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Abstract:  

 
We examine the optimality of quarterly earning forecasts issued by individual analysts. When we 
conduct Ordinary Least Squares (OLS) and Least Absolute Deviations (LAD) analyses, which 
assume loss function symmetry, we reject the null of forecast optimality at 5% significance level 
more than 5% of the time. Relaxing the symmetry assumption reduces the frequency of 
rejections below 5%. We demonstrate that the cross-sectional variation in the asymmetry 
parameter of the loss function is related to analyst employment. Overall, our evidence is 
consistent with the joint hypothesis of asymmetric loss and forecast optimality rather than the 
alternative of symmetric loss and lack of optimality. 
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Introduction 
 

Many studies have documented that consensus forecast errors are predictable based on 

easily accessible public information, and have then concluded that financial analysts’ forecasts 

are not optimal (Mendenhall, 1991; Abarbanell and Bernard, 1992).1 These conclusions have 

been questioned recently from two perspectives. The first one questions the evidence of forecast 

error predictability based on the findings’ lack of robustness (Abarbanell and Lehavy, 2003; 

Cohen and Lys, 2003). The second one questions the inference about lack of optimality. For 

example, Basu and Markov (2004) argue that this inference is driven by an inappropriate 

assumption of quadratic loss, and they document almost no predictability in consensus forecast 

errors when conducting the tests under the assumption of linear loss. They conclude that 

analysts’ expectations are consistent with rationality and that suggestions that investors make the 

same cognitive mistakes are premature.2 

We extend prior research on forecast rationality in two ways. Our first innovation is that 

we explore loss function-based explanations for the evidence of forecast predictability at the 

individual analyst level (Lys and Sohn, 1990; Jacobs and Lys, 1999; Mikhail et al., 2003, among 

others). While most of the debate about analyst rationality takes place at the consensus level, 

there are good reasons to study forecast optimality and information use at the individual analyst 

level. First, heterogeneity in loss functions makes ambiguous the interpretation of the tests of 

                                                 
1 While different studies use different terms in interpreting the evidence of forecast error predictability, we think that 
the common theme in these interpretations is that the forecasts are not optimal. For example, serial correlation in 
forecast errors is explained with analysts’ underreaction to information, or inefficient information use, due to the 
existence of cognitive biases (Mikhail et al., 2003) and analysts’ underestimation of the persistence of their forecast 
errors (Mendenhall, 1991). See Kothari (2001) and Ramnath et al. (2006) for additional references to studies that 
document forecast error predictability, and infer that forecasts lack optimality. 
2 A third perspective is taken by Markov and Tamayo (2006), who explore Bayesian learning as an explanation for 
the evidence of forecast error predictability.  
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rationality at the consensus level.3 When we average the forecasts to construct the consensus, we 

average not only over individual analysts’ mistakes, but also over heterogeneous loss functions. 

Since no optimizing individual constructed the mean forecast to minimize her expected loss, it is 

not clear what rejection of the null, or failure to reject the null at the consensus level, means for 

how analysts use information. Second, forecast users make decisions based on access to specific 

analysts. Thus, knowledge of individual analysts’ forecasting objectives and forecast 

inefficiencies is of enormous practical importance to forecast users. 

Our second innovation is that we conduct bootstrap inferences to address Abarbanell and 

Lehavy’s (2003) criticism about prior studies’ lack of attention to the severe non-normality of the 

forecast errors. Bootstrap does not require assumptions about error distribution or infinitely large 

samples, and, in most samples, it typically provides a more accurate approximation to the 

distribution of an estimator than asymptotic theory (Horowitz, 1997; Efron and Tibshirani, 

1998).  

We analyze a comprehensive sample of forecasts issued late in the current quarter over 

the period of 1985 to 2004 by 2,489 analysts employed by 303 investment firms. Assuming that 

financial analysts’ loss function is symmetric, we find that analysts do not efficiently use 

information in past forecast errors and earnings. In particular, our OLS (LAD)-based tests reject 

the null of forecast optimality at a 5% significance level between 11% and 16% (6 % and 8%) of 

the time. These rejection rates are based on the bootstrap approach, which does not assume 

normality or large sample sizes. We note that the asymptotic theory rejection rates can be twice 

                                                 
3 Heterogeneity in loss functions likely arises from differences in the mix and relative importance of various 
activities funding investment research (Cohen et al., 2006). It seems unlikely that the set of implicit and explicit 
contracts faced by an analyst employed by a firm that sells research for a fee are the same as the ones faced by an 
analyst working for a full-service investment firm where research is bundled with the sale of other products and 
services. See Krigman et al. (2001) and Irvine (2000) for evidence of investment research’s contribution to 
underwriting and brokerage revenues. 
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as high as the bootstrap rejection rates. Thus, we are confident that the severe non-normality of 

the forecast errors discussed in Abarbanell and Lehavy (2003), while an important cause for 

concern in prior research on earnings forecast errors, cannot be an explanation for these findings. 

We next explore whether the rejections of the hypothesis of forecast optimality are due to 

the fact that individual analysts’ forecasting objectives are (i) heterogeneous and (ii) poorly 

approximated by a symmetric loss function implied in the OLS and LAD analyses. In particular, 

we conduct tests of forecast optimality under more general loss functions that nest the traditional 

quadratic and linear loss functions. The lin-lin and quad-quad loss functions generalize the 

traditional linear and quadratic loss functions by introducing a single asymmetry parameter, α, to 

allow for the possibility that the cost of a forecast error depends on its sign. A parameter value of 

0.75 (0.25) means that the penalty for a positive forecast error is three times as high (low) as the 

penalty for a negative forecast error. The quadratic and linear loss function obtain when α is 

equal to 0.50. 

We have several reasons for using the lin-lin and quad-quad loss functions. First, since 

the arguments for why financial analysts’ objectives are best captured by a symmetric loss 

function are not very strong (Lambert, 2004), it seems justified to use an approach that allows 

rather than assumes loss function symmetry. Second, many practitioners and researchers believe 

that, late in the quarter, financial analysts’ forecasting objectives are, in fact, to issue forecasts 

that are easy to beat (Matsumoto, 2002; Bartov et al., 2002; Richardson et al., 2004). Such 

incentives are inconsistent with a symmetric loss function, α=0.50, but consistent with α being 

less than 0.50. If at the end of the quarter the cost of underpredicting earnings is lower than the 

cost of overpredicting earnings, then analysts will systematically underpredict earnings by 

issuing forecasts that are easy to beat. Finally, these loss functions are conventional in the 
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economics literature, with recent advances in econometric theory enabling the estimation of the 

asymmetry parameter α (Granger and Newbold, 1986; Elliott et al., 2004; Elliott et al., 2005; 

Rodriguez, 2005; Markov and Tan, 2005).  

When we use the lin-lin function, which nests the linear loss function, we reject the null 

of optimality less than 5% of the time, which is consistent with pure chance. When we use the 

quad-quad function, which nests the quadratic function, we reject between 6% and 12% of the 

time. The asymmetry parameter of the loss function, α, is generally lower than 0.5, which means 

that the cost of underpredicting earnings is generally lower than the cost of overpredicting 

earnings. We conclude that the traditional OLS and LAD tests reject the hypothesis that all 

analysts have the same symmetric loss function rather than the hypothesis that their forecasts 

deviate from optimality.  

 An alternative explanation for our findings is that we are overfitting the data by 

introducing a parameter devoid of any economic substance. To preclude this explanation, we 

examine whether lin-lin and quad-quad loss functions are reasonable representations of analysts’ 

forecasting objectives. We find that analysts with similar α’s tend to work for the same 

employer, and that an analyst whose α deviates from that of her current employer is more likely 

to experience turnover. These results are especially strong for the asymmetry parameter of the 

lin-lin loss function, which validates the lin-lin function as a more reasonable representation of 

analysts’ incentives than the quadratic loss function. We conclude that the variation in our 

estimates of the shape of the loss function is related to variation in incentives rather than noise, 

and that overfitting does not explain our findings of forecast optimality. 

