
Singapore Management University
Institutional Knowledge at Singapore Management University
Research Collection Lee Kong Chian School Of
Business Lee Kong Chian School of Business

11-2002

Discrete Singular Convolution and Its Application
to the Analysis of Plates with Internal Supports. Part
1: Theory and Algorithm
G. W. WEI
National University of Singapore

Yibao ZHAO
Singapore Management University, ybzhao@smu.edu.sg

Y. XIANG
University of Western Sydney
DOI: https://doi.org/10.1002/nme.526

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research

Part of the Physical Sciences and Mathematics Commons

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection Lee Kong Chian School Of Business by an authorized administrator
of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WEI, G. W.; ZHAO, Yibao; and XIANG, Y.. Discrete Singular Convolution and Its Application to the Analysis of Plates with Internal
Supports. Part 1: Theory and Algorithm. (2002). International Journal for Numerical Methods in Engineering. 55, (8), 913-946. Research
Collection Lee Kong Chian School Of Business.
Available at: https://ink.library.smu.edu.sg/lkcsb_research/931

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13237945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/lkcsb?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1002/nme.526
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F931&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2002; 55:913–946 (DOI: 10.1002/nme.526)

Discrete singular convolution and its application to the analysis
of plates with internal supports. Part 1: Theory and algorithm
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SUMMARY

This paper presents a novel computational approach, the discrete singular convolution (DSC) algorithm,
for analysing plate structures. The basic philosophy behind the DSC algorithm for the approximation
of functions and their derivatives is studied. Approximations to the delta distribution are constructed
as either bandlimited reproducing kernels or approximate reproducing kernels. Uni�ed features of the
DSC algorithm for solving di�erential equations are explored. It is demonstrated that di�erent methods
of implementation for the present algorithm, such as global, local, Galerkin, collocation, and �nite
di�erence, can be deduced from a single starting point. The use of the algorithm for the vibration
analysis of plates with internal supports is discussed. Detailed formulation is given to the treatment
of di�erent plate boundary conditions, including simply supported, elastically supported and clamped
edges. This work paves the way for applying the DSC approach in the following paper to plates with
complex support conditions, which have not been fully addressed in the literature yet. Copyright ?
2002 John Wiley & Sons, Ltd.

KEY WORDS: square plates; vibration analysis; wavelets; discrete singular convolution

1. INTRODUCTION

Plate, beam and shell are omnipresent in modern science and engineering. Whether the
concern is with aircraft and missile surface components, reinforced concrete �oor slabs, glass-
window panes, electric circuit boards, cellular phones or certain layered geological formations,
engineers and scientists are frequently called upon to predict the natural frequencies, bending
stresses and buckling loads of elastic beams, plates and shells. To achieve these goals, one is
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914 G. W. WEI, Y. B. ZHAO AND Y. XIANG

required to have thorough knowledge of the fundamental equations of beams, plates and shells
as well as an excellent understanding of various methods of solution. Since analytical solution
can only be available to a few limited cases, computer simulation is the major approach for
the theoretical analysis for most of the above mentioned practical engineering structures. The
study on vibration of plates is one of the most important research areas in civil, mechanical
and aerospace engineering. The pioneer study in this area is credited to Chladni [1] who
observed the nodal patterns on square plates at their resonant frequencies. Extensive studies
on vibration of plates have been conducted since then and the publications have been well
documented in a series of review papers [2–7] and books [8, 9]. The level of di�culty in
obtaining solutions is greatly increased when a structure, such as a plate, involves partial
internal supports [10–25].
There has been a great deal of achievement in numerical methodology for the analyses of

beams and plates in the past few decades. Both global methods and local methods are very
successful in structural mechanics applications. Global methods are highly accurate. But local
methods are more �exible in handling complex geometries, boundary conditions and internal
supports. There are problems in the practical applications requiring both the high computational
accuracy and the �exibility in handling complex geometries, boundary conditions and internal
supports. One such problem is the analysis of the vibration response of an airplane surface
under high frequency disturbance. It is a common approach for mechanical fatigue analysis
and metal crack detection. It is desirable to have a computational method that combines the
high accuracy of a global method with the �exibility of a local method for science and
engineering applications.
The discrete singular convolution (DSC) algorithm [26–29] was developed for �lling this

gap. Sequences of approximations to the singular kernels of Hilbert type, Abel type and
delta type were constructed. Applications were discussed to analytical signal processing,
Radon transform and surface interpolation. The mathematical foundation of the DSC algo-
rithm is the theory of distributions [30] and the theory of wavelets. Numerical solutions
to di�erential equations are formulated via the singular kernels of delta type. By appropri-
ately selecting parameters in the DSC kernel, the DSC approach exhibits controllable ac-
curacy for integration and shows excellent �exibility in handling complex geometries and
boundary conditions. It was demonstrated [27] that di�erent implementations of the DSC al-
gorithm, such as global, local, Galerkin, collocation, and �nite di�erence, can be deduced
from a single starting point. Thus, the DSC algorithm provides a uni�ed representation to
these numerical methods. Many DSC kernels, such as the (regularized) Shannon delta se-
quence kernel, the (regularized) Dirichlet delta sequence kernel, the (regularized) Lagrange
delta sequence kernel and the (regularized) de la Vall�ee Poussin delta sequence kernel, have
been constructed [26]. Practical applications were examined for the numerical solution of
the Fokker–Planck equation [26, 27] and for the Schr�odinger equation [31]. Another develop-
ment in the application of the DSC algorithm is its use in computing numerical solutions
of the Navier–Stokes equation [29, 32] and in structural analysis [33, 34]. In the context of
image processing, DSC kernels were used to facilitate a new anisotropic di�usion operator
for image restoration from noise [35]. Most recently, the DSC algorithm was used to re-
solve a few numerically challenging problems. It was utilized to integrate the (non-linear)
sine-Gordon equation with the initial values close to a homoclinic manifold singularity [36],
for which conventional local methods encounter great di�culties and result in numerically
induced chaos [37]. Another di�cult example resolved by using the DSC algorithm

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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is the integration of the (non-linear) Cahn–Hilliard equation in a circular domain, which is
challenging because of the fourth order arti�cial singularity at the origin and the complex
phase space geometry [38].
The purpose of this paper is to study the computational philosophy of the DSC algorithm

and to introduce the algorithm for vibration analysis of plates with internal supports. For
the purpose of numerical computation, both bandlimited reproducing kernels and approximate
reproducing kernels are discussed as sequences of approximations to the universal reproducing
kernel, the delta distribution. A systematic treatment is proposed for handling a general class
of boundary conditions. We explore the uni�ed features of the DSC algorithm for numerical
approximation of di�erential equations. It is found that several conventional computational
methods, such as methods of global, local, Galerkin, collocation, and �nite di�erence can be
derived from a single starting point. In particular, a Galerkin-induced collocation algorithm
is discussed. A set of generalized �nite di�erence schemes are shown to exhibit global-�nite
di�erence features at certain limit of DSC parameters.
The present study on vibration of rectangular plates with internal supports is presented in a

series of two papers. Part 1 of the series presents the DSC approach in general. A number of
new DSC kernels are constructed as approximations to the universal reproducing kernel—the
delta distribution. Approximation of functions and their derivatives is discussed. The uni�ed
features of the DSC algorithm are explored in the framework of the method of weighted
residuals. The implementation of the proposed algorithm to analysis of plates is explored. In
particular, due to the presence of fourth order derivatives in the governing partial di�erential
equations, structural analysis requires the treatment of complex boundary conditions. Such a
treatment is studied in a systematic manner. Part 2 of the series presents the vibration analysis
of square plates with partial internal straight line supports and complex internal supports under
various combinations of boundary conditions.
The organization of the paper is as follows. In Section 2, we study the computational phi-

losophy of the DSC algorithm. The DSC analysis of plate vibrations is presented in Section 3.
A systematic treatment of boundary conditions is proposed for being used in implicit schemes.
This paper ends with a conclusion.

2. THE DISCRETE SINGULAR CONVOLUTION

The philosophy of the DSC algorithm is studied in this section. The mathematical foundation
is discussed. A number of new kernels are constructed. Wavelet analysis of the algorithm is
given. Numerical applications to partial di�erential equations are formulated in terms of the
method of weighted residuals.

