
sensors

Article

Avionic Air Data Sensors Fault Detection and
Isolation by means of Singular Perturbation and
Geometric Approach

Paolo Castaldi 1 ID , Nicola Mimmo 1,* ID and Silvio Simani 2 ID

1 Department of Electrical, Electronic and Information Engineering, University of Bologna,
Faculty of Aerospace Engineering, Via Fontanelle 40, 47121 Forlí, Italy; paolo.castaldi@unibo.it

2 Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy; silvio.simani@unife.it
* Correspondence: nicola.mimmo2@unibo.it; Tel.: +39-0543-374-409

Received: 29 August 2017; Accepted: 22 September 2017; Published: 25 September 2017

Abstract: Singular Perturbations represent an advantageous theory to deal with systems characterized
by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid
and short period. In this work, the combination of the NonLinear Geometric Approach and the
Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the
isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities,
obtained by means of the approach proposed in this work, allow for the solution of a fault isolation
problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo
simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault
Detection and Isolation system.

Keywords: singular perturbation; NonLinear Geometric Approach; fault detection and isolation;
aircraft; autopilot avionics; air data sensors

1. Introduction

Current manned and unmanned aircraft implement autopilots ranging from simple stability
augmentation systems to complex navigation systems. Due to the high level of criticality of aircraft,
autopilots need to implement robust design strategies to guarantee, for example, appropriate levels of
fault tolerance. In particular, a review of aeronautical worldwide sources on safety event reports reveals
repeated instances of anomalous Air Data Sensor (ADS) events. The nature of ADS measurements,
indeed, makes air-data probes subject to the spectrum of environmental conditions and, even with
a design meant to withstand harsh conditions, instances of ADS probe faults have been recorded for
diverse platform types and situations [1–3] and citations therein.

The Fault Detection and Isolation (FDI) represents a relevant and critical theme in many sectors
such as surgery [4], automotive [5], electrical engineering [6], wind turbines [7] and aerospace
engineering [8–18]. Although aircraft subsystems are designed with sufficient levels of redundancy to
tolerate both hardware and software faults, FDI algorithms are suitable to monitor the aircraft safety
and assess the eventual presence of anomalies, [19–23]. The main goal of the FDI is represented
by the decision about the status of health of the system (fault detection) and, in case of faults,
the second objective is the localization as well as the determination of the fault nature [24]. Furthermore,
the importance and relevance of Air Data Sensor FDI has been highlighted by the European project
(ADDSAFE, Advanced Fault Diagnosis for Sustainable Flight Guidance and Control) which was
focused on the study of this problem [25].

Common FDI systems are based on either hardware or analytical redundancies but, in recent
years, the aerospace industry is demanding for solutions guaranteeing the same or an improved
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fail safety level with a reduced level of hardware redundancy [26]. From one hand both general
aviation aircraft and UAVs have not the payload capacity to be equipped with standard hardware
redundancy and, on the other hand, engineers designing large aircraft try to save weight to reduce
the consumed fuel, costs, noise and pollution. Conversely, analytical redundancy does not require
additional hardware because exploits the mathematical model of the system as redundant information
but is more challenging due to the need of guaranteeing its robustness in the presence of unknown
disturbances, noise and model uncertainties.

Different model based FDI methods have been developed during recent years [27–30] but all of
them share the same common structure highlighted in Figure 1. The state of art sees model based
FDI methodologies be roughly classified in two main groups: those based on a bank of detection
residuals each one trivially dependent on different fault components and those which implement
a fault re-constructor. With reference to the FDI methods belonging to the first group, this work
introduces an innovative approach applicable to those systems which can be described by a singular
perturbation model.

Aircraft & Actuators

Fu
Fy

FDI Module

u y

Fault information

Figure 1. Representation of the system affected by actuator and sensor faults.

This paper presents a model based FDI approach which solves the problem with a two-step
procedure. In the first phase a set of variables known as residuals is provided by one or more parallel
residual generators: each residual is designed to be zero (or zero mean) in absence of faults belonging
to a certain different subset of the whole faults set. The second step is represented by the decision,
made on the base of the analysis of the residuals, about the presence of faults (fault detection) and
which is the fault that is affecting the system (fault isolation). The FDI module proposed in this paper
is designed by means of the NonLinear version of the Geometric Approach (NLGA) [31,32]. Thanks to
the NLGA it is possible to design detection residuals which are insensitive to a selected subset of all
the faults potentially affecting the system. The fault isolation is obtained by collecting the detection
residuals, which are insensitive to different fault subsets, in a bank of residuals whose configuration
identifies which fault is present.

This paper proposes, for the design of the residual generators, an innovative and combined use of
the NonLinear version of the Geometric Approach (NLGA) [31,32] and of the Singular Perturbations
(SP) theory [33]. This work shows that this kind of strategy allows for the solution of the fault isolation
problem, for general aviation aircraft affected by faults on air data sensors, not otherwise solvable with
the standard NLGA approach, see [31,34].

Thanks to the NLGA it is possible to analyse the system to identify the isolable faults. The results
of this analysis are valid for any possible methodological tool successively exploited for the design of
the detection residuals. When two or more faults are unisolable the only methodological approach
which can provide information about the presence of these faults consists in an estimation of the
whole unisolable fault vector thus requiring the implementation of high order input re-constructor
systems. With the goals of reducing the complexity of the FDI system, to increase its modularity and to
make it distributable, the designers try to minimize the estimator dimensions. The literature presents
some remarkable works dealing with the detection and the isolation of faults affecting aircraft air
data such as [1–3,10,13,17,20,21,35] in which the detection filters are base on full order unknown input
re-constructors. At the opposite, this paper focuses on the reduction of dimensions of the unisolable
fault set and, thanks to the innovative combined use of the SP and the NLGA, allows for the isolation
of the angle of attack faults, otherwise not possible, by means of reduced order detection filters.
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The paper is organized as follows: Section 2 describes the nonlinear aircraft model used for the
FDI module design. Section 3 details the Air Data System and its associated fault scenario whereas
Section 4 proposes the design of the novel FDI module, based on the NLGA combined with SP
theory. Finally, in Section 5 simulations results, based on a general aviation aircraft flight simulator
and Monte-Carlo simulations, are given, showing the effectiveness of the approach and the good
performance of the FDI system.

