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Abstract 

Inconel alloys are Nickel-Chromium based high temperature super alloys widely applied in 

aerospace, marine, nuclear power generation; chemical, petrochemical and process industries. 

Execution of traditional machining operations on Inconel super alloy is quite difficult due to 

its very low thermal conductivity which increases thermal effects during machining 

operations. Inconel often exhibits strong work hardening behavior, high adhesion 

characteristics onto the tool face, and thereby alters cutting process parameters to a 

remarkable extent. Additionally, Inconel may contain hard abrasive particles and carbides 

that create excessive tool wear; and, hence, surface integrity of the end product appears 

disappointing. The extent of tool life is substantially reduced. Thus, Inconel super alloys are 

included in the category of ‘difficult-to-cut’ materials.  

 

In view of the difficulties faced during conventional machining, non-traditional machining 

routes like Electro-Discharge Machining (EDM), Wire Electro-Discharge Machining 

(WEDM), micro-machining (micro-electro-discharge drilling) etc. are being attempted for 

processing of Inconel in order to achieve desired contour and intricate geometry of the end 

product with reasonably good dimensional accuracy. However, low material removal rate and 

inferior surface integrity seem to be a challenge. 

 

In this context, the present dissertation has aimed at investigating machining and 

machinability aspects of Inconel super alloys (different grades) during electro-discharge 

machining. Effects of process control parameters (viz. peak discharge current, pulse-on time, 

gap voltage, duty factor, and flushing pressure) on influencing EDM performance in terms of 

Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (SR) of 

the EDMed Inconel specimens have been examined. Morphology along with topographical 

features of the EDMed Inconel work surface have been studied in view of severity of surface 

cracking and extent of white layer depth. 

 

 Additionally, X-Ray Diffraction (XRD) analysis has been carried out to study metallurgical 

characteristics of the EDMed work surface of Inconel specimens (viz. phases present and 

precipitates, extent of grain refinement, crystallite size, and dislocation density etc.) in 

comparison with that of ‘as received’ parent material. Results, obtained thereof, have been 



ix 

 

interpreted with relevance to Energy Dispersive X-ray Spectroscopy (EDS) analysis, residual 

stress and micro-indentation hardness test data.  

Effort has been made to determine the most appropriate EDM parameters setting to optimize 

MRR, EWR, along with Ra (roughness average), relative Surface Crack Density (SCD), as 

well as relative White Layer Thickness (WLT) observed onto the EDMed work surface of 

Inconel specimens.  

Moreover, an attempt has been made to examine the ease of electro-discharge machining on 

Inconel work materials using Deep Cryogenically Treated (DCT) tool/workpiece. A unified 

attempt has also made to compare surface integrity and metallurgical characteristics of the 

EDMed Inconel work surface as compared to the EDMed A2 tool steel (SAE 304SS) as well 

as EDMed Titanium alloy (Ti-6Al-4V). 

 

Keywords: Inconel; super alloy; Electro-Discharge Machining (EDM); Material Removal 

Rate (MRR); Electrode Wear Rate (EWR); Surface Roughness (SR); X-Ray Diffraction 

(XRD); Energy Dispersive X-ray Spectroscopy (EDS); Surface Crack Density (SCD); White 

Layer Thickness (WLT); A2 tool steel (SAE 304SS); Titanium alloy (Ti-6Al-4V).   
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Chapter 1 

 

Introduction 
 

 

1.1 Super Alloy Inconel 

Inconel is a family of austenite Nickel-Chromium based super alloys. These alloys are 

basically oxidation and corrosion resistant materials appropriate for service in extreme 

environments subjected to pressure and heat. Whilst heated, Inconel develops a thick, 

stable, passivating oxide layer protecting the surface from further attack. Inconel retains 

its strength over a wide range of temperature; suitable for high temperature applications.  

Difficulty is faced in machining and forming of Inconel super alloys using traditional 

techniques due to rapid work hardening. In case of machining, after the first pass, work 

hardening tends to plastically deform either the workpiece or the tool on subsequent 

passes. Therefore, age-hardened Inconel alloys are machined using an aggressive but 

slow-cut with a hard tool with minimum number of passes. 

 

 Inconel 601 

Inconel 601 is widely used for applications that require resistance to corrosion and heat. 

This alloy stands out due to its resistance to high temperature oxidation. Inconel 601 

develops a tightly adherent oxide scale which resists spalling even under conditions of 

severe thermal cycling. This alloy exhibits good high temperature strength, and retains its 

ductility after long service exposure. It has good resistance to aqueous corrosion, high 

mechanical strength, and shows easiness of readily forming, machining and welding. 

However, alloy 601 is not recommended for use in strongly reducing, Sulphur bearing 

environments. Inconel 601 is used in chemical processing, aerospace, heat treating 

industry, power generation, heat treating muffles and retorts, radiant tubes, catalyst 

support grids in nitric acid production and steam super heater tube supports. 

 

 

 

https://en.wikipedia.org/wiki/Austenite
https://en.wikipedia.org/wiki/Nickel
https://en.wikipedia.org/wiki/Chromium
https://en.wikipedia.org/wiki/Superalloy
https://en.wikipedia.org/wiki/Passivation_(chemistry)
https://en.wikipedia.org/wiki/Work_hardening
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 Inconel 625 

Inconel 625 is a corrosion and oxidation resistant Nickel alloy that is used both for its 

high strength and outstanding aqueous corrosion resistance. Its outstanding strength and 

toughness is due to the addition of Niobium which acts with the Molybdenum to stiffen 

the alloy’s matrix. Inconel 625 exhibits excellent fatigue strength and stress-corrosion 

cracking resistance to chloride ions. This alloy has excellent weldability. It can resist 

pitting and crevice corrosion. It remains almost unaffected in alkaline, salt water, fresh 

water, neutral salts, and in the air. The Nickel and Chromium provide resistance to 

oxidizing environments. Nickel and Molybdenum provide for resistance to non-oxidizing 

atmospheres. Pitting and crevice corrosion are prevented due to the presence of 

Molybdenum. Niobium stabilizes the alloy against sensitization during welding. Inconel 

625 also exhibits excellent chloride stress-corrosion cracking resistance. This alloy is 

capable of resisting scaling and oxidation at high temperatures. 

Inconel 625 shows excellent forming and welding characteristics. Ideally, in order to 

control grain size, finish hot working operations are preferred at the lower end of the 

temperature range. Because of its good ductility, Inconel 625 is also readily formed by 

cold working. However, the alloy does work-harden rapidly; intermediate annealing 

treatments may be required for pursuing complex component forming operations. In order 

to restore the best balance of properties, all hot or cold worked component parts should be 

annealed and rapidly cooled. This alloy can be welded by both manual and automatic 

welding methods, including gas tungsten arc, gas metal arc, electron beam and resistance 

welding. It exhibits good welding characteristics. Applications of Inconel 625 include: 

aircraft ducting systems, aerospace, jet engine exhaust systems, engine thrust-reverser 

systems, specialized seawater equipment, chemical process equipment etc.  

 

 Inconel 718 

Inconel 718 is designed to resist a wide range of severely corrosive environments like 

pitting and crevice corrosion. It also displays exceptionally high yield, tensile, and creep-

rupture properties at high temperatures. This nickel alloy is used from cryogenic 

temperatures up to long term service at 1200°F. One of the distinguishing features of 

Inconel 718’s composition is the addition of Niobium to permit age hardening which 

allows annealing and welding without spontaneous hardening during heating and cooling. 

The addition of Niobium acts with the Molybdenum to stiffen the alloy’s matrix and to 
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provide high strength without a strengthening heat treatment. This alloy can readily be 

fabricated and may be welded in either the annealed or precipitation (age) hardened 

condition. Salient characteristics of Inconel 718 include: 

 

 Good mechanical properties – tensile, fatigue and creep-rupture. 

 Yield tensile strength, creep, and rupture strength properties are exceedingly high. 

 Highly resistant to chloride and sulphide stress corrosion cracking. 

 Resistant to aqueous corrosion and chloride ion stress corrosion cracking. 

 High temperature resistant. 

 Age-hardenable with a unique property of slow aging response that permits heating 

and cooling during annealing without the danger of cracking. 

 Excellent welding characteristics, resistant to post weld age cracking. 

 

Inconel 718 is used in a wide variety of industries such as chemical processing, 

aerospace, liquid fuel rocket motor components, pollution-control equipment, nuclear 

reactors, cryogenic storage tanks, valves, fasteners, springs, mandrels, tubing hangers, 

gas turbine engine parts etc. 

 

 Inconel 825 

Inconel 825 alloy’s chemical composition is designed to provide exceptional resistance at 

many corrosive environments (sulphuric and phosphoric acids and sea water). It exhibits 

excellent resistance to both reducing and oxidizing acids, to stress-corrosion cracking, 

and to localized attack such as pitting and crevice corrosion. This alloy is used for 

applications in chemical processing, pollution control, oil and gas well piping, nuclear 

fuel reprocessing, components in pickling equipment like heating coils, tanks, baskets and 

chains, acid production etc.  

 

 

 

1.2 Machining Difficulties of Inconel 

In order to satisfy stringent design requirements, machining and shaping of Inconel super 

alloys become very difficult and expensive by conventional processes such as turning, 

milling, grinding, etc. Problems that are frequently experienced in machining of super 
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alloys by conventional techniques are rapid tool wear and excessive heat generation at the 

tool-work interfaces; thereby resulting subsequent alteration of work material 

characteristics. As a result, manufacturers and design engineers are forced to opt for 

modern machining processes. The properties of these super alloys, such as high 

temperature strength, high hardness, low thermal diffusivity, presence of highly abrasive 

carbide particles and high tendency to weld onto the tool forming Built–Up Edge (BUE) 

etc. are responsible for inviting various machining difficulties. Their ability to maintain 

their mechanical properties at high temperatures severely affects the machinability of 

these alloys. Its poor thermal diffusivity generates high temperature at the tool tip as well 

as high thermal gradients in the cutting tool, affecting the tool life adversely. Whilst 

machining, these alloys tend to be work hardened rapidly, generate enormous heat during 

cutting, exhibit tendency to weld on the cutting tool surface, and offer high resistance 

towards metal removal because of their high shear strengths. Loss of surface integrity of 

the machined part component is due to excessive work hardening, rapid tool wear due to 

uneven strong stress field by thermo-mechanical coupling. Owing to aforesaid problems, 

it seems indeed a great challenge to machine Inconel super alloys by conventional 

machining processes and that too by conventionally used cutting tool materials (Hewidy 

et al., 2005; Rao et al., 2013; Ashtiani and Zarandooz, 2016; Shankar et al., 2001; 

Ramanujam et al., 2014; Thirumalai and Senthilkumaar, 2013; Aggarwal et al., 2015; 

Prihandana et al., 2014; Rajyalakshmi and Ramaiah, 2013). Therefore, non-traditional 

machining of Inconel super alloys has really become an important research agenda in the 

present context.  

 

 

 

1.3 Literature Review  

1.3.1 State of Art on Non-Traditional Machining of Inconel 

Hewidy et al. (2005) developed mathematical models for correlating the inter-

relationships of various Wire Electro-Discharge Machining (WEDM) machining 

parameters of Inconel 601 material such as: peak current, duty factor, wire tension and 

water pressure on the metal removal rate, wear ratio and surface roughness.  

Ramakrishnan and Karunamoorthy (2008) predicted the best cutting parameters of 

WEDM process for machining of Inconel 718 work material. The responses (viz. material 
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removal rate and surface roughness) were optimized concurrently using multi-response 

Signal-to-Noise (S/N) ratio in addition to Taguchi’s parametric design approach. Analysis 

of Variance (ANOVA) was employed to identify the level of importance of the 

machining parameters on the multiple performance characteristics. Imran et al. (2008) 

examined the feasibility of deep-hole micro-drilling on Nickel-based super alloy. In this 

work, the effect of processing parameters such as drill feed rate, spindle speed, and peck 

depth were evaluated. Additionally, the tool wear mechanism was also investigated. The 

authors highlighted that micro-drilling route was found technically feasible offering good 

hole dimension and potentially competitive lead times. 

Newton et al. (2009) performed an experimental investigation to determine the main 

Electro-Discharge Machining (EDM) parameters which contributed to recast layer 

formation for Inconel 718 work material. It was found that average recast layer thickness 

increased primarily with energy per spark, peak discharge current, and current pulse 

duration. The recast layer was found to possess in-plane tensile residual stress, lower 

hardness and lower elastic modulus than the bulk material. Rajesha et al. (2010) carried 

out EDM experiments on Inconel 718 workpiece using 99.9% pure Copper electrode with 

tubular cross section. The effects of process parameters (viz. pulse current, duty factor, 

sensitivity, gap control and dielectric flushing pressure) on the formation of recast layer, 

heat affected zone and spattered EDM surface were analyzed. It was observed that the 

process parameters, base material properties and white layer composition had significant 

influence on crack formation. In addition to that, crack propagation was observed varying 

significantly with pulse current as well as duty factor. 

Kumar et al. (2011) studied the influence of process input parameters on machining 

characteristics of Inconel 718 in aluminum Additive Mixed Electrio-Discharge 

Machining (AEDM) with Copper tool electrode. The effectiveness of AEDM process on 

Inconel 718 was evaluated in terms of material removal rate, surface roughness, and 

electrode wear ratio. It was found that particle concentration and particle size 

significantly affected machining efficiency. Manikandan and Venkatesan (2012) applied 

Taguchi method to analyze the effect of EDM parameters on the machining 

characteristics (viz. metal removal rate, overcut, and tool wear ratio etc.) for Inconel 718 

work material and to predict the optimal choice for each EDM parameters including 

discharge current, pulse-on time, and pulse-off time. It was found that these parameters 

had a significant influence on the machining characteristics. Rajesha et al. (2012) 

performed an experimental study considering EDM on Inconel 718 work material using 
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Response Surface Methodology (RSM). In this work, the effects of five major process 

parameters: pulse current, duty factor, sensitivity control, gap control, and flushing 

pressure on the following process responses: Material Removal Rate (MRR) and Surface 

Roughness (SR) were discussed. Analysis showed significant interaction effect of pulse 

current and duty factor on MRR yielding a wide range from 14.4~22.6 mm
3
/min; while 

pulse current remained the most contributing factor with approximate changes in the 

MRR and SR of 48% and 37%, respectively, corresponding to the extreme values 

considered. Moreover, the thickness of the sputtered layer and the crack length were 

found to be functions of pulse current.  

Lin et al. (2013) applied grey-Taguchi method towards optimizing micro-milling 

electrical discharge machining process parameters of Inconel 718 super alloy in order to 

achieve multiple performance characteristics such as low electrode wear, high material 

removal rate and low working gap. In this work, the influences of peak current, pulse-on 

time, pulse-off time and spark gap on electrode wear, material removal rate, and working 

gap were analyzed. Sengottuvel et al. (2013) investigated effects of various EDM input 

parameters as well as the influence of different tool geometry on material removal rate, 

tool wear rate, and surface roughness for machining of Inconel 718 work material by 

using Copper electrode. Five EDM parameters, namely pulse-on time, pulse-off time, 

peak current, flushing pressure, and electrode tool geometry (circular, square, rectangular, 

and triangular cross sections) were considered in this work. The parameters were 

optimized using multi-objective optimization technique called desirability function 

approach. The significance of each parameter was analyzed by ANOVA. In addition, 

Fuzzy Logic Model (FLM) was used to infer the functional relationship between input 

and output responses. Overall, the rectangular tool geometry emerged successful.  

Rajyalakshmi and Ramaiah (2013) applied Taguchi based grey relational analysis to the 

experimental results of WEDM on Inconel 825 work material with consideration of 

multiple response measures. The authors aimed at obtaining improved material removal 

rate, surface roughness, and spark gap. Ay et al. (2013) used grey relational analysis to 

optimize micro-electrical discharge machining (drilling) process of Inconel 718 super 

alloy in consideration with multi-performance characteristics (viz. hole taper ratio, and 

hole dilation). The pulse current was found to be more efficient on performance 

characteristics than pulse duration.  

Wang et al. (2013) proposed a high current density electrical discharge milling for 

machining of Inconel 718 super alloy. In this research, the effects of peak current and 
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injection flushing pressure on the MRR and EWR were investigated. It was observed that 

the micro-cracks within the recast layer penetrated into the base material and propagated 

along the grain boundary of the EDMed work surface. Li et al. (2014) focused on surface 

integrity and machining efficiency of WEDM in machining of Inconel 718 by one rough 

cut (RC) mode followed by three trim cut (TC) modes. In this study, material removal 

efficiency, surface roughness, surface topography, surface alloying, and micro-hardness 

were characterized. Results showed that Six-sigma distribution of Ra in RC mode was 

different from that of TC modes. The high toughness of Inconel 718 was found to be the 

major contributing factor towards suppressing micro-cracks in the TC modes.  

Yadav and Yadava (2014) analyzed the impact of tool rotation in Electro-Discharge 

Drilling (EDD) of aerospace Nickel alloys. Experimental results confirmed that tool 

rotation had substantive effect on surface roughness and average circularity of the hole 

made by EDD process. Manohar et al. (2014) observed that the bottom surface profile of 

the electrode influenced significantly on material removal rate, electrode wear rate, 

surface roughness and surface integrity of the EDMed Inconel 718 specimen. In this 

work, electrodes of different bottom profiles (Convex, Concave and Flat profile at their 

bottom surface) were used; and the machined surfaces were analyzed in terms of recast 

layer, surface topology, form tolerance and MRR. It was concluded that the adverse 

effects caused due to the erosion of flat profile electrodes on the machined surfaces could 

be overcome by employing convex profile electrodes; concave profile electrodes almost 

simulated the condition of eroded flat-profile electrode; convex profile electrodes 

produced machined surfaces of better quality in terms of higher surface finish, thinner 

recast layer and closer geometry, in addition to higher MRR as compared to flat profile or 

concave profile electrodes. 

Muthukumar et al. (2014) applied response surface methodology for prediction of radial 

overcut in die sinking electrical discharge machining process for Incoloy 800 super alloy 

with Copper electrode. The study considered current, pulse-on time, pulse-off time, and 

voltage as input process parameters. It was found that current and voltage had significant 

effect on the radial overcut. Mohanty et al. (2014a) studied the influence of different 

EDM process variables peak current, duty factor, and pulse-on duration on various 

performance characteristics such as material removal rate, surface roughness, radial 

overcut, and surface crack density. The most influencing factor for responses viz. MRR, 

SR, and Radial Overcut (ROC) was found to be the peak discharge current. Finally, Grey 
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Relational Analysis (GRA) was utilized to optimize process parameters during EDM of 

Inconel 825.  

Dhanabalan et al. (2014) presented an experimental work on electro-discharge machining 

of Inconel 718 and 625 super alloys. In this work, the significance of input parameters 

namely peak current, pulse-on time, and pulse-off time on the form tolerances were 

investigated. Prihandana et al. (2014) investigated the influence of Molybdenum 

Disulfide (MoS2) powder suspended in dielectric fluid on the performance of micro-EDM 

of Inconel 718. It was observed that MoS2 powder suspension with 50nm of size and 5g/l 

of concentration could produce better quality micro-holes on Inconel 718 work material. 

Moreover, 50nm MoS2 powder was found as the best powder size to achieve the highest 

material removal rate. Li et al. (2015) focused on machining characteristics of Inconel 

718 by Wire-EDM and Sinking-EDM with Cu-SiC electrode, respectively. Material 

removal efficiency, surface roughness, surface topography, surface alloying, and 

electrode wear were characterized herein. It was found that the fabricated Cu-SiC 

electrode for Sinking-EDM exhibited better performance in terms of material removal 

rate, surface roughness, and electrode wear. It was inferred that the higher melting 

temperature and fine microstructure of SiC contributed towards minimizing electrode 

wear of the fabricated Cu-SiC electrode as compared to the traditional Cu electrode. 