2.1. Approximation of singular convolution

Singular convolutions (SC) are a special class of mathematical transformations, which appear
in many science and engineering problems, such as Hilbert transform, Abel transform and
Radon transform. It is most convenient to discuss the singular convolution in the context
of the theory of distributions. The latter has a signi�cant impact in mathematical analysis.
Not only it provides a rigorous justi�cation for a number of informal manipulations in phys-
ical and engineering sciences, but also it opens a new area of mathematics, which in turn

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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gives impetus to many other mathematical disciplines, such as operator calculus, di�erential
equations, functional analysis, harmonic analysis and transformation theory. In fact, the theory
of wavelets and frames, a new mathematical branch developed in recent years, can also �nd
its root in the theory of distributions.
Let T be a distribution and �(t) be an element of the space of test functions. A singular

convolution is de�ned as

F(t)=(T ∗ �)(t)=
∫ ∞

−∞
T (t − x)�(x) dx (1)

Here T (t − x) is a singular kernel. Depending on the form of the kernel T , the singular
convolution is the central issue for a wide range of science and engineering problems. For
example, the singular kernels of Hilbert type have a general form of

T (x)=
1
xn

(n=1; 2; : : :) (2)

Here, kernel T (x)=1=x commonly occurs in electrodynamics, theory of linear response, signal
processing, theory of analytic functions, and the Hilbert transform. When n=2, T (x)=1=x2 is
the kernel used in tomography. Another interesting example is the singular kernels of Abel type

T (x)=
1
x�

(0¡�¡1) (3)

These kernels can be recognized as the special cases of the singular integral equations of
Volterra type of the �rst kind. The singular kernels of Abel type have applications in the
area of holography and interferometry with phase objects (of practical importance in aerody-
namics, heat and mass transfer, and plasma diagnostics). They are intimately connected with
the Radon transform, for example, in determining the refractive index from the knowledge
of a holographic interferogram. The other important example is the singular kernels of delta
type

T (x)=�(n)(x) (n=0; 1; 2; : : :) (4)

Here, kernel T (x)=�(x) is of particular importance for interpolation of surfaces and curves
(including atomic, molecular and biological potential energy surfaces, engineering surfaces
and a variety of image processing and pattern recognition problems involving low-pass �l-
ters). Higher-order kernels, T (x)=�(n)(x); (n=1; 2; : : :) are essential for numerically solving
partial di�erential equations and for image processing, noise estimation, etc. However, since
these kernels are singular, they cannot be directly digitized in computers. Hence, the singular
convolution, (1), is of little numerical merit. To avoid the di�culty of using singular ex-
pressions directly in computers, we construct sequences of approximations (T�) to the distri-
bution T

lim
�→�0

T�(x)→T (x) (5)

where �0 is a generalized limit. Obviously, in the case of T (x)=�(x), each element in the
sequence, T�(x), is a delta sequence kernel. Note that one retains the delta distribution at the
limit of a delta sequence kernel. Computationally, the Fourier transform of the delta distribu-
tion is unity. Hence, it is a universal reproducing kernel for numerical computations and an

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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all pass �lter for image and signal processing. Therefore, the delta distribution can be used
as a starting point for the construction of either band-limited reproducing kernels or approxi-
mate reproducing kernels. By the Heisenberg uncertainty principle, exact reproducing kernels
have bad localization in the time (spatial) domain, whereas, approximate reproducing kernels
can be localized in both time and frequency representations. Furthermore, with a su�ciently
smooth approximation, it is useful to consider a discrete singular convolution (DSC)

F�(t)=
∑
k
T�(t − xk)f(xk) (6)

where F�(t) is an approximation to F(t) and {xk} is an appropriate set of discrete points on
which the DSC, Equation (6), is well de�ned. Note that, the original test function �(x) has
been replaced by f(x). The mathematical property or requirement of f(x) is determined by
the approximate kernel T�. In general, the convolution is required being Lebesgue integrable.
In the rest of this paper, the emphasis is on the singular kernels of delta type, including their
approximation, and numerical implementation.

2.1.1. Singular kernels of delta type. The delta distribution or the so-called Dirac delta func-
tion (�) is a generalized function which is integrable inside a particular interval but in itself
does not need to have a value. Heaviside introduced both the unit step Heaviside function
and the Dirac delta function as its derivative and referred to the latter as the unit impulse.
Dirac, for the �rst time, explicitly discussed the properties of � in his classic text on quan-
tum mechanics; for this reason � is often called the Dirac delta function. However, the delta
distribution has a history which antedates both Heaviside and Dirac. It appeared in an ex-
plicit form as early as 1822, in Fourier’s Th�eorie Analytique de la Chaleur. The work of
Heaviside, and subsequently of Dirac, in the systematic but informal exploitation of the step
and the delta functions, has made the delta distribution familiar to physicists and engineers
before Sobolev, Schwartz [30], Korevaar [39] and others put it into a rigorous mathematical
form. The Dirac delta function is the most important special case of distributions or gen-
eralized functions. There are three parallel descriptions for the theory of distributions. One
description of distributions is to characterize them as an equivalence class, or as a general-
ized limit of various Cauchy sequences (fundamental sequences) and fundamental families as
rigorously de�ned by Korevaar [39]. This approach is particularly convenient for the delta
distribution. Another description is to formulate them as continuous linear functionals on the
space of test functions as introduced by Schwartz [30]. The vector space of test functions
is obtained from a class of test functions with compatible convergence or topology. The
other description is based on generalized derivatives of integrable functions. The general-
ized derivatives are distributions rather than well-behaved functions. The �rst description is
intuitive and convenient for various applications. The second description is particularly ele-
gant and concise. It is also very convenient for higher dimensional applications. The third
description is useful for certain practical applications involving derivatives and antideriva-
tives. These three descriptions are formally equivalent and are commonly used for describing
not only for the delta distribution, but also for distributions in general. The use of many
delta sequences as probability density estimators was discussed by Walter and Blum [40] and
others [41–43].

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946



918 G. W. WEI, Y. B. ZHAO AND Y. XIANG

De�nition 1
The delta distribution, or the so-called Dirac delta function is given as a continuous linear
functional on the space of test functions, D(−∞;∞),

〈�; �〉=�(�)=
∫ ∞

−∞
��=�(0) (7)

A delta sequence kernel, {��(x)}, is a sequence of kernel functions on (−∞;∞) which is
integrable over every compact domain and their inner product with every test function �
converges to the delta distribution

lim
�→�0

∫ ∞

−∞
���=〈�; �〉 (8)

where the (real or complex) parameter � approaches �0, which can either be ∞ or a limit
value, depending on the situation (such a convention for �0 is used through out this paper). If
�0 represents a limit value, the corresponding delta sequence kernel is a fundamental family.
Depending on the explicit form of ��, the condition on � can be relaxed. For example, if ��

is given as

��(x)=

{
� for 0¡x¡1=�
0 otherwise

�=1; 2; : : : ; (9)

then Equation (8) makes sense for every � in C(−∞;∞).
There are many delta sequence kernels arising in the theory of partial di�erential equations,

Fourier transforms and signal analysis, with completely di�erent mathematical properties. It
is useful to have a classi�cation of various delta sequence kernels for discussion, application
and for new construction. The delta sequence kernels of positive and Dirichlet type have very
distinct mathematical properties and can serve as the basis of a good classi�cation scheme.
In particular, there is a close relation between the delta sequence kernel of positive type and
statistical distribution functions. In fact, every statistical distribution function can be regarded
as an element of the delta sequence kernel of positive type. An ordinary element of the delta
sequence kernel of Dirichlet type has the well-known feature of ‘small wave’. In other words it
is readily related to the wavelet scaling function. Moreover, classifying delta sequence kernels
according to Schwartz class or non-Schwartz class is also very useful for various applications
in physical and engineering sciences. In particular, all physically realizable states, either in
the sense of quantum mechanics or classical mechanics, belong to the Schwartz class [44].
Moreover, for the purpose of numerical applications to ill-posed problems, delta sequences
of the Schwartz class are applicable to a wide class of functions and distributions. In the
following two subsections, the delta sequence kernels of positive type and Dirichlet type are
studied.

2.1.2. Delta sequence kernels of positive type

De�nition 2
Let {��} be a sequence of kernel functions on (−∞;∞) which are integrable over every
bounded interval. We call {��} a delta sequence kernel of positive type if
1.
∫ a
−a �� → 1 as �→ �0 for some �nite constant a.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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2. For every constant �¿0, (
∫ −�
−∞+

∫∞
� )�� → 0 as �→ �0.

3. ��(x)¿0 for all x and �.

Example 1
Delta sequence kernel of impulse functions.

To approximate idealized physical concepts such as the force density of a unit force at the
origin x=0, or a unit impulse at time x=0, a sequence of functions given by

��(x)=

{
� for 0¡x¡1=�;

0 otherwise
�=1; 2; : : : (10)

is a DSC delta sequence kernel provided �→∞. This is a commonly used density estimator
in science and engineering.

Example 2
Gauss’ delta sequence kernel.

In the study of the heat equation, Gauss’ delta sequence kernel

��(x)=
1√
2��

e−x2=(2�2) for �→ 0 (11)

arises naturally as a distribution solution or so-called weak solution. Gauss’ delta sequence
kernel has various interesting properties with regard to di�erentiability, boundedness and
Fourier transforms, and it is used to generate the ‘Mexican hat’ wavelet.

Example 3
Lorentz’s delta sequence kernel.

Lorentz’s delta sequence kernel

��(x)=
1
�

�
x2 + �2

for �→ 0 (12)

is known for its role in representing the solution of the Laplace equation in the upper half
plane. It is commonly seen in integral equations involving Green’s function of the kinetic
energy operator (in the momentum representation). It is also the expression for the line shape
of various spectroscopies when the relaxation is an exponential one in the time domain.
A generalized expression can be written as

��; n(x)=
1
�

�nxn−1

x2n + �2n
for �→ 0 and n¿1 (13)

This includes Equation (12) as a special case.