2. Nonlinear Longitudinal Aircraft Model

In this paper the aircraft is modelled as a rigid body subject to the following external forces and
momentums: gravity, aerodynamics and engine thrust. The longitudinal dynamics of aircraft can be
represented by the following equations, [36]:

ḣ = vc

V̇ =
T
m

cos α−
qdSCDTOT

m
− g

vc

V

v̇c =
T
m

(
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vc

V
+ sin α

√
1−

(vc

V

)2
)
− g +

qdSCLTOT

m

√
1−

(vc

V

)2
−

qdSCDTOT

m
vc

V

α̇ = q− 1
mV

(
T sin α + qdSCLTOT −mg

√
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)2
)

q̇ =
1
Iy

(dTT + qdSc̄CmTOT )

(1)

where h is the altitude, V is the airspeed, vc the rate of climb, α the angle of attack and q is the pitch
rate. The term m indicates the mass, Iy the longitudinal inertia, qd is the dynamic pressure, S is the
wing reference area and c̄ indicates the mean aerodynamics chord, g represents the gravity acceleration
and dT the thrust arm. The aerodynamic forces and momentums coefficients are CLTOT , CDTOT and
CmTOT . Finally, T, indicating the thrust, is the first control input. For a conventional aircraft, the typical
component build–up technique, see [36], leads to the following standard aerodynamics description:

CDTOT = CD0 + CDα α

CLTOT = CL0 + CLα α + CLq
qc̄
2V + CLδe

δe

CmTOT = Cm0 + Cmα α + Cmq
qc̄
2V + Cmδe

δe

(2)

where the aerodynamics coefficients Csk with s ∈ {D, L, m} and k ∈ {0, α, q, δe} are considered known
parameters thanks to wind tunnel and flight tests. The term δe, representing the elevator deflection,
is the second control input. The overall model can be rewritten in the following compact form:[

ẋ1

εẋ2

]
=

[
g1,0(x1, x2)

g2,0(x1, x2)

]
+

p

∑
i=1

[
g1,i(x1, x2)

g2,i(x1, x2)

]
ui (3)

where x1 = [h, V, vc]T ∈ Rn1 and x2 = [α, q]T ∈ Rn2 represent the state vector, suitably partitioned, and
where the term, ε, is the small positive perturbation parameter, called singular. Moreover, the actuator
inputs are two, i.e., p = 2, with u1 = T and u2 = δe. The model is completed by the outputs y1 = x1

and y2 = x2 whereas the non linear term gi,j(x1, x2) with i ∈ {1, 2} and j ∈ {0, . . . , p} are:

g1,0(x1, x2) =
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−
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V
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)
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√
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(vc
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m
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V

)2
CLδe

 g2,2(x1, x2) =

 −
1

mV
qdSCLδe

1
Iy
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 (7)

Hypothesis 1. AutoPilot Control model: in general, the design of the FDI module should be independent
from the structure of the controller except for some high level properties introduced by means of the control
unit, such as the stability of the closed loop system. In detail, this work proposes an FDI scheme which can be
successfully applied to flight controllers which have sufficiently slow outputs to allow for the definition of the
manifold x2M which will be defined later. In particular:

• given the state x = [xT
1 , xT

2 ]
T ∈ X ⊂ Rn, the control laws ui are sufficiently smooth functions of the

states x, i.e., ui = ui(x), and there exist a Lipschitz constant L such that ||ui(x?)− ui(x)|| < L||x? − x||
∀ x, x? ∈ X;

• the control laws ui(x) are built up by two components ui(x) = u f
i (x) + us

i (x) where u f
i (x) represents the

fast component and us
i (x) is the slow contribution;

• the fast term u f
i (x) is not active when εẋ2 = 0, i.e., it is such that

0 = g2,0(x̄1, x2) +
p

∑
i=1

g2,i(x̄1, x2)us
i (x);

• the slow control law, us
i (x), is such that

lim
ε→0

ε
d
dt

us
i (x) = 0.

The assumption of having ε = 0 shrinks the state-space dimension from n1 + n2 to n1 because
of the degeneration to an algebraic equation of the second relation in (3). In this slow time scale the
fast state, x2, evolve on a manifold defined by the approximated slow state x1 and the slow part of the
control law, us

i , respectively identified by x̄1 and ūs
i :[

˙̄x1

0

]
=

[
g1,0(x̄1, x2)

g2,0(x̄1, x2)

]
+

p

∑
i=1

[
g1,i(x̄1, x2)

g2,i(x̄1, x2)

]
ūs

i (8)

Equations (8) represent the reduced model.
For standard aircraft, the algebraic system in (8)

0 = g2,0(x̄1, x2) +
p

∑
i=1

g2,i(x̄1, x2)ūs
i (9)

admits one isolated root, x2M = M(x̄1, ūs
1, . . . , ūs

p).
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On the other hand, during the transient phases of the fast variables, the SP theory treats the
slow variables as parameters. Defined the time scale change, τ = (t− t0) /ε with t0 > 0, the apex
derivatives are defined as x′ = dx/dτ and the dynamic order of the system is reduced from n1 + n2 to
n2 by assuming ε = 0: [

x′1
x′2

]
=

[
0

g2,0(x1, x2)

]
+

p

∑
i=1

[
0

g2,i(x1, x2)

]
ui (10)

Equations (10) represent the boundary–layer model. Defined the error z2 = x2 − x2M , the
approximated model is well posed if the following hypothesis is verified [33]:

Hypothesis 2. The fast control law, u f
i , is such that the origin of the system

d
dτ

z2 = g2,0(x̄1, x2M + z2) +
p

∑
i=1

g2,i(x̄1, x2M + z2)(ūs
i + u f

i ) (11)

is a locally exponential stable equilibrium point, uniformly in (x̄1, ūs
i ).

