

the dependency between the class variable C and the discretization scheme D for

attribute F as follows:

CAIM(C,D|F ) =
1

n
·

n∑

k=1

maxk
2

M+k

(2)

where n is the number of intervals, k iterates through all intervals, maxk is the max-

imum value among all qik values (maximum value within the k-th column of the

quanta matrix), M+k is the total number of continuous values of attribute F that are

within the interval [fk−1, fk). The CAIM criterion is a heuristic measure that is used

to quantify the interdependence between classes and the discretized attribute. For de-

tails about the CAIM criterion and the CAIM algorithm, the reader is referred to the

original CAIM article [28].
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Algorithm 1 CAIM algorithm

Input: Data of M instances, S classes, and F attributes

1: for every Fi do

2: Sort all distinct values of Fi in ascending order.

3: Find the minimum fmin, maximum fmax values of Fi.

4: Initialize all possible interval boundaries B with fmin, fmax, and all midpoints of adjacent pairs

in the set.

5: Set discretization scheme D = {[fmin ,fmax]}.
6: Initialize iter = 1.

7: CAIMD← CAIM value of D.

8: Evaluate the CAIM value of the tentative schemes using D and the points from B.

9: CAIMmax← Select the highest valued midpoint.

10: if (CAIMmax > CAIMD or iter < S) then

11: Update D with the midpoint from CAIMmax.

12: iter = iter + 1 and go to step 7.

13: else

14: return Discretization scheme D for attribute Fi.

15: end if

16: end for

Output: Discretization scheme for all attributes

3.1 The CAIM algorithm

The CAIM algorithm uses a greedy approach searching for an approximate optimal

value of the CAIM criterion by finding locally maximum values of the criterion. It

consists of these steps:

– Initialization of the interval boundaries and creation of the discretization scheme

D = {[f1,fn]}.

– Consecutive additions of new boundaries that result in the locally highest value

of the CAIM criterion.

The pseudocode of the CAIM discretization algorithm is repeated here after [28],

and shown as Algorithm 1. The algorithm begins with a single interval and splits

it iteratively. From all possible division points, which are evaluated in line 8, the

algorithm chooses the division boundary that provides the highest value of the CAIM

criterion. The CAIM algorithm assumes that every discretized attribute needs at least

a number of intervals equal to the number of classes.

The CAIM uses a trade-off between finding the optimal discretization scheme

and having a reasonable computational cost. In spite of the greedy behavior of the

algorithm, the discretization schemes that are generated have small number of dis-

cretization intervals and high class-attribute interdependency. For the data sets used

in the experimental section, the CAIM algorithm generates discretization schemes

with the (possibly) smallest number of intervals that assures low-computational cost.

For details about the CAIM algorithm the reader is referred to the CAIM article [28].
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4 CAIM discretization on GPUs

This section presents the GPU implementation of the CAIM algorithm based on the

analysis of the steps of the algorithm to propose the most efficient way of addressing

its computations. The GPU-based model comprises three different levels of coarse

and fine-grained parallelism which are described in the following sections. First, we

introduce the CUDA programming model and some definitions. Second, parallel sort-

ing of the continuous attribute values is discussed. Third, parallel computation of the

CAIM values for each tentative interval is explained and the new GPU kernel imple-

mentation is presented. Fourth, the extension of the GPU model to multiple GPU de-

vices is described. Finally, execution of concurrent kernels on the GPU is presented.

4.1 CUDA programming model

CUDA is a parallel computing architecture developed by NVIDIA that allows pro-

grammers to take advantage of the parallel computing capacity of NVIDIA GPUs.

The CUDA programming model executes kernels as batches of parallel threads [34].

These kernels run thousands to millions of lightweight GPU threads per each kernel

call.