Sharma et al. (2015) examined WEDM performance on Inconel 706 super alloy in 

purview of material removal rate, surface roughness, recast surface, topography, micro-

hardness, micro-structural and metallurgical changes of the machined components. The 

experimental results revealed that servo voltage, pulse-on time, and pulse-off time greatly 

influenced MRR, and SR. As such no micro-cracks were observed on the machined 

surface of Inconel 706 due to its high toughness. But, propensity of thick recast layer 

formation was noticed at high pulse-on time and low servo voltage. Aggarwal et al. 

(2015) attempted empirical modeling of process parameters of the WEDM for Inconel 

718 super alloys by using response surface methodology. In this work, the parameters 

such as pulse-on time, pulse-off time, peak current, spark gap voltage, wire feed rate, and 

wire tension were considered as input variables. The performance was measured in terms 

of cutting rate and surface roughness.  

Torres et al. (2016) studied the influence of EDM parameters and graphite electrode for 

Inconel 600 super alloy considering positive and negative polarity both. In this work, the 

machining performances were evaluated in terms of material removal rate, electrode 

wear, and surface roughness. It was found that that the use of negative polarity lead to 
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higher material removal rate; whereas, positive polarity was found suitable for ensuring 

low values of electrode wear and good surface roughness. It was highlighted that graphite 

electrode and negative polarity were the most economical choice. 

 

 

1.3.2 Cryogenic Treatment (CT) of Material   

Cryogenic Treatment (CT) is the process of treating material to cryogenic temperatures in 

order to seek enhanced stress relief and stabilization, and thereby improved wear 

resistance. The scientific community generally defines cryogenic temperatures as 

temperatures below -150°C. However, this is, admittedly, an artificial upper limit; 

temperatures used presently in cryogenic treatment are generally -185°C. CT of tool 

material appears favorable since cryogenically treated material corresponds to longer part 

life, improved fatigue life (less failure due to cracking), improved thermal properties 

(increase in thermal conductivity), better electrical properties including less electrical 

resistance (increase in electrical conductivity), reduced coefficient of friction, less creep 

and walk, improved flatness, and easiness of machining. 

Generally, the parts can be cryogenically treated either by (i) Shallow Cryogenic 

Treatment (SCT) or by (ii) Deep Cryogenic Treatment (DCT) (Kumar et al., 2014). 

During cryogenic treatment, the part component is immersed into the liquid Nitrogen 

(LN2) for specified time duration (Patil and Tated, 2012). 

During DCT, the temperature is gradually reduced to -185
0
C at a cooling rate of 1

0
C/min 

and the part component is kept in the cryogenic processor container for about 24h 

durations. The temperature is then gradually raised to the room temperature again. The 

parts are then tempered under similar conditions to incur stress relief. By conducting the 

cool-down cycle in gaseous Nitrogen, temperature can be controlled accurately, and 

thermal shocks to the material are avoided. Cryogenic treatment can also be performed 

without tempering process; as reported by (Kumar et al., 2015). The benefits of cryogenic 

treatment of tool material (conventional cutting tools) could be well retrieved from the 

reporting by (Seah et al., 2003; Firouzdor et al., 2008; Reddy et al., 2009; Gill and Singh, 

2010; Kalsi et al., 2010; Sundaram et al., 2009; Abdulkareem et al., 2009; Nadig et al., 

2011). 

 Imparts high resistance to abrasive wear. In Carbon tool steels, CT modifies its 

Carbon structure through precipitation of ‘eta-carbides’ which in turn improves 

https://en.wikipedia.org/wiki/Cryogenic
https://en.wikipedia.org/wiki/Wear_resistance
https://en.wikipedia.org/wiki/Wear_resistance
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hardness, increases resistance to wear and also warranties better tool life (in case 

of cutting tools).  

 Improves the microstructure (more consistent grain structure) of the material (not 

just the surface) being cryogenically treated. This is because, CT promotes in 

eliminating voids or imperfections present within the parent material. This in turn 

improves durability of the work material. 

 Cryogenically treated parts may be subsequently reground or machined without 

affecting the benefits imparted by the cryogenic treatment. 

  In general, CT results in decrease in residual stress, while increasing toughness 

(i.e. resistance to impact) and dimensional stability.   

 This technology is eco-friendly as well as nontoxic; can be executed without 

imposing environmental harm. 

 

 

1.3.3 Use of Cryogenically Treated Tool/Workpiece during Execution of 

EDM/WEDM Processes     

Cryogenic Treatment (CT) is basically the process of deep-freezing materials at cryogenic 

temperatures in order to enrich mechanical and physical properties of materials. The 

execution of cryogenic processing on tool materials is expected to improve wear 

resistance, hardness, and dimensional stability; reduce tool consumption and down time 

for the setup, thus incurring substantial cost reduction. Additionally, CT of work material 

prior to EDM may be proved beneficial in terms of remarkable improvement in the 

material properties as it may relieve residual stresses, promote grain refinement, and 

improve electrical as well as thermal properties. Therefore, application potential of 

cryogenically treated tool/workpiece in the context of electro-discharge machining 

specially on ‘difficult-to-cut’ materials has been reported in literature.  

Gill and Singh (2010) investigated the effect of Deep Cryogenic Treatment (DCT) on 

machinability of Ti 6246 alloy in electric discharge drilling with electrolytic Copper tool. 

The authors attempted to compare the production accuracy of holes drilled in deep 

cryogenically treated Ti 6246 (DCT Ti 6246) alloy and non-treated Ti 6246 alloy in terms 

of surface roughness and overcut. Improved material removal rate and wear ratio, lower 

tool wear rate were observed in case of EDD of DCT Ti 6246 alloy workpiece as 

compared with non-treated work material. Also, superior production accuracy of holes 
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was reported while EDD of DCT workpiece. Srivastava and Pandey (2012a, b) performed 

parametric study on EDM process using ultrasonic assisted cryogenically cooled Copper 

electrode during electro-discharge machining of M2 grade high speed steel. In this work, 

electrode wear ratio, material removal rate, and surface roughness were analyzed. 

Discharge current, pulse-on time, duty cycle and gap voltage were considered as the 

controllable process variables. The MRR, Electro Wear Rate (EWR) and SR obtained in 

EDM process with normal electrode, cryogenically cooled electrode and ultrasonic 

assisted cryogenically cooled electrode were compared. Thus, in the present work the 

aforesaid process route was recommended superior in performances than conventional 

EDM process due to better tool life, satisfactory tool shape retention ability and better 

surface integrity. 

Kapoor et al. (2012) investigated the effect of deep cryogenic treatment on the brass wire 

electrode used in wire electrical discharge machining on EN31 work material. In this 

work, the microstructure and crystalline phase of deep and non-treated brass wire 

electrodes was observed. More refined structure was observed in case of deep cryogenic 

treatment. Improved electrical conductivity was obtained for the deep cryogenically 

treated tool electrode. The effect of deep cryogenic treatment on the brass wire electrode 

was also investigated for the performance of wire electrical discharge machining. Taguchi 

experimental design was applied to investigate the optimal parameters for maximum 

material removal rate. The ANOVA analysis indicated that type of wire, pulse width, time 

between two pulses and wire tension were the significant factors to achieve maximum 

material removal rate. Jafferson and Hariharan (2013) reported a comparative study on 

machining performance of both cryogenically treated and untreated micro electrodes in 

micro-EDM along with electrical resistivity, crystallite size, micro-hardness and 

microscopic analysis. From the study, significant reduction of 58% in tool wear rate was 

observed for Tungsten electrode followed by brass and Cu electrodes with 51% and 35%, 

respectively.  

Khanna and Singh (2016) presented a comparison for normal and cryogenically treated 

high Carbon high Chromium cold alloy tool (D-3) steel for execution of WEDM process. 

The response variables namely cutting rate, metal removal rate, and surface roughness 

were considered, and six input process parameters like pulse width, time between two 

pulses, servo reference mean voltage, short pulse time, maximum feed rate, and wire 

mechanical tension were used for evaluating overall machining performance. Sharma et 

al. (2014) investigated the effect of process control parameters (viz. pulse-on time, pulse-
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off time, servo voltage, and peak current) on surface roughness of the WEDMed D-2 tool 

steel specimens. In order to increase the wear resistance, the cryogenically treated 

workpiece was used herein. The Mathematical modeling of the process was carried with 

the help of response surface methodology. It was observed that pulse-on time imposed the 

maximum effect on surface roughness.  

Srivastava and Pandey (2014) studied the effect of discharge current, pulse-on time, duty 

cycle, and gap voltage on electrode wear ratio, material removal rate, and surface 

roughness for EDM of M2 grade High Speed Steel (HSS) workpiece using cryogenically 

cooled electrode. The analysis revealed that discharge current, pulse-on time, and duty 

cycle significantly affected EWR and MRR. Discharge current and pulse-on time were 

found to be the most influential factors in affecting SR. Dhobe et al. (2014) studied the 

effect of WEDM parameters on surface finish of cryogenically treated AISI D2 tool steel. 

Kumar et al. (2015) attempted an experimental investigation towards machining of three 

grades of Titanium alloy TITAN 15, TITAN 21, and TITAN 31 using powder mixed 

electro-discharge machining in order to study the effect of cryogenic treatment of 

tool/work material and its effect on tool wear rate.  

Kumar et al. (2016a) investigated the effect of cryogenic treatment on the machining 

performance of Ti–5Al–2.5Sn alpha Titanium alloy during electric discharge machining. 

Untreated, shallow cryogenically treated (-110
0
C), and deep cryogenically treated (-

184
0
C) Titanium alloys were machined by varying current and pulse-on time. The 

machining performance was evaluated in terms of higher material removal rate, higher 

micro-hardness, lesser tool wear rate, and lesser surface roughness. The results showed 

significant improvement in the machining performance with deep cryogenically treated 

alloy when compared with shallow and untreated alloy. Hui et al. (2016) investigated 

discharge characteristics and discharge gap whilst machining of Ti–6Al–4V alloy by 

cryogenically cooled tool electrode during electro-discharge machining in distilled water 

using the monopulse discharge method. The influence of the cryogenically cooled tool 

electrode on the discharge gap and the initial maintaining voltage between the electrode 

and workpiece were analyzed under various temperatures. A comparative experiment of 

machining Ti–6Al–4V alloy was carried out by using cryogenically cooled tool electrode 

EDM and conventional EDM. Lower electrode wear, higher material removal rate, and 

higher corner size machining accuracy were obtained by using cryogenically cooled tool 

electrode EDM. 
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Gaikwad and Jatti (2016) focused on optimization of electro-discharge machining process 

parameters for maximization of material removal rate while machining of cryogenically 

treated NiTi alloy. In this study, gap current, pulse-on time, pulse-off time, workpiece 

electrical conductivity, and tool conductivity were considered as process variables. It was 

found that work electrical conductivity, gap current and pulse-on time were the 

significant parameters that affected the material removal rate. Kumar et al. (2016b) 

investigated on improvement in EDMed work surface properties of cryogenically treated 

Titanium alloy after Powder-Mixed Electro-Discharge Machining (PMEDM) process. In 

this work, peak current was observed as the highly influential parameter that affected the 

micro-hardness as well as surface quality of the machined surface. 

 

 

1.4 Motivation and Objectives 

Literature has depicted that substantial volume of work has been carried out by pioneers 

to understand machining and machinability aspects of Inconel super alloys (especially 

grade 718) during EDM, WEDM, micro-Electro-Discharge Drilling (micro-EDD) etc. 

Influence of process parameters on different performance attributes has been 

experimentally investigated and analyzed through mathematical modeling. Effort has also 

been made to optimize process responses (performance indicators/ process outputs) 

towards determining the most favorable process environment (parameters setting) for 

machining of Inconel super alloys. From literature survey, it has been understood clearly 

that the process parameters do interact in a complicated manner; thereby, influencing 

machining performance characteristics. 

 

However, majority of the past reporting has considered only a particular grade of Inconel 

alloy (i.e. Inconel 718).  Literature has been found sparse to deliver a consolidated 

database comparing machinability of different Inconel grades (viz. Inconel 601, Inconel 

625, Inconel 825 etc.) whilst executing electro-discharge machining operation. It is felt 

that the ease of machining (i.e. the extent of machinability) is likely to vary with variation 

of Inconel grades due to variation in their chemical composition, physical and mechanical 

properties etc. To address this issue, present work has aimed to perform an in depth 

experimental study to compare machining behavior of different grades of Inconel in 

course of EDM operation.  
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It has also been noticed that most of the past studies have considered MRR, EWR, SR etc. 

as the indicators of machining performance. Aspects of surface cracking, formation of 

white layer onto the EDMed work surface, and their quantification (in terms of surface 

crack density, crack opening width, white layer thickness etc.) have rarely been 

addressed. Moreover, limited effort has been put by previous researchers on investigating 

surface integrity (viz. surface roughness, surface morphology, hardness, residual stress, 

recast or white layer formation, severity of cracks etc.) in detail along with metallurgical 

characteristics of the EDMed work surface with reference to ‘as received’ (unaffected) 

parent material. It is felt indeed a necessity to interpret the thermo-mechanical 

phenomena incurred during execution of EDM operation on influencing phase 

transformation, carbide precipitation, extent of grain refinement, change in crystallite size 

and dislocation density for the EDMed work surface of Inconel super alloys in 

comparison with unaffected parent material. 

 

Optimization of EDM responses for machining of Inconel work material has been 

attempted in literature; however, emphasis has been made to maximize MRR, minimize 

Ra (roughness average of the EDMed work surface) as well as EWR. EDMed surface 

topographical measures like Surface Crack Density (SCD) and White Layer Thickness 

(WLT) etc. have not been considered yet as objective functions for such a multi-response 

optimization problem that has aimed to predict the most suitable EDM process 

environment (optimal parameters setting). 

 

In view of the machining difficulties of low-conductive materials, prior to EDM, 

cryogenic treatment of tool/workpiece has been recommended in literature. It has been 

reported that in the context of EDM, CT of tool/work material substantially improves 

MRR, SR and ensures reduced tool wear. However, aspects of electro-discharge 

machining using cryogenically treated tool electrode and/or workpiece have rarely been 

addressed in literature in the context of machining of Inconel super alloys. Moreover, 

from extensive literature survey, it has been found that rare attempt has been made to 

compare machinability of Inconel and other super alloys (like Ti-6Al-4V) with respect to 

conventional metals/alloys (like 304SS). Motivated by the scope of research as described 

above, the objectives of the present dissertation have been planned accordingly.                      

The specific objectives of the current research have been pointed out below. 
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 To analyze surface characteristics (i.e. surface integrity in terms of surface 

morphology and topography) of the EDMed Inconel 718 specimen.  

 

 To examine electro-discharge machining performance on Inconel 825 work material 

using deep cryogenically treated Copper tool electrode. Emphasis is made on 

assessing surface integrity and metallurgical characteristics of the EDMed work 

surface. 

 

 To study ease of electro-discharge machining of deep cryogenically treated Inconel 

825 workpiece (as compared to untreated work material) using normal Copper tool 

electrode. 

 

 To compare machinability (in view of surface integrity and metallurgical 

characteristics of the EDMed work surface) of A2 Tool Steel (SAE 304SS), super 

alloy Inconel 601 and Titanium alloy Ti-6Al-4V. 

 To predict an optimal setting of EDM process parameters (viz. gap voltage, peak 

discharge current, pulse-on time, duty factor, and flushing pressure) for achieving 

satisfactory EDM performance on Inconel 718 work material. An integrated 

optimization route combining satisfaction function approach coupled with Taguchi 

method is proposed herein.  

 

 To compare optimal parameters setting for EDM of Inconel 601, Inconel 625, Inconel 

718, and Inconel 825 work materials, respectively, in order to ensure maximum 

material removal rate, minimum electrode wear and minimum surface roughness as 

well as minimum surface crack density for the EDMed specimens. Justification on the 

predicted optimal settings is provided in purview of chemical constituents and 

mechanical properties of the respective work materials. In order to solve such a multi-

response optimization problem, an integrated module combining satisfaction function 

approach, Fuzzy Inference System (FIS) and Taguchi method is recommended herein.     

  

 

 

 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&cad=rja&uact=8&ved=0ahUKEwiQ7Z_I05_PAhUB5iYKHfKOBJ4QFghQMAo&url=https%3A%2F%2Fcartech.ides.com%2Fdatasheet.aspx%3Fi%3D101%26E%3D269&usg=AFQjCNFtZ9mm3AUCR9iT02CKt8zE1dHTJQ&sig2=np-DShWUigAqMa7IDdZhTQ&bvm=bv.133387755,d.cGc
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1.5 Organization of the Present Dissertation  

The present dissertation has been organized into eight different chapters. Brief outline of 

each chapter has been provided below. 

Chapter 1 (Introduction):  

In this chapter, a detailed introduction on Inconel super alloys: different grades, 

properties, applications etc. has been delineated. Machining difficulties of Inconel super 

alloys as compared to traditional metals/alloys have been pointed out. An extensive 

literature survey has been carried out at this stage to understand state of art of past 

research on emphasizing machining and machinability aspects of Inconel super alloys. 

Scope for improvement of the EDM performance upon using cryogenically treated 

tool/workpiece has well been understood. Based on outcome of the past research as 

documented in existing literature resource, present research gaps have been identified. 

Following which the specific objectives of the present dissertation have been highlighted.  

 

Chapter 2 (Experimental Details):  

Detailed experimental schema has been documented in this chapter. Materials and 

methods, equipment utilized, procedural steps for sample preparation as well as data 

collection have been elaborately described herein.            

 

Chapter 3 (Analysis on Surface Characteristics of Electro-Discharge Machined 

Inconel 718):  

In this chapter, a detailed experimental study has been carried out to investigate surface 

characteristics of the machined Inconel 718 work material during electro-discharge 

machining. Surface integrity in terms of surface roughness (roughness average; Ra), 

surface crack density and white layer thickness (developed onto the EDMed Inconel 718 

work surface) has been studied. Effects of EDM process parameters (viz. gap voltage, 

peak current, pulse-on time, duty factor, and flushing pressure) on influencing 

topographic features of the EDMed work surface have been represented graphically. 

Metallurgical aspects of the EDMed work surface have also been investigated through 

XRD analysis. Results have been interpreted in support of EDS analysis and micro-

hardness test data. Finally, utility based Taguchi approach has been applied to determine 

an optimal setting of process parameters to ensure satisfactory machining yield. 
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Chapter 4 (Electro-Discharge Machining of Inconel 825 using Cryogenically Treated 

Copper Electrode: Emphasis on Surface Integrity and Metallurgical Characteristics of 

the EDMed Part):  

In this chapter, an attempt has been made to investigate effects of using deep 

cryogenically treated Copper tool electrode during execution of EDM operation on 

Inconel 825 work material. By considering three process parameters (viz. peak discharge 

current, pulse-on time, and duty factor), experiments have been conducted to study the 

EDM performance in terms of surface topographical features (viz. crack density, and 

depth of white layer) for the EDMed work surface of Inconel 825. As compared to EDM 

with normal tool and normal workpiece, effects of cryogenic treatment of Copper tool 

electrode have been discussed in purview of grain refinement and micro-hardness of the 

EDMed samples. Improvement in surface integrity (viz. reduced crack density, reduced 

crack opening width etc.) has been observed for EDM with deep cryogenically treated 

tool electrode. Additionally, effect of cryogenic treatment of the tool electrode has been 

interpreted in regards of crystallite size, dislocation density, Carbon enrichment at the 

work surface for the EDMed Inconel 825 specimens as compared to ‘as received’ parent 

material. Moreover, as compared to normal tool electrode, effects of cryogenic treatment 

of the tool electrode have been examined in view of thickness of the deposited Carbon 

layer at the bottom surface as well as the edge of tool electrode; tool shape retention 

capability etc. This has further been correlated with aspects of tool life. 