Lemma 1. Given two matrices K1 and K2 with proper dimensions, any linear static state feedback control law
ui(x) = K1x1 + K2

(
x2 − x2M

)
verifies the Hypotheses 1 and 2.

Proof. Let us define the fast control law with u f = K2
(
x2 − x2M

)
and the slow control law with

us
i = K1x1. The slow control law is such that lim

ε→0
ε

d
dt

us
i = K1 lim

ε→0
ε

d
dt

x1 = K1x′1 = 0. On the other

hand, the fast control law is null when x2 = x2M i.e., when 0 = g2,0(x̄1, x2) +
p

∑
i=1

g2,i(x̄1, x2)ūs
i . Finally,

the linearisation of the system (11) at the the origin is represented by ż2 = Az2 +
p

∑
i=1

biui where the

couple (A, [b1, . . . , bp]), for standard aircraft configurations, is stabilizable thus implying the existence
of a state feedback matrix K2 such that the origin of the system is locally exponentially stable.

Remark 1. Thanks to the state augmentation technique, the results of Lemma 1 can be extended to linear
dynamic controllers to demonstrate that standards autopilots installed on general aviation aircraft, usually
implementing proportional–integral–derivative structures, fulfil the Hypotheses 1 and 2.

Finally, the actual system dynamics (3) can be approximated by:[
˙̄x1

x′2

]
=

[
g1,0(x̄1, M(x̄1, ūs

1, . . . , ūs
p))

g2,0(x̄1, x2)

]
+

p

∑
i=1

[
g1,i(x̄1, M(x̄1, ūs

1, . . . , ūs
p))

g2,i(x̄1, x2)

]
ui (12)

3. Air Data System

The Air Data System (ADS) is one of the fundamental subsystems of aircraft because, thanks
to it, autopilots can regulate the airspeed, V, and barometric altitude, h, which are necessary for
guaranteeing the stability and for the guidance of the air-plane. Standard ADSs also include the
measurement of the angle of attack, α, extremely useful for avoiding instantaneous dangerous stall
situations (for example due to aggressive manoeuvres or unexpected wind). ADSs are composed by
two main parts: the probes and the computational unit, see Figure 2a. The probes are constituted by a
“total air pressure” port, a “static air pressure” port, a “total air temperature” port and a “vane sensor”
which provide the measurements yPT , yPS , yθT and yα respectively.
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(a) (b)

Figure 2. Air Data System: (a) Computing of the air data; (b) Angle of Attack Measurement Subsystem:
the axis xB is a body fixed reference frame.

The “total air pressure”, PT , and the “static air pressure”, PS, are linked to the airspeed V thanks
to the Bernoulli’s law:

PT = PS +
1
2

ρV2 (13)

where ρ indicates the air density, in turn linked to the static air temperature, θS, and pressure, PS,
by means of the ideal gas law:

PS = ρRθS (14)

where R is the ideal gas constant for air R = 287.04 m2/(◦C s2). Finally the International Standard
Atmosphere (ISA) model [37] introduced a mathematical description of the static air pressure, PS as
function of the geometric height above the mean sea level, H:

PSISA(H) = P0 (1− KH)
g

RK (15)

where P0 = 101, 325 Pa represents the standard static pressure at the seal level and K = 4.193× 10−4 m−1

is the temperature rate in the troposphere.
To correctly compute the barometric altitude, the airspeed V and the rate of climb vc, the total

air temperature θT is exploited to determine, combined with the static air pressure the air density.
These computations are usually implemented into an Air Data Computer (ADC) which receive yPT ,
yPS yθT and yα and give as output the estimated barometric altitude yh, the estimated airspeed yV and
the estimated rate of climb yvc :

yh = P−1
SISA

(yPS)

M̂ =

√√√√√ 2
γ− 1

(yPT

yPS

) γ−1
γ

− 1


θ̂S =

yθT

1 + γ−1
2 M̂2

yV =
√

γRθ̂S M̂

yvc =
∂P−1

SISA
(yps)

∂PS
dyPS

ḋyPS
= λPS

(
ẏPS − dyPS

) (16)

where M̂ indicates the Mach number estimation, θ̂S the static air temperature estimation and γ is the
ratio of specific heats. The term dyPS represents a low-pass filtered version of ẏPS where λPS is the pole
of the filter. Finally, the FDI module needs of an estimation of the air density, ρ̂, which is provided by
the ADS by means of the following equation:

ρ̂ =
yPS

Rθ̂S
(17)
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The angle of attack, α, represents a crucial quantity which describes the aerodynamic behaviour
of the aircraft in each flight condition. The aerodynamic lift, L, is directly (quasi-linearly) proportional
to the angle of attack until α remains in certain limits, α ∈ [αlin

min, αlin
max], determined by the aircraft

shape. Close these limits the lift the aircraft can produce increases but non linearly and reach a
(minimum)maximum at (αL

min)α
L
max. Further increases of α correspond to a decrease of L up to the so

called “stall angle” αstall at which the lift suddenly decreases to zero. The autopilot has to guarantee
that α always remains in certain predetermined safety regions of the open set (αstall

min , αstall
max ). Usually

the angle of attack is measured by means of vane sensors constituted by a mechanical flag which align
itself with the air-stream and a electronic transducer which provides the measurement of the rotation
angle yα, see Figure 2b.