CUDA’s threads are organized into thread blocks in the form of a grid. Thread

blocks are executed on the GPU streaming multiprocessors. A stream multiproces-

sor can perform zero-overhead scheduling to interleave warps (a warp is a group of

threads that execute together) and hide the overhead of long-latency arithmetic and

memory operations. Current Fermi and Kepler NVIDIA GPU’s architectures allow

up to 16 kernels to be executed concurrently as long as there are enough multiproces-

sors available. Moreover, asynchronous data transfers can be performed concurrently

with the kernel executions. These two features allow for speeding up execution of an

algorithm as compared with sequential kernel pipeline and synchronous data trans-

fers.

There exist some guidelines for improving performance of an algorithm on a

GPU [19,34]. According to the NVIDIA CUDA programming guide and the best

practices guide, the single most important performance consideration in program-

ming for CUDA is the coalescing of global memory accesses. Global memory loads

and stores by threads of a warp are coalesced by the device into as few as one trans-

action when certain access requirements are met. Global memory resides in device

memory and is accessed via 32, 64, or 128-byte segment memory transactions. It is

better to perform fewer but larger memory transactions. When a warp executes an

instruction which accesses global memory, it coalesces the memory accesses of the

threads within the warp into one or more of memory transactions depending on the

size of the word accessed by each thread and distribution of the memory addresses

across the threads. In general, the more transactions are necessary the more unused

words are transferred on the N -byte segment in addition to the words accessed by the

threads, reducing the instruction throughput accordingly.

To achieve maximum performance and memory throughput memory accesses

must be coalesced to global memory by following optimal memory access patterns,
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using data types that meet the size and alignment requirements, or padding data [34].

For these accesses to be fully coalesced, both the width of the thread block and the

width of memory arrays must be a multiple of the warp size. We considered all these

aspects when designing our GPU CAIM implementation, kernel implementations,

data types, and memory alignments.

4.2 Parallel sorting of attribute values

The CAIM algorithm sorts the continuous attribute values in ascending order (Line

2 of Algorithm 1). Sorting is a building block of fundamental importance and is one

of the most widely studied algorithmic problems [14,27]. The original CAIM imple-

mentation uses a tuned version of the quicksort algorithm [4,22]. This algorithm has

O(m log m) performance, where m is the number of distinct values of a discretized

attribute, but in the worst case its performance may degrade to O(m2). Therefore,

when the number of distinct continuous values and the number of attributes increase,

this step becomes very slow.

The importance of sorting in many areas dealing with big data has lead to the

design of efficient sorting algorithms for a variety of parallel architectures [1]. Many

studies focused on GPU parallel implementation of sorting algorithms [15,25,39,42].

Examples are bitonic merge [37] and quicksort [10]. The highest performance O(m)

has a radix sort sorting algorithm on GPUs [30,32], which is publicly available in the

Thrust library [23]. This highly-tuned radix sort algorithm [31] is considerably faster

than alternative comparison-based sorting algorithms such as merge sort [39]. Thrust

is a CUDA library of parallel algorithms with an interface resembling the C++ Stan-

dard Template Library (STL). The CAIM algorithm on GPUs also uses the radix sort

to sort the continuous attribute values. It does not require any user-specified param-

eters or configuration settings, as the Thrust automatically selects them according to

the sorting problem length. Thrust fast implementation of radix sort allows for sort-

ing arrays with millions of values. It works by iterating over the d-bit digit-places of

the values from the least-significant to the most-significant. For each digit-place, the

method performs a stable distribution sort of the values based upon their digit at that

digit-place. Given an m-element sequence of b-bit values, a radix sort of these values

will require b/d iterations of a distribution sort over all m values [32].

4.3 Parallel computation of CAIM values

The CAIM algorithm evaluates the CAIM value for all tentative discretization schemes

resulting from all possible division points of the attribute. This process becomes very

slow when the number of attributes or the number of distinct continuous values in-

creases. Fortunately, the computation of the CAIM value for a scheme is an inde-

pendent operation from the computation of the rest of CAIM values. Therefore, the

CAIM value for each tentative discretization scheme can be computed in parallel and

concurrently.