Example 4
Landau’s delta sequence kernel.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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In the discussion of convergence properties of polynomial approximations, Landau intro-
duced a delta sequence kernel

Ln(x)=
(a2 − x2)n∫ a

−a
(a2 − y2)n dy

for n=0; 1; 2; : : : and a¿0 (14)

It becomes a delta sequence kernel

�n(x)=

{
Ln(x) for |x|6a;

0 otherwise
(15)

as n→∞. This is called Landau’s delta sequence kernel. Wavelets generated from Landau’s
delta sequence kernel can be very useful for a su�ciently large n.

Example 5
Poisson’s delta sequence kernel family.

The function given by the summation of an in�nite series

P�(x) =
1
�

[
1
2
+ � cos(x) + �2 cos(2x) + · · ·

]

=
1− �2

2�[1− 2� cos(x) + �2]

where 06�¡1 and (−∞¡x¡∞), is called the Poisson kernel, which plays an important
role in Poisson’s integral formulae. Poisson’s delta sequence kernel family is given by

��(x)=

{
P�(x) for |x|6�;

0 otherwise
(16)

as �→ 1. Poisson’s delta sequence kernel family has a connection with the solution of the
Laplace equation in a unit disc (i.e. the Dirichlet problem for a unit disc).

Example 6
Fej�er’s delta sequence kernel.

The partial sum of the discrete Fourier series

Dk(x) =
1
�

[
1
2
+ cos(x) + cos(2x) + · · ·+ cos(kx)

]

=
sin[(k + 1

2)x]
2� sin ( 12x)

; k=0; 1; 2; : : : (17)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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is called a Dirichlet kernel. To improve convergence for proving a trigonometric approximation
theorem, Fej�er introduced the following arithmetic mean:

Fk(x) =
1
k
[D0(x) +D1(x) + · · ·+Dk−1(x)]

=
sin2( 12kx)

2�k sin2( 12x)
−∞¡x¡∞ (18)

Then Fej�er’s delta sequence kernel is given by

��(x)=

{
F�(x) for |x|6�

0 otherwise
for �=0; 1; 2; : : : (19)

as �→∞. Fej�er’s delta sequence kernel has an important application in the theory of repro-
ducing kernels. It also describes the intensity pattern of light from a regular series of pinholes
in optical physics.

Example 7
Generalized Fej�er’s delta sequence kernel.

It is noted that Fej�er’s method of generating the delta sequence kernel is very general.
Essentially, a family of arithmetic means of delta sequence kernels are still delta sequence
kernels. The resulting delta sequence kernel can be called a delta sequence kernel of Fej�er
type. For instance, in a similar treatment using Dirichlet’s continuous delta sequence kernels
(see next subsection), one obtains the following Fej�er’s continuous delta sequence kernel:

��(x)=
2
�
sin2(�x)

�x2
∀x∈R (20)

Obviously, this is well de�ned on the real line. This expression is related to the intensity of
light di�racted by a uniform slit.

Example 8
Delta sequence kernels generated by dilation.

Let �∈L1(R) be a non-negative function with
∫
�(x) dx=1, dilation of � given by

��(x)=
1
�
�
( x
�

)
(�¿0) (21)

leads to a delta sequence kernel, �� → �, as �→ 0.
Physically, � can be regarded as a statistical distribution function. This is a general pro-

cedure and Examples 2 and 3 �t into this structure. Examples 1 and 6 can be expressed
in this form by appropriate modi�cations (by replacing � with �=1=�, and then letting
�→ 0).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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2.1.3. Delta sequence kernels of Dirichlet type

De�nition 3
Let {��} be a sequence of functions on (−∞;∞) which are integrable over every bounded
interval. We call {��} a delta sequence kernel of Dirichlet type if
1.
∫ a
−a �� → 1 as �→ �0 for some �nite constant a.

2. For every constant �¿0; (
∫ −�
−∞+

∫∞
� )�� → 0 as �→ �0.

3. There are positive constants C1 and C2 such that

|��(x)|6C1
|x| + C2

for all x and �.

Example 1
Dirichlet delta sequence kernel.

The most important example of a delta sequence kernel of Dirichlet type is the Dirichlet
delta sequence kernel

��(x)=

{
D�(x) for |x|6�

0 otherwise
for �=0; 1; 2; : : : (22)

where D� is the Dirichlet kernel given by Equation (17). Dirichlet’s delta sequence kernel
plays an important role in approximation theory and is the key element in trigonometric
polynomial approximations. In fact, it is an exact reproducing kernel for bandlimited, periodic,
L2 functions. Physically, it describes the di�raction of light passing through a regular series
of pinholes in which the kth pinhole’s contribution is proportional to eik .

Example 2
Modi�ed Dirichlet delta sequence kernel.

Sometimes there is some advantage in taking the last term in D� with a factor of 1
2 :

D∗
� (x) =D� − 1

2�
cos(�x)

=
sin(�x)
2� tan( 12x)

; �=0; 1; 2; : : : (23)

This is the so-called modi�ed Dirichlet kernel. The di�erence D� − D∗
� tends uniformly to

zero on (−�; �) as �→∞. They are equivalent with respect to convergence.
The expression given by

��(x)=

{
D∗

� (x) for |x|6�

0 otherwise
for �=0; 1; 2; : : : (24)

is a delta sequence kernel of Dirichlet type as �→∞.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:913–946
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Example 3
Lagrange delta sequence kernel.

The Lagrange interpolation formula

LM;k(x)=
i=k+M∏

i=k−M; i �=k

x − xi
xk − xi

; (M¿1) (25)

is de�ned on an interval (a; b) with a set of 2M + 1 ordered discrete points,

{xi}k+M
i=k−M : xk−M=a¡xk−M+1¡ · · ·¡xk¡ · · ·¡xk+M=b (26)

It converges to the delta distribution as

a→−∞; b→∞ and sup
∀xi ; xj∈(a; b)

|xi − xj| → 0 (27)

Obviously, these limits imply M →∞. Since the delta distribution has only a point support,
the Lagrange interpolation formula is a delta sequence

�M; k(x)=

{
LM;k(x) for a6x6b

0 otherwise
for M=1; 2; : : : (28)

as M →∞ (to qualify as a delta sequence of Dirichlet type, M¿2 is required in Equa-
tion (28)).

Example 4
Interpolative delta sequence kernel.

Let {�n} be a sequence of functions converging to the delta distribution and let {xi}n0 be
n+ 1 zeroes of a Jacobi polynomial in (a; b).

�n(x; y)=
∏n

i=0(x − xi)
(x − y)

∏n
i=0(y − xi)

n∑
i=0

�n(y − xi); x; y∈(a; b) (29)

is a delta sequence kernel as n→∞. This follows from the fact that
∫
�n(x; y)f(y) dy are

approximations to the Lagrange interpolation formula.

Example 5
de la Vall�ee Poussin delta sequence kernel.

The de la Vall�ee Poussin kernel is given by

Pn;p(x) =
1

p+ 1

n∑
k=n−p

Dk(x)

=
1
2�
+
1
�

n−p∑
k=1

cos kx +
1
�

p∑
k=1

[
1− k

p+ 1

]
cos[(n− p+ k)x]

=
sin[(2n+ 1− p)x=2] sin[(p+ 1)x=2]

2�(p+ 1) sin2(x=2)
; p=0; : : : ; n; n=0; 1; : : : (30)
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where Dk(x) are the Dirichlet kernels given by Equation (17). It is interesting to note that
the de la Vall�ee Poussin kernel reduces to the positively de�ned Fer�er’s kernel Fn+1(x) when
p=n. The de la Vall�ee Poussin delta sequence kernel is given by

�n;p(x)=

{
Pn;p(x) for |x|6�

0 otherwise
for p=0; : : : ; n; n=0; 1; : : : (31)

as n; p→∞. The de la Vall�ee Poussin delta sequence kernel is of Dirichlet type when
p¡n.
A simpli�ed de la Vall�ee Poussin kernel given by

��(x)=
1
��
cos(�x)− cos(2�x)

x2
(32)

is found to be very useful numerically [26].

Example 6
DSC kernels constructed by orthogonal basis expansions.

Let { i} be a complete orthonormal L2(a; b) basis. Then

�n(x; y)=
n∑

i=0
 i(x) i(y); x; y∈(a; b) (33)

are DSC delta sequence kernels. In the case of trigonometric functions, we again obtain the
Dirichlet kernels given in the Examples 1 and 3. The Hermite function expansion is given
by

�n(x)= exp(−x2)
n∑

k=0

(−1
4

)k 1√
�k!

H2k(x); ∀x∈R (34)

where H2k(x) is the usual Hermite polynomial. Note that the Hermite kernel in Equation (34)
has a di�erent form from Equation (33). This is because it is evaluated at x=0 in the series
expansion.

Example 7
Shannon’s delta sequence kernel.