 

Chapter 5 (Electro-Discharge Machining of Cryogenically Treated Inconel 825 using 

Cooper Tool Electrode):  

This chapter has aimed to investigate the effects of using deep cryogenically treated 

Inconel 825 work material to execute electro-discharge machining with normal 

(untreated) Copper tool electrode. Effects of deep cryogenic treatment of the work 

material has been analysed focusing morphology and topographical features of the 

EDMed work surface of Inconel 825 in terms of  surface crack density, white layer 

thickness, crack opening width etc. Additionally, metallurgical features of the EDMed 

work surfaces along with chemical composition, micro-hardness and residual stress etc. 

have been studied. Effects of cooling rate (applied in the cryogenic treatment cycle) for 

deep cryogenic treatment of the work piece have also been studied in view of overall 

EDM performance. 
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Chapter 6 (Surface Integrity and Metallurgical Characteristics of the EDMed Work 

Surfaces of A2 Tool Steel (SAE 304SS), Inconel 601 and Ti-6Al-4V: A Comparative 

Analysis):  

This chapter has investigated surface integrity and metallurgical characteristics of the 

EDMed work surface of Inconel 601 super alloy in comparison with EDMed 304SS as 

well as EDMed Titanium alloy Ti-6Al-4V. Severity of surface cracking and formation of 

white layer depth have been studied for aforesaid three work materials machined by EDM 

route. Results, obtained thereof, have been interpreted with EDS, XRD analysis and 

micro-hardness test data. 

 

Chapter 7 (Machining Performance Optimization during EDM of Inconel 718: 

Application of Satisfaction Function Approach Integrated with Taguchi Method):  

This chapter has attempted to determine an optimal setting of EDM process parameters 

(viz. gap voltage, peak current, pulse-on time, duty factor, and flushing pressure) to 

ensure maximum material removal rate, minimum electrode wear rate, minimum surface 

roughness (Ra), minimum crack density, minimum white layer thickness, and minimum 

micro-hardness (at a location approximately at the mid-depth of the white layer measured 

from the top surface of EDMed specimen) for EDMed Inconel 718 specimen. An 

integrated methodology combining satisfaction function approach and Taguchi method 

has been introduced herein to solve such a multi-response optimization problem. Result, 

obtained thereof, has been compared to that of obtained by exploring Principal 

Component Analysis (PCA), Combined Quality Loss (CQL) concept integrated with 

Taguchi’s optimization philosophy. 

 

Chapter 8 (Machining Performance Optimization during Electro-Discharge 

Machining of Inconel 601, 625, 718 and 825 Super Alloys):  

In this chapter, effort has been made to determine an optimal parametric setting for 

achieving satisfactory machining performance for sound execution of EDM operation on 

Inconel 601, 625, 718 and 825 work materials, respectively. An integrated optimization 

route combining satisfaction function approach, fuzzy inference system and Taguchi 

method has been proposed herein. Optimal parameters setting for different work materials 

thus obtained, has been interpreted along with scientific justification in purview of their 

chemical constituents and mechanical properties.    

 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&cad=rja&uact=8&ved=0ahUKEwiQ7Z_I05_PAhUB5iYKHfKOBJ4QFghQMAo&url=https%3A%2F%2Fcartech.ides.com%2Fdatasheet.aspx%3Fi%3D101%26E%3D269&usg=AFQjCNFtZ9mm3AUCR9iT02CKt8zE1dHTJQ&sig2=np-DShWUigAqMa7IDdZhTQ&bvm=bv.133387755,d.cGc
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Chapter 9 (Summary and Contribution):  

This chapter has provided executive summary of the entire work carried out in this 

dissertation and has highlighted specific contributions to the extent body of past research 

in the context of electro-discharge machining of Inconel super alloys. Limitations of the 

present work have also been pointed out with reference to the scope for future work. 
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Chapter 2 

 

Experimental Details  
 

 

2.1 Experiment (Phase I): Material and Methods  

Inconel 718 plates of dimension   355050 mm have been used as work material. The 

chemical composition and mechanical properties of Inconel 718 have been depicted in 

Table 2.1.a and Table 2.1.b, respectively. A (99.9%) pure Copper rod of circular cross 

section  20 has been used as tool electrode (Fig. 2.1).  

The experiments have been carried out on die sinking EDM setup (Make: Electronica 

ElektraPlusPS 50ZNC; Country: India), available in NIT Rourkela. The specifications of 

the setup have been presented in Table 2.2. Commercial grade EDM oil (with specific 

gravity of 0.763 and flushing point 94
0
C) has been used as dielectric fluid. Polarity has 

been kept positive (i.e. workpiece positive). The other parameters such as gap servo 

sensitivity (SEN), anti-arcing sensitivity (ASEN), working time (Tw), and lift time (T") 

have been kept at constant values (refer to Table 2.3) throughout experimentation. 

 

Table 2.1(a): Chemical composition of Inconel 718 [Source: Newton et al., 2009] 

 

Element Range (% wt.) 

Ni 50.50 

Fe 20.24 

Cr 18.16 

Nb 5.02 

Mo 2.91 

Ti 1.05 

Al 0.62 

Co 0.15 

Si 0.08 

Mn 0.07 

Cu 0.06 

C 0.05 

P 0.008 

Ta 0.003 

B 0.003 
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Table 2.1(b): Mechanical properties of Inconel 718 [Source: Newton et al., 2009] 

Property Value 

Density 8.19 g/cc 

Thermal conductivity 11.2 W/m-K 

Electrical resistivity 127 µ Ω cm 

Elastic modulus 200 GPa 

Yield strength 434 GPa 

Tensile strength 855 MPa 

Hardness 89 HRB 

 

Table 2.2: Specification of die-sinking EDM machine at NIT Rourkela 

Machine tool PS50 ZNS 

Work table dimensions 550*350 mm 

Transverse (X,Y,Z) 300*200*350 mm 

Maximum electrode weight 100 gram 

Maximum job height on table 250 mm 

Position measuring system (X,Y,Z) Incremental linear scale 

Pulse generator S50 ZNS 

Pulse generator type MOSFET 

Current range (Ip) 0-50 A 

Pulse on time range, (Ton) 0.5-4000 µs 

Duty factor range,(Tau) 50-93% 

Open circuit voltage, (OCV) 40-60 

Connected load 6KVA included  PF unit 

 

Table 2.3: Fixed/constant parameters 

 

SEN ASEN Tw (s) T↑ (s) Pol 

6 3 0.3 0.2 +ve 

 

 

Fig. 2.1: Copper tool electrode 

In the present work, five controllable process variables (parameters) have been selected 

based on literature survey. The selected process parameters have been OCV (also called 

gap voltage; Vg), peak current (Ip), pulse-on time (Ton), duty factor (τ) and flushing 
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pressure (Fp). In the experimental layout, each process parameter under consideration has 

been varied at five discrete levels (Table 2.4), as per provision of parametric setting 

(adjustment) available with the setup. The definitions of the process parameters 

(considered in this study) have been provided below. 

 

(a) Peak discharge current (also called peak current): During execution of EDM 

operation, MRR and TWR both increase with increase in peak discharge current. This 

is due to the fact that an increase in peak discharge current eventually causes an 

increase in the pulse energy that leads to an increase in heat input rate onto the 

workpiece and thereby increased rate of melting as well as evaporation.   

 

(b)  Pulse-on time (spark-on time or pulse duration): The duration (per cycle) in which 

the current is allowed to flow through the discharge gap. The energy input is directly 

proportional to the pulse-on duration; hence, an increase in pulse duration results in 

increased material removal rate. 

 

(c)  Gap voltage (also called OCV): It is the potential difference applied between two 

electrodes (tool and workpiece). Gap voltage is also directly related to the energy 

input supplied onto the workpiece. Therefore, increase in gap voltage results in 

increased heat input and hence increased volumetric material removal rate. 

 

(d) Duty cycle (may be expressed as duty factor): It is a percentage of the pulse-on time 

relative to the total cycle time.  

offon

on

TT

T


                                                                                                                   (2.1)  

                                                                                                                    

(e) Flushing pressure: Flushing is a process of removing the burr and other materials 

from the machining area. Pressurized electrolyte is passed through the gap between 

tool and work piece to reach the working zone. The flushing pressure is supplied by 

the pump in the dielectric circulation system during EDM operation. 

 

The design of experiment has been selected based on 5-level-5-factor L25 Orthogonal 

Array (OA) as shown in Table 2.5.  
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Table 2.4: Machining control parameters: Domain of variation 

 

Parameters Unit Notation 
Levels of variation  

1 2 3 4 5 

Gap voltage (Vg) [V] A 50 60 70 80 90 

Peak current (IP)  [A] B 3 5 7 9 11 

Pulse-on Time (Ton)  [µs] C 100 200 300 400 500 

Duty Factor (τ)  [%] D 65 70 75 80 85 

Flushing Pressure (Fp) [bar] E 0.2 0.3 0.4 0.5 0.6 

 

Table 2.5: Design of experiment (L25 OA) and collected experimental data 

 

 

Experiments have been conducted as per 25 factorial settings; the EDM of Inconel 718 

plates have been carried out with copper electrode. Both workpiece and tool have been 

immersed in dielectric fluid. The machining duration has been kept constant (10 minutes) 

for each experimental run. After performing experiments, in order to analyze surface 

characteristics of the EDMed Inconel 718 specimen, the responses studied herein have 

been Roughness average (Ra), Surface Crack Density (SCD), and White Layer Thickness 

(WLT).  

Sl. 

No. 

L25 OA  

(factors are in coded 

form) 

Experimental data 

Response variables to be optimized 

simultaneously 

MH 

[HV0.05] 

A B C D E Ra 

[μm] 

SCD 

[μm/μm
2
] 

WLT 

[µm] 

1 1 1 1 1 1 3.800 0.0158 19.261 439.3333 

2 1 2 2 2 2 6.333 0.0166 19.577 387.7000 

3 1 3 3 3 3 9.133 0.0151 16.954 441.1333 

4 1 4 4 4 4 9.867 0.0136 18.596 463.7000 

5 1 5 5 5 5 7.600 0.0141 17.667 389.5667 

6 2 1 2 3 4 3.733 0.0154 19.074 391.4333 

7 2 2 3 4 5 4.400 0.0152 17.065 518.0667 

8 2 3 4 5 1 8.067 0.0152 17.523 388.9667 

9 2 4 5 1 2 7.667 0.0156 20.308 373.8667 

10 2 5 1 2 3 9.600 0.0056 17.742 392.4333 

11 3 1 3 5 2 2.967 0.0189 19.861 394.5000 

12 3 2 4 1 3 5.533 0.0163 20.090 390.0000 

13 3 3 5 2 4 7.267 0.0168 20.100 406.4333 

14 3 4 1 3 5 8.533 0.0093 19.445 405.9667 

15 3 5 2 4 1 9.733 0.0125 19.086 390.3000 

16 4 1 4 2 5 4.267 0.0172 18.310 384.1333 

17 4 2 5 3 1 5.267 0.0157 18.067 352.6000 

18 4 3 1 4 2 7.200 0.0108 18.137 385.6333 

19 4 4 2 5 3 5.667 0.0084 18.673 390.6333 

20 4 5 3 1 4 9.867 0.0110 18.835 410.7333 

21 5 1 5 4 3 2.133 0.0156 17.602 378.2000 

22 5 2 1 5 4 5.667 0.0117 16.646 372.9000 

23 5 3 2 1 5 7.333 0.0136 17.707 375.8000 

24 5 4 3 2 1 9.200 0.0116 19.752 399.1000 

25 5 5 4 3 2 10.333 0.0100 19.077 431.8667 
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In addition to that, the micro-hardness values for all EDMed specimens have been 

determined by Vicker’s micro-hardness tester (Make: LECO; Modal No. LM810; 

Country: USA). Hardness measurements have been carried out with test load of 50gf and 

at a constant indenter dwell time of 10s. All indentation tests have been performed under 

ambient laboratory conditions.  

In order to determine the elements and phases present on the surface of ‘as received’ 

Inconel 718 as well as EDMed Inconel 718 specimen, EDS (energy dispersive 

spectrograph) and XRD (X-ray diffraction) have been carried out. In this work, the 

chemical composition of Inconel 718 samples (before and after machining) have also 

been detected by Energy Dispersive X-ray Spectroscopy (EDS) under Scanning Electron 

Microscope (Model No.  SU3500), and EDS (Model No. 51_ADD0034), manufactured 

by Hitachi, Japan.       

 

 

Fig. 2.2: EDMed workpiece  

 

The phases present on the EDMed work surface of Inconel 718 along with residual stress 

induced within the part component have been determined by XRD microscopy (Model 

No: D8 ADVANCE with DAVINCI design; Make: BRUKER; Country: Germany). Apart 

from ‘as received’ Inconel 718, residual stress induced within the EDMed specimen 

produced at Run No. 1 i.e. [parameters setting: Vg=50V; IP=3A; Ton=100µs; τ=65%; 

FP=0.2bar] has been measured and compared with each other. In addition to these, XRD 

spectra for ‘as received’ Inconel 718 as well as EDMed Inconel 718 work surface 

(obtained at Run No. 1) have been analyzed to identify various phases present therein and 

https://en.wikipedia.org/wiki/Germany
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to collect the information in relation to grain refinement, alloying effect, formation of 

new phase etc. as the consequences of EDM operations. These have been described in 

Chapter 3. The experimental results in relation to process responses like Ra, SCD and 

WLT have been depicted in Table 2.5. The snapshot of EDM machined work pieces has 

been provided in Fig. 2.2. Definitions of aforesaid response measures in the context of the 

present work have also been provided below. 

 

 

Surface Roughness: Arithmetic average roughness, or Ra, is the arithmetic average of 

the heights of surface irregularities (consisting of peak heights and valleys) with respect 

to the mean line, measured within the sampling length. The measurement of surface 

roughness (Ra value) of the EDMed surface has been carried out with portable stylus type 

profilometer, Talysurf (Model: Taylor Hobson, Surtronic 3+), with cut-off length (Lc) of 

0.8 mm, sample length (Ln) of 4 mm, and filter CR ISO. 

 

Surface Crack Density (SCD): It is well known that generation of surface crack is 

detrimental since it results inferior surface finish. It seems very difficult to quantify the 

phenomenon of cracking in terms of width, length, or depth of the crack or even by the 

extent of cracking; therefore, in the present work, surface crack density has been 

measured and analysed to evaluate the severity of cracking. As mentioned by 

(Bhattacharyya et al., 2007), surface crack density is defined as the total length of cracks 

(µm) per unit surface area (µm
2
). 

In course of the present work, to measure surface crack density, the top surface 

morphology of the EDMed Inconel 718 specimen has been studied using scanning 

electron microscope. For a particular sample, SEM images have been captured in three 

distinct locations and corresponding surface crack densities have been collected. The 

average of these three has been considered as the representative measure of SCD for that 

particular specimen. For a particular sample area, the total crack length has been 

measured using PDF-XChange Viewer Software (Fig. 2.3). The total crack length divided 

by the specimen area provided the measure of SCD.  

It is worth of mentioning that SCD value may increase when the SEM images are 

captured at higher magnification; therefore, the word ‘surface crack density’ should be 

understood as ‘relative surface crack density’ throughout the dissertation (Upadhyay et 

al., 2016). 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCkQFjABahUKEwiunouc__rGAhVUCY4KHSaqDos&url=http%3A%2F%2Fpdf-xchange-viewer.en.softonic.com%2Fdownload&ei=UPm1Va62N9SSuASm1LrYCA&usg=AFQjCNGFKZQ274AU2zNG6I8bn4VZTy65Lw&bvm=bv.98717601,d.c2E
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Fig. 2.3: Measurement of Surface Crack Density (SCD) of the EDMed work surface obtained at 

parameters setting A2B1C2D3E4 i.e. [OCV=60V, IP=3A, Ton=200µs, τ =75% and FP=0.5bar] 

 

 

White Layer Thickness (WLT):  

In order to measure white layer thickness, each specimen has been sectioned in 

appropriate dimension and cold mounted by using cold mounting compound resin bed 

revealing the edge of the workpiece to go for grinding and subsequent polishing 

operation. For cold mounting of specimens, Geosyn cold mounting compound powder 

and liquid have been used. Fig. 2.4 depicts snapshot of a cold mounted specimen.  

 

 

Fig. 2.4: Cold mounted specimen  
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The cold mounted specimens have been ground successively on water-proof SiC papers 

with grit sizes 120, 320, 400, 600, 800, 1200 and 1500, respectively. Grinding has been 

performed for 60-120 seconds at 240-300 RPM speed of the grinding wheel. Finally, the 

specimen surface has been polished with SELVYT Cloth (made in England) and diamond 

paste of 1μm size. The surface has then been subsequently electro-polished with slurry of 

HIFIN Fluid with ‘OS’ type diamond compound. Next, the polished surface has been 

etched in Kalling’s Reagent solution (5g CuCl2 + 100 ml conc. HCl + 100 ml pure 

ethanol) for 20s immersion. This has been felt necessary in order to expose white layer 

and corresponding distinct boundary line separating HAZ and/or base material. The 

specimen has then been viewed under SEM (Model: Joel JSM-6480LV; Country: Japan) 

to capture the image of the white layer formed. The thickness of the white layer has been 

measured by ImageJ Software at five different locations across each cross-sectioned 

specimen (Fig. 2.5); and an average value has been considered for further analysis. 

Hence, the notation WLT should be understood as ‘relative/average’ WLT throughout the 

dissertation.   

 

 

  Fig. 2.5: Measurement of White Layer Thickness (WLT) for the EDMed Inconel 718 specimen 

obtained at parameters setting A5B1C5D4E3 i.e.  

[OCV=90V, IP=3A, Ton=500µs, τ =80% and FP=0.4 bar] 
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Fig. 2.6: Places of indentation for micro-hardness test (EDMed Inconel 718 obtained at 

parameters setting: (A1B2C2D2E2) [OCV=50V, IP=5A, Ton=200µs, τ =70% and FP=0.3 bar] 

(Average micro-hardness value ~ 387.700 HV0.05) 

 

During micro-hardness tests, the points of indentations followed at three distinct locations 

(approximately at the middle position along the thickness of white layer) for a particular 

sample (transverse cut section of the EDMed workpiece through WEDM route); have 

been depicted in Fig. 2.6. The average of the micro-hardness values obtained at three 

distinct locations has been treated as the relative (or average) micro-hardness for that 

particular specimen. 

 

 

 

2.2 Experiment (Phase II): Material and Methods 

In Phase II of the experimental schema, Inconel 825 square shaped flat plates of 

dimension   355050 mm have been used as workpiece.  The chemical composition and 

mechanical properties Inconel grade 825 have been shown in Table 2.6.1-2.6.2, 

respectively.  
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Table 2.6.1: Chemical composition of Inconel 825 (Prabhu and Vinayagam, 2011) 

Element Weight (%) 

Ni 38-46 

Fe 22 

Cr 19.5-23.5 

Mo 2.5-3.5  

Cu 1.5-3.0 

Ti 0.0-1.2 

C 0.05 

Si 0.5 

Mn 1.0 

Al 0.2 

S 0.03 

 

 

Table 2.6.2: Mechanical properties of Inconel 825 (Rajyalakshmi and Ramaiah, 2013) 

Properties Values  

Density 8.14 g/cm
3
 

Melting point 1400 
0
C 

Coefficient of expansion 14.0 m/m/
0
C (20-100

0
C) 

Modulus of rigidity 75.9 N/mm
2
 

Modulus of elasticity 196 kN/mm
2
 

Thermal conductivity 12.3 W/m.
0
C at 100

0
C 

 

 

 

Before conducting EDM experiments, the tool electrode have been cryogenically treated 

in order to improve their properties. For DCT, the workpiece and tool have been cooled 

down (ramp-down) to approximately -185
0
C at cooling rate 1

0
C/min, and held for 24h 

and then gradually heated back at the same rate i.e. at cooling rate 1
0
C/min to the ambient 

temperature (ramp-up). The DCT cycle adapted herein has been depicted in Fig 2.7. The 

snapshot of the set up used for cryogenic treatment of tool electrode has also been 

presented in Fig. 2.8.  
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Fig. 2.7: Time versus temperature cure for the cryogenic treatment of the tool material adapted in 

the present work 

 

 

 

Fig. 2.8: Setup for cryogenic treatment of the tool electrode  

 

EDM experiments have been carried out on Die Sinking EDM (Make: Electronica, Model 

ELEKTRA EMS-5535; Pune, India) setup, available in CTTC, Bhubaneswar. 