The approach followed here to solve the parallel computation of the CAIM val-

ues on GPUs is one-dimensional. GPU threads are organized in an array of parallel
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Thread 1

...

Th. Block 1

int tid = blockDim.x * blockIdx.x + threadIdx.x;

Th. Block 2 Th. Block 3 Th. Block n-1

Thread tid Thread m-1

Fig. 1: CUDA grid of thread blocks.

threads, where each thread is responsible of evaluating the CAIM value of a single

discretization scheme. Therefore, given m distinct continues values for a given at-

tribute, the number of tentative discretization schemes to evaluate is m − 1, which

represents the number of parallel threads to compute.

Threads are grouped into thread blocks whose dimension is recommended to be a

multiple of the warp size (a warp is a group of threads that execute together and whose

number depends on the compute capability of the GPUs), usually being 128, 192,

256, ..., up to 1024 threads per block. Choosing an appropriate number is important

as it influences scalability of the model on future GPU devices that may have larger

number of processors. NVIDIA recommends running at least twice as many thread

blocks as the number of multiprocessors in the GPU, and provides an occupancy

calculator which reports the GPU occupancy regarding the kernel requirements and

the number of threads per block [34]. This spreadsheet reported that 256 threads per

block is the best choice for our problem since it achieves full occupancy and provides

more active thread blocks per multiprocessor. This way, it is possible to hide latency

arising from register dependencies, and therefore, a wider range of possibilities are

given to the scheduler to issue concurrent blocks to the multiprocessors. Moreover,

while the GPU occupancy (usage of GPU resources) is maximal, the smaller number

of threads per block the higher the number of blocks. This provides better scalability

to future GPU devices which will have many more processors capable of handling

more active blocks concurrently.

Threads and blocks within the kernel are identified by the built-in CUDA vari-

ables threadIdx, blockIdx and blockDim, which specify the grid and block dimensions

and the block and thread indexes. Figure 1 shows the one-dimensional representation

for the array of threads grouped into thread blocks, along with the unequivocal iden-

tification of a thread using the built-in variables. This one-dimensional representation

limits the maximum number of distinct continuous values to 224, i.e., more than 16

million values per attribute, which enables handling all the benchmark problems eval-

uated so far. If higher number of values were required, the one-dimensional approach

would be extended to the other two CUDA dimensions, forming a 3D grid of threads.

Code 1 shows the CAIM computation kernel on GPUs. It receives as input argu-

ments the quanta matrix (described in Table 1), the current discretization scheme, and

the number of current intervals. It computes the CAIM values for the tentative dis-

cretization schemes using Equation 2 and outputs their values as a float array. Finally,

the discretization point with the highest CAIM value is selected, the discretization is

performed, and the next iteration of the CAIM algorithm is run.
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Code 1 CAIM computation kernel

// Kernel function

__global__ void computeCAIM(float* CAIMValues, int* quantaMatrix,

int* discretizationScheme, int numberIntervals)

{

// Thread identifier

int tid = blockDim.x * blockIdx.x + threadIdx.x;

float CAIMValue = 0.0f;

for(int i = 0; i < numberIntervals; i++)

{

int leftValueIdx = discretizationScheme[i];

int rightValueIdx = discretizationScheme[i+1];

if(leftValueIdx <= tid && tid < rightValueIdx)

{

// The current value splits the interval

CAIMValue += CAIM(leftValueIdx, tid, quantaMatrix);

CAIMValue += CAIM(tid , rightValueIdx, quantaMatrix);

}

else

CAIMValue += CAIM(leftValueIdx, rightValueIdx, quantaMatrix);

}

// Write the CAIM value in global memory

CAIMValues[tid] = CAIMValue / numberIntervals;