Next, we briefly discuss prior literature with an emphasis on studies that depart from the 

tradition of assuming symmetric loss. Section 3 describes our sample and reports the results from 
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the traditional OLS and LAD analyses. Section 4 presents our main analyses based on Elliott et 

al.’s (2005) framework that allows for loss function asymmetry.  Section 5 concludes.  

 

2. Prior literature on analysts’ loss functions and forecast optimality 

The traditional approach to examining whether forecasts are optimal involves estimating 

with OLS the model  

 1 0 1 1t t tFE Xβ β δ+ += + + ,  (1) 

where FEt+1 is analyst forecast error at time t+1 and Xt is a vector of variables known at the time 

of the forecast, t. Rejecting the hypothesis that β0=0 and β1=0 is viewed as evidence of lack of 

optimality as one can use publicly available information, Xt, to further reduce the mean squared 

forecast error. Positive values of β1 are typically interpreted as evidence of underreaction to 

information or inefficient information use.   

 Basu and Markov (2004) point out that implicit in this approach is the assumption of a 

quadratic loss. In other words, the analyst is viewed as trying to minimize her mean squared 

error. Following Gu and Wu (2003), Basu and Markov (2004) argue that analysts’ incentives are 

better represented by a linear loss function; analysts attempt to minimize their mean absolute 

error. They estimate a version of equation (1) using the LAD method rather than OLS and find 

that the coefficients are indistinguishable from the predicted values under the null of optimality. 

They still, however, often reject the null hypothesis that consensus forecasts are consistent with 

forecast optimality. 

 A number of recent studies on analyst forecasts question the appropriateness of the 

quadratic and linear loss functions (Lambert, 2004; Rodriguez, 2005; Clatworthy et al., 2005; 

Markov and Tan, 2005), and in particular, the assumption that the consequences of 
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overpredicting earnings are the same as the consequences of underpredicting earnings. The 

symmetry of these loss functions is inconsistent with the view that analysts have incentives to 

issue optimistic reports early in the quarter and pessimistic forecasts late in the quarter, and the 

evidence of generally negative mean and median forecast errors for long-term forecasts and 

positive mean and median forecast errors for short-term forecasts (Richardson et al., 2004).4 

 Clatworty et al. (2005) examine the properties of financial analysts’ forecast errors under 

an asymmetric loss function introduced first by Varian (1974), the linex loss function vis-à-vis 

the properties of the forecast errors under the linear loss function. A relation between forecast 

error bias and variance of the forecast error distribution is predicted under the asymmetric loss 

function, but not under the linear loss function (Christoffersen and Diebold, 1996, 1997).  The 

evidence in Clatworty et al. (2005) rejects the linear loss function in favor of the asymmetric loss 

function. This evidence, however, does not shed light on the issue of forecast optimality, which 

is at the center of the other two empirical studies, Rodriguez (2005) and Markov and Tan (2005). 

 Both Markov and Tan (2005) and Rodriguez (2005) rely on the econometric framework 

of Elliott et al. (2005), also used in this study, to describe the asymmetry of the financial 

analysts’ loss function and examine forecast optimality. Rodriguez (2005) analyzes a sample of 

107 analysts and finds evidence consistent with forecast optimality. He also shows that risk 

aversion can be important for understanding the properties of analysts’ forecast errors. An 

important difference between his study and our study is that our sample is much more 

comprehensive (2,489 analysts). This allows us to examine whether low power explains his 

failure to reject the null of optimality. In addition, we show that the individual analysts’ loss 

function asymmetry varies systematically across firms, which alleviates the concern that the tests 

introduce an extra parameter devoid of economic content. 
                                                 
4 The quadratic (linear) loss function predicts a zero mean (median) forecast error.  
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Markov and Tan (2005) examine the optimality of the consensus forecasts and find that 

consensus forecasts are more consistent with rationality in the period after Regulation FD 

became effective. We view empirical analyses of individual and consensus forecast errors as 

complementary. Researchers examine the properties of the consensus forecast, defined as the 

mean or median forecast, when their primary focus is on studying the beliefs of the marginal 

investor. They use the consensus forecast as a proxy for the unobservable marginal investor’s 

beliefs. 

However, there are good reasons to study individual analysts’ errors. First, without 

knowledge of the forecasting objectives and rationality of individual analysts, we cannot really 

understand how the market for investment research functions. Second, since forecast users rely 

on investment research by individual analysts, it is important for them to know the forecasting 

objectives and biases of the analysts whose research they have purchased or consider for 

purchase. Third, if different analysts have different loss functions, then evidence about mean or 

median forecast becomes hard to interpret. For example, individual analysts may issue forecasts 

that are optimal under their own loss functions, but the average of their forecasts may be sub-

optimal as each analyst pays attention only to her own loss function. The opposite is also 

possible. Individual analysts issue sub-optimal forecasts, but the average of their forecasts is 

optimal. Evidence of forecast optimality at the consensus level does not distinguish between the 

hypotheses that (i) all analysts have the same loss function and they make errors that cancel out, 

or (ii) analysts have different loss functions, make systematic mistakes, but there exists a loss 

function parameter value that rationalizes the consensus.5 

 

                                                 
5 If analysts have different information sets, then tests of rationality at the consensus level can reject the null of 
rationality even if individual analysts are rational (Figlewski and Wachtel, 1983). 
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3. Tests of forecast optimality under loss function symmetry 

 In this section we describe our sample and report evidence about forecast optimality 

based on OLS and LAD regressions, which assume loss function symmetry. 

 

3.1. Sample construction 

 Our primary data come from the Institutional Brokers Estimate System (I/B/E/S) 

database. We use the I/B/E/S Detail Earnings Estimate History File, which contains 1,564,054 

individual analysts’ forecasts of current quarter earnings of U.S. companies for the period from 

1985 to 2004. We eliminate forecasts of quarter t earnings that are dated after the announcement 

of quarter t earnings (160,656 observations). We focus on forecasts that are issued in the second 

half of the quarter because they are the ones most likely to determine the earnings surprise on 

announcement dates (530,541 observations). These forecasts are more likely to incorporate 

information available at the beginning of the quarter (Soffer and Lys, 1999), and more likely to 

be systematically biased downward relative to forecasts issued at the beginning of the quarter 

(Richardson et al., 2004). We eliminate forecasts issued in the first half of the quarter (52,793), 

observations without two prior earnings announcements (41,928), observations where share price 

from two quarters ago is less than $1 (2,108), and observations without prior forecast errors 

(120,049). These filters ensure that we use the most up-to-date analyst forecasts, that we can 

examine analysts’ use of publicly available information such as earnings and past forecast errors, 

and that we do not inflate forecast errors when we divide them by low stock price to alleviate 

heteroscedasticity concerns. The number of forecasts satisfying these criteria is 313,663. These 

forecasts were issued by 7,439 analysts. To ensure precision in our analyst-specific estimates, we 

require at least 30 observations for an analyst, which eliminates 42,942 forecasts (4,949 
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analysts). Finally, we drop forecasts issued by an analyst with I/B/E/S code of 0000000, as this 

code is assigned to all analysts who wish to stay anonymous (2,070). Our sample has 268,651 

forecasts issued by 2,489 analysts. 

 

3.2. Descriptive statistics 

Panel A of Table 1 provides descriptive statistics about stock coverage for our sample of 

2,489 analysts. These analysts were employed by 303 investment firms. They issued a total of 

268,651 forecasts on 7,379 companies. Over her tenure, an analyst in our sample issued on 

average about 108 quarterly earnings forecasts for 22 firms over 27 quarters. The median number 

of forecasts issued, firms covered, and quarters on I/B/E/S tends to be lower, which suggests that 

there is a relatively high proportion of analysts who were very experienced, followed many 

stocks, and issued multiple forecasts. Likewise, some investment firms were much larger than 

others as the mean (median) number of analysts employed and stocks covered are 16 (4) and 178 

(39), respectively. The reason for the relatively low number of analysts employed and stocks 

covered by an investment firm is that we include only analysts with at least 30 forecasts issued in 

the second half of the current quarter. As we noted above, there are about 5,000 analysts who 

issued fewer than 30 forecasts during our sample period.  