(Specifications of the setup have been furnished in Table 2.7). A (99.9%) pure Copper 

[thermal conductivity 401 W/ (m·
0
C) at 20

0
C; melting point 1082.78

0
C; boiling point: 

2567
0
C] rod of circular cross section  20  has been used as a tool electrode. 

Commercially available grade Rustlick™ EDM-30 oil of ITW Professional Brand 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjxj4GZ4ZrNAhUJLY8KHdBGDEsQFggbMAA&url=http%3A%2F%2Fitwprofessionalbrands.com%2F1348%2Faccu-lube%2Fdielectric-fluids-for-edm%2Frustlick-edm-30&usg=AFQjCNE7UpZvv0Kn1t5EI1tLyc_f3-FOEg&sig2=DrltUSZzOO25Bio842tH8Q&bvm=bv.124088155,d.c2I
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(Specific Gravity: 0.80 @ 25° F; Viscosity: 36 SSU @ 100°F (38°C); Flash Point: 200° 

F; Dielectric Strength: 45KV) has been used as dielectric medium. Polarity has been kept 

positive (i.e. workpiece positive) throughout experimentation.  

 

Table 2.7: Specification of the EDM setup at CTTC, Bhubaneswar  

Item(s) Value/ Range 

Mounting surface (LengthWidth) 550350 mm 

Maximum workpiece height 250 mm 

Maximum job weight 300 kg 

X-Axis travel 300 mm 

Y- Axis travel 200 mm 

Transverse (X,Y, Z) 300, 200, 200 mm 

Least count of hand wheel with Vernier scale 0.02 mm 

Maximum table quill distance 515 mm 

Minimum table quill distance 265 mm 

Width of the work tank 820 mm 

Depth of the work tank 490 mm 

Height of the work tank 325 mm 

Pulse generator 50 ampere 

Current range (Ip) 0 -10 A 

Pulse-on time range (Ton) 0.5 - 3000 µs 

Duty factor range ( ) 8 -100% 

Open circuit voltage range (Vg) 0 - 30 V 

 

 

Table 2.8: Domain of experiments: Level values of process control parameters 

Parameters Unit Notation Levels of variation  

1 2 3 

Peak current (IP) [A] A 6 8 10 

Pulse-on Time ( Ton) [µs] B 100 200 300 

Duty Factor (τ) [%] C 65  75  85  

 

 

Experiments have been carried out using three controllable process parameters: peak 

discharge current (Ip), pulse-on-time (Ton), and duty factor (τ); each varied at three 

discrete levels as per availability of factorial setting in the particular EDM setup used 

herein. The domain of experiment as selected for the present work has been shown in 

Table 2.8. Apart from aforesaid three electrical parameters; there have been few 

parameters whose values have been kept constant throughout experiments. The constant 

parameters and corresponding values have been: gap voltage (Vg) =25V; flashing 

pressure=2.1bar; spark gap distance=50µm. EDM experiments have been performed on 
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few selected parametric settings (viz. A1B3C3, A2B3C3, A3B3C3, A3B1C3, A3B2C3, A3B3C1, 

A3B3C2) in multiple trials using (i) Non-Treated Tool (NTT) (here, the term ‘non-treated’ 

represents ‘un-cryogenically treated’), and (ii) Cryogenically Treated Tool (CTT).  

The machining duration has been kept constant (10 minutes) for each of the experimental 

runs. A snapshot of EDMed Inconel 825 specimens has been provided in Fig 2.9. After 

EDM operations, topographical measures of the EDMed work surface viz. Surface Crack 

Density (SCD) and White Layer Thickness (WLT) have been measured for each of the 

experimental schema.  

 

 

Fig. 2.9: EDMed Inconel 825 specimens along with (a) NTT and, (b) CTT   

 

In addition to that, residual stress and micro-hardness tests have been carried out on few 

selected specimens using XRD Texture Measurement Machine [Model No: D8 

ADVANCE with DAVINCI design, Make: BRUKER, Country: Germany] and Vicker’s 

Micro-hardness tester [Model No. LECO LM 810; with Load 25gf and dwell time 10s], 

respectively. 

 

 Determination of Crystallite Size and Dislocation Density       

Additionally, XRD peak patterns have been analyzed further to investigate the effects of 

cryogenic treatment of the work material on quantitative metallurgical information like 

Crystallite Size  L  and Dislocation density   of the test specimens. The extent of grain 

refinement and the effect imposed thereof on crystal/grain structure of the work surface 

(obtained under different conditions of EDM) has been interpreted mathematically with 

relevance to the computed data. While quantifying various measurement indices to 

describe specimens’ grain structure; the following information needs to be well 

acknowledged.     

https://en.wikipedia.org/wiki/Germany
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 Crystallite Size  L  

The crystallite size  L  for each of the specimens (‘as received’/ cryogenically treated 

workpiece/ EDMed work surface) has been calculated from X-ray diffraction profiles of 

strong reflections with intensity % by measuring the Full-Width-Half-Maximum 

(FWHM).  

The Scherrer equation for computing the crystallite size is given by (Eq. 2.2). 





cosL

K
L                                                                                                                     (2.2) 

In this expression, L relates the crystallite size corresponding to the broadening
L of its 

diffraction peaks (ignoring other effects such as broadening due to instrument and 

broadening due to strain),   is the usual Bragg angle,  is the radiation wavelength ( Co

=1.7906A
0
 for CoK ), and K is a constant (Scherrer constant = 0.9).  

It is to be noted that
L is approximately equal to the FWHM of the sharp (high intensity) 

peaks on the XRD spectra. Thus, it is seen that 
L  and L are reciprocally related. This 

implies that: the greater the broadening the smaller the crystallite size and vice-versa 

(Subbaiah et al., 2006; Singh et al. 2008; Vinila et al., 2014).  

 

 Calculation of d spacing 

The value of d i.e. the inter planner spacing between the atoms, is computed using the 

Braggs’s Law: 

 nd sin2                                                                                                                   (2.3) 

i.e. .1,
sin2

 nd



 (Wavelength of X-ray = 1.7906A

0
 for CoK ) 

 

 XRD-Dislocation Density     

The dislocation density is defined as the length of dislocation lines per unit volume of the 

crystal. Theoretically a dislocation is a crystallographic irregularity or a defect formed 

within the crystal. The properties of the crystal formed are strongly influenced by the 

defects inside the crystal (Subbaiah et al., 2006; Singh et al., 2008; Vinila et al., 2014; 

Jacob et al., 2015). Shift or movement of a dislocation is impeded by other dislocations 

present within the specimen. Jacob et al. (2015) inferred that the dislocation density 
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increases while grain size decreases with increasing strain and ultimately these 

parameters reach saturation values. The dislocation density   can be computed as:  

aL

L

4

cos15 
                                                                                                                 (2.4) 

L FWHM measured in radians  

 Diffracting angle  

a The cell parameter (Lattice constant measured from XRD data)  

Also  ,222 lkhda  and 

L Crystallite size in nm  

Also the notations lkh ,, denote Miller indices representing a particular crystallographic 

direction.  

 

 

2.3 Experiment (Phase III): Material and Methods  

In Phase III, Inconel 825 square shaped flat plates of dimension   355050 mm have 

been used as workpiece.  The chemical composition and mechanical properties Inconel 

grade 825 have already been provided in Table 2.6.1-2.6.2 (in Phase II), respectively.  

Before conducting EDM experiments, the work material has been cryogenically treated in 

order to improve its properties. For DCT, the workpiece has been cooled down (ramp-

down) to approximately -185
0
C at cooling rate 1

0
C/min, and held for 24h, and then 

gradually heated back at the same rate (i.e. 1
0
C/min) to the ambient temperature (ramp-

up). The deep cryogenic treatment cycle adapted herein has been depicted in Fig 2.7 

(refer to Phase II).  

Using same experimental setup as used in Phase II and also considering the similar 

domain of experiment (Table 2.8); EDM operations have been carried out on few selected 

parametric settings (viz. A1B3C3, A2B3C3, A3B3C3, A3B1C3, A3B2C3, A3B3C1, A3B3C2) in 

multiple trials using (i) Non-Treated Workpiece (NTW), and (ii) Cryogenically Treated 

Workpiece (CTW). 

In addition to that, another set of experiment on EDM using CTW has been carried out 

for a selected parameters setting (i.e. A3B3C3), in which the workpiece has been 

cryogenically treated with a cooling rate (as well as ramp-up) of 0.5
0
C/min and the 
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socking time of 24h. This has been planned to investigate the effect of cooling rate on the 

machining performance of EDM on CTW of Inconel 825.       

The machining duration has been kept constant (10 minutes) for each of the experimental 

runs. A snapshot of EDMed Inconel 825 specimens has been provided in Fig 2.10. After 

EDM operations, the parameters of the EDMed work surface topography in terms of 

Surface Crack Density (SCD) and White Layer Thickness (WLT) have been measured for 

each of the experimental schema. In addition to that, residual stress and micro-hardness 

tests have been carried out on few selected specimens. Details of such data collection 

have already been described in Phase II. 

 

 

 

Fig. 2.10: EDMed surface of (a) NTW of Inconel 825 and, (b) CTW of  

Inconel 825 along with tool electrode 

 

 

 

 

2.4 Experiment (Phase IV): Material and Methods 

In Phase IV, 304SS, Inconel 601 and Ti-6Al-4V plates with dimension   3505050 mm

have been used as workpiece material. The mechanical properties of 304SS, Inconel 601 

and Ti-6Al-4V have been furnished in Table 2.9. Additionally, chemical compositions of 

aforementioned three work materials have been provided in Table 2.10. A 99.9% pure 

Copper [thermal conductivity 401 W/ (m·
0
C) at 20

0
C; melting point 1082.78

0
C; boiling 

point: 2567
0
C] rod (of circular cross section) has been used as tool electrode.  
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Table 2.9: Chemical composition of (a) 304SS, (b) Inconel 601, and (c) Ti-6Al-4V 

(a) 304SS  

[Source: Xavior and Adithan, 2009] 

Element Range (% wt.) 

C 0.05487 

Si 0.64 

Mn 1.66 

Cr 18.2 

Ni 9.11 

Mo 0.092 

Cu 0.14 

Ti 0.006 

V 0.046 

W 0.48 

Co 0.40 

Nb 0.013 

Pb 0.015 

Fe 69.7 

 

 

(b) Inconel 601 

[Source: Sidhu et al., 2006] 

Element % Weight 

C 0.025 

Si 0.37 

Cu 0.1 

Mn 0.1 

Cr 23.05 

Ni 62.6 

Al 1.4 

Fe 12.355 

 

 

(c) Ti-6Al-4V 

[Source: Hasçalık and Çaydaş, 2007a, b]  

Element Range (% wt.) 

Ti 89.464 

Al 6.08 

V 4.02 

Fe 0.22 

O 0.18 

C 0.02 

N 0.01 

H 0.0053 
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Table 2.10: Mechanical properties of (a) 304SS, (b) Inconel 601, and (c) Ti-6Al-4V 

(a) Mechanical properties of 304SS 

[Source: Xavior and Adithan, 2009]  

Unit Value 

Density kg/m
3
 8000 

Elastic modulus GPa 193 

Poisson’s ratio - 0.30 

Coefficient of thermal expansion Mmm
−1

 
0
C

−1
 17.8 

Thermal conductivity W/mK 16.2 

Specific heat capacity J/kgK 500 

 

(b) Mechanical properties of Inconel 601 

[Source: www.specialmetals.com] 

 Value 

Density  8.11 g/cm3 

Thermal conductivity 12.7 W/m- 
0
C (20 - 100°C) 

Electrical resistivity  1.192 µ Ω m (20 - 100°C) 

Modulus of elasticity (Tension) 206 GPa (at 20 
0
C) 

Yield strength 205-310 MPa 

Tensile strength 550-690 MPa 

Hardness 60-75 Rb 

Melting Point 1360 – 1411 
0
C 

Elongation 65-45% 

 

(c) Mechanical properties of Ti-6Al-4V  

[Source: Hasçalık and Çaydaş, 2007a, b] 

Value 

Hardness (HV20) 600 

Melting point (
0
C) 1660 

Ultimate tensile strength (MPa) 832 

Yield strength (MPa) 745 

Impact-toughness (J) 34 

Elastic modulus (GPa) 117 

Thermal conductivity (W/m.
0
C at 20

0
C) 7.2  

 

 

From the ‘as received’ commercially available Copper rod, the required tool dimension 

(20mm diameter) has been obtained. Here, Copper has been selected as electrode material 

because of its high thermal and electrical conductivity as well as corrosion resistance.  

The electrode has been given into the required shape through Computer Numeric 

Controlled (CNC) machining. The CNC machining operation may develop micro-cracks 

and the cutting forces which may create thermal stresses. The combination of all may 

deteriorate surface integrity of the tool material. This may affect EDM performance 

adversely. To elicit such happenings, very low feed rate and coolant have been used 

during execution of CNC turning operation. Moreover, after machining, electrode tool has 

http://www.specialmetals.com/
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been polished in wet condition by 220 grade emery paper. This has further helped to 

improve surface quality of the tool electrode. Hence, it has been assumed that surface 

integrity of tool electrode has imposed negligible effect on EDM performance.         

EDM experiments have been carried out on the EDM setup, available in CTTC, 

Bhubaneswar (as mentioned in Phase II). In this experiment, commercially available 

Rustlick™ EDM-30 oil has been used as dielectric fluid.  

During execution of EDM experiments, straight polarity (i.e. tool as cathode and 

workpiece as anode) has been maintained. The peak discharge current has been chosen as 

the process variable with three distinct level values (viz. 6A, 8A, and 10A, respectively). 

The remaining parameters such as pulse-on time, gap voltage, duty factor, flushing 

pressure, spark gap and machining time have been kept constant throughout 

experimentation (Table 2.11). A snapshot of the EDMed end product of 304SS, Inconel 

601 and Ti-6Al-4V has been provided in Fig. 2.11. 

 

Table 2.11: Parameters kept at constant values 

Parameters Unit Value 

Gap voltage (Vg) [V] 25 

Pulse-on-Time (Ton) [µs] 300 

Duty Factor (τ) [%] 85  

Flushing pressure [bar] 2.1 

Polarity  - Positive 

Spark gap [µm] 50 

 

 

 

Fig. 2.11: EDMed work surfaces of A2 Tool Steel (304SS), Inconel 601 and Ti-6Al-4V alloy   

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwit8_6ylvvPAhWLrI8KHVH6BxMQFgggMAE&url=http%3A%2F%2Fitwprofessionalbrands.com%2F1348%2Faccu-lube%2Fdielectric-fluids-for-edm%2Frustlick-edm-30&usg=AFQjCNE7UpZvv0Kn1t5EI1tLyc_f3-FOEg&sig2=yo_XtaJwIRUS2JKnPmkO0Q&bvm=bv.136811127,d.c2I
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The responses studied have been surface roughness (Ra value), Surface Crack Density 

(SCD) as well as White Layer Thickness (WLT) observed onto the machined surface. 

Additionally, Micro-hardness (MH) has been measured at a position approximately at 

mid-depth of the white layer (measured from the top surface) for each of the EDMed 

specimens.  

Metallurgical analyses of the EDMed specimen surfaces (as compared to ‘as received’ 

work materials) have been carried out by using X-ray Diffraction Microscopy. In addition 

to that, EDS and micro-hardness tests have been carried out on few selected specimens 

using Scanning Electron Microscope and Vicker’s Micro-hardness tester, respectively. 

Details of such experimental data collection have already been provided in Phase II.    

 

 

2.5 Experiment (Phase V): Material and Methods  

Phase V is basically extension of the experimental part as highlighted in Phase I. Apart 

from Ra, SCD, WLT and MH; two other performance features have also been collected 

for further analysis. These responses are: Material Removal Rate (MRR) and Electrode 

Wear Rate (EWR). The experimental domain (Table 2.4) and design of experiment (Table 

2.5) as utilized in Phase I have also been followed herein. Fig. 2.12a, b depicts snapshots 

of experimentation. The experimental results (consolidated data in relation to all the 

response features) have been depicted in Table 2.12. The definitions of the following 

response measures: MRR as well as EWR as considered herein have been provided below 

along with their computational formulae. The definitions of remaining responses have 

already been provided in Phase I.    

 

 
Fig. 2.12: (a) Setting of workpiece and electrode tool, and (b) A snapshot of EDM in progress  
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Table 2.12: Design of experiment (L25 OA) and collected experimental data 

 

Material Removal Rate (MRR): MRR can be defined as the rate at which loss of 

material takes place from the workpiece. The MRR is determined by weight loss of the 

workpiece and can be calculated using the following equation. 

 
 




t

WW
MRR

fi
 









min

3mm
                                                                                             (2.5) 

Here iW and fW are initial and final weights (kg) of the workpiece, respectively; t  is the 

machining time (in minutes) and  represents density of the work material (in g/cc). 

(Density of Inconel 718: 8.19 g/cm
3
) 

 

Electrode Wear Rate (EWR): EWR can be defined as the rate at which loss of material 

takes place from the electrode. This can be computed using the following equation. 

 
 E

fi

t

EE
EWR




          









min

3mm
                                                                                     (2.6) 

Sl. No. L25 OA (DOE) Experimental data 

A B C D E MRR 

[mm
3
/min] 

EWR 

[mm
3
/min] 

Ra 

[μm] 

SCD  

[μm/μm
2
] 

WLT 

[µm] 

MH 

[HV0.05] 

1 1 1 1 1 1 8.926014 0.111982 3.800 0.0158 19.261 439.3333 

2 1 2 2 2 2 14.10501 0.022396 6.333 0.0166 19.577 387.7000 

3 1 3 3 3 3 38.40095 0.022396 9.133 0.0151 16.954 441.1333 

4 1 4 4 4 4 48.49642 0.078387 9.867 0.0136 18.596 463.7000 

5 1 5 5 5 5 88.21002 0.111982 7.600 0.0141 17.667 389.5667 

6 2 1 2 3 4 4.892601 0.156775 3.733 0.0154 19.074 391.4333 

7 2 2 3 4 5 15.179 0.134378 4.400 0.0152 17.065 518.0667 

8 2 3 4 5 1 26.92124 0.044793 8.067 0.0152 17.523 388.9667 

9 2 4 5 1 2 38.78282 0.055991 7.667 0.0156 20.308 373.8667 

10 2 5 1 2 3 89.16468 0.145577 9.600 0.0056 17.742 392.4333 

11 3 1 3 5 2 5.298329 0.011198 2.967 0.0189 19.861 394.5000 

12 3 2 4 1 3 10.04773 0.011198 5.533 0.0163 20.090 390.0000 

13 3 3 5 2 4 18.30549 0.011198 7.267 0.0168 20.100 406.4333 

14 3 4 1 3 5 49.21241 0.022396 8.533 0.0093 19.445 405.9667 

15 3 5 2 4 1 79.57041 0.067189 9.733 0.0125 19.086 390.3000 

16 4 1 4 2 5 2.362768 0.011198 4.267 0.0172 18.310 384.1333 

17 4 2 5 3 1 4.868735 0.022396 5.267 0.0157 18.067 352.6000 

18 4 3 1 4 2 22.52983 0.022396 7.200 0.0108 18.137 385.6333 

19 4 4 2 5 3 44.8926 0.022396 5.667 0.0084 18.673 390.6333 

20 4 5 3 1 4 49.06921 0.011198 9.867 0.0110 18.835 410.7333 

21 5 1 5 4 3 1.312649 0.011198  2.133 0.0156 17.602 378.2000 

22 5 2 1 5 4 7.207637 0.011198 5.667 0.0117 16.646 372.9000 

23 5 3 2 1 5 18.61575 0.033595 7.333 0.0136 17.707 375.8000 

24 5 4 3 2 1 25.1074 0.044793 9.200 0.0116 19.752 399.1000 

25 5 5 4 3 2 48.01909 0.022396 10.333 0.0100 19.077 431.8667 
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Here iE and fE are initial and final weights of the tool electrode (in kg), respectively; t  is 

the machining time (in minutes) and
E represents density of the electrode material (in 

g/cc). (Density of pure Copper: 8.93 g/cm
3
) 

In this experimentation, weight loss of work and tool material have been measured by 

electronic weighing balance (Model: DJ 300S; Make: Shinko Denshi Co. Ltd; Country: 

Japan; Accuracy: 0.001g). 