}

// Device function

__device__ float CAIM(int leftValueIdx, int rightValueIdx, int* quantaMatrix)

{

int columnSum [numberClasses] = {0}; // (M_{+k})

// Calculate the sum of all rows for each column of the quanta matrix

for(int i = leftValueIdx; i < rightValueIdx; i++)

for(int j = 0; j < numberClasses; j++)

columnSum[j] += quantaMatrix[i*numberClasses + j];

int columnMax = 0; // (Max_k)

int sumTotal = 0; // (M)

// Calculate the total sum of the quanta matrix and

// the max value for each column

for(int j = 0; j < numberClasses; j++)

{

sumTotal += columnSum[j];

if(columnSum[j] > columnMax)

columnMax = columnSum[j];

}

// Compute CAIM value

float CAIM = columnMax / (float) sumTotal;

CAIM = CAIM * columnMax;

return CAIM;

}

//// Host call to kernel function

// Grid and block size

dim3 threadsCAIMValues(256);

dim3 gridCAIMValues((int) ceil(numbermidPoints / 256.0f));

// Copy tentative intervals to the GPU memory

cudaMemcpy(d_intervals, h_intervals, numberIntervals * sizeof(int), 1);

// Kernel computation

computeCAIM <<< gridCAIMValues, threadsCAIMValues >>>

(d_caimValues, d_quantaMatrix, d_intervals, numberIntervals);

// Copy CAIM results back to host memory

cudaMemcpy(h_caimValues, d_caimValues, numbermidPoints * sizeof(float), 2);
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GPU 3

Discretization

Attribute 3
Attribute 7

GPU 4

Discretization

Attribute 4
Attribute 8

GPU 1

Discretization

Attribute 1
Attribute 5
Attribute 9

GPU 2

Discretization

Attribute 2

Attribute 6

Attribute k-1 Attribute k

Data (k attributes)

Fig. 2: Distribution of discretization on multiple GPUs.

The selection of the highest valued discretization point is again a parallelizable

procedure since it consists on finding the largest value in an array. Thrust library

provides the max element() function which finds the largest value in an array and has

O(m) complexity.

4.4 Scalability to multiple GPU devices

As mentioned above, the computation of the CAIM values is independent for all the

tentative discretization schemes of the attribute. This constitutes the first level of fine-

grained parallelism. Moreover, the discretization process for each attribute is also an

independent operation in the CAIM algorithm. Therefore, the second level of coarse-

grained parallelism can be constituted for discretization of each attribute, which can

also be done in parallel and concurrently. The way to take advantage of multiple

GPUs and allow the scalability of the model to high-dimensional data sets is to dis-

tribute the discretization processes of the attributes into multiple GPU devices. This

approach is scalable from a single GPU to as many GPUs as the number of attributes.

Figure 2 shows the distribution of the discretization process of k attributes among

4 GPUs. The discretization processes within a GPU may overlap their executions.

The same approach could be followed to distribute the discretization process among

a cluster of GPUs, which would enable handling data sets with very many attributes.

4.5 Concurrent Kernels

Since introduction of Fermi and Kepler NVIDIA GPU architectures, applications

have the ability to launch several kernels concurrently. This provides a mechanism

by which applications can fill the device with several smaller kernel launches simul-

taneously as opposed to a single larger one.

Concurrent kernels execution constitutes the third level of the coarse-grained

parallelism in our GPU model. Concurrent kernels are issued by means of CUDA

streams, which allow asynchronous data transfers between host and device mem-

ory, overlapping data transfers and kernel executions [20]. In this way, discretization

process for different attributes on the same GPU may overlap their executions, thus

improving the efficiency of the implementation. Figure 3 shows the timeline for the
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Fig. 3: Serial and concurrent kernels execution timeline.