Air Data System Faults

This work demonstrates that, thanks to the joint use of the NLGA and the SP, faults affecting
ADS can be correctly detected and isolated. To this end, the model of the system, even in presence
of such faults, have to hold the singular perturbation properties. It is worth observing that failures
on sensors which induce the instability of aircraft are not taken into account because no hardware
redundancy is considered in this work. Different strategies, which are out of the scope of this paper,
can be exploited to deal with this kind of fault scenario. Furthermore, only multiple (more than one) but
non concurrent (only one per time) faults are considered in this work. The i-th fault is indicated by Fi
where Fi(x, u, t, t0)→ R is a scalar real values function dependent on time, input and state. The faults
affect the system at time t0 ∈ R, with t0 > 0, so that Fi(x, u, t, t0) = 0 ∀t < t0 and progressively reach
their asymptotic value F∞

i (see Figure 3)

Fi(x, u, t, t0) = F∞
i

1− e−(t−t0)/∆t

1 + e−(t−t0)/∆t
∀t ≥ t0 (18)

where ∆t ∈ R>0 is a time constant. The subscript i ∈ {1, . . . , nF} indicates the physical faults on
altitude, air speed, rate of climb and angle of attack sensor. Finally, to improve the readability of this
manuscript, the dependencies of faults are omitted but where necessary.

t−t0

∆T

0 2 4 6 8 10

F
∞ i

0

0.2

0.4

0.6

0.8

1

Figure 3. Fault transient behavior.

The faults are modelled in terms of variation, from the nominal behaviour, due to biases and
sensitivity modifications as

ys = s + Fs s = {PS, PT , θT , α} (19)
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where Fs = bs + (ks − 1)s, (bs, ks) ∈ R×R+. In particular, the faulty static and total pressure outputs
are described by:

yPT = PS +
1
2

ρV2 + FPT

yPS = PS + FPS

yθT = θS

(
1 + γ−1

2 γRθSV2
)
+ FθT

(20)

where FPT , FPS and FθT respectively indicate the faults affecting the total pressure, the static pressure
and the total temperature port. The faults influencing both pressure and temperature ports result in
faults on altitude, Fh, airspeed, FV , and rate of climb, Fvc , as:

Fh(FPS , h) = h− yh
FV(FPT , FPS , FθT , V) = V − yV

Fvc(FPS , vc) = vc − yvc

(21)

Let us now identify the following sets of faults:

Fx1 = {FPT , FPS , FθT}
Fx2 = {Fα}
F = {Fx1 , Fx2}

(22)

Thanks to the assumption of non-concurrent faults, it is possible to define the “active fault” as the
element Fi ∈ F which is non-zero and the "active fault subset" as the fault subset, among Fx1 and Fx2 ,
which the active fault belongs to. Finally, let use define the k-th fault parameter set as:

Sk := {bk, ηk : bk ∈ R, ηk ∈ R} (23)

4. NLGA FDI for Singularly Perturbed Aircraft Model

This section shows novel methodological aspects arising when combining SP and NLGA for the
solution of the FDI problem which can be generally stated as:

Problem 1. FDI: given the aircraft longitudinal models (3) and (12) with the fault scenario F described in (22),
design an FDI module with inputs y1(t), y2(t) and u1, . . . , up, and output the set R = {rd

1 , ..., rd
nR
} of nR

binary residuals such that each fault Fk, with k ∈ {1, ..., nF}, affect a different, non-empty subset, Ωk, of residuals
withinR.

The solution of an FDI problem can be stated in terms of a residual matrix, RM which is an
nR × nF rectangular matrix with boolean elements where the rows list the detection residuals whereas
the columns represent the fault/fault subsets. The matrix’s element RM(i, j) is equal to a logic 0 if
the i-th detection residual is not sensitive to the j-th fault whereas is a boolean X ∈ {0, 1} otherwise.
The presence of the boolean X is motivated by the residual sensitivity to the fault with respect to the
noise which will be investigated in Section 5. Finally, the subsets Ωk is identified by the k-th column
of RM.

To this end, the dynamic model of aircraft subject to faults on ADS is represented by:[
ẋ1

εẋ2

]
=

[
g1,0(x1, x2)

g2,0(x1, x2)

]
+

p

∑
i=1

[
g1,i(x1, x2)

g2,i(x1, x2)

]
ui (24)

where the output is given by [
y1

y2

]
=

[
x1

x2

]
+

[
φ1(Fx1)

φ2(Fx2)

]
(25)
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with

φ1(Fx1) =

 Fh(FPS , h)
FV(FPT , FPS , FθT , V)

Fvc(FPS , vc)

 φ2(Fx2) =

[
Fα

0

]
(26)

Fault os output can be seen as input faults by means of the method proposed in [34] and here
briefly reported: νk ≥ 1 equivalent and simultaneous input faults, fk,i(i = 1, ..., νk), are introduced in
place of the non concurrent output faults Fk ∀k ∈ {1, ..., nF}. Given the k-th scalar output yk of (24),
substitute yk to its relative state xk in the dynamic system (24) and identify the νk ≥ 1 different
functions, φk,i(yk) with i ∈ {1, . . . , νk}, containing the term yk. Define the equivalent input fault as
fk,i := φk,i(xk)-φk,i(yk) and its input vector as lk,i. Whenever the k-th sensor fault occurs, i.e., Fk 6= 0,
all associated input faults fk,i(i = 1, ..., νk) will become non-zero:[

ẏ1

ẏ2

]
=

[
g1,0(y1, y2)

g2,0(y1, y2)

]
+

p

∑
i=1

[
g1,i(y1, y2)

g2,i(y1, y2)

]
ui +

nF

∑
k=1

νk

∑
i=1

[
l1k,i (y1, y2)

l2k,i (y1, y2)

]
fk,i (27)

where the terms l1k,i and l2k,i represent the input distributions of mathematical sensor faults. Let us
define with the term fk the set of input faults associated to the sensor fault Fk:

fk := { fk,1, . . . , fk,νk
}T (28)