The melting and re-solidification of the material causes formation of white layer onto the 

top of the machined surface. The formation of WL and HAZ adversely affect surface 

integrity (which is characterized by high surface roughness i.e. Ra value), development of 

induced residual stress, altered composition of the surface, reduced corrosion resistance 

etc. (Rao et al., 2014). Therefore, formation of while layer and HAZ needs to be 

controlled. However, in the present case, HAZ has not been clearly demarcated from the 

unaffected parent material from the SEM micrographs.    

In the present work, micro-hardness (MH) of the white layer has been considered as one 

of the machining performance features with an aim to minimize it (i.e. MH correspond to 

Lower-is-Better (LB) criteria). The justification is as follows. Formation while layer is 

evident in EDM; but by proper controlling of process variables, it is possible to minimize 

WLT. Formation of white layer enhances possibility of occurrence of surface cracks, 

surface irregularities and rough surface finish. If the end product (EDMed component) is 

subjected to further machining operation, additional difficulties may arise due to 

existence of while layer onto the top of the machined surface. Inconel 718 itself is a hard 

material (difficult-to-cut); and hence, it is indeed a necessity to minimize the hardness of 

the while layer (since hardness of white layer has appeared more as compared to base 

metal) though it exists to a minimum (optimized) extent.  

 

2.6 Experiment (Phase VI): Material and Methods  

The work pieces (used in Phase VI) for the experiment have been Inconel of different 

grades viz. Inconel 601, 625, 718, and 825 of square shaped plate   355050 mm . The 

chemical compositions of Inconel 718, 825, 601 have already been provided in Table 

2.1a, Table 2.6.1, and Table 2.9b, respectively. The chemical composition of Inconel 625 

has been furnished in Table 2.13.  
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Table 2.13: Chemical composition of Inconel 625 [Source: Goyal, 2017]  

Element Range (% wt.) 

Ni 58 (min) 

Cr 20-23 

Fe 5 

Co 1 

Mo 8-10 

Nb 3.2-4.2 

Ti 0.4 

Al 0.4 

C 0.1 

Mn 0.5 

Si 0.5 

 

 

Mechanical properties of Inconel 625 have also been provided in Table 2.14. The 

mechanical properties of Inconel 718, Inconel 825 and Inconel 601 have already been 

provided in Table 2.1b, Table 2.6.2, and Table 2.10b), respectively. The experiments have 

been carried out on die sinking EDM setup (as mentioned in Phase I). Graphite rod of 

cylindrical shape  12  has been used as a tool electrode (Fig. 2.13). Commercially 

available grade EDM oil with specific gravity of 0.763 has been used as dielectric fluid. 

Polarity has been kept positive (i.e., workpiece positive). The other parameters such as 

gap servo sensitivity (SEN), anti-arcing sensitivity (ASEN), working time (Tw), and lift 

time (T") have been held at constant values (same as used in Phase I). 

 

 

Table 2.14: Mechanical properties of Inconel 625 [Source: www.specialmetals.com] 

Property  Value 

Density  8.44 g/cm3 

Elastic modulus 207.5 GPa ( at 21 
0
C) 

Thermal conductivity 10.8 W/m 
0
C ( 20-100 

0
C) 

Electrical Resistivity 132 µΩ-cm ( 20-100 
0
C) 

Yield strength 414-655 MPa 

Tensile strength 827-1034 MPa 

Hardness 145-220 HB 

Melting Point 1290 – 1350 
0
C 

Elongation 60-40 % 
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Fig. 2.13: EDM setup with graphite tool electrode   

 

Experiments have been carried out using five controllable process parameters each varied 

at four discrete levels as per availability of factorial setting in the EDM setup. The 

selected process variables have been considered as: gap voltage (OCV), peak current (Ip), 

pulse-on time (Ton), duty factor (τ), and flushing pressure (Fp). The domain of experiment 

has been presented in Table 2.15. 

 

Table 2.15: Domain of experiments: Machining control parameters 

 

Parameters Unit Notation Levels of variation  

1 2 3 4 

OCV (V) [V] A 60 70 80 90 

Peak current (IP) [A] B 5 7 9 11 

Pulse-on-Time ( Ton) [µs] C 200 300 400 500 

Duty Factor (τ) [%] D 70 75 80 85 

Flushing Pressure (Fp) [bar] E 0.3 0.4 0.5 0.6 
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Table 2.16: Design of experiment (L16 OA) and collected experimental data 

Run 

No. 

L16 OA Experimental data 

A B C D E 

Inconel 625 

MRR 

[mm
3
/min] 

EWR  

[mm
3
/min] 

Roughness  

average 

(Ra) [µm] 

SCD  

[µm/µm
2
] 

1 1 1 1 1 1 4.7038 0.0441 7.6333 0.0281 

2 1 2 2 2 2 2.9739 0.0882 8.2333 0.0157 

3 1 3 3 3 3 4.1943 0.1764 9.8667 0.0152 

4 1 4 4 4 4 9.0403 0.1764 10.7333 0.0169 

5 2 1 2 3 4 2.7725 0.0882 4.8667 0.0180 

6 2 2 1 4 3 13.3531 0.1323 8.7000 0.0177 

7 2 3 4 1 2 7.6066 0.1764 7.6000 0.0238 

8 2 4 3 2 1 17.2512 0.2206 8.9667 0.0148 

9 3 1 3 4 2 1.5640 0.0882 6.5333 0.0169 

10 3 2 4 3 1 2.3104 0.0441 7.0000 0.0171 

11 3 3 1 2 4 16.1493 0.0882 9.4667 0.0158 

12 3 4 2 1 3 13.5545 0.1764 10.5000 0.0186 

13 4 1 4 2 3 1.3389 0.0441 4.7000 0.0164 

14 4 2 3 1 4 2.9028 0.0882 7.6333 0.0216 

15 4 3 2 4 1 9.4905 0.1323 9.2000 0.0190 

16 4 4 1 3 2 29.3128 0.1323 11.5333 0.0233 

 

Table 2.16 (Continued) 

Run 

No. 

L16 OA Experimental data 

A B C D E 

Inconel 718 

MRR 

[mm
3
/min] 

EWR 

[mm
3
/min] 

Roughness 

average 

(Ra) [µm]  

SCD 

[µm/µm
2
] 

1 1 1 1 1 1 2.5885 0.0441 6.9000 0.0201 

2 1 2 2 2 2 5.9707 0.0882 9.5000 0.0180 

3 1 3 3 3 3 3.4432 0.0882 10.0000 0.0151 

4 1 4 4 4 4 15.9951 0.1323 10.2667 0.0186 

5 2 1 2 3 4 2.1734 0.0441 7.9000 0.0136 

6 2 2 1 4 3 6.9109 0.0882 9.7000 0.0137 

7 2 3 4 1 2 10.4274 0.0882 6.8667 0.0164 

8 2 4 3 2 1 14.7863 0.1323 11.9000 0.0145 

9 3 1 3 4 2 1.1844 0.0441 4.9333 0.0193 

10 3 2 4 3 1 3.0647 0.0441 6.8333 0.0143 

11 3 3 1 2 4 17.4481 0.0882 12.2667 0.0122 

12 3 4 2 1 3 20.7204 0.1323 12.3667 0.0145 

13 4 1 4 2 3 1.7705 0.0441 6.0000 0.0187 

14 4 2 3 1 4 7.1429 0.0882 8.2667 0.0122 

15 4 3 2 4 1 15.0305 0.0882 8.9000 0.0199 

16 4 4 1 3 2 31.5995 0.1323 12.1000 0.0153 
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Table 2.16 (Continued) 

Run No. 

L16 OA Experimental data 

A B C D E 

Inconel 601 

MRR 

[mm
3
/min] 

EWR 

[mm
3
/min] 

Roughness 

average 

(Ra) [µm] 

SCD 

[µm/µm
2
] 

1 1 1 1 1 1 7.5709 0.0441 8.1333 0.0211 

2 1 2 2 2 2 9.3958 0.0882 10.2333 0.0158 

3 1 3 3 3 3 6.8681 0.0882 10.8000 0.0141 

4 1 4 4 4 4 9.3835 0.1323 11.6000 0.0167 

5 2 1 2 3 4 3.8718 0.0882 8.3000 0.0189 

6 2 2 1 4 3 13.6375 0.0882 12.0667 0.0170 

7 2 3 4 1 2 6.6461 0.0882 12.2667 0.0193 

8 2 4 3 2 1 12.3674 0.1323 10.8667 0.0164 

9 3 1 3 4 2 1.8249 0.0441 7.8333 0.0219 

10 3 2 4 3 1 2.6880 0.0441 9.3667 0.0182 

11 3 3 1 2 4 17.6572 0.0882 12.1667 0.0216 

12 3 4 2 1 3 27.6942 0.1323 11.7000 0.0202 

13 4 1 4 2 3 2.5524 0.0441 4.9667 0.0209 

14 4 2 3 1 4 9.3465 0.0882 6.5333 0.0200 

15 4 3 2 4 1 20.8878 0.1323 14.0000 0.0179 

16 4 4 1 3 2 36.3132 0.1764 12.4667 0.0179 

 

 

Table 2.16 (Continued) 

Run No. 

L16 OA Experimental data 

A B C D E 

Inconel 825 

MRR 

[mm
3
/min] 

EWR 

[mm
3
/min] 

Roughness 

average 

(Ra) [µm] 

SCD 

[µm/µm
2
] 

1 1 1 1 1 1 5.8108 0.0882 8.7333 0.0170 

2 1 2 2 2 2 5.2826 0.1323 8.5333 0.0257 

3 1 3 3 3 3 1.9533 0.1323 10.2333 0.0148 

4 1 4 4 4 4 6.7322 0.1764 11.5333 0.0233 

5 2 1 2 3 4 1.5233 0.0441 6.0667 0.0190 

6 2 2 1 4 3 11.0811 0.1323 8.3333 0.0253 

7 2 3 4 1 2 3.4889 0.1323 9.7667 0.0148 

8 2 4 3 2 1 5.0860 0.1764 13.2000 0.0187 

9 3 1 3 4 2 1.2654 0.0441 6.5333 0.0201 

10 3 2 4 3 1 3.1818 0.0882 8.8667 0.0180 

11 3 3 1 2 4 21.4005 0.1764 10.6333 0.0242 

12 3 4 2 1 3 24.7052 0.2206 10.1333 0.0170 

13 4 1 4 2 3 2.2973 0.0882 3.7333 0.0200 

14 4 2 3 1 4 5.9582 0.0882 5.5333 0.0191 

15 4 3 2 4 1 14.4963 0.1323 9.0000 0.0202 

16 4 4 1 3 2 25.9459 0.1764 11.3333 0.0201 
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Fig. 2.14: Graphite tool electrode and EDMed Inconel specimens of different grades 

 

The design of experiment has been planned as per 5-factor-4-level L16 orthogonal array 

(Table 2.16). The array has consisted of sixteen experimental runs in relation to different 

combination of machining parameters. After proper selection of machining parameters 

and finalizing the design of experiment, EDM operations have been carried out on 

different Inconel grades, separately. The machining duration for each experimental run 

has been kept constant (10 minutes). For each experimental run, machinability of 

different Inconel grades has been investigated by considering the following machining 

response features viz. Material Removal Rate (MRR), Electrode Wear Rate (EWR), 

Roughness average (Ra) and Surface Crack Density (SCD). The experimental results have 

been depicted in Table 2.16. Fig. 2.14 has exhibited the snapshot of machined Inconel 

specimens of different grades. For computing volumetric material removal rate, the 

following density values have been used. 

 

Density of Inconel 601 =8.11 g/cm
3
 

Density of Inconel 625 =8.44 g/cm
3
 

Density of Inconel 718 =8.19 g/cm
3
 

Density of Inconel 825 =8.14 g/cm
3
 

 

For computing electrode wear rate, the density of graphite 2.267 g/cm
3
 has been used. 
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Chapter 3 

 

Analysis on Surface Characteristics of 

Electro-Discharge Machined Inconel 718   

  
 

 

3.1 Coverage  

An experimental investigation has been carried out on electro-discharge machining of 

Inconel 718 using Copper tool electrode. Based on L25 Orthogonal Array, experiments 

have been conducted by considering controllable process parameters (viz. gap voltage, 

peak current, pulse-on time, duty factor and flushing pressure), each varied at five 

discrete levels, within selected parametric domain. The following responses in relation to 

surface characteristics of the EDMed Inconel 718 specimen viz. Roughness average (Ra), 

Surface Crack Density (SCD) and White Layer Thickness (WLT) have been investigated. 

SEM micrographs revealing surface irregularities associated with surface morphology of 

the EDMed Inconel 718 have been analyzed in detail and correlated with the information 

obtained through EDS, XRD and micro-hardness tests of the machined surface. Presence 

of different types of cracks within the EDMed work surface has also been identified. 

Effects of significant process parameters on surface topography in terms of roughness 

average, surface crack density, white layer thickness etc. have been graphically presented. 

Finally, Utility theory in conjugation with Taguchi’s optimization philosophy has been 

attempted to select the most favorable process environment (parameters setting) to satisfy 

optimal Ra, SCD and WLT; thereby, ensuring high product quality along with its 

specified functional requirements in appropriate application domain.  

 

 

3.2 Scope of the Work   

Owing to the widespread application of Inconel 718 especially over automotive, 

aerospace and defense industries; machining and machinability aspects of this super alloy 
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has become an important research agenda today. However, machining of Inconel 718 

appear to be a challenge since several difficulties are likely to arise due to their high 

strength, high temperature resistance, work-hardening tendency, affinity to form built-up-

edge etc.. These restrict sound processing of Inconel 718 through conventional machining 

operations. On the contrary, non-conventional machining processes like EDM, ECM, 

wire-EDM routes etc. have been recommended by part researchers to improve machining 

performance on Inconel 718 and consequently to achieve satisfactory product quality up 

to the desired extent. In this context, an attempt has been made to investigate different 

aspects of electro-discharge machining of Inconel 718 using Cu tool electrode.  

EDM process is controlled by several input parameters: gap voltage, peak discharge 

current, pulse-on duration, pulse-off duration, duty factor, flushing pressure etc. Peak 

current can be defined as the maximum value of discharge current intensity applied 

between tool electrode and the workpiece to be machined by EDM. As described by 

(Jabbaripour et al., 2012), pulse-on time is the period in which the current is allowed to 

flow per cycle. Open Circuit Voltage (OCV) is the potential difference between tool and 

workpiece before pulse generation. The duty factor is the ratio of pulse-on time relative to 

the total cycle time. The flushing pressure is the pressure at which flushing is done by 

forcing the dielectric fluid through the inter electrode gap so that debris can be 

transported easily away from the machining zone. Otherwise, EDM debris (or chip) tends 

to be re-machined again and again, obstructing the machining process to progress 

effectively. Literature depicts that EDM input parameters interact in a complex manner; 

thereby, affecting process performance characteristics (for example, material removal 

rate, tool wear ratio, roughness average, surface crack density, white layer thickness etc.). 

Critical analysis is indeed required to control EDM response features before the part 

component is subjected to service. In this context, in-depth understanding on formation of 

surface cracks as well as while layer is highly essential to suppress the occurrence of 

those and to minimize detrimental effects imposed by them.     

Crack formation in EDMed component is incurred due to presence of induced thermal 

stress and tensile stress within the machined surface. As explained by (Guu and Hou; 

2007), thermal stress is evolved due to drastic heating and subsequent cooling of the 

machined zone and the consequence of uneven temperature distribution. Tensile residual 

stress within the specimen is generated because dielectric is incapable of washing out the 

debris completely from the machined zone.  (Yan et al., 2005; 2007; Ekmekci et al., 2006; 

Ekmekci, 2007) explained that due to the ingress of carbon particles either from electrode 
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or from pyrolysis of dielectric fluid (hydrocarbon), the molten material contracts to a 

greater extent as compared to the unaffected parent part during the cooling process; and, 

when the stress in the surface rises above the material’s ultimate tensile strength, cracks 

are formed. 

During EDM operations, existence of white layer (also called recast layer) is highly 

undesirable, but its formation is inevitable. Hence, as pointed out by (Yildiz et al., 2015), 

the mechanism behind white layer formation needs to be clearly understood and its 

thickness should be accurately determined to efficiently perform post-treatment 

operations for removing the white layer resulted by the EDM process.  

At the end of each discharge, depending on the Plasma Flushing Efficiency (PFE) (i.e. the 

ability of plasma channel in removing molten material from the molten material crater), 

collapsing of plasma channel causes violent suction and severe bulk boiling of some 

molten material and removal of them from the molten crater. The material remained in 

the crater re-solidifies, which is called the ‘white layer’ or ‘recast layer’. An annealed 

Heat Affected Zone (HAZ) lay directly below the recast layer. The micro-cracks created 

in the white layer can penetrate into the HAZ. Additionally, this layer appears softer than 

the underlying base material. This annealed zone is prematurely weak; and cause fracture 

that can lead to minor malfunctioning of the part and finally catastrophic failure. 

The melting and re-solidification of the material causes formation of White Layer (WL) 

onto the top of the machined surface. (Rao et al., 2014) described that the formation of 

WL and HAZ adversely affect surface integrity (which is characterized by high surface 

roughness i.e. Ra value), development of residual stress, altered composition of the work 

surface, reduced corrosion resistance etc. Therefore, formation of while layer and HAZ 

needs to be controlled.  

It is understood that different response features during EDM correspond to conflicting 

requirements in the sense that high MRR is strongly appreciated; whereas, attention must 

be paid to ensure minimal tool wear, low roughness average, reduced surface crack 

density as well as tiny white layer. Proper control of process input parameters may 

achieve satisfactory machining yield. Hence, it is necessary to understand the effect of 

process variables on various response measures of EDM process. In literature, emphasis 

has been made to investigate effects of electrical parameters (mainly discharge current, 

pulse duration and duty factor) on various performance measures (Ramakrishnan and 

Karunamoorthy, 2008; Newton et al., 2009; Kumar et al., 2011; Rajesha et al., 2012; Lin 

et al., 2013; Ay et al., 2013; Dhanabalan et al., 2014; Prihandana et al., 2014; Li et al., 
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2015; Aggarwal et al., 2015); limited attempt has been made to examine the effect of 

flushing pressure on aforementioned responses in the context of EDM on Inconel 718. 

Apart from this, literature is sparse in correlating machining responses like Ra, SCD and 

WLT with micro-hardness and residual stress resulted with EDMed workpiece along with 

its change in chemical composition and metallurgical aspects like phases present, grain 

orientation etc. The present study has been aimed to examine these aspects through 

experimentation and subsequent data analysis.  

An unique attempt has also been made to optimize different performance measures in 

relation to surface topography of the EDMed Inconel 718 specimen viz. Ra, SCD and 

WLT simultaneously; thus, to determine the most favorable process environment 

(parameters setting). Utility-based Taguchi approach has been attempted in this part of 

work. 

 

3.3 Results and Discussion   

3.3.1 Analysis of SEM Micrographs: Results of EDS, XRD and Micro-

Hardness Tests  

As compared to the unaffected parent material (Fig. 3.1), the EDMed work surface of 

Inconel 718 observed under SEM has revealed existence of various surface irregularities 

which have consisted of several defects including overlapping craters, globules of debris 

(spherical deposition), pockmarks or chimneys (Fig. 3.2a-3.2b).  