We denote firm j’s quarterly I/B/E/S earnings per share (EPS) for quarter t+1 as 1j tA + , 

and analyst i’s forecast of firm j’s  EPS for quarter t+1 as 1
i

j tF + .  The forecast error, denoted 

as 1
i

j tFE + , is defined as 1 1
i

j t j tA F+ +− . All variables are scaled by share price recorded for the 

earnings-announcement month of the quarter t-1 obtained from I/B/E/S to alleviate 

heteroscedasticity concerns and are winsorized at the 1% level on both tails to eliminate outliers. 

The mean and median forecast errors of analyst i are calculated based on all forecasts, 1
i

j tF +  
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issued by analyst i. Thus, they are analyst-specific rather than analyst-firm-specific. There are 

both advantages and disadvantages to analyzing the properties of iFE  rather than i
j FE . An 

obvious advantage is that we are less prone to survival bias; we do not require that analyst i 

issued at least 30 forecasts on firm j, which is the approach taken by Mikhail et al. (2003), but 

only that analyst i issued 30 forecasts. In addition, our choice to combine the distributions i
j FE  

and 1
i

j FE+  is justified by Jacobs and Lys’s (1999) findings about the existence of common 

components in the properties of the distribution of i
j FE  and 1

i
j FE+ . The disadvantage is that 

analyst i’s forecast errors in quarter t are cross-correlated, a problem that we address later on by 

clustering observations or conducting a block bootstrap. We report mean, median, standard 

deviation, and the 25th and 75th percentile of the cross-sectional distribution of 2,489 mean and 

median forecast errors in Panel B of Table 1. 

We find strong evidence that the distribution of median forecast errors is centered at a 

positive number. Both the mean and the median of the distribution of median forecast errors are 

positive, and we reject the null of zero median forecast errors at 5% level in favor of “greater 

than zero” 44% of the time. The frequency of rejecting the null in favor of “smaller than zero” is 

only 2% and consistent with chance. The evidence on mean forecast errors is mixed. The mean 

of the distribution of mean forecast errors is negative, -0.0002, but the median is zero. In 

addition, we obtain high rejections of the null in favor of “greater than zero” 22% of the time, 

and in favor of “less than zero”, 14% of the time. The higher frequency of rejections of the null 

in favor of “greater than zero” is not necessarily inconsistent with the negative mean of the 

distribution of mean forecast errors. If statistical precision is higher in the sub-sample of analysts 

with positive forecast errors, then we may reject more often. Overall, the general tendency is 

toward issuing low, beatable forecast errors that result in positive earnings “surprises.” 
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3.3 OLS and LAD evidence about forecast optimality 

The OLS (LAD) method is appropriate if analysts have quadratic (linear) loss function. 

Basu and Markov (2004) document that the estimated coefficients deviate less from the predicted 

values when they use the LAD method than when they use the OLS method and argue that 

consensus annual forecasts are generally consistent with optimality under the linear loss 

function. However, even with the LAD method, Basu and Markov (2004) often reject the null 

hypothesis of forecast optimality.  

To provide a baseline for our empirical analyses, we first conduct tests of forecast 

optimality under the traditional assumption of symmetric linear or quadratic loss function. In 

particular, for every analyst i, we regress the forecast errors ( 1
i

j tFE + ) on intercept and 

information variables known to the analyst at the time of the forecast; past forecast errors ( i
j tFE ) 

and intercept (Model 1), earnings at lags 1 and 2 ( j tA  and 1j tA − ) and intercept, (Model 2), and 

past forecast errors and past earnings at lags 1 and 2 ( i
j tFE , j tA , and 1j tA − ) and intercept 

(Model 3).6 We estimate these models using OLS and LAD methods. In Table 2 we report the 

mean parameter estimates from our 2,489 analyst-specific regressions. The last column 

summarizes the results from our 2,489 tests of optimality; we report the percentage of times that 

we reject the null of optimality at 5%. In view of the severe non-normality of forecast error 

distribution (Abarbanell and Lehavy, 2003), we conduct both asymptotic-theory and bootstrap 

inferences.  

                                                 
6 Consistent with prior literature, we assume that the cost of accessing and processing publicly available information 
for a sell-side analyst is zero.  We think that this assumption is more appropriate for analyst’s own forecast errors 
and past earnings than for other variables such as accruals and stock returns, hence our focus on forecast errors and 
past earnings. Our analysis, however, can be extended to other information variables.  
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The mean coefficients on past forecast errors and past earnings are positive, which is 

consistent with prior evidence. The common interpretation is that analysts do not understand the 

properties of the quarterly earnings process, or underreact to earnings information. We note that 

the coefficient on past forecast errors from our analyst-specific regressions is 0.0823, which is 

lower than the corresponding coefficient in Mikhail et al. (2003), 0.1400. Given that our sample 

covers a more recent period, 1985 to 2004, vis-à-vis 1980 to 1995 in Mikhail et al. (2003), and 

that analysts issue more accurate forecasts in recent years (Brown and Caylor, 2005), we view 

our findings as being in the same range.  

When we base our inferences on asymptotic theory, we get very high rejections of the 

null hypothesis that all coefficients are jointly equal to zero. The OLS regressions reject the null 

hypothesis at 5% level between 34% and 56% of the time. When we use the LAD method, we 

reject the null between 49% and 74% of the time. These results are not directly comparable, 

however. The LAD regressions assume independent and identically distributed errors, while the 

OLS regressions assume only time independence. With heteroscedasticity and cross-correlation 

likely present in the data, the LAD frequency of rejections likely overstates the true frequency of 

rejections. Due to the lack of asymptotic results about the distribution of LAD parameters in the 

presence of heteroscedasticity or cross-correlation that is analogous to the results about OLS 

parameters, using the bootstrap in LAD analysis should be the preferred choice.7 

                                                 
7 Rogers (1992) provides Monte Carlo evidence that LAD asymptotic standard errors in the presence of 
heteroscedasticity significantly understate the true standard errors; he recommends that inferences be based on 
bootstrap standard errors instead.  
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The Jarque-Bera test (results not tabulated) rejects the null hypothesis that the residuals 

come from a normal distribution more than 90% of the time.8 The distribution of residuals has 

both high skewness and kurtosis. The lack of normality of the residuals combined with the 

limited sample sizes used in the analyst-specific estimations makes asymptotic inferences 

suspect and provides additional motivation for conducting bootstrap inferences. 

We view observations from different quarters as independent and observations from the 

same quarter as dependent. Therefore, we sample blocks of observations rather than individual 

observations; each block consists of observations for the same quarter. Drawing observations by 

quarters ensures that each draw is independent of the other draws. We draw 1,000 samples with 

replacement from our original sample. We estimate our model 1,000 times to obtain the 

parameters’ bootstrap distribution. This distribution is the basis for calculating standard errors 

and for conducting statistical tests. 

We document a substantial drop in rejection rates when we conduct bootstrap inferences. 

In the case of the OLS regression, the rejection rates are now between 12% and 20%, which are 

still too high to be explained by chance. In the case of LAD regressions, we obtain rejection rates 

between 6% and 8%. Given the substantial drop in rejection rates, we recommend that 

researchers studying the properties of analyst forecast errors conduct bootstrap inferences in 

addition to asymptotic theory inferences.9 

 

                                                 
8The Jarque-Bera test determines whether the sample skewness and kurtosis are unusually different from their  

expected values under the normality assumption of 0 and 3. The test statistic is 
( )2

2 2
2

3
6 4

Kn S χ
 −

+ 
  

∼ , where 

n is number of observations, S and K are sample skewness and kurtosis. It is possible that non-normality of the 
forecast errors is at least partly driven by pooling quarter t’s forecast errors of analyst i.   
9 Our recommendation is most pertinent to studies on individual analysts where we have a combination of small 
sample size and highly non-normal residuals. 
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3.4. Optimality tests when the true loss function differs from the one assumed by the 
researcher 
 

The evidence so far suggests lack of forecast optimality at the individual analyst level 

assuming, of course, that analysts have symmetric loss function. The objective of the analysis in 

this sub-section is to demonstrate that an earnings forecast constructed under a slightly 

asymmetric loss function would be found sub-optimal in OLS and LAD tests, which assume 

symmetric loss.   