serial execution of kernels on one and two GPUs, as well as the concurrent exe-

cution of kernels on two GPUs. The serial execution on a single GPU sequences

memory transactions and kernel executions. Typically, it performs memory transfers

from host to device (HtoD) to copy the data to the GPU memory. Then, the kernel

is executed, and results are copied back to the host memory using device to host

(DtoH) memory transfers. Having more than one GPU enables distributing kernels

computation to multiple devices. Finally, the concurrent kernels execution capability

of modern GPUs allows for distributing computation into multiple streams within the

GPU. Therefore, the combination of concurrent kernels and distribution into multiple

GPUs constitutes an efficient and scalable framework for parallel computation. How-

ever, it is also important to highlight that for small data sets, the size of the kernels

are small, and therefore the GPU computation may be inefficient as compared to the

CPU.

5 Experimental studies

This section presents the experiments and discusses the results. First, the hardware

configuration is described. Second, the data problem is presented. Finally, the exper-

iments and their results are discussed. Detailed information about the data sets, the

algorithm’s source code and experiments is provided as additional material at this

website1.

5.1 Hardware configuration

The experiments were run on a machine equipped with an Intel Core i7 quad-core

processor running at 3.0 GHz and 12 GB of DDR3-1600 host memory. The video

cards used were two dual-GPU NVIDIA GTX 690 equipped with 4 GB of GDDR5

1The data sets description, the algorithm’s source code, the experimental settings and results are fully

described and publicly available to facilitate the replicability of the experiments and future comparisons at

the website: http://www.uco.es/grupos/kdis/kdiswiki/CAIM-GPU
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video RAM per dual-GPU card. Each GTX 690 video card had two GPUs with 1,536

CUDA cores. In total there were 4 GPUs and 6,144 CUDA cores at default clock

speeds. The host operating system was GNU/Linux Ubuntu 12.10 64 bit along with

CUDA runtime 5.0, NVIDIA drivers 310.32, and GCC compiler 4.6.3 (O2 optimiza-

tion level).

5.2 Data sets

The performance of the GPU-based CAIM implementation was evaluated on 40 data

sets from the UCI machine learning [16] and the KEEL data sets repositories [2].

These data sets varied in terms of degrees of complexity. The number of instances

ranged from 150 instances to about half million instances, while the number of dis-

tinct continuous values per attribute varied from 27 to 6,754. The number of attributes

ranged from 4 to 649 and the number of classes varied from 2 to 28. The wide variety

of data sets allowed us to evaluate the model performance on real-world problems of

both low and high complexity.

5.3 Results

This section presents the results of the different experiments carried out. The speedup

is measured and analyzed over 40 data sets. The speedup scalability is then analyzed

in respect to the number of distinct values and the number of GPU devices used.

Finally, the results of efficiency improvement using concurrent kernels are presented.

5.3.1 Speedup analysis

Table 2 shows information about the data sets (numbers of instances, attributes,

classes, and the average number of distinct continuous values per attribute), the ex-

ecution times and the speedups of the CPU and GPU parallel implementations ver-

sus the original single-threaded CAIM algorithm. The speedup using 4 CPU threads

from the quad-core processor is up to 4 times faster than the original CAIM. How-

ever, overhead introduced due to threads creation reduces the final speedup to values

around 3 times faster than original CAIM.

The GPU model obtained very good speedups up to 139 times faster than the orig-

inal CAIM when using 4 GPUs (twonorm data set). Speedups are generally higher as

the number of attributes and the number of distinct continuous values of the attributes

increase. For instance, the KDD99 data set has 41 attributes (only 26 are numeric),

but the most important fact is that even though the number of instances is about

half a million, the number of distinct continuous values is significantly lower (many

real values are repeated). Therefore, the number of tentative discretization schemes

on which to compute the CAIM value in parallel is relatively low. However, for the

twonorm data set with significantly lower number of instances but all of them being

different continuous values, the number of tentative schemes to be evaluated in paral-

lel is significantly higher than for the KDD99 data. On the other hand, there are some
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Table 2: Data sets execution time and speedup as compared with CAIM.