 

 

Fig. 3.1: SEM micrographs of Inconel 718 work surfaces: (a) ‘as received’, and (b) EDMed at 

parameters setting: [Vg=50V, IP=3A, Ton=100µs, τ=65%, FP=0.2bar] i.e. Run No. 01    
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Fig. 3.2(a): Morphology of the EDMed Inconel 718 work surface obtained at parametric setting  

[Vg=50V; IP=9A; Ton=400µs; τ=80%; FP=0.5bar] 

 

Another prominent feature found on the machined surface has been the existence of 

micro-cracks in abundance (Fig. 3.2a-3.2b). The spherical shape of globules of debris has 

been resulted from the effect of surface tension. Pockmarks have been generated on the 

surface due to gas bubbles expelled from the molten material during solidification. The 

micro-cracks have been found due to the consequence of thermal stresses developed.  

 

 

Fig. 3.2(b): Morphology of the EDMed Inconel 718 work surface obtained at parametric setting  

[Vg=80V; IP=11A; Ton=300µs; τ=65%; FP=0.5bar] 
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Typically the transverse-cut section of the EDMed workpiece exhibits several distinct 

layers (refer to Fig. 3.3). On the top surface, formation of white layer is responsible for 

altering metallurgical structure of the workpiece.  

 

 

Fig. 3.3: SEM micrograph revealing existence of white layer and HAZ as observed in EDMed  

Inconel 718 at [Vg=70V; IP=5A; Ton=400µs; τ=65%; FP=0.4bar] (Run No. 12) 

 

According to (Tsai et al., 2003), it is quite hard and non-etchable. Next to white layer, 

heat-affected zone (or annealed layer) appears. This layer is heated during operation but 

not melted. This layer experiences high temperature rise to cause a quenching effect. It is 

also referred to as the ‘rehardened layer’. Newton et al. (2009) explained that the HAZ 

contains an altered microstructure, tensile stresses, micro-cracks, impurities, and other 

undesirable features which can lead to premature part failure whilst subjected to service. 

Ekmekci (2009) reported that cracks developed on the EDMed work piece have three 

distinctive characteristics. The first type of micro-cracks, called surface cracks, appear in 

the white layer which initiates at its surface and tends to propagate perpendicularly down 

toward the interferential zone, separating the HAZ and the white layer, and usually 

terminates at this interference. The second type of micro-cracks, denoted as penetrating 

cracks, penetrates the entire white layer thickness with a tendency to emerge into the 

parent material. The third type of micro-cracks can be identified to be present usually 

around globular or irregular-shaped attachments on crater rims. Such cracks correspond to 

negligible depth of penetration and are randomly distributed over the EDMed surface. 
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However, in the present work, analysis of SEM micrographs of the EDMed specimens 

could retrieve only two crack types (first and third type) distinctly (Fig. 3.4a-3.4b).  

 

 

Fig. 3.4(a): Existence of crack (Type 1) as observed in EDMed Inconel 718 specimen obtained at 

parametric setting [Vg=70V; IP=7A; Ton=500µs; τ=70%; FP=0.5bar] (Run No. 13) 

 

 

Fig. 3.4(b): Existence of crack (Type 3) as observed on EDMed Inconel 718 work surface 

obtained at parametric setting [Vg=80V; IP=11A; Ton=300µs; τ=65%; FP=0.5bar] (Run No. 20) 
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This can be attributed by the fact that the parametric settings employed herein might not 

be enough to reveal development of cracks of second type. Since surface cracking is the 

combined effect of induced residual stress along with thermal stress developed during 

EDM operations; evolution of such stresses and their magnitude highly depends on the 

process environment (parameters setting) employed. The process parameters influence the 

machining performance to a varied degree (levels of significance are different); therefore, 

variation of parametric settings incur surface cracking with varied intensity.    

According to (Opitz, 1960), white layer is generally heavily alloyed with the pyrolysis 

products from the cracked dielectric fluid as well as tool electrode and thus possesses 

high hardness values; however distribution of micro-hardness seems non-uniform with 

respect to EDM parameters settings. This has also been reflected by the EDS analysis of 

EDMed Inconel 718 specimen with respect to ‘as received’ parent material.  

By comparing (Fig. 3.5b-3.5c) with respect to (Fig. 3.5a), it has been observed that 

Carbon content of Inconel 718 has been increased during EDM operation. It has been 

noted that wt% of C in Inconel 718 has been substantially increased from 0.049 wt% (for 

‘as received’ Inconel 718) to 22.19wt% (for the EDMed specimen prepared at Run No. 

1); and, 16.28wt% (for the EDMed specimen prepared at Run No 25). This has resulted 

higher micro-hardness values of the EDMed Inconel 718 work surfaces as compared to 

the base material. The micro-hardness values (measured approximately at the mid-depth 

of white layer) for the EDMed Inconel 718 samples have been obtained for all 

experimental runs and depicted in Table 2.5 of Chapter 2. It has been observed that it has 

varied from 352.600 HV0.05 to 518.067 HV0.05 for the EDMed specimens prepared under 

different parameters settings; whereas, micro-hardness of ‘as received’ Inconel 718 has 

corresponded to a lower hardness value i.e. 269.400 HV0.05. Increased micro-hardness of 

the machined surface (as compared to base material) has been resulted due to Carbon 

enrichment through dielectric cracking. 

Literature by (Tönshoff and Brinksmeier, 1980) ascertains that investigation on micro-

hardness of the EDMed surface is necessary for identifying yield strength changes, 

structure alterations, work hardening or softening of surface layers, etc. Crookall and 

Khor (1975) also reported that the hardness of white layer appeared to be substantially 

higher than for the parent material. Guu and Hou (2007) observed non-uniform 

distribution of micro-hardness in the EDMed part caused by the non-uniformity of micro-

structure and chemical compositions in the machined regions. Ekmekci et al. (2005) 

experimentally found that the hardness values remain more of less constant within the 
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white layer. Remarkable decrement in micro-hardness may be observed within HAZ with 

a tendency to settle down to the unaffected parent material hardness.  

Another important aspect of EDM process is the evolution of residual stress within the 

machined part. Since it plays an important role towards evaluating fatigue life of any 

machined component. (Ogata and Mukoyama, 1991; Kruth and Bleys, 2000) reported that 

the EDMed surface exhibits large in-plane tensile residual stresses. Existing literature by 

(Rebelo et al., 1998) depicts that as energy per spark increases, the depth of the peak 

tensile residual stress also increases. This may be due to the fact that presence of micro-

cracks relieves the tensile stress on the surface. The evolution of residual stress can also 

be explained due to thermal gradients during cooling of the white layer. As white layer 

resolidifies and its temperature drops down to that of the bulk workpiece (unaffected 

parent material), its contraction is opposed by the bulk workpiece. Ekmekci et al. (2005) 

experimentally found that the residual stress generally increases from the bulk material to 

a maximum extent and then tends to decrease again near to the surface. This decrease can 

be logically correlated with occurrences of surface cracks since residual stress exceeds the 

fracture strength of the material. 

  

 
 

Fig. 3.5(a): Chemical composition of ‘as received’ Inconel 718 as retrieved from  

EDS analysis  
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Fig. 3.5(b): Chemical composition of the EDMed Inconel 718 work surface as retrieved from 

EDS analysis obtained at parameters setting  

[Vg=50V; IP=3A; Ton=100µs; τ=65%; FP=0.2bar] (Run No. 1) 

 

 

 
 

Fig. 3.5(c): Chemical composition of the EDMed Inconel 718 work surface as retrieved from EDS 

analysis obtained at parameters setting [Vg=90V; IP=11A; Ton=400µs; τ=75%; FP=0.3bar]  

(Run No. 25) 

 

In the present work, XRD analysis has revealed induced residual stress of tensile in 

nature, for the EDMed Inconel 718 specimen (obtained at Run No.1), which has 

corresponded to a value 1.7123±0.268 GPa. This has been found substantially higher as 

compared to the residual stress within ‘as received’ Inconel 718 i.e. – (0.4384±0.127) 

GPa (compressive stress, in the present case).  

Tönshoff and Brinksmeier (1980) described that residual stress generated during EDM 

process is primarily due to non-homogeneity of heat flow and metallurgical 

transformations or due to localized inhomogeneous plastic deformation. Moreover, static 

and dynamic strength, stress corrosion resistance, chemical resistance, and magnetic 
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properties etc. of the EDMed component are influenced by the presence of residual stress. 

According to (Guu and Hocheng, 2001) high value of pulse current results more frequent 

cracking of the dielectric, thereby, causing more melt expulsions and larger tensile 

residual stresses. These problems in an amplified manner incur poor surface finish and 

serious surface damage. 

XRD analysis for ‘as received’ and EDMed work surface of Inconel 718 has been shown 

in Fig. 3.6. XRD has been performed to determine whether any metallurgical change has 

taken place (such as phase transformation or any modification in grain size along with 

orientation) on the machined work surface of Inconel 718 affected by the EDM operation. 

Crystal structure and phase change phenomenon can be understood by examining the 

position of the peaks; whereas, crystallite size can be determined through FWHM (full 

width half maxima). XRD analysis has revealed Face Centered Cubic (FCC) crystal 

structure of ‘as received’ Inconel 718 which is basically Ni-based solid solution having 

PDF index name: Chromium Cobalt Molybdenum Nickel (Ni-Cr-Co-Mo) [Reference 

Code: 35-1489].  
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Fig. 3.6: XRD spectra of ‘as received’ Inconel 718, and EDMed work surface of Inconel 718 

obtained at Run No. 1 i.e. at parameters setting: [Vg=50V; IP=3A; Ton=100µs; τ=65%; FP=0.2bar]   

 

The XRD patterns of the test sample EDMed at Run No.1 [Vg=50V; IP=3A; Ton=100µs; 

τ=65%; FP=0.2bar] has shown almost similar sequence of peaks. Therefore, it can be 

concluded that no phase change has incurred during the EDM operation utilizing 

parameters setting of Run No. 1. Broadening (FWHM) of peaks on the XRD spectra 
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divulges the variation of the crystallite size. Comparing the XRD spectra of ‘as received’ 

Inconel 718 to that of the EDMed surface obtained at Run No. 1; clear difference in terms 

of the intensity and the width of the peaks has been retrieved. Therefore, it can be 

concluded that EDM process has induced grain refinement of the machined surface. The 

grain refinement is mainly due to the thermo-mechanical effect which in turn causes 

metallurgical alteration of the work surface.  

XRD pattern of EDMed specimen has revealed existence of an extra peak which may be 

due to the precipitation of Cr23C6 (Chromium Carbide), MoC (Molybdenum Carbide) and 

Nb2C (Niobium Carbide) on the main matrix. This is because, EDM process results 

Carbon enrichment onto the machined zone during pyrolysis of dielectrics. Carbides are 

thus formed and precipitates on the work surface.   

 

  

3.3.2 Study of Parametric Influence 

Literature is rich in establishing and explaining relationships amongst various process 

parameters with respect to different EDM responses. Most of the earlier studies 

concentrated on understanding the influence of electrical parameters (viz. spark gap 

voltage, gap voltage, discharge current, pulse-on time, pulse-off time, duty factor) on 

different machining responses. Rare attempt has been made to reveal the effect of 

flushing rate on EDM performances on Inconel 718. Flushing plays an important role 

during EDM operations and the rate at which it takes place should be properly adjusted so 

as to improve overall machining yield.     

Wong et al. (1995) stated that the dielectric fluid applied for EDM should possess high 

dielectric strength and ability to quick recovery after breakdown, effective quenching and 

flushing capability. During EDM flushing, the dielectric fluid is distributed through the 

spark gap in order to remove debris (eroded particles) generated during EDM and to 

maintain dielectric temperature well below its flash point. Hence, it seems necessary to 

study the effect of flushing rate on different features of machining performance during 

EDM of Inconel 718. Improper flushing may result in uneven tool wear, affecting 

machining accuracy and poor surface finish; it can also reduce material removal rate due 

to unstable machining environments and arcing around regions with high concentration of 

debris. In this part of work, research has been extended to identify effects of various 

electrical parameters (especially Ip, Ton and τ) along with dielectric flushing circulation 
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pressure on surface roughness, surface crack density and white layer thickness of the 

EDMed end product.  

Experimental data corresponding to L25 OA design have been found insufficient to reflect 

accurate trend of variation of output response(s) with respect to process inputs; Taguchi 

method has been explored to generate required number of response data with respect to 

all possible parametric combinations as per full factorial experimental design. Taguchi 

predicted response data have been plotted to exhibit the direct effect of process 

parameters on Ra, SCD, and WLT for the EDMed Inconel 718 specimen; trends of 

variations thus observed have been compared to that of reported in literature for other 

materials within specific domains of experiments. However, these tends shown herein 

have been made to somewhat approximated; because, Taguchi method assumes linear 

relationship of the output(s) with respect to the inputs; however, in practice, this may not 

be so. Hence, two successive points on the direct effect plots have been joined by means 

of a straight line rather than a smooth cure.  

 

 

3.3.2.1 Parametric Influence on Surface Roughness 

According to (Lee and Yur, 2000), it is understood that the performance and service life 

of the EDMed end product is greatly influenced by the surface characteristics developed 

during surface erosion. Proper tuning of controllable process parameters may yield 

satisfactory machining performance in terms of surface finish. Hence, adequate 

knowledge about the influence of process parameters on surface roughness is of utmost 

important. 

The effect of peak current (B) on surface roughness (Ra) has been presented graphically 

in Fig. 3.7. It has been observed that surface roughness tends to increase as peak current 

increases, while keeping other parameters fixed at constant levels. This can be explained 

by the fact that as peak current increases; discharges strike the specimen surface more 

intensely, which in turn results enormous erosion effect; thereby, causing deterioration of 

the surface morphology to a remarkable extent. Rajesha et al., (2010) explained that the 

higher input power associated with increased pulse current causes huge distortion on the 

EDMed surface due to more frequent molten material expulsion. This leads to an increase 

in Ra value. 
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Fig. 3.7: Effect of peak current (B) on Ra 

 

 

(Guu et al., 2005; Ramasawmy et al., 2005; Keskin et al., 2006) found that that superior 

surface finish can be achieved by adjusting process control parameters at a low pulse 

current and a small pulse-on time. According to (Simao et al., 2003), low values of Ra can 

only be obtained with low levels of discharge energy. Hewidy et al. (2005) and Williams 

and Rajurkar (1991) reported that surface roughness increases with increased peak 

discharge current. Huang et al. (1999) and Hasçalýk and Çaydaş (2004) also claimed that 

surface roughness increases with increase in energy per spark during EDM operations.  

The effect of pulse-on time (C) on Ra has been plotted in Fig. 3.8. It has been observed 

that while keeping other parameters fixed at constant level values; an increase in Ton (up 

to 400µs) results increase in Ra. Increase in Ton produces adverse effect on the workpiece 

by increasing surface roughness. Similar trend has also been observed by (Lee and Tai, 

2003).  
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Fig. 3.8: Effect of pulse-on time (C) on Ra 

 

It may be due to the fact that for Ton (in between 100-400µs), deeper discharge craters are 

expected to be formed and more material is eroded per spark since spark energy is 

directly proportional to Ton. This leads to increase in Ra value. For the values of Ton 

(beyond 400µs) the drop in Ra can be understood by high values of pulse-off time. Since 

duty factor has been kept fixed at contest level, a higher Toff value has been allowed 

corresponding to a higher Ton value. However, no material removal is incurred during 

Toff. The Toff being sufficiently large the total machining time increases, which in turn 

decreases MRR as well as Ra. However, (Saha and Choudhury, 2009) reported that this 

non-cutting time does not have a significant effect on the Ra value. Huang et al. (1999) 

and Ramakrishnan and Karunamoorthy (2008) also experimentally examined that surface 

roughness increases with increased pulse duration.  

Fig. 3.9 represents the effect of flushing pressure on Ra, while other electrical parameters 

(viz. gap voltage, peak current, pulse-on time and duty factor) have been kept constant. 

An approximate curve can be drawn by considering the plotted points to retrieve a trend 

for physically interpreting the relationship between Ra and flushing pressure. It has been 

inferred that with increase in flushing pressure, Ra tends to decrease.  
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Fig. 3.9: Effect of flushing pressure (E) on Ra 

 

Flushing pressure helps to drain out gaseous and solid debris generated during EDM 

operation in the spark gap between workpiece and the tool electrode. As a result, increase 

in flushing pressure ensures efficient removal of debris by the dielectric medium, thereby, 

improving surface finish (Ra value decreases). Makenzi and Ikua (2008) reported that 

when the flushing pressure is too low, the flushing appears ineffective to wash out 

gaseous as well as eroded particles (or debris) completely after each discharge. However, 

if the pressure is excessively high, proper machining cannot be performed as the ionized 

plasma channel is continuously swept away. Excessive flushing pressure can also 

accelerate electrode wear and create turbulence in the cavity. 

 

 

3.3.2.2 Parametric Influence on Surface Crack Density 

EDMed end products, such as tools and dies, are often subjected to severe cyclic pressure 

and temperature loadings for specific applications. Hence, (Thomson, 1989; Zeid, 1997; 

Tai and Lu, 2009) reported that the surface irregularities, particularly cracks, may lead to 

shortened service life due to reduction in material resistance to fatigue and corrosion, 

especially under tensile loading conditions. Therefore, surface cracks appear a 

fundamental consideration whilst assessing machining yield during EDM. Hence, it is 

indeed a necessity to understand proper controlling of process parameters to suppress 
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their formation. The formation of surface cracks are rendered due to the differentials of 

high contraction stresses exceeding work material’s ultimate tensile strength within the 

white layer. Hence, it is required to understand the effect of EDM parameters on different 

measures of surface crack. 

The variation of SCD with respect to change in peak current (B) has been furnished in 

Fig. 3.10. For Inconel 718, trend has been observed in the manner that with increase in 

peak current, SCD decreases. With increase in peak current, the thickness and hence the 

area of white layer tends to increase, resulting decrement in SCD since the length of the 

cracks produced does not increase in a similar rate. Lower value of SCD can also be 

explained due to simultaneous release of unstable energy with increase in peak current till 

a critical point is accomplished.  
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Fig. 3.10: Effect of peak current (B) on SCD 

 

However, (Bhattacharya et al., 2007) worked on EDM of M2 Die Steel and showed that 

with increase in peak current, SCD decreases to some extent; assumes gradual increment 

afterwards. However, within present parametric domain experimental data could retrieve 

only the trend of decrement of SCD with respect to increase in peak current.  

The effect of pulse-on time (C) on SCD has been demonstrated in Fig. 3.11. With 

increase in pulse-on time SCD increases while other parameters kept at constant level 

values. Similar trend has been observed in the work by (Lee and Tai, 2003; Guu and Hou, 

2007; Kahng and Rajukar, 1977). Literature depicts that for a constant pulse current, 
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surface crack density assumes an increasing trend as pulse-on time increases. (Mamalis et 

al., 1987; Lee et al., 1988; Lee et al., 1990; Lee et al., 1992) also reported that cracking 

increases as pulse energy increases. The crater size increases with increase in pulse 

energy; similar effect is attributed for surface crack density. Furthermore, the cracks 

penetrate into the white layer and tend to propagate to depths that depend on the pulse 

energy.  
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Fig. 3.11: Effect of pulse-on time (C) on SCD 

 

Development of surface crack is strongly related to the EDM process parameters. 

Increased pulse-on duration amplify both average white layer thickness and induced 

stress. As stated by (Lee and Tai, 2003; Rajesha et al., 2010), these two conditions 

stimulate crack formation. Ekmekci et al. (2005) and Mamalis (1987) reported that crack 

density is inversely proportional to the thermal conductivity of the work material; as 

Carbon content within the white layer increases, surface crack intensity increases very 

rapidly. Jabbaripour et al. (2012) also reported that with increase in pulse-on time, density 

of micro-holes and pits, surface cracks and irregularities etc. increase; surface cracks in 

longer pulse-on time appear wider.  
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Fig. 3.12: Effect of duty factor (D) on SCD 

 

The effect of duty factor (D) on surface crack density could be well understood from Fig. 