Shannon’s delta sequence kernel (or Dirichlet’s continuous delta sequence kernel)
is given by the following (inverse) Fourier transform of the characteristic function,
	[−�=2�; �=2�],

��(x) =
∫ ∞

−∞
	[− �

2� ; �
2�

]e−i2�
x d


=
sin(�x)

�x
(35)
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Alternatively, Shannon’s delta sequence kernel can be given as an integration

��(x)=
1
�

∫ �

0
cos(xy) dy (36)

or as the limit of a continuous product

��(x)= lim
N→∞

�
�

N∏
k=1

cos
( �
2k

x
)
= lim

N→∞
1
2N�

sin(�x)
sin[(�=2N )x]

(37)

Numerically, Shannon’s delta sequence kernel is one of the most important cases, because
of its property of being an element of the Paley–Wiener reproducing kernel Hilbert space B21=2

f(x)=
∫ ∞

−∞
f(y)

sin [�(x − y)]
�(x − y)

dy; ∀f∈B21=2 (38)

where ∀f∈B21=2 indicates that, in its Fourier representation, the L2 function f vanishes outside
the interval [− 1

2 ;
1
2 ]. The Paley–Wiener reproducing kernel Hilbert space B21=2 is a subspace of

the Hilbert space L2(R). It is noted that the reproducing kernel Hilbert space is a special class
of Hilbert space. For instance, the space L2(R) is not a reproducing kernel Hilbert space.

Example 8
Generalized Lagrange delta sequence kernel.

Shannon’s delta sequence kernel can be derived from the generalized Lagrange interpolation
formula

Sk(x)=
G(x)

G′(xk)(x − xk)
(39)

where G(x) is an entire function given by

G(x)=(x − x0)
∞∏
k=1

(
1− x

xk

)(
1− x

x−k

)
(40)

and G′ denotes the derivative of G. For a function bandlimited to B, the generalized Lagrange
interpolation formula Sk(x) of Equation (39) can provide an exact result

f(x)=
∑
k∈Z

f(yk)Sk(x) (41)

whenever the set of non-uniform sampling points satisfy

sup
k∈Z

∣∣∣∣xk − k�
B

∣∣∣∣¡ �
4B

(42)

where the symbol Z denotes the set of all integers. This is called the Paley and Wiener
sampling theorem in the literature.
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If {xk}k∈Z are limited to a set of points on a uniform in�nite grid (xk=k�= − x−k),
Equation (40) can be simpli�ed

G(x) = x
∞∏

k=−∞; k �=0

(
1− x

k�

)
(43)

= x
∞∏
k=1

(
1− x2

k2�2

)
(44)

=�
sin [(�=�)x]

�
(45)

Since G′(xk) reduces to

G′(xk)=(−1)k (46)

on a uniform grid, Equation (39) gives rise to

Sk(x) =
G(x)

G′(xk)(x − xk)
=
(−1)k sin [(�=�)x]
(�=�)(x − k�)

(47)

=
sin [(�=�)(x − xk)]
(�=�)(x − xk)

(48)

Obviously, sin [�=�(x − xk)]=[�=�(x − xk)] is an approximation to the delta distribution

lim
�→0

sin [(�=�)(x − xk)]
(�=�)(x − xk)

→ �(x − xk) (49)

In fact, the generalized Lagrange interpolation formula directly gives rise to the delta distri-
bution under an appropriate limit

lim
max �x→0

Sk(x)= lim
max �x→0

G(x)
G′(xk)(x − xk)

→ �(x − xk) (50)

where max�x is the largest �x on the grid.
In the following, the delta sequence kernel is also referred to as the delta kernel. A com-

parison of two types of delta kernels is given in Figure 1.

2.2. Wavelet and time-frequency analyses

This subsection is devoted to wavelet property of the DSC kernels. A regularization procedure
is introduced to enhance the time-frequency localization of the DSC kernels.

2.2.1. Connection to wavelets. The DSC approximation to the delta distribution is closely
related to the theory of wavelets and frames. Mathematically, wavelets are functions generated
from a single function by applying dilation and translation. They form building blocks for
some spaces, such as L2(R), whether as a frame or as an orthonormal basis. Such building
blocks are computationally important when they have certain regularity and localization in both
time and frequency domains. Physically, the wavelet transform is a mathematical technique
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−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

Figure 1. A comparison of delta sequence kernels of the positive type and Dirichlet type. The solid
line: 1=

√
�e−x2 ; Dots: 1=�(sin(x)=x)e−x2 ; Crosses: 1=�(sin(2�x)=x)e−x2 .

that can be used to split a signal into di�erent frequency bands or components so that each
component can be studied with a resolution matched to its scale, thus providing excellent
frequency and spatial resolution, and achieving computational e�ciency.
Shannon’s wavelet is one of the most important examples and its scaling function is

Shannon’s delta kernel,

�(x)=
sin (�x)

�x
(51)

As a delta kernel, it is normalized

�̂(0)=
∫

�(x) dx=1 (52)

and its Fourier transform is given by the characteristic function �̂(!)=	[−1=2;1=2]. It is easy
to see that

∞∑
n=−∞

�̂(!+ n)=1 (53)
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and
∞∑

n=−∞
|�̂(!+ n)|2=1 (54)

Equation (54) is a consequence of orthonormality. In fact, the sequence of functions
{�(x − n)}∞n=−∞ are orthonormal.
Shannon’s mother wavelet can be constructed from Shannon’s delta kernel (Shannon’s

wavelet scaling function)

 (x)=
sin (2�x)− sin (�x)

�x
(55)

with its Fourier expression

 ̂ (!)=	[−1;1](!)− 	[−1=2;1=2](!) (56)

This is recognized as the ideal band pass �lter and it satis�es the orthonormality conditions
∞∑

n=−∞
 ̂ (!+ n)=1 (57)

and
∞∑

n=−∞
| ̂ (!+ n)|2=1 (58)

Technically, it can be shown that a system of orthogonal wavelets are generated from a single
function, the ‘mother’ wavelet  , by standard operations of translation and dilation

 mn(x)=2−m=2 
( x
2m

− n
)
; m; n∈Z (59)

A family of Shannon’s wavelet scaling functions { mn(x)}n;m∈Z span a series of orthogonal
wavelet subspaces {Wm}m∈Z satisfying⊕

m∈Z
Wm=L2(R) (60)

Alternatively, a family of Shannon’s wavelet scaling functions {�mn(x)}n;m∈Z are constructed
from a single Shannon’s delta kernel

�mn(x)=2−m=2�
( x
2m

− n
)
; m; n∈Z (61)

They span a series of nested wavelet subspaces {Vm}m∈Z . Each corresponds to a di�erent
resolution

· · · ⊂V−1⊂V0⊂V1⊂ · · · ⊂L2(R) (62)

This nested structure provides the conceptual basis for the wavelet multiresolution analysis.
From the point of view of signal processing, Shannon’s delta kernel �� corresponds to a

family of ideal low pass �lters, each with a di�erent bandwidth

��(x)=
sin (�x)

�x
(63)
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Their corresponding wavelet expressions

 �(x)=
sin (2�x)− sin (�x)

�x
(64)

are band pass �lters. However, Shannon’s wavelet system is seldom used in real applications
because it requires in�nitely many data points. In the next subsection, we discuss a practical
approach for generating powerful �lters from Shannon’s delta kernel.
Two wavelet generators were introduced [28] to create wavelets from the DSC kernels

systematically. For example, Gauss-kernel-generated wavelets are given by

 n(x)=Gn 1√
�
e−x2 =

1√
�
(−1)n
2

Hn+1(x)e−x2 n=0; 1; 2; : : : (65)

where Hn+1 is the (n+ 1)th order Hermite polynomial and Gn is a wavelet generator

Gn=x
@n

@xn
+ n

@n−1

@xn−1
; n=0; 1; 2; : : : (66)

Equation (65) gives rise to a few important cases in image processing, e.g. the Canny operator
is given by n=0 and the celebrated Mexican hat wavelet is given by n=1. These wavelets
are useful in digital image edge detection.