Data set Execution time (ms) Speedup

Name #Inst #Att #C #DV 1 CPU 4 CPUs 1 GPU 2 GPUs 4 GPUs 4 CPUs 1 GPU 2 GPUs 4 GPUs

Abalone 4174 8 28 756 17716 7391 1227 711 493 2.40 14.44 24.92 35.94

Arrhythmia 452 279 16 54 2246 657 2041 1013 561 3.42 1.10 2.22 4.00

Eye-mvmnts 10936 25 3 2434 5558 2122 215 146 110 2.62 25.85 38.07 50.53

Glass 214 9 7 101 37 11 37 22 12 3.36 1.00 1.68 3.08

Heart 270 13 2 27 8 5 9 8 7 1.60 0.89 1.00 1.14

Ionosphere 351 33 2 220 85 37 44 27 25 2.30 1.93 3.15 3.40

Iris 150 4 3 31 4 3 5 4 3 1.33 0.80 1.00 1.33

Isolet 7797 617 26 3232 7239654 2107783 421029 220416 110673 3.43 17.20 32.85 65.41

JM1 10885 21 2 1354 1166 419 53 36 31 2.78 22.00 32.39 37.61

KDD09-app 50000 204 2 2307 69206 22061 1404 1162 868 3.14 49.29 59.56 79.73

KDD09-chu 50000 204 2 2307 69459 21865 1420 1150 880 3.18 48.91 60.40 78.93

KDD09-ups 50000 204 2 2307 69597 22699 1411 1141 833 3.07 49.32 61.00 83.55

KDD99 494020 41 23 471 137417 79309 7267 5879 5637 1.73 18.91 23.37 24.38

Madelon 2600 500 2 140 1115 266 642 364 421 4.19 1.74 3.06 2.65

MC1 9466 38 2 193 244 74 63 38 41 3.30 3.87 6.42 5.95

Mfeat-factors 2000 216 10 215 3855 1071 1719 847 452 3.60 2.24 4.55 8.53

Mfeat-fourier 2000 76 10 1994 39851 10822 3583 1807 911 3.68 11.12 22.05 43.74

Mfeat-karhun 2000 64 10 1994 33138 8781 3020 1518 773 3.77 10.97 21.83 42.87

Mfeat-morph 2000 7 10 785 1231 499 136 91 55 2.47 9.05 13.53 22.38

Mfeat-zernike 2000 47 10 1994 24491 6469 2210 1133 578 3.79 11.08 21.62 42.37

Multiple 2000 649 10 657 96585 26695 11203 5661 2998 3.62 8.62 17.06 32.22

PC2 5589 36 2 165 120 50 51 33 36 2.40 2.35 3.64 3.33

Penbased 10992 16 10 100 172 73 99 56 35 2.36 1.74 3.07 4.91

Pendigits 10992 16 10 100 169 57 94 52 32 2.96 1.80 3.25 5.28

Pima 768 8 2 157 22 13 14 11 7 1.69 1.57 2.00 3.14

Ring 7400 20 2 3756 2154 593 79 49 38 3.63 27.27 43.96 56.68

Satimage 6435 36 7 78 164 51 126 75 47 3.22 1.30 2.19 3.49

Segment 2310 19 7 786 1315 501 219 128 86 2.62 6.00 10.27 15.29

Sensor-disc 2212 13 3 1104 258 140 51 35 24 1.84 5.06 7.37 10.75

Sonar 208 60 2 137 96 47 76 45 30 2.04 1.26 2.13 3.20

Spambase 4597 57 2 265 205 94 83 51 45 2.18 2.47 4.02 4.56

Sylva-agno 14395 41 2 424 651 242 75 49 28 2.69 8.68 13.29 23.25

Sylva-prior 14395 21 2 414 318 140 38 28 20 2.27 8.37 11.36 15.90

Texture 5500 40 11 989 7470 2060 1185 596 312 3.63 6.30 12.53 23.94

Thyroid 7200 21 3 67 43 22 18 15 15 1.95 2.39 2.87 2.87

Twonorm 7400 20 2 6754 5169 1397 102 55 37 3.70 50.68 93.98 139.70

Vowel 990 13 11 623 1215 378 270 138 82 3.21 4.50 8.80 14.82

Waveform 5000 40 3 625 538 181 127 74 63 2.97 4.24 7.27 8.54

Winequalityr 1599 11 11 132 108 64 89 51 32 1.69 1.21 2.12 3.38

Winequalityw 4898 11 11 210 269 180 119 74 52 1.49 2.26 3.64 5.17

data sets such as heart or iris in which the GPU computation is inefficient. This is due

to the small size of these data sets, having very small number of distinct values. Un-

der such circumstances, the GPU parallelization is not worthy since the data transfer

times between host and device memory are more expensive than the compute time
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Fig. 4: Speedup vs. number of distinct values.

saved. Therefore, it is recommended to stay on the CPU when handling very small

data sets with low small number of distinct values.

However, it is also important to highlight that the discretization process finishes

only when the computation for all the attributes is finished. Therefore, when using

multiple GPUs (each one discretizing a subset of the attributes set) the CPU main

thread must wait until all the GPU devices have finished their work. It may happen

that one GPU finishes sooner than the others, but all have to wait until the latest’

work is done. The number of distinct values for each attribute is different (and not