3.12, while other parameters kept at constant level values. It has been observed that SCD 

gradually decreases with increase in duty factor up to certain point (duty factor 75%); 

then slowly assumes an increasing tend with respect to increased duty factor value. This 

may be explained referring to the fact that at constant gap voltage, peak-current and Ton, 

increase in duty factor results in decrease of Toff, which in turn reduces total cycle time 

(i.e. Ton+Toff) and thereby increases discharge frequency. The reduced Toff seems 

insufficient for subsequent cooling of molten material near the machined surface; 

immense heat is evolved herein which causes excess evaporation of the molten material. 

The rate of evaporation being higher as compared to the rate of resolidification and hence, 

tendency to form white layer; as a consequence white layer thickness gradually reduces 

(Fig. 3.15). Reduction of white layer formation results in decreased surface crack density; 

that too, however, up to certain value of duty factor i.e. 75% (Fig. 3.12). Beyond this, rate 

formation of white layer assumes more or less constant; but intense heat generated at the 

machining zone (as Toff decreases) increases residual stress within the white layer. The 

rate of crack formation being higher; SCD gradually increases (Fig. 3.12). 
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Fig. 3.13: Effect of flushing pressure (E) on SCD 

 

Based on Fig. 3.13, the effect of flushing pressure on SCD on the EDMed work surface 

has been explained. The plots have been obtained by utilizing constant parameters of 

EDM. An optimal dielectric flushing pressure of about 0.4bar has been noticed where the 

crack density assumes a minimal value. The trend of variation of SCD that could be 

retrieved from Fig. 3.13 appears somewhat similar to that reported by (Wong et al., 

1995). While flushing pressure increases from 0.2bar to 0.4bar, dielectric fluid appears 

increasingly effective in removing eroded particle from the inter-electrode gap; this in 

turn reduces the possibility of white layer formation and subsequent surface cracks. At 

low flushing pressure, the concentration of debris is high and this may stimulate 

preferential discharges or arcing in the territory of accumulated debris. Massive discharge 

rate in this region combined with enormous heat concentration due to inadequate flushing 

pressure of dielectric flow induce probability of surface cracking to a remarkable extent. 

While flushing pressure is increased beyond the optimal level, the quenching effect of 

dielectric onto the EDMed surface becomes more predominant. According to (Lee et al., 

1992), as higher heat conduction through the parent material suppress the propensity of 

crack formation; the higher quenching rate offered by the highly pressurized dielectric 

flow reduces relative heat conduction rate through the parent metal resulting more cracks 

at the machined surface. 
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3.3.2.3 Parametric Influence on White Layer Thickness  

The occurrence of spark during EDM melts and vaporizes a tiny area on the surface of 

tool electrode. At the end of the pulse-on time, a small amount of molten material is 

ejected from the surface and the remaining liquid resolidifies. As explained by 

(Tomlinson and Adkin, 1992), this resolidified/recast layer is typically very fine grained 

and possesses high hardness as compared to the base metal, and may be alloyed with 

Carbon from the cracked dielectric (products coming out through pyrolysis of dielectric) 

or with material transferred from the tool. It is also denoted as ‘white layer’ since it 

remains unaffected by etching, and appears ‘white’ in colour under optical microscope. 

As reported by (Huang et al., 2004), beneath the white layer, existence of a heat affected 

zone can be noticed due to the consequence of rapid heating as well as quenching cycles 

during EDM. 

The formation of white layer is incurred under different spark erosion conditions, and it 

exhibits surface irregularities in the form of pock marks, globules of debris, cracks and 

micro-cracks, whose density is greatly influenced by the process environment employed. 

The white layer possesses high tensile residual stresses, which seems detrimental for the 

part functionality. 

Along with various process parameters (such as gap voltage, discharge current, pulse-on 

time, duty factor etc.) the occurrence of white layer depends on initial Carbon content of 

the workpiece and the type of dielectric applied. Literature by (Ramasawmy et al., 2005) 

depicts that the thickness of white layer is directly dependent upon the magnitude of the 

pulse energy. 

The white layer exhibits high hardness, good adherence to the bulk and good resistance to 

corrosion. However, as discussed by (Liao et al., 2004), white layer formed by EDM 

process produces inferior surface finish and decreases fatigue strength due to the presence 

of micro-cracks and micro-voids. Formation of white layer is inevitable but highly 

undesirable. Proper controlling of EDM process parameters may reduce thickness of the 

white layer up to certain extent. Hence, in-depth understanding of process behavior 

especially, the influence of various EDM parameters on white layer thickness appears 

very important. The thickness of the white layer needs to be precisely controlled thus 

facilitating subsequent lapping process. As mentioned by (Ramasawmy et al., 2005), 

lapping is a post-machining (post-EDM) operation to be performed to remove white layer 

before the end product is subjected to its prescribed application domain.  
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Fig. 3.14 shows that WLT and its deviation increase with increase in pulse-on time. An 

average trend of upward increment has been observed for WLT with respect to the 

increment of pulse-on time, whilst keeping other parameters fixed at constant levels. 

Literature also supports that average white layer thickness tends to increase with energy 

per spark, peak discharge current, and current pulse duration. According to (Bozkurt et 

al., 1996), this could be understood by the fact that the dielectric fluid can flush out a 

constant amount of molten material from the machining zone, not the entire material. 

Therefore, as immense heat is transferred into the specimen due to increased pulse-on 

time, the dielectric seems unable to clear away the molten material completely; it adheres 

on the specimen surface. During subsequent cooling this molten material resoldifes and 

hence simulates formation of white layer. Similar trend has also been observed in the 

work performed by (Jabbaripour et al., 2012). 
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Fig. 3.14: Effect of pulse-on time (C) on WLT 

 

The effect of flushing pressure (E) on WLT has been shown in Fig. 3.16. An average 

trend has been observed that WLT tends to decrease with increase in flushing pressure 

keeping other parameters set at constant level values. With increment of FP, the effect of 

quenching property and debris removal capability of the dielectric fluid becomes 

predominant, thereby; chance of white layer growth diminishes. 
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Fig. 3.15: Effect of duty factor (D) on WLT 

0.2 0.3 0.4 0.5 0.6

17.0

17.2

17.4

17.6

17.8

18.0

18.2

18.4

18.6

18.8

19.0

19.2

19.4

19.6

19.8

W
L

T
 [
µ

m
]

Flushing pressure (E) [bar]

 A1B1C1D1

 A2B2C2D2

 A3B3C3D3

 A4B4C4D4

 A5B5C5D5

 

Fig. 3.16: Effect of flushing pressure (E) on WLT 
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3.4 Optimization of Machining Responses 

3.4.1 Methodology: Utility Theory Combined with Taguchi Method 

As described by (Walia et al., 2006; Singh and Kumar, 2006), utility can be defined as the 

usefulness of a product/process with reference to the customers’ expectations. A 

product/process is characterized by several performance measures of conflicting 

requirements (ex. Higher-is-Better, HB; Lower-is-Better, LB). The advantage of utility 

theory is to aggregate utility of individual performances features into a unique index 

called overall utility degree. The best product/process should correspond to the maximum 

overall utility.       

Therefore, the overall usefulness of a product can be assessed by overall utility degree 

which is the sum of individual utilities of various performance characteristics of the 

product/process.  

Assuming an EDM process is characterized by a total K performance attributes (ex. 

;3K i.e. Ra, SCD and WLT, in the present case); and, a total N settings (parametric 

combinations) are available for evaluation (ex. ;25N  in the present case). The 25 

parametric combinations of L25 OA are nothing but possible process environments; can be 

understood as candidate alternatives. Each process environment is capable of providing 

performance outputs. The goal of adopting utility theory is to select the best process 

environment to satisfy contradicting requirements of multi-performance yields 

simultaneously.     

If  kxi  is the measure of effectiveness (experimental data) of thk attribute (or 

performance characteristic) in thi experimental run  Ni ,...,2,1  and there exists a total of 

K  attributes evaluating the outcome space, then the joint utility function can be expressed 

as: 

                 KUkUUUfKxkxxxUO ,...,,...,2,1,...,,...,2,1                                      (3.1) 

A preference scale for each performance attribute is constructed for determining its utility 

value. Two arbitrary numerical values (preference number) 0 and 9 are assigned to the 

just acceptable (the worst) and the most acceptable (the best) value of the performance 

attribute, respectively. The preference number (also called utility value) of a particular 

response can be expressed on a logarithmic scale as follows. 

 
 
  











kx

kx
AkU i

i log                                                                                                    (3.2) 
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Here  kU i denotes utility value of thk attribute in thi setting;.  kxi  is the value of thk  

performance attribute obtained at thi setting; where,  Kk ,...,2,1 and  .,...,2,1 Ni   

Also,  kx  is the just acceptable value of thk performance attribute with the following 

condition i.e.    

    ,
,...,2,1

kxMinkx i
Ni

 if the requirement of thk performance attribute is Higher-is-Better; 

else, 

    ,
,...,2,1

kxMaxkx i
Ni

  if the requirement of thk performance attribute is Lower-is-Better. 

The value of A can be found by utilizing two boundary conditions that  

if       0 kUkxkx ii  

and if       .9*  kUkxkx ii  

Here, 

    ,
,...,2,1

* kxMaxkx i
Ni

 if the requirement of thk performance attribute is Higher-is-Better; 

else, 

    ,
,...,2,1

* kxMinkx i
Ni

  if the requirement of thk performance attribute is Lower-is-Better;

 kx* being the most acceptable value for thk performance attribute. 

Therefore,
 
  











kx

kx
A

*

log

9
                                                                                             (3.3) 

The overall utility degree O

iU  for thi process environment can be calculated as follows. 

(assuming equal priority weight of individual attributes). 

 ;
1

1

kU
K

U
K

k

i

O

i 


  KkNi ,...,2,1;,...,2,1                                                                  (3.4) 

Based on ,O

iU the superiority of performance can be well articulated for the setting which 

corresponds to maximum ;O

iU and, this setting can be treated as optimal setting. However, 

in the present work, the most favorable setting (with maximum O

iU ) can easily be 

identified from amongst 25 settings experimented as per L25 OA. But this setting cannot 

be treated as optimal because there may be a possibility that the maximum O

iU may be 

obtained at a different setting beyond L25 OA since full factorial designed 

experimentation is not performed. Therefore, overall utility thus obtained from L25 OA 
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experimentation needs to be extrapolated. This can be done by Taguchi method. Hence, 

the advantage of exploring utility theory can be well understood by the fact that utility 

theory provides a basis for logical aggregation of multi-performance features into a single 

performance index thus providing scope for applying Taguchi method for optimization; 

because, traditional Taguchi method fails to solve multi-response optimization problem. 

Utility theory eliminates dimensional effect and criteria conflict and combines utility 

values of individual responses into overall utility which corresponds to Higher-is-Better 

(HB) requirement.    

 

 

Table 3.1: Utility values of individual responses: Computed values of overall utility degree and 

corresponding S/N ratio 

 

 

 

Sl. No. Experimental data Individual utility degree Overall 

utility  

Degree, 

Uo 

Correspo

nding 

S/N ratio 

[dB] 

Predicted 

S/N ratio 

at 

optimal 

setting 

[dB] 

Response variables to be 

optimized simultaneously  

URa USCD UWLT 

Ra 

[μm] 

SCD  

[μm/μm
2
] 

WLT 

[µm] 

1 3.800 0.0158 19.261 5.706 1.326 2.396 3.1393 9.9367 19.7934 

2 6.333 0.0166 19.577 2.793 0.960 1.659 1.8022 5.1161 

3 9.133 0.0151 16.954 0.704 1.661 8.170 3.5082 10.9017 

4 9.867 0.0136 18.596 0.263 2.435 3.986 2.2259 6.9501 

5 7.600 0.0141 17.667 1.752 2.168 6.306 3.4052 10.6429 

6 3.733 0.0154 19.074 5.808 1.515 2.837 3.3833 10.5868 

7 4.400 0.0152 17.065 4.870 1.612 7.875 4.7808 13.5900 

8 8.067 0.0152 17.523 1.412 1.612 6.676 3.2302 10.1846 

9 7.667 0.0156 20.308 1.702 1.420 0.000 1.0396 0.3373 

10 9.600 0.0056 17.742 0.420 9.000 6.114 5.1728 14.2745 

11 2.967 0.0189 19.861 7.118 0.000 1.007 2.7056 8.6453 

12 5.533 0.0163 20.090 3.563 1.095 0.488 1.7137 4.6787 

13 7.267 0.0168 20.100 2.008 0.871 0.466 1.1140 0.9377 

14 8.533 0.0093 19.445 1.092 5.247 1.965 2.7653 8.8348 

15 9.733 0.0125 19.086 0.341 3.059 2.809 2.0676 6.3093 

16 4.267 0.0172 18.310 5.045 0.697 4.688 3.4731 10.8143 

17 5.267 0.0157 18.067 3.844 1.373 5.292 3.4994 10.8799 

18 7.200 0.0108 18.137 2.061 4.141 5.117 3.7691 11.5248 

19 5.667 0.0084 18.673 3.426 6.000 3.799 4.4041 12.8771 

20 9.867 0.0110 18.835 0.263 4.005 3.408 2.5562 8.1519 

21 2.133 0.0156 17.602 9.000 1.420 6.472 5.6251 15.0026 

22 5.667 0.0117 16.646 3.426 3.548 9.000 5.3196 14.5176 

23 7.333 0.0136 17.707 1.956 2.435 6.203 3.5280 10.9506 

24 9.200 0.0116 19.752 0.662 3.612 1.256 1.8418 5.3048 

25 10.333 0.0100 19.077 0.000 4.710 2.830 2.5109 7.9966 



75 

 

3.4.2 Evaluation of Optimal Parameters Setting   

 Experimentally obtained response data (as shown in Table 3.1) have been utilized to 

compute utility values of individual responses (Ra, SCD and WLT). In this computation, 

utility degrees of individual responses have been computed based on Lower-is-Better 

(LB) criterion (Eq. 3.2) and shown in Table 3.1. Assuming equal priority weight of the 

responses, overall utility index  o

iU  has been computed (using Eq. 3.4) for all 

experimental runs; values have been provided in Table 3.1.  The overall utility has been 

treated as single objective function and finally optimized (maximized) by Taguchi 

method. Table 3.2 exhibits mean response (S/N ratio of overall utility) values for different 

factorial settings; the same has been plotted in Fig. 3.17.  

 

Table 3.2: Mean response (S/N ratio of overall utility degree) table:  

Prediction of optimal setting by optimizing Uo 

 

Level Mean S/N ratio values at different factorial levels  

A B C D E 

1 8.709 10.997 11.818 6.811 8.523 

2 9.795 9.756 9.168 7.289 6.724 

3 5.881 8.900 9.319 9.840 11.547 

4 10.850 6.861 8.125 10.675 8.229 

5 10.754 9.475 7.560 11.373 10.967 

Delta 4.968 4.136 4.258 4.562 4.823 

Rank 1
# 

5 4 3 2 
 # The most influential parameter is A (Rank 1) 
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Fig. 3.17: Mean S/N ratio (of overall utility degree) plot:  

Predicted optimal setting = A4B1C1D5E3 i.e. [Vg=80V; IP=3A; Ton=100 µs; τ=85%; FP=0.4bar] 
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The optimal setting appears as A4B1C1D5E3 i.e. [Vg=80V; IP=3A; Ton=100µs; τ=85%; 

FP=0.4bar]. The predicted S/N ratio value of oU at optimal setting corresponds to a value 

of 19.7934 dB which seems more as compared to the S/N ratios of U
O
 obtained in all 25 

experimental runs (Table 3.1). As S/N ratio dictates its requirement of Higher-is-Better 

(HB) type; the highest S/N ratio of oU at optimal setting confirms Taguchi’s prediction to 

a reliable extent. This has further been verified by confirmatory test. 

 

3.5 Conclusions  

The following conclusions have been drawn from the aforesaid research. 

 Alteration of chemical composition due to pyrolysis of dielectric fluid has been 

observed for the the EDMed work surface of Inconel 718. Increased Carbon content at 

the machined surface has resulted increased micro-hardness value for the EDMed 

work surface as compared to the unaffected base material. However, micro-hardness 

of the white layer has been found to vary from 352.600 HV0.05 to 269.400 HV0.05 

depending on the parameters setting used during EDM operation.  

 Surface morphology of the EDMed work surface Inconel 718 has been characterized 

by the presence of surface cracks, cracker, globule of debris, pockmarks etc. whose 

intensity has been found to vary depending on the parameters settings used. Two 

different types of cracks have been identified for the EDMed specimens of Inconel 

718. 

 It has been observed that thermo-mechanical effect of the EDM process has induced 

residual stress within the test specimen. The residual stress induced within the 

EDMed specimen has appeared relatively high as compared to the ‘as received’ parent 

material. Evolution of residual stress during machining tends to promote crack 

formation and subsequent propagation. 

 XRD analysis of the EDMed work surface of Inconel 718 has exhibited a surface 

structure of Cubic FCC matrix consisting of Ni-based solid solution with precipitates 

of Cr23C6 (Chromium Carbide), MoC (Molybdenum Carbide) and Nb2C (Niobium 

Carbide). Grain refinement has also been experienced during EDM of Inconel 718 

super alloys.  

 In relation of the setup utilized in this research and within selected experimental 

domain, the most favourable (optimal) process environment has been predicted as: 
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[Vg=80V; IP=3A; Ton=100µs; τ=85%; FP=0.4bar] in order to satisfy requirements of 

multi-responses, simultaneously. Confirmatory test has depicted that predicted 

optimal parameters setting has been found capable of minimizing roughness average, 

surface crack density and white layer thickness, simultaneously, up to the maximum 

possible extent. Aforesaid work has also highlighted application of utility theory 

integrated with Taguchi method for solving such a multi-response optimization 

problem.       
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Chapter 4 

 

Electro-Discharge Machining of  

Inconel 825 using Cryogenically Treated 

Copper Electrode: Emphasis on Surface 

Integrity and Metallurgical 

Characteristics of the EDMed Part 

 
 

 

4.1 Coverage  

In the present work, analysis of surface integrity and metallurgical characteristics of the 

machined Inconel 825 work surface has been carried out in relation to electro-discharge 

machining using Cryogenically Treated Tool (CTT) in comparison with Non-Treated 

Tool (NTT). Degree of severity of surface cracking as well as formation of white layer 

onto the EDMed Inconel 825 work surface has been investigated herein. The process 

physics of EDM using CTT has been explained with scientific relevance to EDS, XRD, 

residual stress as well as micro-hardness test data of the test samples. For a constant 

setting of process parameters [Peak current (IP)=10A; Pulse-on time (Ton)=100µs; Duty 

factor (τ)=85%], surface crack density has been found relatively less (~73%) for the 

EDMed Inconel 825 work surface obtained by using CTT, as compared to the case of 

NTT. However, relatively thick white layer (~26%) has been found attributed to the 

EDMed Inconel 825 specimen obtained by using CTT, as compared to the case of NTT 

(for a common parameters setting: IP=6A; Ton=300µs; τ=85%). Additionally, effects of 

cryogenic treatment of tool electrode have also been discussed emphasizing aspects of 

tool life, extent of Carbon deposition at the bottom as well as the edge of the electrode, 

and tool shape retention capability. As compared to NTT, Carbon (possibly carbide) layer 

(deposited at the edge of the tool electrode) of relatively low thickness value (~75%) has 

been observed for CTT.  
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4.2 Scope of the Work  

Extensive literature review has been carried out to retrieve potential benefits of cryogenic 

processing of tool materials in order to improve thermal and electrical properties, wear 

resistance etc. to a remarkable extent, thus to achieve satisfactory machining performance 

in perspectives of product quality as well as productivity.  Literature survey has depicted 

considerable effort put by past researchers to study aspects of machinability of Inconel 

super alloys during electro-discharge machining (Newton et al., 2009; Ay et al., 2013; Lin 

et al., 2013; Aggarwal et al., 2015; Li et al., 2015; Rajyalakshmi and Ramaiah, 2003); 

however, application potential of cryogenically treated tool electrode has been found an 

unexplored area of research.  