2.2.2. Regularization. Both �(x) and its associated wavelet play a crucial role in information
theory and the theory of signal processing. However their usefulness is limited by the fact
that �(x) and  (x) are in�nite impulse response (IIR) �lters and their Fourier transforms
�̂(!) and  ̂ (!) are not di�erentiable. From the computational point of view, �(x) and  (x)
do not have �nite moments in the co-ordinate space; in other words, they are de-localized.
This non-local feature in the co-ordinate is related to its bandlimited character in the Fourier
representation by the Heisenberg uncertainty principle.
According to the theory of distributions, the smoothness, regularity and localization of a

temper distribution can be improved by a function of the Schwartz class. We apply this
principle to regularize singular convolution kernels

��(x)=R�(x)�(x); (�¿0) (67)

where R� is a regularizer which has properties

lim
�→∞ R�(x)=1 (68)

and

R�(0)=1 (69)

Here Equation (68) is a general condition that a regularizer must satisfy, while Equation (69)
is speci�cally for a delta regularizer, which is used in regularizing a delta kernel. Various
delta regularizers can be used for numerical computations. A good example is the Gaussian

R�(x)= exp
[
− x2

2�2

]
(70)
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Gaussian regularizer is a Schwartz class function and has excellent numerical performance.
However, we noted that in certain eigenvalue problems, no regularization is required if the
potential is smooth and bounded from below (e.g. the harmonic oscillator potential 12x

2).
Immediate bene�t from the regularized Shannon’s kernel function Equation (67) is that its

Fourier transform is in�nitely di�erentiable because the Gaussian is an element of Schwartz
class functions. Qualitatively, all kernels of Dirichlet type oscillate in the co-ordinate represen-
tation. Shannon’s kernel has a long tail which is proportional to 1=x, whereas, the regularized
kernels decay exponentially fast, especially when the � is very small. In the Fourier repre-
sentation, Shannon’s kernel is an ideal low pass �lter, which is discontinuous at != ± 1

2 .
In contrast, all regularized Shannon’s kernels have an ‘optimal’ shape in their frequency
responses. Of course, they all reduce to Shannon’s low pass �lter at the limit

lim
�→∞ ��(x)= lim

�→∞
sin (�x)

�x
e−x2=(2�2)=

sin (�x)
�x

(71)

Quantitatively, one can examine the normalization of ��(x)

�̂�(0) =
∫
��(x) dx

=
√
2��

∞∑
k=0

(−1)k
k!(2k + 1)

(
��√
2

)2k
(72)

By means of the error function, erf (z)=2=
√
�
∫ z
0 e

−t2 dt, Equation (72) can be rewritten as

�̂�(0) = erf
(

��√
2

)

=1−
√
2
�
1
�
e−�2�2=2

∫ ∞

0
e[−t2=(2�2)]−�t dt

=1− erfc
(

��√
2

)
(73)

where erfc(z) is the complementary error function. Note that for a given �¿0, erfc(��=
√
2)

is positive de�nite. Thus, �̂�(0) is always less than unity except at the limit of �→∞.
In fact, ��(x) does not really satisfy the requirement, as given by Equation (52), for a

wavelet scaling function. However, when we choose ��
√
2=�, which is the case in many

practical applications, the residue term, erfc(��=
√
2), approaches zero very quickly. As a

result, �̂�(0) is extremely close to unity. Therefore, we call the regularized Shannon’s delta
kernel �� a quasi-wavelet scaling function.

2.3. Discretization

For the purpose of digital computations, it is necessary to discretize various delta kernels. To
this end, we should examine a sampling basis given by Shannon’s delta kernel

Sk(x)=
sin [�(x − xk)]

�(x − xk)
; ∀k∈Z (74)
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This sampling basis is an element of the Paley–Wiener reproducing kernel Hilbert space.
Hence, it provides a discrete representation of every (continuous) function in B21=2, that is

f(x)=
∑
k∈Z

f(xk)Sk(x); ∀f∈B21=2 (75)

This is recognized as Shannon’s sampling theorem and it means that one can recover a
continuous bandlimited L2 function from a set of discrete values. Equation (75) is particularly
important to information theory and the theory of sampling because it satis�es the interpolation
condition

Sn(xm)=�n;m (76)

where �n;m is the Kronecker delta function. Note that Shannon’s delta kernel is obviously
interpolative on Z . Computationally, being interpolative is desirable for numerical accuracy
and simplicity.
On a grid of arbitrary spacing �, Shannon’s sampling theorem can be modi�ed as

f(x)=
∑
k∈Z

f(xk)
sin[(�=�)(x − xk)]
(�=�)(x − xk)

; ∀f∈B21=2� (77)

This suggests that we can discretize the regularized Shannon’s delta kernel as

��;�(x − xk)=
sin[(�=�)(x − xk)]
(�=�)(x − xk)

e−(x−xk )
2=(2�2) (78)

It is noted that if � is chosen as the spatial mesh size (this is, in general, not required in
signal and image processing), ��;�(x − xk) retains the interpolation property,

��;�(xm − xk)= �m; k (79)

This is of particular merit for numerical computations.
In practical applications, Equation (77) can never be realized because it requires in�nitely

many sampling points. Therefore, it is both necessary and convenient to truncate the in�nite
summation in Equation (77) to a �nite (2M + 1) summation

f(x)≈
M∑

k=−M
��;�(x − xk)f(xk) (80)

where ��;�(x − xk) is a collective symbol for delta kernels of Dirichlet type. The truncation
error is dramatically reduced by the introduction of a delta regularizer. A rigorous proof of
this has been given by Qian and Wei [45].
The discretization of the Dirichlet kernel is not as straightforward as that of Shannon’s

kernel. However, it can be carried out according to the following Dirichlet sampling theorem:

Theorem
If an L2 function f(x) satis�es the Dirichlet boundary condition and is periodic in T and
bandlimited to the highest (radial) frequency 2�L=T , it can be exactly reconstructed from a
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�nite set of 2L+ 1 discrete sampling points

f(x)=
L∑

k=−L
f(xk)

sin[(�=�)(x − xk)]
(2L+ 1) sin[(�=�)(x − xk)=(2L+ 1)]

(81)

where �=T=(2L+ 1) is the sampling interval and xk = k� are the sampling points.

Note that the kernel in Equation (81) di�ers from that in Equation (17). This follows from
a change in the variable x→ (�=�y) (2=(2L+ 1))y, and

∫
dx→ ∑

(�=�y) (2=(2L+ 1))�y.
The Dirichlet kernel is a reproducing kernel for bandlimited L2 periodic functions. There-
fore, Equation (81) should be the most e�cient kernel for numerical computations under
the aforementioned conditions. However, to facilitate the Dirichlet kernel in an unbounded
computational domain, we use the following regularized discrete expression for the Dirichlet
kernel:

sin[(l+ 1
2)(x − x′)]

2� sin[ 12 (x − x′)]
→ sin[(�=�)(x − xk)]
(2L+ 1) sin[(�=�) (x − xk)=(2L+ 1)]

exp
[
− (x − xk)2

2�2

]
(82)

Like the regularized Shannon’s kernel �lter, the present regularized Dirichlet kernel �lter
has the feature of rapid decay. In comparison to Shannon’s kernel, the Dirichlet kernel has
one more parameter L which can be optimized to achieve better results in computations.
Usually, we set a su�ciently large L for various numerical applications. A regularized discrete
expression for the modi�ed Dirichlet kernel is

sin[(l+ 1
2)(x − x′)]

2� tan[ 12 (x − x′)]
→ sin[(�=�)(x − xk)]
(2L+ 1) tan[(�=�)(x − xk)=(2L+ 1)]

exp
[
− (x − xk)2

2�2

]
(83)

Obviously, the regularized Dirichlet kernel reduces to the regularized Shannon’s delta kernel
when L is su�ciently large

lim
L→∞

sin[(�=�)(x − xk)]
(2L+ 1) sin[(�=�)(x − xk)=(2L+ 1)]

exp
[
− (x − xk)2

2�2

]

= lim
L→∞

sin[(�=�)(x − xk)]
(2L+ 1) tan[(�=�)(x − xk)=(2L+ 1)]

exp
[
− (x − xk)2

2�2

]

=
sin [(�=�)(x − xk)]
(�=�)(x − xk)

exp
[
− (x − xk)2

2�2

]
(84)

The discretization of the de la Vall�ee Poussin kernel is given by

1
��
cos[�(x − x′)]− cos[2�(x − x′)]

(x − x′)2

→ 2
3
cos [(�= 	�)(x − xk)]− cos [2 (�= 	�)(x − xk)]

[(�= 	�)(x − xk)]2
exp
[
− (x − xk)2

2�2

]
(85)

where 	�= 3
2�. Since �=� is proportional to the highest frequency which can be reached in

the Fourier representation, the � should be very small for a given problem involving very
oscillatory functions or very high frequency components.
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It is noted that by de�nition, the Lagrange interpolation formula

LM;k(x)=
k+M∏

i=k−M; i �=k

x − xi
xk − xi

(86)

is already discretized. However, its regularized forms

��(x − xk)=

[
k+M∏

i=k−M; i �=k

x − xi
xk − xi

]
exp
[
− (x − xk)2

2�2

]
(87)

are very good low pass �lters. Unlike the generalized Lagrange interpolation formula, both
expressions (86) and (87) are compactly supported kernels. As low pass �lters, they require
only a �nite number of signals and their Fourier transforms have smoothened shoulders as
those of regularized Shannon’s delta kernels.

2.4. Approximation of derivatives

For the solution of di�erential equations, one needs to approximate the di�erential operators.
The approximation to diveratives can be constructed by using the DSC kernels of delta type.
To start with, we consider a one-dimensional, n=0 order DSC kernel of delta type �(0)�;�(x−xk).
Approximation to higher order diveratives is given by

�(n)�;�(x − xk); (n=1; 2; : : :) (88)

Here �(0)�;�(x−xk)= ��;�(x−xk) is the DSC delta kernel described in Equation (80). The higher
order di�erentiation matrix elements, �(n)�;�(xm − xk), are obtained by di�erentiations

�(n)�;�(xm − xk)=
[(
d
dx

)n
��;�(x − xk)

]
x=xm

(89)

From the point of view of signal processing, these diveratives can be regarded as high pass
�lters. In fact, the �lters corresponding to the derivatives of Shannon’s kernel decay slowly
as x increases, whereas, the localization of the regularized DSC �lters is controllable because
DSC �lters are functions of the Schwartz class. In the Fourier representation, the derivatives
of Shannon’s kernel are discontinuous at certain points. In contrast, all the derivatives of
regularized DSC kernels are continuous and can be made very close to those of Shannon’s,
if desired.
The di�erentiation in Equation (89) can be analytically carried out for a given ��;�(x−xk).