The set of equivalent mathematical faults associated to F is given by the set of vectors fk,
for k = 1, . . . , nF, and is denoted by f:

f := {fk, k = 1, . . . , nF} (29)

Finally, define with lk,i the mathematical fault vector field for the overall system, i.e.,

lk,i =
[
lT
1k,i, lT

2k,i

]T
and with lk the vector field collecting all the input vector fields relative to the

set fk:
lk :=

{
lk,1, . . . , lk,νk

}
(30)

Before introducing the solution to the FDI problem rewrite the system (27) as:

ξ̇ = g0(ξ) +
p

∑
i=1

gi(ξ)ui +
nF

∑
k=1

lk(ξ)fk

χ = h(ξ)
(31)

where

ξ =

[
y1

y2

]
, h(ξ) = ξ, g0(ξ) =

[
g1,0(ξ)

g2,0(ξ)

]
, gi(ξ) =

[
g1,i(ξ)

g2,i(ξ)

]
(32)

Im case of of fully measured state, i.e., h(ξ) = ξ, the NLGA necessary conditions for solving the
FDI problem are expressed by the following algorithm [31]:

1. given a set s ⊆ {1, . . . , nF}
2. given the fault set F, define the subset Fs ⊆ F with Fs := {Fk, k ∈ s} and the generalized

disturbance Ds = F \ Fs;
3. given the equivalent fault set f associated to F, define the subset fs ⊆ f associated to Fs,

i.e., fs := {fk, k ∈ s}, and the generalized disturbance ds = f \ fs associated to Ds;
4. associate to the sets fs and ds their relative input vector fields ls and ps respectively:

ls := {lk, k ∈ s}
ps := {lk, k ∈ ({1, . . . , nF} \ s)}
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5. if ls /∈ p̄s the generalized faults set fs is detectable and a suitable change of coordinate can
be determined.

Property 1. Given the system (27) with the fault scenario (22), an NLGA study reveals that, defined
Fs = F \ {Fx2} then ls = p̄s thus implying that the necessary conditions for the solution of the FDI problem are
not fulfilled for the isolation of fault affecting the air (pressure and temperature) ports and the angle of attack
vane sensor.

On the other hand, the sufficient conditions are expressed by the existence of two coordinate
changes, in state and output spaces, Φ(ξ) and Ψ(χ) respectively, which consist in a surjection Ψ1 and
a function Φ1 such that p̄⊥s ∩ span {dh} = span {d (Ψ1 ◦ h)} and p̄⊥s = span {dΦ1}, where:

Φ(ξ) =

(
ξ̄1
ξ̄2

)
=

(
Φ1(ξ)

C2h(ξ)

)

Ψ(χ) =

(
χ̄1
χ̄2

)
=

(
Ψ1(χ)

C2χ

) (33)

are (local) diffeomorphisms, whilst C2 is a selection matrix, i.e. its rows are a subset of the rows of the
identity matrix. If the sufficient conditions are verified then, by using the new (local) state and output
coordinates (ξ̄, χ̄), the system (31) is transformed as follows:

˙̄ξ1 = n̄1(ξ̄1, ξ̄2) +
p

∑
i=1

ḡ1,i(ξ̄1, ξ̄2)ui + l̄1(ξ̄1, ξ̄2) fs

˙̄ξ2 = n̄2(ξ̄1, ξ̄2) +
p

∑
i=1

ḡ2,i(ξ̄1, ξ̄2)ui + l̄2(ξ̄1, ξ̄2) fs + p̄2(ξ̄1, ξ̄2) ds

χ̄1 = h̄1(ξ̄1)

χ̄2 = ξ̄2

(34)

with ls1(ξ̄) not identically zero. As described in [31], the subsystem ξ̄1 in Equation (34) is locally
weakly observable so the detection residual associated to fs and thus to Fs is given by:

˙̄̂
ξ1 = n̄1(

ˆ̄ξ1, χ̄2) +
p

∑
i=1

ḡ1,i(
ˆ̄ξ1, χ̄2)ui + Kr

r = χ̄1 − h1(
ˆ̄ξ1)

(35)

Finally, for each vectorial residual r, define a positive scalar function r =
√

rTWr where W is a
positive weights matrix, a positive real constant rth and a boolean variable rd defined as:

rd =

{
0 r ≤ rth

1 r > rth (36)

NLGA Combined with Singular Perturbations

This Section contains the main results of this work and shows how the FDI problem can be solved
by means of the coordinated use of the SP jointly with the standard NLGA.

Theorem 1. Given the system (24) and for each k-th fault, there exist a subset of Sk such that it is possible to
approximate the actual dynamics of the aircraft (24) by its associated reduced and boundary layer models.

Proof. Let us assume that the aircraft (24) is equipped with a controller fulfilling Hypotheses 1 and 2
and define the eigenvalues of the system, affected by the k-th fault Fk, as λi(νk) with i = 1, . . . , n and
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νk = (bk, ηk) ∈ Sk. Then, as stated in [38,39] and thanks to the smoothness of the system (24) and its
control system and based on their Lipschitz features, for any εk > 0 it is possible to find a sufficiently
small subset S?k ⊆ Sk, possibly dependent on εk, such that the eigenvalue of the closed loop system (24)
are such that

||λi(ν̄k)− λi(νk)|| < εk ∀ νk ∈ S?k , i = 1, . . . , n

where ν̄k = (0, 1) indicates the vector of the nominal parameters (fault free condition). For each fault
parameter in the set S?k , the model approximation is valid because the eigenvalues remain close the
nominal ones so that the stability as well as the time separation properties can be kept valid.