 

3.4.1. Generating optimal forecasts 

We simulate forecasts of 1tA +  that incorporate all information in tA  and 1tA −  to minimize 

the sum of absolute forecast errors, where positive and negative forecast errors are weighted by 

α and (1-α) respectively; {0.40,045,0.50,0.55,0.60}α ∈ . In particular, we estimate the 

regression 

 αααα εχχχ ,11,2,1,01 +−+ +++= tttt AAA ,  (3) 

at various quantiles of the earnings distribution at time t+1 for the same values of 

α; {0.40,045,0.50,0.55,0.60}α ∈ . The estimated coefficients, by construction, describe the 

conditional quantile of At+1 as a linear function of At+1 and At+1. They minimize the sum of 

absolute errors where positive and negative errors are weighted α and (1-α) respectively.10  

Coefficients and standard errors are reported in Panel A of Table 3. If a forecaster has a 

loss function in which the cost of underpredicting earnings is 2/3 of the cost of over-predicting 

earnings (α=0.40), then her optimal forecast of At+1 would be equal to 

0.006+ 0.7034*At+0.2086* At-1. A forecaster with an α of 0.60 would construct her forecast 

                                                 
10 In contrast, OLS coefficients describe the conditional mean of the dependent variable as a function of the 
dependent variable, and minimize the sum of squared residuals.  
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differently; her forecast would be equal to 0.0038+ 0.6702*At+0.1724* At-1. In other words, each 

regression decomposes At+1 into forecast 1,
ˆ

tA α+  and forecast error, αε ,1ˆ +t . The forecast and the 

forecast error are indexed by α because they depend on how errors are penalized. 

 

3.4.2. Are generated forecasts optimal in OLS and LAD analyses? 

In the second step of our analysis, we examine whether the forecast errors αε ,1ˆ +t , can be 

predicted by tA  and 1tA −  using OLS and LAD regression methods.  We estimate the model  

 11,2,1,0,1ˆ +−+ +++= tttt AA δβββε αααα   (4) 

using OLS and LAD regression methods. In Panel B of Table 3, we report the OLS and LAD 

coefficients from the estimation of equation (4) as well as F-statistic from the joint test that all 

coefficients equal zero. We reject the null of forecast optimality in all specifications with the 

exception of α=0.5 in the LAD regression.11 These rejection rates are based on the more 

conservative bootstrap approach. It is important to note that not only the intercept but also the 

slope coefficients significantly deviate from the predicted values of zero. We conclude that 

forecast that are constructed to be optimally under asymmetric loss, appear sub-optimal in OLS 

and LAD tests that assume symmetric loss.12  

In practice, however, we do not know the value of the asymmetry parameter of the 

analyst’s loss function. Elliott et al. (2005) develop a method to estimate this parameter and 

                                                 
11 This is not surprising since we generate the forecasts and tests for optimality under linearity and for the same α.  
12 The bootstrap was implemented by drawing pairs of observations. Thus, the bootstrap rejection rates are probably 
too high given the lack of independence in the cross-section. In our OLS analysis we also used heteroscedasticity –
consistent and robust to intra-quarter cross-correlation standard errors, which rely on asymptotic theory, and 
similarly rejected the null of forecast optimality for all values of α. 
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examine the extent to which the forecasts are consistent with forecast optimality.13 The next 

section provides a brief overview of their framework, used in our study, and reports our main 

findings. 

 

4. Tests of forecast optimality that do not assume symmetry 

4.1 Econometric method 

The consequences of making an inaccurate forecast are represented by the loss function 

 ( ) ( ) ( )( ) ( )1 1 1 1, , 1 2 1 0 .p
t t t tL p A f A fα θ α α θ θ+ + + + ≡ + − ⋅ − < ⋅ −   (5) 

The second term, ( )1 1
p

t tA f θ+ +− is the analyst’s forecast error defined as the difference between 

earnings, At+1 and the earnings forecast, ( )1tf θ+ . The latter is a linear function of variables Wt 

observed by the analyst at time t, ( )1 .t tf Wθ θ+ = ⋅  Different values of θ  represent different 

forecasting rules, which in turn result in different forecast errors. The first term in equation (5), 

( ) ( )( )1 11 2 1 0t tA fα α θ+ + + − ⋅ − <   makes the cost of a forecast error conditional on its sign. If α 

is equal to 0.5, then positive and negative forecast errors are equally costly. In fact, when α=0.50 

and p=1 or p=2, the loss function reduces to that of the familiar cases of a linear or a quadratic 

loss function, widely used in prior research on financial analysts. If α>0.5, however, then 

overpredictions are less costly to the analyst. In other words, the analyst has incentives to 

overpredict earnings. In sum, our ignorance about the analysts’ objectives consists only of not 

knowing the value of the single parameter α, ( )0,1α ∈ . 

                                                 
13 The general idea of recovering a parameter from the data that is most consistent with optimizing behavior and 
assessing the extent to which optimality restrictions are satisfied in the data appears first in Hansen and Singleton’s 
seminal (1982) study.  
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As an optimizing agent, the analyst chooses a forecasting rule ( )1t tf Wθ θ+ = ⋅  to 

minimize her expected loss 

 ( )min , ,E L p
θ

α θ   .14 (6) 

If θ  is chosen optimally, then the forecast errors must satisfy the first-order conditions  

 ( )( ) 1

1 11 0 0
p

t t tE W ε α ε
−∗ ∗

+ +
 ⋅ < − ⋅ =  

, (7) 

where 1 1t t tA Wε θ∗ ∗
+ += − .15 Having access only to a subset of the information available to the 

analyst at time t, which we denote as Vt, does not prevent us from estimating α. Since an 

optimizing analyst exploits any information available to her at time t, we can substitute Vt for Wt  

in the moment conditions and use the corresponding sample moments to back out the asymmetry 

parameter α. 

As long as we have more moment conditions than parameters to estimate, we are able to 

recover the asymmetry parameter without ad hoc rationalizing the forecasts. The reason for this 

is that the same α has to set two or more sample moments simultaneously to zero. Our estimator 

of α minimizes a quadratic form  

 ( ) ( )T Tq g Sgα α′=  (8) 

where ( )Tg α  is the sample equivalent of equation (7), and S is a weighting matrix. Our 

weighting matrix is the inverse of the covariance matrix of the moment conditions, which 

                                                 
14 In other words, we view the forecast as a choice that analysts make in trying to enhance their welfare—a departure 
from the literature’s tradition of viewing forecasts as exogenously given (Demski, 2004). In a survey of the use of 
expectations in accounting research, Demski forcefully argues that reliance on exogenous expectations structures 
limits the depth and boundaries of teaching and research (p. 519). 
15 This is proposition 1 in Elliot et al. (2005). 
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minimizes the asymptotic variance of the GMM estimator. 16,17 In sum, GMM picks the value of 

α that minimizes the squared distance between zero and the moment conditions divided by the 

covariance of the moment conditions.  