For example, if ��;�(x − xk)= sin[(�=�)(x − xk)]=[(�=�)(x − xk)]e−(x−xk )
2=(2�2), we have for

x �= xk the �rst two terms:

�(1)�;�(x − xk) =
cos [(�=�)(x − xk)]

x − xk
exp
(
− (x − xk)2

2�2

)

− sin [(�=�)(x − xk)]
(�=�)(x − xk)2

exp
(
− (x − xk)2

2�2

)

− sin [(�=�)(x − xk)]
(�=�)�2

exp
(
− (x − xk)2

2�2

)
(90)
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and

�(2)�;�(x − xk) =− (�=�) sin [(�=�)(x − xk)]
x − xk

exp
(
− (x − xk)2

2�2

)

− 2 cos [(�=�)(x − xk)]
(x − xk)2

exp
(
− (x − xk)2

2�2

)

− 2 cos [(�=�)(x − xk)]
�2

exp
(
− (x − xk)2

2�2

)

+2
sin [(�=�)(x − xk)]
(�=�)(x − xk)3

exp
(
− (x − xk)2

2�2

)

+
sin [(�=�)(x − xk)]
(�=�)(x − xk)�2

exp
(
− (x − xk)2

2�2

)

+
sin [(�=�)(x − xk)]

(�=�)�4
(x − xk) exp

(
− (x − xk)2

2�2

)
(91)

At x= xk , it is convenient to evaluate these derivatives separately

�(1)�;�(0)=0 (92)

and

�(2)�;�(0)= − 1
3
3 + (�2=�2)�2

�2
(93)

Higher order derivatives can be obtained in the same manner. Similar expressions for other
DSC kernels described in the last subsection can be easily derived. The accuracy study of
a few DSC kernels for �uid dynamic computations and structural analysis was given in
Reference [29].
Note that the di�erentiation matrix in Equation (89) is generally banded. This has a dis-

tinct advantage in large scale computations. For numerical computations, it turns out that the
approximate reproducing kernel has much less truncation error for interpolation and numeri-
cal di�erentiation. Qian and Wei [45] have recently given an estimation for truncation errors.
Their estimation provides a guide to the choice of M , � and �. For example, in the case of
interpolation (n=0), if the L2 norm error is set to 10−� (�¿0), the following relations can
be deduced

r(�− B�)¿
√
4:61� (94)

and

M
r
¿
√
4:61� (95)

where r=�=� (The choice of � is always proportional to � so that the width of the Gaussian
envelope varies with the central frequency). The �rst inequality states that for a given grid
size �, a large r is required for approximating high frequency components of an L2 function.
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Figure 2. The discrete Fourier response of the DSC approximation to the �rst order derivative.

The second inequality indicates that if one chooses the ratio r=3, then the half bandwidth
M∼ 30 can be used to ensure the highest accuracy in a double precision computation (�=15).
However, for a lower accuracy requirement, a much smaller half bandwidth can be used. In
general, the value of r is proportional to M . An appropriate value of M is determined by
the accuracy requirement. This theoretical estimation is in excellent agreement with an earlier
numerical test [46]. A discrete Fourier analysis of the DSC numerical resolution is depicted
in Figure 2.

2.5. Methods of solution

In this subsection, we explore the uni�ed feature of the DSC algorithm for solving di�erential
equations. We demonstrate that in the framework of the method of weighted residuals, a few
conventional computational methods, including methods of global, local, Galerkin, collocation,
and �nite di�erence, can be derived from a single starting point by using the DSC algorithm.
To solve a di�erential equation, one can start, either by approximating the original dif-

ferential operator or by approximating the actual solution of the di�erential equation while
maintaining the original di�erential operator. The latter is accomplished by explicitly de�ning
a functional form for approximations. Let us assume that the di�erential equation has the
general form

Lu(x)=f(x); x∈
 (96)
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where L is a linear operator and u(x) is the unknown solution of interest. Here f(x) is a
known source term, 
 denotes the domain over which the di�erential equation applies.
The approximate solution is sought from a �nite set of N DSC ‘basis functions’ of a given

resolution �, denoted by SN;M
�; � with M being the half width of support of each element. Here �

is a regularization parameter for improving the regularity of the set. The case of regularization
free is easily obtained by setting �→∞. Elements of the set SN;M

�; � can be explicitly given
by {�M

�;�; 1; �
M
�;�; 2; : : : ; �

M
�;�;N}. For a given computational domain, the resolution parameter � is

determined by N .
We should make use of two important properties of the DSC basis functions {�M

�;�; k}. The
�rst one is that when the trial function is free of regularization, each member of the set is a
reproducing kernel at the highest resolution

lim
�→∞ 〈�M

�;�; k ; �〉= �(xk) (97)

where 〈 ·; ·〉 denotes the standard inner product. In fact, if an appropriate basis is used for �
and the limit on � is taken, � of each resolution can be a reproducing kernel for L2 functions
bandlimited to appropriate sense as discussed in the earlier subsections. In general, we make
use of the fact that DSC kernels are good approximations to the delta distribution

〈�M
�;�; k ; �〉≈ �(xk) (98)

This is true for appropriate � �=0, � �=0 and M� 0. The approximation in Equation (98)
converges uniformly when the resolution is re�ned, e.g., �→∞. A few examples of such
DSC trial functions are given in References [26, 46], and many more examples are constructed
in earlier subsections. Equations (97) and (98) are special requirements satis�ed by the DSC
kernels of delta type [26].
The second important property of DSC trial functions is the interpolation:

�M
�;�; k(xj)= �kj; ∀xk ; xj ∈
 (99)

Only the DSC kernels of Dirichlet type can have this interpolation property. In fact, for the
purpose of numerical approximation, strict interpolation is not necessary. It was shown [46]
that a quasi-interpolation scheme provides excellent computational results for solving the
Fokker–Planck equation. An advantage of being interpolation is that an approximation to
the function of interest u(x) can be expressed as a linear combination

UN;M
�;� (x)=

∑
k
U�;�; k�M

�;�; k(x) (100)

where x is an independent variable and U�;�; k is the desired DSC approximation to the solution
at point xk . The summation is over 2M+1 points, which are distributed around x. This structure
dramatically simpli�es the solution procedure in practical computations.
In this formulation, we choose the set SN;M

�; � a priori, and then determine the coe�cients
{U�;�; k} so that UN;M

�;� (x) is a good approximation to u(x). To determine U�;�; k , we minimize
the amount by which UN;M

�;� (x) fails to satisfy the original governing equation (96). A measure
of this discrepancy can be de�ned as

RN;M
�;� (x)≡LUN;M

�;� (x)− f(x) (101)
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where RN;M
�;� (x) is the residual for a particular choice of resolution, regularization and half

width of the support. Note that Equation (101) is similar to the usual statement in the method
of weighted residuals. However, the approximation UN;M

�;� (x) is constructed by using the DSC
basis functions, �M

�;�; k(x), in the present treatment. Let Equation (96) and its associated bound-
ary conditions be well-posed, then there exists a unique solution u(x) which generally resides
in an in�nite-dimensional space. Since the DSC approximation UN;M

�;� is constructed from a
�nite-dimensional set, it is generally the case that UN;M

�;� (x) �= u(x) and therefore RN;M
�;� (x) �=0.

Galerkin. We seek to optimize RN;M
�;� (x) by forcing it to zero in a weighted average sense

over the domain 
. A convenient starting point is the Galerkin∫


RN;M

�;� (x)�
M ′
�′ ; �′; l(x) dx=0; �M ′

�′ ; �′; l(x)∈ SN ′ ;M ′
�′ ; �′ (102)

where the weight set SN ′ ;M ′
�′ ; �′ can be simply chosen being identical to the DSC trial function

set SN;M
�; � . We refer to Equation (102) as a DSC-Galerkin statement.

Collocation. First, we note that in view of Equation (97), the present DSC-Galerkin statement
reduces to a collocation one at the limit of �′

lim
�′→∞

∫


RN;M

�;� (x)�
M ′
�′ ; �′; l(x) dx=RN;M

�;� (xl)=0 (103)

where {xl} is the set of collocation points. However, in digital computations, we cannot take
the above limit. It follows from the property of the DSC trial functions, Equation (98), that∫



RN;M

�;� (x)�
M ′
�′ ; �′; l(x) dx≈RN;M

�;� (xl)≈ 0 (104)

It can be proven that for an appropriate choice of SN ′ ;M ′
�′ ; �′ , the �rst approximation of Equa-

tion (104) converges uniformly. The di�erence between the true DSC-collocation

RN;M
�;� (xl)=0 (105)

and the Galerkin induced collocation, (104), diminishes to zero for appropriate DSC trial
functions.