On the base of the Theorem 1 the actual aircraft dynamics (24) is approximated by its reduced
and boundary layer models:[

˙̄x1

x′2

]
=

[
g1,0(x̄1, x2M)

g2,0(x̄1, x2)

]
+

p

∑
i=1

[
g2,i(x̄1, x2M)

g2,i(x̄1, x2)

]
ui[

y1

y2

]
=

[
x̄1

x2

]
+

[
φ1(Fx1)

φ2(Fx2)

] (37)

where x2M = M
(
x̄1, u1, . . . , up

)
is an isolated root of

0 = g2,0(x̄1, x2) +
p

∑
i=1

g2,i(x̄1, x2)ui (38)

The fault mapping procedure [34] applied to (37) leads to:[
˙̄y1

y′2

]
=

[
g1,0(ȳ1, y2M)

g2,0(ȳ1, y2)

]
+

p

∑
i=1

[
g2,i(ȳ1, y2M)

g2,i(ȳ1, y2)

]
ui +

n1

∑
k=1

νk

∑
i=1

[
l1k,i (ȳ1, y2M)

l2k,i (ȳ1, y2)

]
fk,i+

+
nF

∑
k=n1+1

νk

∑
i=1

[
0

l2k,i (ȳ1, y2)

]
fk,i

(39)

where y2M = M
(
ȳ1, u1, . . . , up

)
. The following properties have been obtained by comparing the

systems (27) and (39):

1. the fault set Fx2 does not affects the equations relative to ȳ1, see Equation (39);
2. the whole fault vector F affects the equations relative to y2 and ȳ2, see Equations (27) and (39);
3. the vector ȳ1 represents a constant for equations relative to ȳ2, see Equation (39);
4. the fault set Fx2 does not affects the algebraic equations relative to x2M .

These properties are exploited in the following lemmas:

Lemma 2. Given the system (39) with the fault scenario (22), taken Fs = Fx1 the surjection Ψ1(ξ) = ȳ1 and
the function Φ1(ξ) = ȳ1 are such that:

span{dΨ1(ξ)} = span{dΦ1(ξ)} ⊆ p̄⊥s

Proof. Given the system (39) with the fault scenario (22), taken Fs = Fx1 and determined Ds = Fx2 ,
the ds is defined as ds := {fk, k ∈ {n1 + 1, . . . , nF}} with its associated input vector field defined
∀ i ∈ {1, . . . , νk} and ∀ k ∈ {n1 + 1, . . . , nF} as:

ps :=

{[
0

l2k,i (ȳ1, y2)

]}
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In conclusion, the involutive closure of ps is such that span{dȳ1} ⊆ p̄⊥s because, thanks to the
Singular Perturbation approximation, the first n1 components of each vector field in ps are null.

Lemma 3. Given the system (39) with the fault scenario (22), given F and Fx1 as in Property 1 and defined the
input vector fields relative to their generalized disturbance, p and px1 respectively, then p̄⊥ ⊃ p̄⊥x1

.

Proof. The combined used of Lemma 2 and SP shows that the projection of p̄⊥ on ȳ1 has components
that the projection of p̄⊥x1

has not. As consequence, a coordinate change can be found to design a
residuals that is independent from Fα.

Lemma 4. Given the system (27) and its singularly perturbed approximation (39), then the active fault subset
is isolable.

Proof. Two different residuals are designed on the base of Property 1 and Lemma 2, rd
1 and rd

2 . The first
one, rd

1 , is originated by Φ1(ξ) = Ψ1(ξ) = y1 and the second one, rd
2 , exploits the singular perturbed

coordinate change Φ1(ξ) = Ψ1(ξ) = ȳ1. The residual rd
1 and rd

2 are organized in a residual matrix,
depicted in Table 1, where the second row results to be fundamental to isolate the active fault subset.

Table 1. Residual matrix for the isolation of the active fault subset.

Residual Fx1 Fx2

rd
1 X X

rd
2 X 0

Remark 2. A study of Table 1 reveals that the elimination of the residual rd
2 , introduced thanks to the adoption

of the SP approximation, make the the isolation the faults in Fx1 and the fault on the vane sensor, Fα, structurally
impossible. Furthermore, can be demonstrated that Lemma 4 is valid also when considering the whole aircraft
dynamics (comprehensive of lateral and directional motions) also in presence of faults affecting the side-slip angle
vane sensor (considered as a further element of the fault set Fx2 ).

5. Simulation Results

The results presented in this paper have been obtained in simulation. The simulation benchmark
is represented by a general aviation aircraft for which technical reports are available in literature.
In particular NASA Technical Notes [40–42] describe the aerodynamics of the aircraft and the propeller.
Figure 4 graphically depicts the blocks diagram details composing the simulator:

• Aircraft Dynamics: The dynamics of the aircraft, seen as a rigid body with six degree of freedom,
is altered by torques and forces inducing accelerations which, integrated two times, generate
speeds and positions. Euler angles describes the attitude of the aircraft;

• Aerodynamics: The NASA reference [40] graphically reports the aerodynamic coefficients of
lift L, drag D and pitch momentum M which are functions of the angle of attack α and the thrust
coefficient T/(qdS). The simulator implements these coefficients by means of look-up tables;

During the simulations the updating of both the air density, ρ, and the gravity acceleration
modulus, g, are performed by implementing the reference [37,43] respectively.
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Atmosphere Aerodynamics

δe

Aircraft dynamics

T

ADS, Vane Sensor, Gyro

FPT , FθT , FPS , Fα

Gravity

ρ L, D, M

g

x

h

h α, q, V

Figure 4. Simulator structure.

The simulation of the sensor suite follows what stated in [44,45]:

• the pitch rate is provided by means of one gyroscope of an IMU (Inertial Measurement Unit).
The measurement errors are comprehensive of non unitary scale factor, alignment error (random),
g-sensitivity, additive white noise and gyro drift;

• Air Data System (ADS):

– The true air-speed is affected by calibration error of the differential pressure sensor plus
additive white noise;

– The altitude measurement is corrupted by calibration error of the static pressure port plus
additive white noise;

– The attack angle vane sensor is influenced by calibration errors plus additive white noise.