Hansen’s J-statistic, which is equal to T times the minimized value of the quadratic form, 

measures the distance between zero and the moment conditions, or how well the first order 

conditions from the analyst’s optimization problem, are satisfied in the data. It follows a chi-

square distribution with degrees of freedom equal to number of moments minus 1, the number of 

parameters estimated. Large values of the J-statistic mean that the distance between zero and the 

moment conditions is too large to be explained by chance, and that we should reject the joint 

hypothesis that (i) analyst’s loss function is well approximated by equation (5) and (ii) the 

forecasts are optimal.18 

 

4.2. Main findings 

We use as instruments the regressors in the OLS and LAD regressions of Table 2; past 

forecast errors and an intercept; past earnings and an intercept; forecast errors, past earnings, and 

an intercept. Panel A of Table 4 provides evidence about the cross-sectional distribution of the 

asymmetry parameter and the frequency with which we reject the symmetry null of α=0.50 in 

favor of α>0.50 or α<0.50. In the case of the lin-lin function, we reject the null of symmetry at 

the 5% level in favor of α<0.50 about 80% of the time. We conclude that analysts have 

incentives to systematically underpredict earnings (Brown, 2001, Bartov et al., 2002, among 

                                                 
16 The weighting matrix determines the relative importance of setting a particular moment condition to zero when 
estimating α.  
17 We used Stata’s ivreg2 command and its options cluster and robust to produce heteroscedasticity-consistent and 
robust to intra-quarter cross-correlation standard errors. Sample code is available upon request.  
18 It is standard to refer to the test as a test of over-identifying restrictions. In our setting, the restrictions hold if the 
forecast solves the minimization problem (equation (6)), and, thus, we refer to the test as an optimality test.  
Cochrane (2001) provides an insightful discussion of the J-test and its applications to tests of asset pricing models.  
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others). We find no evidence that any analysts have incentives to overpredict earnings since the 

frequency of rejections, which occur 2% of the time, is low enough to be due to chance. The 

cross-sectional mean and median are about 0.31, which means that the cost of underpredicting 

earnings by 1 cent is about three times lower than the cost of overpredicting earnings by 1 cent. 

In other words, analysts have incentives to consistently underpredict earnings. 

The asymmetry parameter of the quad-quad loss function is 0.48. This should not be 

surprising given our sample evidence that the mean forecast error is very close to zero. As we 

have argued above, the assumption that analysts’ true loss function is quadratic (linear) leads to 

the prediction that the mean (median) forecast error is equal to zero. However, we observe a 

significant amount of variation in the cross-sectional distribution of the asymmetry parameter, as 

the 25th and 75th percentile are about 0.32 and 0.63 respectively. Thus, we get high frequency of 

rejections of the null not only in favor of α<0.50, between 27% and 32%, but also in favor of 

α>0.50, between 24% and 30% of the time. The difference between αquad-quad and αlin-lin is due at 

least partially to the fact that the quad-quad loss function estimations use squared forecast errors, 

which increases the sensitivity of our estimates to extreme observations in either tail of the 

distribution. 

In Panel B of Table 4 we present the frequency with which we reject the null of forecast 

optimality for the lin-lin and quad-quad functions. To stress the significance of relaxing the 

symmetry assumption, we also present the rejection frequencies when we assume symmetry 

(OLS and LAD analysis). In the case of the lin-lin loss function, the rejection frequency is about 

5%, which is consistent with pure chance. We conclude that relaxing the symmetry assumption 

implicit in the LAD estimations significantly changes our inferences about forecasts’ apparent 

lack of optimality.  
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In the case of the quad-quad loss function, we reject the null of forecast optimality less 

often than in the case of OLS estimations, but more than 5% of the time: between 8% and 12% 

of the time under the quad-quad loss function, and between 11% and 16% of the time under the 

quadratic loss function. The evidence about the forecasts’ lack of optimality is weakened, but 

still existent. 

We conclude that relaxing the symmetry assumption is generally important for making 

correct inferences about forecast optimality. Under the lin-lin loss function, which nests the 

traditional linear loss function, the evidence is consistent with forecast optimality. Under the 

quad-quad loss function, which nests the traditional quadratic loss function, the evidence is 

inconsistent with forecast optimality. The frequency of rejections of the null hypothesis of 

forecast optimality is slightly higher than what we would expect by pure chance.  

A maintained assumption of this study is that the asymmetric loss function is a 

meaningful representation of the forecaster’s incentives, and that variation in α is not just 

statistical noise, but captures variation in incentives. We document slightly higher rejection rates 

of the null under the quad-quad loss function, which raises the question of which specification is 

more appropriate. To validate the lin-lin and quad-quad loss functions as reasonable 

representations of analysts’ forecasting objectives and to help determine which specification is 

more reasonable, we next explore the link between the estimated asymmetry parameters of the 

lin-lin and quad-quad loss functions and analyst employment. 

 

4.3. Validating the asymmetry parameter 

We view analysts employed by the same firm as conducting investment research in the 

same institutional setting, which means that they should face similar sets of explicit and implicit 
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compensation contracts. If α is informative about analyst incentives, not just noise, we should 

observe that analysts employed by the same firm have similar α’s. We test this prediction by 

regressing individual analysts’α’s on 210 investment-firm indicator variables which are equal to 

1 when an individual analyst is employed by a particular firm and are 0 otherwise. The 

difference between 210 and 303 (number of investment firms in Table 1) is due to the fact an 

analyst who works for more than one employer is paired up with her first employer. If 

employment does not influence α, then these indicator variables will not help explain the cross-

sectional variation in α. 

We estimate αlin-lin and αlquad-quadn using all instruments (reported in the first column of 

Panel A of Table 5).19 The second and third columns report adjusted R-squared and F-stats from 

the test that the coefficients on the employment indicator variables are jointly equal to 0. 

The employment indicator variables explain over 12% (about 8%) of the variation in αlin-

lin (αquad-quad). In all specifications we strongly reject the null that α is unrelated to employment. 

We conclude that variation in αlin-lin and αquad-quad is related to variation in incentives rather than 

driven by statistical noise. The higher R-squared and stronger rejections in the case of αlin-lin 

suggest that variation in αlin-lin captures better variation in the circumstances in which forecasting 

performances are evaluated.  Thus, we have more confidence in our results from the tests under 

the lin-lin loss function. 

We also examine whether the discrepancy between an analyst’s α and the current 

employer’s α, estimated by pooling observations of all analysts employed by the same firm, has 

an effect on analyst turnover. The higher the discrepancy between an analyst’s and an 

employer’s α, the more divergent the analyst’s behavior from the behavior of the other analysts 
                                                 
19 The results do not change when we use subsets of the available instruments. 
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employed at the same firm and the more likely that she will be separated from her current 

employer.  

There are 22 employers with not enough observations to estimate employer’s α. This 

reduces our sample from 2,489 analysts to 2,457 analysts. The number of turnover observations 

is reduced from 1,388 to 1,356.20 We document a statistically significant positive effect of the 

discrepancy in αlin-lin on the probability of a turnover (Panel B of Table 5). To help interpret the 

logit coefficient of 1.44, we calculate the probability of a turnover at the mean value of the 

independent variable and at the mean-plus-one standard deviation of the independent variable. 

We find that increasing the independent variable by one standard deviation increases the 

probability of a turnover from 54% to 57%. The fairly small effect is not surprising, however, 

given the parsimony of the loss function specification and the estimation error in αlin-lin. The 

coefficient on αquad-quad is positive, but not statistically significant.  

Finally, we examine whether the turnover event matches analysts and employers with 

similar α’s. We predict that, when an analyst with high α (greater than 0.50) changes jobs, he is 

more likely to pair up with a high α employer. We examine this prediction conditional on the 

analyst being currently employed by a high α or low α firm. The need to estimate new 

employer’s α reduced our sample from 1,356 turnover observations to 1,304 observations.  

The results from our estimations are reported in Panel B of Table 5 (Model 2). In three 

out of four specifications, we document that an analyst with high α is more likely to pair up with 

an employer with high α.21 In sum, we find that our parameter estimate, α, can explain turnover 

                                                 
20 There are 681 analysts who have more than one turnover observation. The analyzed sample includes only the first 
turnover observations.  
21 In the fourth specification, we do not have enough variation in the independent variable to estimate the model. 
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outcomes. This evidence makes it less likely that our findings are due to overfitting the data by 

introducing a parameter devoid of any economic content.  

 

5. Conclusions 

Our study makes several contributions. First, we document that rejections of the null 

hypothesis of forecast optimality at the individual analyst level are driven by the invalid 

assumption of loss function symmetry. This assumption is (i) inconsistent with the argument that 

analysts have incentives to issue beatable forecasts and (ii) rejected in the data. After allowing 

for loss function asymmetry, we find evidence consistent with forecast optimality.  