Global and local. Global approximations to a function and its derivatives are realized typically
by a set of truncated L2(a; b) function expansions. It is called global because the values of
a function and its derivatives at a particular point xi in the coordinate space involve the
full set of grid points in a computational domain 
. Whereas a local method does so by
requiring only a few neighborhood points. In the present DSC approach, since the choices
of M and=or M ′ are independent of N , one can choose M and=or M ′ so that a function
and its derivatives at a particular point xl are approximated either by the full set of grid
points in the computational domain 
 or just by a few grid points in the neighborhood.
In fact, this freedom for the selection of M endows the DSC algorithm with controllable
accuracy for solving di�erential equations and the �exibility in handling complex geometries.
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A numerical demonstration of this global–local uni�cation was given for the Euler equation
under incompressible condition [27].

Finite di�erence. In the �nite di�erence method, the di�erential operator is approximated
by di�erence operations. In the present approach, the DSC-collocation expression of Equa-
tion (104) is equivalent to a 2M + 1 (or 2M) term �nite di�erence method. This follows
from the fact that the DSC approximation to the nth order derivative of a function can be
rewritten as

dnu
dxn

∣∣∣∣
x=xk

≈
k+M∑

l=k−M
cn
kl ;M u(xl) (106)

where cn
kl ;M are a set of DSC weights for the �nite di�erence approximation and are given by

cn
kl ;M =

dn

dxn �
M
�;�; l(x)

∣∣∣∣
x=xk

(107)

Here, {xk} are chosen centered around the xl. Note that the standard �nite di�erence scheme
is obtained if �M

�;�; l is chosen as the Lagrange kernel

LM; l(x)=
i=l+M∏

i=l−M; i �=l

x − xi
xl − xi

; (M¿1)

where �∝ 1=� and the parameter � does not apply since the kernel is not regularized.
Obviously, for each di�erent choice of �M

�;�, we have a di�erent DSC-�nite di�erence ap-
proximation. Hence, the present DSC approach is a generalized �nite di�erence method.
This DSC-�nite di�erence was tested in previous studies [46]. When M=1, the DSC-�nite
di�erence approximation reaches its lowest order limit and the resulting matrix is tridiagonal.
In this case, by appropriately choosing the parameter �, the present DSC weights cqkl ;M can
always be made exactly the same as those of the standard second order central di�erence
scheme, i.e. 1=2�, 0, −1=2� for the �rst order derivative and 1=�2, −2=�2, 1=�2 for the
second order derivative. Here � is the grid spacing. However, for a given numerical band-
width, the DSC-�nite di�erence approximation does not have to be the same as the standard
�nite di�erence scheme and can be optimized in a practical application by varying �. Another
important choice of the DSC bandwidth is that M=N , where N is the matrix length. Obvi-
ously, the computational matrix is no longer banded and this is a case we called a ‘global
�nite di�erence method’.
It is noted that if the DSC kernels of positive type are used, the DSC trial function,

Equation (100), needs to be constructed in a more general manner. Such a change does a�ect
the deduction of collocation from the DSC Galerkin and the uni�ed feature between the global
and the local. However, the generalized �nite di�erence schemes cannot be deduced.

3. ANALYSIS OF PLATES

In this section, the treatment of plate vibrations by using the DSC algorithm is discussed.
Although we limit our attention to the vibration of rectangular (classic) Kirchho� plates with
simply supported, clamped and transversely supported edges, the method can be used for
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many other applications of solid mechanics. Let us consider a rectangular plate which has a
length a, width b, thickness h, mass density �, modulus of elasticity E, and Poisson’s ratio �.
The governing di�erential equation for the plate is given by [47]

@4w
@x4

+ 2
@4w

@x2@y2
+

@4w
@y4

=
�h!2

D
w (108)

where w(x; y) is the transverse displacement of the midsurface of the plate, D=Eh3=
[12(1 − �2)] the �exural rigidity, and ! the circular frequency. We consider one of the
following three types of support conditions for each plate edge:

For simply supported edge (S):

w=0; −D
(
@2w
@n2

+ �
@2w
@s2

)
=0 (109)

For clamped edge (C):

w=0;
@w
@n
=0 (110)

For transversely supported edge with nonuniform elastic rotational restraint (E):

w=0; −D
(
@2w
@n2

+ �
@2w
@s2

)
=K(s)

@w
@n

(111)

where K(s) is the varying elastic rotational sti�ness of the plate elastic edge and n and s
denote, respectively, the normal and tangential coordinates with respect to the rectangular
plate edge.
For generality and simplicity, the following dimensionless parameters are introduced:

X=
x
a
; Y=

y
b
; W=

w
a
; =

a
b
; 
=!a2

√
�h
D

(112)

Accordingly, we obtain the dimensionless governing equation for the vibration analysis of
a rectangular plate as:

@4W
@X 4 + 2

2 @4W
@X 2@Y 2 + 4

@4W
@Y 4 =


2W (113)

Consider a uniform grid having

0=X0¡X1¡ · · ·¡XNX =1

and

0=Y0¡Y1¡ · · ·¡YNY =1

To formulate the eigenvalue problem, we introduce a column vector W as

W=(W0;0; : : : ; W0; NY ;W1;0; : : : ; WNX ;NY )
T (114)

with (NX + 1)(NY + 1) entries Wi; j=W (Xi; Yj), (i=0; 1; : : : ; NX ; j=0; 1; : : : ; NY ).
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Let us de�ne the (Nq+1)× (Nq+1) di�erentiation matrices Dn
q (q=X; Y ; n=1; 2; : : :), with

their elements given by

[Dn
q ]i; j= �(n)�;�(qi − qj); (i; j=0; : : : ; Nq) (115)

where ��;�(qi − qj) is a DSC kernel of delta type [26]. Here � is the grid spacing and �
determines the e�ective computational bandwidth. Many DSC kernels were constructed in the
original work. Here, we choose a simple example, the regularized Shannon’s delta kernel
��;�(q− qj)= sin [(�=�)(q− qj)]=[(�=�)(q− qj)]e−(q−qj)2=(2�2), to illustrate the algorithm and
its application. Other DSC kernels, such as the regularized Dirichlet kernel and regularized
Lagrange kernel, can also be used. The performance of a few DSC kernels for �uid dynamic
computations and structural analysis was compared in Reference [33]. As mentioned already,
the di�erentiation in Equation (115) can be analytically carried out

�(n)�;�(qi − qj)=
[(
d
dq

)n
��;�(q− qj)

]
q=qi

=Cn
m (116)

where, for a uniform grid spacing, m=(qi − qj)=�. Here the matrix is banded to i− j=m=
−M; : : : ; 0; : : : ; M . Therefore, the system of linear algebraic equations for the governing PDE
(113) is given by (

D4
X ⊗ IY + 22D2

X ⊗D2
Y + 4IX ⊗D4

Y

)
W=
2W (117)

where Iq is the (Nq+1)×(Nq+1) unit matrix and ⊗ denotes the tensorial product. Eigenvalues
can be evaluated from Equation (117) by using a standard solver. However, appropriate
boundary conditions are to be implemented before calculating eigenvalues. This is described
below.
We �rst note that boundary condition W=0 is easily speci�ed at the edge. To implement

other boundary conditions, we assume, for a function f, the following relation between the
inner nodes and the outer nodes on the left boundary

f(X−m)− f(X0)=

(
J∑

j=0
aj
mX

j
m

)
[f(Xm)− f(X0)] (118)

where coe�cients aj
m (m=1; : : : ; M; j=0; 1; : : : ; J ) are to be determined by the boundary

conditions. For the three types of boundary conditions described earlier, we only need to
consider the zeroth order term in the power of Xj. Therefore we set a0m ≡ am and, after
rearrangement, obtain

f(X−m)= amf(Xm) + (1− am)f(X0); m=1; 2; : : : ; M (119)

According to Equation (116), the �rst and the second derivatives of f on the boundary are
approximated by

f′(X0) =
M∑

m=−M
C1mf(Xm) (120)

=
[
C10 −

M∑
m=1
(1− am)C1m

]
f(X0) +

M∑
m=1
(1− am)C1mf(Xm) (121)
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and

f′′(X0) =
M∑

m=−M
C 2

mf(Xm)

=
[
C 2
0 +

M∑
m=1
(1− am)C 2

m

]
f(X0) +

M∑
m=1
(1 + am)C 2

mf(Xm)

respectively.
For simply supported edges, the boundary conditions reduce to

f(X0)=0; f′′(X0)=0 (122)

These are satis�ed by choosing am=− 1, m=1; 2; : : : ; M . This is the so-called anti-symmetric
extension [26].
For clamped edges, the boundary conditions require

f(X0)=0; f′(X0)=0 (123)

These are satis�ed by am=1, m=1; 2; : : : ; M . This is the symmetric extension [26].
For a transversely supported edge, the boundary conditions are

f(X0)=0; f′′(X0)− Kf′(X0)=0 (124)