A detailed description of the measurements used by the considered system can be found in [14].

5.1. Sensitivity Analysis

Uncertainties in model parameters influence the NLGA results in terms of decoupling from
the disturbances ds, which is not more perfect, and reduce the sensitivity of ξ̄1 with respect to fs

thus making the fault detection and isolation harder. It is rather intuitive that, due to the residual
sensitivities and model uncertainties, for each fault Fk, different fault severities could identify actual
residual subsets Ωk that are contained in those listed in Table 1.

In particular, for each k = 1, . . . , nF, there exist:

• an undetectable fault parameter set defined as Skund
⊆ S?k such that ∀ νk ∈ Skund

each binary residual
rd

i = 0, with i = 1, . . . , nR, so leading to Ωk = {∅} for each k = 1, . . . , nF;
• a detectable fault parameter set, Skdet

⊆ S?k , defined as the fault set for which the detection is
guaranteed (but not the isolability). In particular, there exist a couple of fault parameters νi and νj
with i, j ∈ {1, . . . , nF} with i 6= j, respectively belonging to Sidet

and Sjdet
for which the residuals

configurations Ωi and Ωj are non-empty but equal thus not providing the isolability;
• an isolable fault parameter set, Skisol

⊆ S?k , identified as the fault parameter set such that ∀ νk ∈ Skisol

the residuals configuration Ωk is unique. In particular, for each couple of fault parameters νi
and νj with i, j ∈ {1, . . . , nF} with i 6= j, respectively belonging to Siisol

and Sjisol
the residuals

configurations Ωi and Ωj are non-empty and different.

Given the analogical vector residual ri and an associated comparison threshold rth
i , the binary

residual rd
i > 0 is obtained by means of the following law

rd
i :=

 1
√
||rT

i Wiri|| > rth
i

0
√
||rT

i Wiri|| ≤ rth
i

(40)
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where the elements of the matrices Wi =
1√

dim(ri)
diag([wi,1, . . . , wi,dim(ri)

]) have been defined in the

following way:

sup
Fs={∅}

w2
i,jr

2
i,j =

(
rth
)2

(41)

for each j ∈ {1, . . . , dim(ri)} where dim(ri) indicates the dimension of the vector ri. Table 2 reports
the values given to the weight matrices. As result, the two residuals live under the threshold rth (set
equal to 1 in this paper) when in absence of faults, see Figure 5.

Table 2. Weight matrices.

Residual Weights Matrix

r1 W1 = diag([0, 1.5625, 25, 1600, 156.25])
r2 W2 = diag([1.5625, 100])
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Figure 5. Residuals and thresholds: behaviour in absence of faults.

For each k ∈ {1, . . . , nF} the sets Skund
, Skdet

and Skisol
have been numerically determined in

presence of the most common uncertain quantity in standard general aviation aircraft (mass, inertia
and drag coefficients) and simulated as a random variable with uniform distribution in the set of ±5%
of the corresponding nominal parameter. Tables 3 and 4 and respectively list the nominal parameters,
exploited by the FDI module, and their minimum and maximum values assumed into the plant.
Table 5 lists the resulting fault sets whose bounds, shown in Figure 6, are obtained by assuming a slope
modification ks ∈ [−0.1, 0.1]. All the results presented in this work have been obtained by means of
an extended Monte-Carlo campaign covering all the cruise flight envelope (unitary positive load factor
and air-speed up to the manoeuvre speed).

Remark 3. The faults considered in this paper are corrupting the sensors and do not directly affect the plant,
i.e., they are not system faults which modify the plant structure or the plant parameters. Anyway the fault have
a secondary effect on the robustness of the proposed method because the aerodynamic coefficients, exploited by the
FDI module, are obtained from look-up tables which entries contain also the angle of attack. This implies that
erroneous values of α lead to erroneous values of the lumped parameters exploited to isolate the faults. All the
simulation results are comprehensive of this phenomenon.

Remark 4. The concept of the fault sets have been introduced to describe the behaviour of the detection and
isolation logic in presence of faults modelled as sum of biases and slope modifications, i.e., Fs = bs + (ks − 1)s.
The sets are given to show how the combination of bs and ks influences the detection and isolation results: given
ks the faults can be undetectable, detectable or isolable are functions of the value of bs. The identified fault sets
are realistic due to the high fidelity of the simulator. As example the maximum tolerable fault on the static port
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is fixed by the vertical separation of the air traffic. In particular, the vertical separation is 75 m and a fault of
±690 Pa would lead to an error of about ±60 m [35]. The minimum isolable fault size identified in this paper
is about ±155 Pa which is in line with the mentioned limits. Moreover, the aeronautical standard allows for a
maximum tolerable error of ±4 knots on the airspeed. The fault size of ±55 Pa on the total air pressure port
leads to an airspeed variation of less than ±2 knots while the fault on the static pressure port of ±155 Pa leads
to an error of about ±4.5 knots. Finally a fault of about ±7 deg on the total air temperature port leads to an
erroneous airspeed of about ±1.5 knots.

Table 3. Uncertain Parameters: mass and inertia.

Par. Units Minimum Value Nominal Value Maximum Value

m kg 1548.5 1630 1711.5
Iy kg·m2 2446.1 2574.8 2703.5

Table 4. Uncertain Parameters: drag coefficient, CD(α).

α [deg] −3.5 −1.5 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5

min. CD 0.03325 0.0285 0.0285 0.03325 0.04275 0.057 0.08075 0.114 0.152 0.209 0.2755 0.361
nom. CD 0.035 0.03 0.03 0.035 0.045 0.06 0.085 0.12 0.16 0.22 0.29 0.38
max. CD 0.03675 0.0315 0.0315 0.03675 0.04725 0.063 0.08925 0.126 0.168 0.231 0.3045 0.399

Table 5. Sensor Fault Sets.