Second, we address Abarbanell and Lehavy’s (2003) concern about the sensitivity of 

prior findings to distributional assumptions by conducting bootstrap inferences. While the use of 

bootstrap does not reverse the OLS findings of lack of forecast optimality, we find a significant 

drop in rejection rates. We believe that in some circumstances the use of bootstrap can change 

our inferences, and recommend its use.  

Third, we further establish the role of incentives in investigations of the time-series 

properties of analyst forecast errors. While we are able to reject the quadratic and linear loss 

function in favor of the quad-quad and lin-lin loss functions, we acknowledge that there could be 

alternative loss functions that better approximate the analysts’ forecasting problem. We think 

that proposing and estimating loss functions that better approximate analysts’ forecasting 

problem should be an exciting area of future research. 

Our evidence should not be considered to be a general indictment of the quadratic and 

linear loss functions. There could be circumstances in which symmetry is a valid assumption. 

Assuming symmetry because it is convenient, however, not only leads to invalid inferences 
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about forecast optimality, but also prevent us from learning about the nature of the forecasters’ 

incentives from the data. 

There are other potential avenues for future research. In this study, we consider only a 

few information variables suggested by prior research as being inefficiently used by financial 

analysts. An immediate extension of our study is to examine additional information variables 

such as extreme past earnings (Easterwood and Nutt, 1999), accruals (Bradshaw et al., 2001), 

and past returns (Lys and Sohn, 1990). Another potential avenue for future research would be to 

examine the shape of the manager’s loss function implicit in her earnings forecasts and the 

optimality of her earnings forecasts.  



 25

References 

Abarbanell, J. S., and V. L. Bernard, 1992, Tests of Analysts’ Overreaction/ Underreaction to 
Earnings Information as an Explanation for Anomalous Stock Price Behavior, The Journal of 
Finance 47 (3), 1181-1207. 

 
Abarbanell, J. S., and R. Lehavy, 2003, Biased forecasts or biased earnings?  The role of 

reported earnings in explaining apparent bias and over/underreaction in analysts’ earnings 
forecasts, Journal of Accounting and Economics 36 (1-3), 105-146. 

 
Bartov, E., D. Givoly, and C. Hayn, 2002, The rewards to meeting or beating earnings 

expectations, Journal of Accounting and Economics 33, 173-204. 
 
Basu, S., and S. Markov, 2004, Loss function assumptions in rational expectations tests on 

financial analysts’ earnings forecasts, Journal of Accounting and Economics 38, 171-203.  
 
Bradshaw, M., S. Richardson, and R. Sloan, 2001, Do analysts and auditors use information in 

accruals? Journal of Accounting Research 39 (1), 45-74. 
 
Brown, L., 2001, A temporal analysis of earnings surprises: Profits vs. losses, Journal of 

Accounting 39, 221-241. 
 
Brown, L., and M. Caylor, 2005, A temporal analysis of quarterly earnings thresholds: 

Propensities and valuation consequences, The Accounting Review 80 (2), 423-440. 
 
Christofferson, P., and F. Diebold, 1996, Further results on forecasting and model selection 

under asymmetric loss, Journal of Applied Econometrics 11, 561-572. 
 
Christofferson, P., and F. Diebold, 1997, Optimal prediction under asymmetric loss, Econometric 

Theory 13, 808-817. 
 
Clatworthy M., Peel, P., and P. Pope, 2005, Are analysts’ loss functions asymmetric?, Working 

Paper, Lancaster University Management School. 
 
Cochrane, J., 2001, Asset Pricing, Princeton University Press. 
 
Cohen, A., Groysberg, B., and P. Healy, 2006, Which types of analyst firms are more optimistic? 

Journal of Accounting and Economics 41, 119-146. 
 
Cohen, D. A., and T. Z. Lys, 2003, A note on analysts’ earnings forecast errors distribution, 

Journal of Accounting and Economics 36 (1-3), 147-164. 
 
Demski, J., 2004. Endogenous expectations, The Accounting Review 70 (2), 519-539. 
 
Easterwood, J., and S. Nutt, 1999, Inefficiency in analysts’ earnings forecasts: systematic 

misreaction or systematic optimism? The Journal of Finance 54 (5), 1777-1797. 



 26

 
Efron, B., and R.J. Tibshirani, 1998, An Introduction to the bootstrap, Chapman and Hall, New 

York. 
 
Elliot, G., I. Komunjer, and A. Timmerman, 2005, Estimation and testing of forecast rationality 

under flexible loss, Review of Economic Studies 72, 1107-1125. 
 
Elliot, G., I. Komunjer, and A. Timmerman, 2004, Biases in macroeconomic forecasts: 

irrationality, or asymmetric loss? Working Paper, University of California at San Diego. 
 
Figlewski, S., and P. Wachtel, (1983), Rational expectations, information efficiency, and tests 

using survey data, Review of Economics and Statistics 65, 529-531. 
 
Gu, Z., and J. Wu, 2003, Earnings skewness and analyst forecast bias, Journal of Accounting and 

Economics 35 (1), 5-29. 
 
Granger, C., and P. Newbold, 1986, Forecasting Economic Series, 2nd Edition, Academic Press.  
 
Hansen, L., and K. Singleton, 1982, Generalized instrumental variables estimation of nonlinear 

rational expectations models, Econometrica 50, 714-735. 
 
Horowitz, J., 1997, Advances in econometrics: theory and applications, Vol. 3, Ed. by D. Kreps, 

and K. Wallis, Cambridge University Press. 
 
Irvine, P., 2000. Do analysts generate trades for their firms? Evidence from the Toronto stock 

exchange, Journal of Accounting and Economics 30 (2), 209-226. 
 
Jacobs, J., and T. Lys, (1999), Determinants and implications of the serial correlation in analysts’ 

earnings forecast errors, Working Paper, University of Colorado and Northwestern 
University.  

 
Kothari, S.P., 2001, Capital markets research in accounting, Journal of Accounting and 

Economics 31, 105-231. 
 
Krigman, L., Shaw, W., and K. Womack, 2001, Why do firms switch underwriters? Journal of 

Financial Economics 60, 245-284. 
 
Lambert, R., 2004, Discussion of analysts’ treatment of non-recurring items in street earnings 

and loss function assumptions in rational expectations tests on financial analysts’ earnings 
forecasts, Journal of Accounting and Economics 38, 205-222. 

 
Lys, T., and S. Sohn, 1990, The association between revisions of financial analysts’ earnings 

forecasts and security-price changes, Journal of Accounting and Economics 13 (4), 341-363. 
 
Markov, S., and A. Tamayo, 2006, Predictability in financial analyst forecast errors: Learning or 

irrationality, Forthcoming in Journal of Accounting Research. 



 27

 
Markov, S., and Tan, Min-Yen, 2005, Separating the Effects of Asymmetric Incentives and 

Inefficient Use of Information on Financial Analysts' Consensus Earnings Forecast Errors, 
Available at SSRN: http://ssrn.com/abstract=768324. 

 
Matsumoto, D., 2002, Management’s incentives to guide analysts’ forecasts, The Accounting 
Review 77, 483-514. 
 
Mendenhall, R., 1991, Evidence of Possible Underweighting of Earnings-Related Information, 

Journal of Accounting Research 29, 170-180. 
 
Mikhail, M., Walther, B., and R. Willis, 2003, The effect of experience on security analyst 

underreaction, Journal of Accounting and Economics 35, 101-116. 
 
Ramnath, S., Rock S., and P. Shane, 2006, A review of research related to financial analysts’ 

forecasts and stock recommendations, Available at SSRN: http://ssrn.com/abstract=848248. 
 
Richardson, S., Teoh, S., and P. Wyscoki, 2004, The walk-down to beatable analyst forecasts: 

The role of equity issuance and insider trading incentives. Contemporary Accounting 
Research 21 (4), 885-924. 

 
Rodriguez, M., 2005, Financial analysts’ incentives and forecast biases, Working Paper 

University of California, San Diego. 
 