Hence, the equation is given by

M∑
m=1
(1 + am)C 2

mf(Xm)− K
M∑

m=1
(1− am)C1mf(Xm)=0 (125)

Further simpli�cation of the above equation gives

M∑
m=1
[(1 + am)C 2

m − K(1− am)C1m]f(Xm)=0 (126)

One way to satisfy Equation (126) is to choose

am=
KC1m − C 2

m

KC1m + C 2
m
; m=1; 2; : : : ; M (127)

Expressions for the right, top and bottom boundaries can be derived in a similar way.
Further complication occurs if the coe�cient K is not a constant. For example, the rotational

spring coe�cients K1(Y ); K2(Y ); K3(X ) and K4(X ) are taken as

K1(Y ) =K2(Y )=K ′Y (1− Y ) (128)

K3(X ) =K4(X )=K ′X (1− X )= (129)

where K ′ is the nondimensional spring coe�cient, K ′=K0a3=D. Another complication is due to
the possible presence of irregular internal support condition. Hence, matrices D4

X , D
4
Y , D

2
X , D

2
Y ,

IX and IY become three-dimensional ones in this work and are denoted by D4
X , D

4
Y , D

2
X , D

2
Y ,

IX and IY . The matrix elements of D
p
X ; (p=2; 4) are denoted by dp

X; ijk ; (i; j=0; 1; 2; : : : ; NX ;
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k=0; 1; 2; : : : ; NY ) and matrix elements of IX is denoted by �ij ⊗ 1k ; (k=0; 1; 2; : : : ; NY ). D
p
Y

and IY are similarly de�ned by appropriately switching the roles of the subscripts.
Let us de�ne a contractive tensor product ⊗̇ of two three-dimensional matrices A and B

as the tensor product on the �rst two indices of A and B, and contraction between the �rst
and the third indices of the two matrices

(A⊗̇B)i×Ny+k; j×Ny+l= aijkbkli (130)

where aijk and bkli are matrix elements of A and B, respectively. In such a notation,
Equation (117) is modi�ed as(

D4
X ⊗̇IY + 22D2

X ⊗̇D2
Y + 4IX ⊗̇D4

Y

)
W=
2W (131)

where the lexicographic ordering given in Equation (114) is used for reducing four-dimensional
matrices into two-dimensional forms. Matrix elements in Equation (131) are ready for being
used in a linear equation solver

IX ⊗̇D4
Y =




d4Y;000 d4Y;010 · · · 0 0 · · ·
d4Y;100 d4Y;110 · · · 0 0 · · · · · ·
...

...
. . .

...
...

. . .

0 0 · · · d4Y;001 d4Y;011 · · ·
0 0 · · · d4Y;101 d4Y;111 · · · · · ·
...

...
. . .

...
...

. . .
...

...
. . .




D4
X ⊗̇IY =




d4X;000 0 · · · 0

0 d4X;001 · · · 0

...
. . .

...

0 · · · · · · d4X;00NY

d4X;010 0 · · · 0

0 d4X;011 · · · 0

...
. . .

...

0 · · · · · · d4X;01NY

· · ·

d4X;100 0 · · · 0

0 d4X;101 · · · 0

...
. . .

...

0 · · · · · · d4X;10NY

d4X;110 0 · · · 0

0 d4X;111 · · · 0

...
. . .

...

0 · · · · · · d4X;11NY

· · ·

...
...

. . .
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and

D2
x ⊗̇D2

y =




d2X;000d
2
Y;000 d2X;000d

2
Y;010 · · ·

d2X;001d
2
Y;100 d2X;001d

2
Y;110 · · ·

...
...

. . .

d2X;010d
2
Y;000 d2X;010d

2
Y;010 · · ·

d2X;011d
2
Y;100 d2X;011d

2
Y;110 · · ·

...
...

. . .

· · ·

d2X;100d
2
Y;001 d2X;100d

2
Y;011 · · ·

d2X;101d
2
Y;101 d2X;101d

2
Y;111 · · ·

...
...

. . .

d2X;110d
2
Y;001 d2X;110d

2
Y;011 · · ·

d2X;111d
2
Y;101 d2X;111d

2
Y;111 · · ·

...
...

. . .

· · ·

...
...

. . .




Assume that the set of internal support points are given by {(Xi′ ; Yj′)}, the internal sup-
port conditions (Wi; j=0;∀(Xi; Yj)∈{(Xi′ ; Yj′)}) are speci�ed pointwisely in the matrix
construction.

4. CONCLUSION

In conclusion, a novel numerical approach, the DSC method, is developed for vibration
analysis of rectangular plates with partial internal line or point supports. The computational
philosophy of the DSC algorithm is studied. Many sequences of approximations to the delta
distribution, the ‘universal reproducing kernel’, are constructed either as bandlimited repro-
ducing kernels or as approximate reproducing kernels. A regularization procedure based on
the distribution theory is utilized to improve the regularity and localization of the DSC ker-
nels. Systematic treatments of derivatives and boundary conditions are proposed, as they are
required for a computational algorithm.
We explore the uni�ed features of DSC algorithm for solving di�erential equations in

the framework of the method of weighted residuals. It is found that several computational
methods, such as global, local, Galerkin, collocation and �nite di�erence methods, can be
derived from a single starting point by using DSC trial functions and test functions. The
uni�cation of local and global methods is realized via the DSC approach. It is well known
that accuracy is crucial to many scienti�c computations, such as simulation of turbulence,
analysis of an entire radar cross-section and frequency parameters of higher order vibration
modes. Whereas, small-matrix-band approximations are vital to large scale computations. The
DSC approach provides a controllable numerical accuracy by an appropriate selection of the
matrix bandwidth. Therefore, by using the DSC algorithm, the computational e�ciency can
be easily optimized against accuracy, convergence, stability and simplicity. A collocation
algorithm is deduced from a Galerkin statement and is called a Galerkin-induced collocation.
The equivalence of Galerkin and collocation enables us to evaluate these two conventional
numerical algorithms on an equal footing. The connection is made between �nite di�erence
and other methods, such as collocation and Galerkin. The DSC algorithm can be regarded
as a generalized �nite di�erence method, which becomes a ‘global �nite di�erence method’
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by an appropriate choice of the computational bandwidth. These results can be used as a
guide for the selection of computational methods and for the design of numerical solvers
for practical applications. The application emphasized in this work is vibration analysis of
rectangular plate with internal supports. Both partial line support and complex internal are
considered to illustrate the proposed algorithm in Part 2.
As a summary for the computational method proposed for vibration analysis, we conclude

the following remarks for the DSC algorithm:

(i) Like a wavelet basis function, kernels of DSC algorithm usually have time-frequency
localization. In fact, the commonly used DSC kernels, such as the regularized
Shannon’s kernel and regularized Lagrange kernel, have controllable bandwidth
in both the co-ordinate domain and the frequency domain. As a consequence, they
have controllable accuracy and computational bandwidths for numerical computations.
If it is desirable to save computing time in a large-scale computation, the e�ective
support of the DSC kernel can be reduced by choosing a smaller bandwidth
parameter. On the other hand, if the accuracy is of great importance for a particu-
lar application, the computational bandwidth can be appropriately enlarged to meet
the accuracy requirement. Both the global limit and the low order �nite di�erence
limit can be easily reached in the DSC algorithm by an appropriate selection of
parameters [27].

(ii) By using the �ctitious domain, complex boundary conditions which occur in plate
analysis can be treated without any additional computational e�ort. In fact, unlike
most conventional methods, the DSC algorithm is designed to satisfy the boundary
conditions even at the continuous limit.

(iii) Since most commonly used DSC kernels are either interpolation or quasi-interpolation
type, the expansion coe�cient for each ‘basis function’ at a spatial location is the
value of the solution at the same location. Hence, no additional integration is required
for determining expansion coe�cients.

(iv) Since the DSC kernels are approximations to the delta distributions, the Galerkin and
collocation become essentially equivalent when the DSC parameters are appropriately
chosen. Therefore, the time-consuming integration procedure required in the Galerkin
and=or Rayleigh-Ritz methods is no longer needed in the DSC algorithm.

(v) Owing to numerical round o� errors, most spectral methods become unstable when
the order of the approximation is increased to a certain level. In contrast, DSC
algorithm remains very stable when the number of DSC basis functions increases.
The total number of basis functions can be chosen as large as one wishes and is
limited only by the computer memory and speed.

(vi) Many DSC kernels are functions of the Schwartz class or certain high regularity func-
tions. They can be used for the optimal design of conjugated �lters. Conjugated �lters
are a set of low-pass and band-(high-) pass �lters that are derived from a single starting
point, and have essentially the same time-frequency localization, regularity, frequency
band, and e�ective support. The DSC conjugate �lters are particularly e�cient for the
elimination of spurious oscillations (Gibbs phenomena) which occur in solving prob-
lems of nonlinear hyperbolic conservation law and compressible �uid �ow. In fact, the
DSC theory provides a uni�ed description to solution of partial di�erential equations
and image=signal processing.
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