known a priori). Thus, one GPU may be assigned to discretize attributes having high

number of distinct values, whereas other GPUs computing other attributes having

smaller number of distinct values. Under such circumstances, synchronization be-

tween GPUs may introduce different delays depending on the attributes distribution

and the number of GPUs available.

Therefore, the more concurrent threads are run for the twonorm data set the better

speedups are obtained. In other words, in spite of the high number of instances of the

KDD99 data set the number of different continuous values is small so that it does not

provide full occupancy to the GPU cores. Figure 4 shows the relation between the

number of distinct continuous values and the speedup achieved when using 4 GPUs

and the 40 data sets (each dot represent the speedup on a data set). It is easy to notice

the increase of the speedup as the number of distinct values becomes higher, and it

can be observed a linear regression line that highlights that.

It is also interesting to point out the limits of the GPU implementation regarding

those data sets in which the number of values is small. For these data sets, such as

heart, iris, or glass, the small number of values does not allow for a massive parallel

computation of discretization schemes. Therefore, even though there is a lower exe-

cution time of the CAIM on GPU, the overhead introduced due to memory transfers

between the host and device memory makes the total time similar or even slightly

higher than using the original CPU algorithm. Thus, it is not recommended to run

discretization on very small data sets on GPU since the data transfer times may be

higher than the saved time due to GPU implementation. However, it is only a small
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drawback since the CAIM algorithm run on CPU on small data sets is very fast and

therefore there is no need for yet faster execution. For big and high-dimensional data

sets however, there is a strong need for GPU parallelization. For example, CAIM on

GPUs reduced execution time from two hours to less than two minutes for the isolet

data set.

5.3.2 Scalability analysis

Experimental results also indicate good scalability of the GPU implementation using

one, two and four GPU devices. Note that in those data sets which stress the GPUs

enough (run high enough number of threads to utilize the GPUs computing capabil-

ities) by distributing computation of the discretization process into multiple devices

significantly reduces the execution time. This behavior can be observed in data sets

such as isolet, twonorm, or ring. Moreover, it is achieved not only in the best per-

formance scenarios, but on the regular ones, in which doubling the number of GPU

devices reduces the execution time almost by half. Figure 5 shows the speedup scala-

bility (overall trendline among all data sets) using one, two, and four GPUs in respect

to the increasing number of distinct values of the data sets. This way we outline the

overall scalability of our model to multiple GPUs, which is promising for further ex-

tensions to larger GPU clusters with higher number of devices. The current model is

limited to take advantage of as many GPU devices as the number of attributes, and

also the maximum number of distinct values of an attribute is limited to the memory

capacity of the GPU. Nevertheless, modern GPUs are plenty of memory and they

can handle dozens of millions of distinct values. If the data set had higher number of

values, the data would be split into multiple GPUs.
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Fig. 5: GPUs scalability.
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5.3.3 Concurrent kernels performance