Rogers, 1992, Quantile regression standard errors, Stata Technical Bulletin 9, 133-139. 
 
Soffer, L., and T. Lys, 1999, Post-Earnings Announcement Drift and the Dissemination of 

Predictable Information, Contemporary Accounting Research, 16 (2) 305-331. 
 
Varian, H., 1974, A Bayesian approach to real estate assessment, Studies in Bayesian Economics 

in honor of L.J. Savage, Edited by S. Feinberg and A. Zellner, Amsterdam: North Holland: 
195-208. 

 
 



 28

Table 1. Descriptive statistics 
 
Panel A. Number of analysts 
  
We denote firm j’s quarterly I/B/E/S earnings per share (EPS) for quarter t+1 as 1j tA + , and the forecast 

for quarter t+1 made by analyst i as 1
i

j tF + . 1
i

j tFE +  is the forecast error for the quarter t+1 and equal to 

1 1
i

j t j tA F+ +− . All variables are scaled by the share price recorded for the earnings-announcement month 
of the quarter t-1 obtained from I/B/E/S to alleviate heteroscedasticity concerns and are winsorized at the 
1% level on both tails to eliminate outliers. We include only observations with available past quarterly 
earnings, j tA and, 1j tA − , and past forecast, i

j tF , and Pricet-1 greater than $1. We also drop analysts 
coded as 0000000 in I/B/E/S and analysts that do not have more than 30 forecasts in the sample. The final 
sample has 268,651 individual analyst forecast observations for 2,489 analysts. 
 
Number of analysts 2,489  
Number of analyst investment firms 303  
Number of covered companies (unique IBES tickers) 7,379  
Number of quarterly earnings forecasts 268,651  
Mean (median) number of forecasts per analyst 107.94  (74.00) 
Mean (median) number of quarters that an analyst is on IBES 27.13  (24.00) 
Mean (median) number of analysts employed by an investment firm 16.22  (4.00) 
Mean (median) number of companies covered by an analyst 22.43 (19.00) 
Mean (median) number of companies covered by an investment firm 177.52 (39.00) 

 
Panel B. Cross-sectional distribution of mean and median forecast errors 
 
We calculate the mean and median forecast errors for each analyst. We report the mean, median, standard 
deviation, 25th percentile and 75th percentile of these analyst-specific mean and median forecast errors. 
For every analyst we test the null hypotheses of zero mean and zero median forecast error. We report the 
percentage of cases where we reject the null at 5% level in favor of “greater than 0” and in favor of “less 
than 0.” 
 

 Descriptive Statistics 
Rejections of hypothesis of 

location parameter = 0 in favor of 
 Mean Median STD 25th perc 75th perc Greater than 0 Less than 0 

Mean FE -0.0002 0.0000  0.0015 -0.0008  0.0006  21.53% 13.70% 
Median FE 0.0003  0.0002  0.0006 0.0000 0.0005  43.75% 2.01% 
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Table 2. Tests of forecast optimality under loss symmetry: OLS and LAD tests 
 
For each analyst, using OLS and LAD methods, we estimate the models  
 

Model 1: 1
i

j tFE + = 0β  + 1
i

j tFEβ                         + 1j tε +  

Model 2: 1
i

j tFE + = 0β              + 2 j tAβ + 3 1j tAβ − + 1j tε +  

Model 3: 1
i

j tFE + = 0β  + 1
i

j tFEβ + 2 j tAβ + 3 1j tAβ − + 1j tε +  

 

where 1j tA +  is firm j’s quarter t+1 earnings per share; j tA and 1j tA −  are defined analogously; 1
i

j tFE +  

is analyst’s forecast error in forecasting firm j’s quarter t+1 earnings per share; i
j tFE is defined 

analogously. We report cross-sectional means of 2,489 parameter estimates and the frequency with which 
the null hypothesis of forecast optimality (coefficients are jointly equal to zero) is rejected at the 5% 
significance level. We make the following assumptions in the estimation of the variance-covariance 
matrix. The combination of asymptotic theory inferences and OLS estimation method assumes that errors 
from different quarters are independent (STATA’s cluster and robust options). The case of asymptotic 
theory inferences and LAD estimation method assumes that errors are independent and identically 
distributed (no easy fix available in STATA to deal with deviations from the i.i.d. ideal). The two cases of 
bootstrap inferences assume that observations from different quarters are independent. We draw 1,000 
samples by drawing clusters of observations, with each quarter representing a separate cluster, rather than 
pairs of observations (STATA’s bootstrap command and cluster option). 

 
 
     Rejections of forecast optimality 

  β0  β1  β2  β3 
Asymptotic 

theory  Bootstrap  
Model 1, OLS -0.0002 0.0823   33.82% 12.20% 
Model 2, OLS -0.0008  0.0499 -0.0090 48.43% 17.78% 
Model 3, OLS -0.0007 0.0649   0.0471 -0.0094 56.31% 19.87% 
Model 1, LAD 0.0002 0.0656   48.55% 5.97% 
Model 2, LAD -0.0001  0.0285 -0.0079 62.37% 7.71% 
Model 3, LAD -0.0001 0.0549   0.0274 -0.0077 73.53% 7.46% 
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Table 3. OLS and LAD tests when the forecasts are generated under asymmetric linear loss 
function 
 
In Panel A we report the results from the estimation of (3)  

1 0, 1, 2, 1 1,j t j t j t j tA A Aα α α αχ χ χ ε+ − += + + + , 

where α is the forecasted quantile of the earnings distribution. α takes the values of 0.5, 0.45, 0.40, 0.55 
or 0.6. We report the estimated coefficients and bootstrap standard errors in parentheses. We draw 1,000 
samples by drawing pairs of observations (not clusters). 
 
All variables are scaled by the share price recorded for the earnings-announcement month of the quarter t-
1 and are winsorized at the 1% level on both tails to eliminate outliers. We have 180,065 firm-quarter 
observations. *** indicate significance at 1%. 
 
Panel A. Forecasting future earnings under asymmetric loss function 
 
Asymmetry parameter   β0  β1  β2 

α=0.40 0.0006    0.7034 0.2086 
 (0.0000) (0.0007) (0.0007) 
α=0.45 0.0013  0.7033 0.2004 
 (0.0000) (0.0007) (0.0006) 
α=0.50 0.0020 0.6988 0.1913 
 (0.0000) (0.0006) (0.0006) 
α=0.55 0.0028 0.6879 0.1819 
 (0.0000) (0.0006) (0.0006) 
α=0.60 0.0038 0.6702 0.1724 
 (0.0000) (0.0008) (0.0008) 
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Panel B. OLS and LAD tests of forecast optimality when forecast is optimal under asymmetric 
linear loss function  
 
In panel B we report the results from the estimation of model (4) 
 
 1, 0, 1, 2, 1 1t̂ j t j t j tA Aα α α αε β β β δ+ − += + + +    
 
 
where αε ,1ˆ +t , is the residual from the estimation of equation (3), and other all other variables are as 
defined earlier.  We estimate this model using OLS and LAD estimation methods. We report parameter 
estimates, bootstrap standard errors (in parentheses) and F-stats from the joint test that all coefficients are 
equal to zero. We draw 1,000 samples by drawing pairs of observations. *** (**) [*] indicate significance at 
1% (5%) [10%]. 
 