Variable Units m a b c d

PS Pa 89,875 −150.0 −20.0 25.0 155.0
PT Pa 91,876 −51.5 −13.0 14.5 55.5
θT

◦C 10 −7.3 −2.0 2.0 7.2
α deg 2.1 −0.22 −0.05 0.07 0.17

-0.1 0.0 0.1 ks

bs

a

b

c

d
−m

Undetectable

Detectable

Detectable

Isolable

Isolable

Figure 6. Representation of the fault parameter sets.

5.2. Fault Isolation Performance

To complete the dissertation about the fault detection and isolation, this work ends with the
presentation of some single simulation runs in which the aircraft has been set to a cruise at speed
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116 knots and altitude of 3280 fts, for a nominal static air pressure and temperature of 89, 875 Pa and
8 ◦C respectively. The trim conditions are

α = 2.1 [deg]; q = 0 [deg/s]; T = 1469.6 [N]; δe = 0.22 [deg].

whereas the faults dynamics has been characterized by a time constant ∆t of 1 s. Figures 7 report
the behaviours of the two detection residuals in presence of faults on the static air pressure port
(Figure 7a) and on the total air pressure port (Figure 7b). Both the residuals, in accordance with their
design criterion, overcome their threshold thus identifying the configuration of the residual matrix.
The graphs in Figure 7a clearly show a quasi impulsive behaviour due to the variation of the rate of
climb induced by a fault on the static pressure port: the rate of climb is a low pass filtered version of
the static pressure first time derivative indeed. Once this effect disappears the asymptotic value of the
residuals is due to the erroneous values of the airspeed. This impulsive behaviour is not present in
Figure 7b where the aircraft is affected by faults on the total air pressure port because this measurement
does not influence the rate of climb.

The composition of the residual matrix is replicated in the behaviour of the analogical residuals
depicted in Figures 7a and 8b.

In conclusion, Table 6 reports the result of a 10,000-runs Monte-Carlo simulation in which, with
respect to the sets described in Table 6, the faults have been randomly generated with a uniform
distribution. The following dimensionless indexes constitute the meter for evaluating the performance
of the FDI module:

• Missed Fault Rate (MFR): division of the number of not detected faults over the total number of
simulated faults;

• False Alarm Rate (FAR): ratio of the number of faults which have been detected over the number
of simulations performed in absence of faults;

• Detection Rate (DR): number of faults that have been detected over the total number of simulations
in presence of faults;

• Isolation Rate (IR): division of the number of faults which have been correctly isolated over the
total number of simulations in presence of faults;

• Wrong Isolation Rate (WIR): ratio of the number of faults which have been wrongly isolated over
total number of simulations in presence of faults.

Table 6. Monte-Carlo Simulation: sensor faults.

Var. bsmin bsmax MFR FAR DR IR WIR

PS −1921 707 1.71 2.98 98.29 88.58 1 9.70 1

PT −284 1667 1.41 3.01 98.59 95.85 1 2.74 1

θT −71 72.5 2.79 3.12 97.21 89.90 1 7.32 1

α −4.8 8 0.94 2.75 99.06 96.95 2.11
1 Despite the NLGA analysis clearly states that it is impossible to isolate faults belonging to Fx1 , the occurrence
of a fault in the group {FPS , FPT , FθT } can be isolated from Fα with the percentage indicated by the IR.
Accordingly, the WIR indicates the percentage of test which resulted in the isolation of a fault out of the set Fx1

The values reported in Table 5 indicate a promising effectiveness of the proposed solution.
With respect to the isolability of the faults affecting the total air pressure port, there is an inherent
difficulty in the isolation of the faults affecting the static pressure port. In particular, a fault increasing
PS produces two counteracting effects: on one hand it increases the estimated airspeed V̂ but on
the other it reduces the estimated air density ρ̂ such that the final variation of the pressure dynamic
qd = 1

2 ρ̂V̂2 is, in modulus, smaller than the variation due to a fault, with the same magnitude,
but affecting the total air pressure port. Since the pressure port faults reveal themselves by means
of the dynamic pressure, this phenomenon makes easier the isolation of the faults on the total air
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pressure. The same conclusions can be obtained about the isolability of the faults affecting the total air
temperature port. Furthermore, thanks to the structure of the detection residuals the isolation of faults
affecting the vane sensor α is almost perfect (WIR 2%): the second detection residual, r2, is theoretically
independent from fault on α thus reducing the possibility of confusing the residual configuration.
Values of WIR different from zero, for Fα, are due to the presence of model uncertainties which makes
the decoupling not perfect. Finally the WIR values relative to fault in Fx1 are also due to the residual
structure: for some flight conditions, these faults may force only the first residual r1 out of its threshold
thus inducing a wrong isolation.
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Figure 7. Residuals in case of faults on the static and total air pressure ports: (a) Fault on PS = −150.0 Pa;
(b) Fault on PT = −87.9 Pa.
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Figure 8. Residuals in case of faults on the total air temperature ports and the angle of attack vane
sensor: (a) Fault on θT = −15.5 ◦C; (b) Fault on α = 0.34 deg.

6. Conclusions

Given a general aviation aircraft affected by faults on the air data system, this paper proposed
a novel approach for solving the Fault Detection and Isolation problem. The cornerstone of the
proposed approach stays in the coordinated use of the NonLinear Geometric Approach and the
Singular Perturbation theory and represents a suitable solution for designing Fault Detection and
Isolation schemes for all that plants whose dynamics can be described by two-time scales. This work
demonstrated that, by means of the proposed approach, fault affecting the angle of attack and those
affecting the air (both pressure and temperature) probes can be correctly detected and isolated.
An aircraft flight simulator, based on high fidelity experimental data of one real general aviation
aircraft, has been used as benchmark for assessing the results showed in this paper. Future works will
focus on the improvement of the isolation performance by means of the introduction of further sensors.
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