This section presents the performance improvements when using concurrent kernels

execution. Figures 6 and 7 show performance profiling of the serial and concurrent

kernels execution on the GPUs, obtained from the NVIDIA Visual Profiler developer

tool (each kernel represents the CAIM computation of a different attribute and it is

drawn in different color). The data set evaluated were the twonorm, with 2 classes and

20 attributes to discretize using 4 GPUs. In this experiment each GPU is responsible

for discretization of 5 of the 20 attributes. Since there are two classes, the kernels

are executed two times according to the CAIM algorithm specification, as described

in Section 3.1. Thus, the number of kernel executions per GPU is 10, and they are

named from K1 to K10.

These figures show the timeline for each GPU, including the host to device (HtoD)

memory transfers, device to host (DtoH) memory transfers, and kernel executions. In

Figure 6, the execution of the kernels for the 5 respective attributes is serialized, i.e,

one kernel runs only after the previous one finished. In Figure 7, the execution of

the kernels is concurrent (overlapped in time). The maximum number of concurrent

kernels for the Kepler GPU architecture used in the experiments is 16. Thus, distribut-

ing more than 16 discretization processes to a GPU would result in the execution of

multiple batches of concurrent kernels. Nevertheless, this process is completely trans-

parent to users and developers and NVIDIA reported that the maximum number of

concurrent kernels will increase to 32 in the new GPU architectures [34], which guar-

antees good scalability on these future GPUs. The timelines from these figures show

the expected behavior of the GPU execution as shown in the theoretical timeline in

Figure 3.

It is interesting to look at the timeline prior to execution of the first kernel (K1).

Figure 7 shows the execution of 5 small kernels within the same stream. These kernels

belong to the sort procedure from the CUDA Thrust library, which sorts attribute val-

ues in the ascending order, as required by the CAIM algorithm. However, the Thrust

library does not provide asynchronous execution for multiple streams. Therefore, the

kernels which sort values are serialized in the main stream.

Figure 8 shows the execution time of the CAIM computation kernel in order to an-

alyze the efficiency of the concurrent kernels execution versus the serial one. Notice

the greater efficiency of the concurrent kernels allowing of speeding up the execution

of the kernel about 4 times, which is expected as seen in the timeline from Figure 7.

Figure 8 also demonstrates the O(m) performance of the GPU CAIM computation

kernel, which increases the execution time linearly as the number of distinct values

increases.
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6 Concluding Remarks

In this paper we presented a GPU-based parallel implementation of the CAIM dis-

cretization algorithm. The implementation was based on the NVIDIA CUDA pro-

gramming model and allowed for implementing thousands to millions threads to

speed up sorting continuous attributes values, the CAIM criterion, and the discretiza-

tion process. Two different levels of coarse-grained and one fine-grained parallelism

were used to improve the efficiency of the GPU-based implementation. The proposed

model is scalable and can be used on multiple GPU devices, which would allow for

handling extremely large high-dimensional data sets within reasonable time. Concur-

rent kernels execution, featured in modern NVIDIA GPUs, was used to improve the

efficiency of the kernels computation. The experiments were carried out to analyze

performance and scalability of the GPU-based model over 40 data sets with differ-

ent number of instances, attributes, and classes. Experimental results show very good

performance of the GPU implementation in terms of significantly lower execution

time. The highest speedups were observed on data sets having very high number of

distinct values. Specifically, a speedup of up to 139× was achieved using 4 GPUs on

the twonorm data set.
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