 
Asymmetry 
parameter OLS test of optimality LAD test of optimality 

  β0  β1  β2 F test  β0  β1 β2 F test 
α=0.40 0.0023 -0.1998 0.0151 161.92*** 0.0014 -0.0047 -0.0173 6.94*** 

 (0.0002) (0.0134) (0.0087)  (0.0000) (0.0006) (0.0006)  
α=0.45 0.0016 -0.1997 0.0233 149.98*** 0.0007 -0.0045 -0.0091 2.59* 

 (0.0002) (0.0134) (0.0087)  (0.0000) (0.0006) (0.0006)  
α=0.50 0.0009 -0.1952 0.0324 131.81***     
 (0.0002) (0.0134) (0.0087)      
α=0.55 0.0000 -0.1843 0.0418 107.49*** -0.0008 0.0109 0.0094 4.21** 
 (0.0002) (0.0134) (0.0087)  (0.0000) (0.0006) (0.0006)  
α=0.60 -0.0009 -0.1666 0.0513 80.46*** -0.0018 0.0286 0.0189 24.25*** 

 (0.0002) (0.0134) (0.0087)  (0.0000) (0.0006) (0.0006)  
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Table 4. Estimation of asymmetry parameter, α, and test of forecast optimality 
 
For every analyst, we estimate α from the FOC (equation: ( )( ) 1

1 11 0 0
pi i

t j t j tE V FE FEα
−

+ +
 ⋅ < − ⋅ =  

) using 

the two-step efficient Generalized Method of Moments (GMM). Vt is a vector of instruments, 1
i

j tFE +  is 
the forecast error, p=1 (2) is represents the lin-lin (quad-quad) loss function (firm and analyst indexes are 
suppressed for brevity). Instruments used in the estimation are reported in the first column. We report 
mean, median, 25th and 75th percentile of the cross-sectional distribution of analyst’s α. α=0.5 represents 
the case of loss function symmetry. α>0.5 represents the case of analysts’ incentives to issue optimistic 
forecasts. α<0.5 represents the case of analysts’ incentives to issue pessimistic forecasts. For every 
analyst we test the hypothesis of loss function symmetry, α=0.5, allowing for heteroscedasticity and intra-
quarter cross-correlation. We report the percentage of cases where we reject symmetry at 5% level in 
favor of α<.50 and in favor of α>0.50. All variables are scaled by the share price recorded for the 
earnings-announcement month of the quarter t-1, and are winsorized at the 1% level on both tails to 
eliminate outliers. The sample has 268,651 individual analyst forecast observations for 2,489 analysts. 
 
Panel A. Estimation of asymmetry parameter, α 
 
Model Cross-sectional Distribution of α Rejections of symmetry (α=0.5) 
 Mean Median Q25 Q75 In favor of α<0.5 In favor of α>0.5 
Lin-lin loss        
Interc., i

j tFE  0.3149 0.3089 0.2296 0.3940 78.83% 1.44% 
Interc., j tA , 1j tA −  0.3154 0.3077 0.2332 0.3956 78.50% 1.56% 
All 0.3055 0.3011 0.2141 0.3882 80.39% 2.01% 
Quad-quad loss       
Interc., i

j tFE  0.4797 0.4913 0.3269 0.6332 27.25% 23.88% 
Interc., j tA , 1j tA −  0.4781 0.4937 0.3233 0.6316 27.33% 22.74% 
All 0.4834 0.4936 0.2937 0.6642 32.38% 29.97% 
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Panel B. Test of forecast optimality 
 
The Hansen’s J-statistic22 has a χ2 distribution with degrees of freedom equal to the difference between the 
number of moments and number of parameters estimated and large values rejecting the null of forecast 
optimality. We report the percentage of times the null hypothesis is rejected at 5% in column 2. In the last 
column we report the percentage of times we reject optimality at 5% with traditional OLS and LAD tests. 
Instruments used in the estimation are reported in the first column.  
 
Model Rejections of forecast optimality when  
 Symmetry not assumed Symmetry assumed ( Table 2) 
Lin-lin loss    
Interc., i

j tFE  6.03% 5.97% 
Interc., j tA , 1j tA −  4.90% 7.71% 
All 4.22% 7.46% 
Quad-quad loss   
Interc., i

j tFE  11.53% 12.20% 
Interc., j tA , 1j tA −  8.19% 17.78% 
All 8.19% 19.87% 
 

                                                 
22 The Hansen’s J-statistic is equal to the minimized value of J=Ngt(α)´Sgt(α), where N is the sample size, gt(α) is 
the first order condition, ( )( ) 1

1 11 0 0
pi i

t j t j tE V FE FEα
−

+ +
 ⋅ < − ⋅ =  

,  and S is the optimal weighting matrix (see Section 

2.3). In STATA we use ivreg2 with the gmm option which utilizes the two-step efficient GMM, and the optimal 
weighting matrix is the inverse of the covariance matrix of orthogonality conditions. Note that there should be at 
least two instruments to be able to estimate this statistic. 
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Table 5 Validating α 
 
Panel A. Employment as a determinant of α 
 
We regress 2,489 individual analysts’ α’s, from Panel A of Table 4, on 210 investment firm indicator 
variables. An investment firm indicator variable is equal to 1 when the firm is the analyst employer and 0 
otherwise. In the case of an analyst who has worked for more than one investment firm, we include only 
the first employer.23 We report adjusted R squared and F statistic with 209 and 2,279 degrees of freedom 
from the test that the investment firm dummies are jointly equal to zero. We use heteroscedasticity-
consistent standard errors. Instruments used in the estimation are reported in the first column. *** indicate 
significance at 1%. 
 
Loss function and instruments used in deriving α Adj. R squared F stat 
Lin-lin loss    
Interc., i

j tFE  0.1120 2.471*** 
Interc., j tA , 1j tA −  0.1182 2.562*** 
All 0.1219 2.617*** 
Quad-quad loss   
Interc., i

j tFE  0.0794 2.005*** 
Interc., j tA , 1j tA −  0.0893 2.143*** 
All 0.0748 1.942*** 
 
 

                                                 
23 There are 1,388 analysts who have worked for more than one investment firm in the sample. Including the 
employer that employed such an analyst for the longest period of time resulted in higher adjusted R-squares and F 
statistics.  
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Panel B. Discrepancy between analyst’s and employer’s α as a predictor of analyst turnover 
 
Model 1 is a logit regression that estimates the probability of a turnover as a function of the discrepancy 
between the analyst’s α and current employer’s α: 

[ ]P TURN DISCi o i i= + +β β ε1 , 
where TURNi  is an indicator variable equal to 1 if analyst i changes jobs, and zero otherwise; DISCi is the 
absolute value of the difference between the analyst’s α and the current employer’s α. When an analyst 
experiences turnover more than once, we include only the first turnover observation. There are 1,388 
analysts experiencing job turnover, or separation, from 210 employers. Employer’s α is estimated from 
forecasts issued by all analysts employed by that firm. Because there are 22 employers that do not have 
enough observations for the estimation of employer’s α, our sample includes 2,457 analysts (1,356 
turnover observations) working for 189 employers.  
 
Model 2 is a logit regression that estimates the probability that analyst’s new employer will have high 
alpha (α>0.5) as a function of analyst’s alpha: 

[ ]P HI NEW EMPL HI ANLSTi i i i_ _ _= + +β β ε1 , 
where HI_ANLSTi  is equal to 1 if analyst’s alpha is high (α>0.5), and zero otherwise, and 
HI_NEW_EMPLi  is equal to 1 if new employer’s alpha is high (α>0.5) and zero otherwise. The number 
of new employers is 201. We were not able to estimate an α for 27 employers. Thus, model 2 is estimated 
on a sample of 1,304 turnover observations. We estimate the model separately on two sub-samples: 
analysts currently employed at high-alpha firms (105 observations under linear loss and 1,090 number of 
observations under quadratic loss) and analysts currently employed at low-alpha firms (1,199 
observations under linear loss and 214 number of observations under quadratic loss). We report parameter 
estimates, heteroscedasticity-consistent standard errors in parentheses. *** (**) [*] indicate significance at 
1% (5%) [10%]. 
 
Loss function and instruments used to estimate 
α Model 1 Model 2 
  αOld employer<0.5 αOld employer>0.5 
Lin-lin, All instruments    
 β0 0.0217      -4.6303***        -3.157# 
 (0.0679) (0.3031) (0.7295) 
 β1 1.4422***         1.6859** - 
 (0.5218) (0.6656) - 
    
Quad-quad, All instruments    
 β0 0.0848       0.8076***     -1.4803*** 
 (0.0688) (0.2099) (0.1087) 
 β1 0.4341        0.8239*         0.4584*** 
 (0.2812) (0.4216) (0.1467) 
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