Inconel 825 is a Nickel (Ni)-Iron (Fe)-Chromium (Cr) based super alloy with additions of 

Molybdenum (Mo) and Copper (Cu). As compared to Inconel 825, Inconel 718 contains 

Niobium (Nb) which imparts strength and high temperature resistance. The Mo and Cu in 

Inconel 825 provide substantially improved corrosion resistance in reducing 

environments (when compared to conventional austenitic stainless steels). Inconel 825 

thus finds its application in chemical processing, pollution-control equipment, oil and gas 

well piping, nuclear fuel reprocessing, acid production, and pickling equipment.  

It is well understood that machinability characteristics of Inconel (different grades) super 

alloys are almost similar; thus, these alloys are included in the category of ‘difficult-to-

cut’ materials. However, depending on their chemical composition; their property, 

application, performance of the machined surface may differ. Since, work has already 

been reported to a remarkable extent on machining of Inconel 718; aspects of machining 

and machinability of Inconel 825 has not been sufficiently addressed in exiting literature 

resource. Hence, this study has considered Inconel 825 as work material.    

In addition to that, it has been noticed that most of the past research have considered 

material removal rate, electrode wear rate, and surface roughness etc. (of the EDMed 

Inconel end product) as the major focus towards evaluating machining performance 

(Sundaram et al., 2009 Yildiz et al., 2011); aspects of surface cracking and white layer 

formation (and their quantification) have not been emphasized intensively.  

Cryogenic processing of tool material has been reported to examine improvements in 

MRR, EWR etc.; whilst it is felt that effect of the same on Surface Crack Density (SCD), 

White Layer Thickness (WLT), and chemical composition of the EDMed work surface, 

metallurgical characteristics of the machined surface, residual stress and micro-hardness 
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etc. need to be investigated in detail. To this context, the specific objectives of the present 

work have been delineated herein. 

1. To study application potential of using CTT whilst performing EDM on Inconel 825 

as compared to the case of EDM using NTT.  

2. To study the effects of cryogenic treatment of electrode material on crystallize size, 

dislocation density, extent of grain refinement etc. (as compared to ‘non-treated’ 

electrode material).  

3. To study surface integrity (morphology and topography) of the EDMed Inconel 825 

work surface obtained by using CTT as compared to NTT. Topographic measures of 

the EDMed work surface viz. Surface Crack Density (SCD), crack opening width, and 

White Layer Thickness (WLT) etc. are indented to be studied in detail to articulate 

potential benefits of using cryogenically treated tool electrode.   

4. To examine chemical constituents, metallurgical aspects (phases present: matrix and 

precipitates, degree of grain refinement, crystallize size, dislocation density etc.), 

residual stress and micro-hardness of the EDMed Inconel 825 specimen obtained by 

using CTT as compared to NTT. 

5. To investigate the effect of cryogenic treatment of the electrode material on (a) tool 

shape retention capability, (b) aspects of tool wear, and (c) extent of Carbon 

deposition at the bottom surface/edge of the tool during execution of EDM operation 

on Inconel 825. 

6. Finally, to investigate whether cryogenic processing of electrode material proves 

beneficial to improve ease of electro-discharge machining of Inconel 825.  

 

 

4.3 Results and Discussion  

4.3.1 Effects of Cryogenic Treatment of Tool Electrode  

Effect of cryogenic treatment of Copper electrode has been studied in perspectives of 

metallurgical information obtained from XRD analysis, residual stress, and micro-

hardness test data. XRD spectra of ‘non-treated’ Copper has revealed existence of cubic 

crystal system (Fig. 4.1.1); peak patterns have been found almost exactly matching to that 

of Cu with impurities from 0.001-0.01%, Ag, Al,  Bi, Fe, Si, and Zn (Reference Code: 04-

0836). It has also been observed that no significant phase change has been attributed due 

to cryogenic treatment of Copper (Fig. 4.1.1-4.1.2).   
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Fig. 4.1.1: XRD spectra of NTT material 

 

  

 

Fig. 4.1.2: XRD spectra of CTT material 

 

 

 

Table 4.1: The variation of crystallite size  ,L and dislocation density    for (1) NTT material, 

and (2) CTT material before executing EDM operations   

 

Sl. 

No. 

Data of high intensity 

peaks of XRD for 

different specimens  

2  0  FWHM 

 L  

][rad  

Crystallite 

size  L

][nm    

(1) NTT 50.8560 5.16610
-3 

34.54 

(2) CTT 50.7254 5.85610
-3

 30.45 
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Table 4.1 (Continued) 

Sl. No. Data of 

high 

intensity 

peaks of 

XRD for 

different 

specimens  

Miller 

indices 

 lkh ,,  

Inter planner spacing 

between the atoms 

 d ][ 0A  (Obtained 

from X’pert 

HighScore Plus 

Software) 

Lattice 

constant 

 a ][ 0A  

Dislocation 

density  
410  

(1) NTT [2 0 0] 2.08477 4.16954 12.148 

(2) CTT [2 0 0] 2.08979   4.17958 15.592  

 

 

As compared to ‘non-treated’ electrode material, deep cryogenic treatment has resulted 

substantial grain refinement; which has attributed to smaller crystallite size and higher 

dislocation density (Table 4.1). The computation of crystallite size has been carried out 

using Debye Scherrer’s formulation. The theoretical basis and formulations for 

computing dislocation density could be found in the reporting by (Subbaiah et al., 2006; 

Singh et al., 2008; Vinila et al., 2014; Jacob et al., 2015). Analysis has depicted that NTT 

has corresponded to the crystallite size 34.54nm; whilst, CTT has exhibited reduced 

crystallite size  nmL 45.30~ . Reduction of crystallite size has resulted increase in 

dislocation density i.e. 410148.12~  for NTT; whilst 410592.15~  has been 

observed for CTT.    

This has been found in good agreement with the micro-hardness test data. Experiment has 

revealed that cryogenically treated Copper specimen has shown relatively high micro-

hardness value (Range ~114.2HV to 119.8HV) as compared to that of ‘non-treated’ tool 

material (Range ~94.1HV to 99.3HV). Effect of cryogenic treatment has thus been 

interpreted in view of reduced degree of crystal imperfections, voids as well as 

dislocations; and consequently, evolution of residual stress of lesser magnitude [(-79.4 ± 

37.3) MPa] as compared to that of ‘non-treated’ tool material [(-181.2 ± 114.7) MPa].  

(Barron, 1985; Hands, 1986) claimed that CT of tool material contributes favourably by 

reducing barriers of heat conduction (dislocations, residual stresses and strains) and 

thereby improving thermal conductivity of the metal. Trucks (1983) also claimed that the 

cryogenic process increases the homogeneity of the crystal structure, dissolving gaps and 

dislocations, and thereby reducing electrical resistivity. The enhanced structural 

compactness and uniformity in turn improves electrical conductivity. Increases in 
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electrical conductivities of materials also cause increase in thermal conductivities as per 

Wiedemann-Franz-Lorenz Law (Isaak and Reitz, 2008).  

Kalsi et al. (2010) reported that increase in thermal conductivity due to CT increases heat 

dissipation capacity of cutting tool materials and thus helps in decreasing the tool-tip 

temperature and ultimately improved tool life.  

Therefore, in the present case, it has been assumed that CT must have improved electrical 

as well as thermal conductivities of the tool material; thus improving ease of electro-

discharge machining of Inconel 825 work material. Moreover, it has been observed that 

cryogenic treatment of the tool electrode has resulted reduced tool material consumption 

(lesser tool wear) as compared to NTT. These have been explained in later sections.  

 

4.3.2 Effects of using CTT during EDM on Inconel 825  

4.3.2.1 Surface Integrity: Emphasis on Surface Cracking and Formation of White 

Layer  

As compared to ‘normal’ Inconel 825, the EDMed work surface of Inconel 825 has 

exhibited poor surface integrity (in purview of morphology and topography) whilst 

executing EDM using NTT as well as CTT. The inferior surface morphology has resulted 

formation of crater marks, globules of debris, melted metal deposition, pockmarks or 

chimneys, surface cracks and white layer. However, the intensity of such surface 

irregularities has been found different for the case of EDM on Inconel 825 using 

cryogenically treated Copper tool as compared to that of normal tool electrode (Fig. 4.2).  

 

 

Fig. 4.2: SEM micrographs revealing surface irregularities of the EDMed Inconel 825 specimens 

obtained at parameters setting [IP=10A; Ton=300µs; τ=75%] using (a) NTT and, (b) CTT 
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During spark discharge, particles are eroded from the work surface thus forming crater. 

Due to enormous heat generated in the spark gap during EDM operation, eroded particles 

melt and these are carried away by the dielectric fluid. However, flashing pressure being 

inadequate to remove all the molten material away from the spark gap. During pulse-off 

duration (i.e. during Toff), a part of the molten material resolidifies adhering on the work 

surface, thus forming resolidied layer (also called recast layer or white layer). Globules of 

debris are formed due to the effect of surface tension; whereas, pockmarks are developed 

while entrapped gases are released during resolidication of part of molten material pool. 

EDM process develops huge thermal stress (appears as tensile residual stress) within the 

work specimen; which stimulates generation of surface cracks and its propagation 

towards entire white layer depth, HAZ and finally to the unaffected parent material. 

However, intensity of aforesaid surface irregularities largely depends on the EDM process 

parameters setting involved and the condition of the tool electrode used (i.e. CTT or NTT, 

in the present case). 

SEM micrographs revealing existence of surface cracks on the machined Inconel 825 

work surface obtained through EDM using (a) NTT, and (b) CTT, for a constant 

parameters setting i.e. [IP=10A; Ton=100µs; τ=85%] have been depicted in Fig. 4.3.1-

4.3.2.  

 

 

 

Fig. 4.3.1: SEM micrographs revealing existence of surface cracks on the machined Inconel 825 

work surface obtained through EDM using (a) NTT (SCD~0.0155µm/µm
2
), and (b) CTT (SCD~ 

0.0042µm/µm
2
) for a constant parameters setting i.e. [IP=10A; Ton=100µs; τ=85%] 
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Fig. 4.3.2: SEM micrographs comparing the severity of crack formation  

(crack opening width, wC ) at the machined Inconel 825 work surface obtained through EDM 

using (a) NTT and (b) CTT, for a constant parameters setting i.e. [IP=10A; Ton=300µs; τ=85%]   

 

It has clearly been understood that use of CTT has been noticed fruitful since intensity of 

surface cracks developed on the machined surface of Inconel 825 has been found 

relatively less as compared to the case of NTT. Surface cracks are highly undesirable 

whilst the EDMed part component is subjected to practical application field; reduced 

crack density thus supports application potential of cryogenic treatment of the tool 

material in the context of EDM on Inconel 825. The explanation for reduced crack 

density has been explained well by (Hui et al., 2016). According to (Hui et al., 2016), 

cryogenic treatment enhances thermal conductivity of the electrode tool; thus, facilitating 

improved rate of heat transfer through bulk of the electrode material. The occurrence of 

which leads to (i) decrease the length of the discharge gap, and (ii) decrease in energy 

density of the discharge channel; which in turn results in smooth deposition of the melted 

material on the surface of the workpiece. This in turn suppresses severity of surface 

cracking. 

SEM micrographs revealing existence of white layer on the EDMed Inconel 825 work 

surface obtained using NTT as well as CTT, for a constant parameters setting [IP=6A; 

Ton=300µs; τ=85%] have also been depicted in Fig. 4.4. It has been noticed that white 

layer thickness has assumed higher values for the case of EDM using CTT as compared 

to the case of NTT. This may be due to the enhancement of heat dissipation capacity of 

the electrode material (after cryogenic treatment) which results in increased heat transfer 

rate through the bulk of the electrode material. Due to increased rate of heat transfer, 

molten material gets uniformed cooled at a faster rate and deposited smoothly onto the 

top surface of the machined zone. Hassle-free deposition of the molten material 
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(resolidication) in turn increases the thickness of the white layer. Uniform deposition of 

the molten material also results in evolution of lesser residual stress and thus reduces 

probability of formation of surface cracks to some extent. 

 

 

Fig. 4.4: SEM micrographs revealing existence of white layer on the machined Inconel 825 work 

surface obtained through EDM using (a) NTT (WLT~14.14µm), and (b) CTT (WLT~17.812µm) 

for a constant parameters setting i.e. [IP=6A; Ton=300µs; τ=85%]  

 

 

4.3.2.2 Analysis of EDS and Micro-Hardness Test Data 

Energy Dispersive X-Ray Spectroscopy (EDS) elemental spectra revealing chemical 

composition (wt%) of ‘normal’ Inconel 825, EDMed work surfaces of Inconel 825 

obtained through using NTT, and CTT (for a constant setting of EDM parameters i.e. 

Ip=10A, Ton=300µs, τ=85%) have been shown in Fig. 4.5.1-4.5.3, respectively. It has 

been observed that Carbon content has been increased during EDM due to Carbon 

enrichment onto the machined zone while dielectric cracking has been incurred. The 

EDM oil (used as dielectric medium) being a hydrocarbon; during spark discharge, 

pyrolysis of dielectric fluid has taken place. Thus, Carbon got deposited on the machined 

zone leading to increase in Carbon content of the EDMed work surface as compared to 

the unaffected (normal) parent material.  

 

 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi43OT9gY7PAhVN1WMKHXvMDFUQFggmMAE&url=http%3A%2F%2Fwww.edax.com%2FProducts%2FEDS%2FIndex.aspx&usg=AFQjCNGeAQ7OKbhvpVCJbUv1qgL-ahoJdA&sig2=wyhEy1kRcjbr-EYWM4mNBw&bvm=bv.132479545,d.dGo
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Fig. 4.5.1: EDS elemental spectra revealing chemical composition of  

‘as received’ Inconel 825   

 

 

 

Fig. 4.5.2: EDS elemental spectra revealing chemical composition of the EDMed Inconel 825 

work surface obtained using NTT at parameters setting: [IP=10A; Ton=300µs; τ=85%] 

 

 

 

  

Fig. 4.5.3: EDS elemental spectra revealing chemical composition of the EDMed Inconel 825 

work surface obtained using CTT at parameters setting: [IP=10A; Ton=300µs; τ=85%] 
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EDS analysis has exhibited that as compared to ‘normal’ Inconel 825 (0.08 wt% C), 

Carbon content of the EDMed Inconel 825 work surface has been increased to 4.2% (for 

the case of EDM using NTT), and 3.2% (for the case of EDM using CTT). It has been 

observed that as compared to EDM with NTT; use of CTT has caused lesser extent of 

Carbon enrichment onto the machined zone which has been understood beneficial.  

Since, the topmost layer of the EDMed surface is detrimental for the service life of the 

part component when subjected to fatigue loading. This is because surface cracks do 

initiate at this surface. Lesser Carbon content of this layer should correspond to lower 

hardness value; thus, imparts relatively more resistance to surface cracking.     

The decrement of Carbon content onto the top surface of the EDMed Inconel 825 

(obtained by using CTT), as compared to NTT, can be explained by the fact that 

cryogenic processing of electrode tool substantially improves electrical as well as thermal 

properties of the tool material. Hence, during EDM using CTT, the increased rate of heat 

dissipation through the tool electrode in turn decreases energy density at the spark gap. 

This may suppress the tendency of carbide precipitation on the machined zone. Thus, 

EDMed Inconel 825 work surface obtained by using CTT has exhibited relatively less 

Carbon content.   

For micro-hardness tests, indentations have been made at three distinct locations 

(approximately at the middle position along the thickness of white layer measured from 

the top surface) for a particular sample (transverse cut section of EDMed workpiece 

through WEDM route). As compared to ‘normal’ Inconel 825 (micro-hardness in the 

range ~ from 235.0 HV to 242.1 HV), the EDMed Inconel 825 specimen (obtained at 

parameters setting: IP=10A, Ton=300µs, τ=85%) has exhibited higher hardness values 

falling in the range ~ (from 568.0 HV to 632.8 HV), (from 827.6 HV to 863.0 HV), for 

the following two cases of EDM using NTT, and CTT, respectively.  

In this context, it may be noted that EDS analysis has been made on the work surface of 

the EDMed Inconel 825; whilst, micro-hardness has been measured (for the transverse-

cut section of EDMed specimen) approximately at the mid-depth (from the top surface) of 

the white layer thickness. Moreover, from XRD test, it has been observed that EDMed 

work surface of Inconel 825 using CTT has corresponded to relatively less crystallite size 

(more refined grain structure) as compared to the case of EDM using NTT. Hence, as 

compared to NTT, more micro-hardness value that has been obtained in case of EDM 

using CTT could be well justified.  
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4.3.2.3 Analysis of Residual Stress 

Literature has claimed that CT of material removes crystal imperfections (voids, 

dislocations, stress lines etc.) to a major extent and thereby provides a more refined grain 

structure. As a consequence, chance of fatigue failure is substantially reduced 

(Akincioğlu et al., 2015). 

Residual stress generated within the EDMed work surface is basically the effect of non-

homogeneity of heat flow and metallurgical transformations or the localized 

inhomogeneous plastic deformation that occurs during EDM operation (Ekmekci, 2007). 

It is well known that the residual stress resulted by rapid cooling and phase changes in the 

white layer induce surface cracking. Literature reported that such residual stress is of 

tensile in nature whose magnitude appears to be the highest at the surface. It was also 

reported that the residual stress increases with increase in pulse energy (Crookall and 

Khor, 1972). Such residual stress is indeed harmful since its magnitude stimulates surface 

cracking. Lee et al. (2004) reported that the formation of surface crack is basically due to 

the differentials of high contraction stresses exceeding the work material’s ultimate 

tensile stress within the white layer depth.  

In the present work, it has been observed that ‘normal’ Inconel 825 has corresponded to 

the compressive residual stress (-413.0 to -261.4 MPa). The residual stress of tensile 

nature has been attributed to the EDMed specimen of Inconel 825 (obtained at constant 

parameters setting: IP=10A, Ton=300µs, τ=85%) for the case of EDM using NTT (868.7 

to 1492.3 MPa), and CTT (712.2 to 958.0 MPa), respectively. Thus, the EDMed Inconel 

825 specimen obtained by using CTT has exhibited lesser residual stress as compared to 

the case of NTT. Evolution of relatively less residual stress is indeed beneficial since it 

reduces severity of surface cracking. This helps in improving fatigue life of the EDMed 

end product.   

 

4.3.2.4 XRD Tests: Metallurgical Analyses of the EDMed Inconel 825 Work Surface   

 Phase Analysis   

X-Ray Diffraction (XRD) spectra inferring metallurgical aspects of ‘normal’ Inconel 825, 

and EDMed work surface of Inconel 825 obtained by using NTT, and CTT (for a constant 

setting of EDM parameters i.e. Ip=10A, Ton=300µs, τ=85%) have been provided in Fig. 

4.6.1-4.6.3, respectively.  
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Fig. 4.6.1: XRD spectra of ‘as received’ Inconel 825 work material  

 

 

Fig. 4.6.2: XRD spectra of the EDMed Inconel 825 work surface obtained using NTT at 

parameters setting: [IP=10A; Ton=300µs; τ=85%]  

 

 

 
 

Fig. 4.6.3: XRD spectra of the EDMed Inconel 825 work surface obtained using CTT at 

parameters setting: [IP=10A; Ton=300µs; τ=85%]  
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In this work, XRD measurements have been performed using a Panalytical X’Pert PRO 

diffractometer with CoKα radiation (λ= 1.7906A
0
). The XRD patterns have been indexed 

with X’Pert HighScore Plus software containing PDF-2 files database. 

 

As compared to unaffected (normal) Inconel 825 (Fig. 4.6.1), the peak pattern has 

appeared almost similar (approximately at similar positions; slightly sifted rightward 

along the 20  axis) for the surface of the EDMed Inconel 825 specimen obtained by using 

NTT, and CTT (Fig. 4.6.2-4.6.3, respectively). Considering Full-Width-Half-Maximum 

(FWHM) of the peaks, it has been observed that grain refinement has taken place during 

EDM operation for the Inconel 825 work surface as compared to the ‘normal’ Inconel 825 

parent material and that too irrespective of the condition of the tool material used (viz. 

NTT and CTT) during execution of EDM operation. Occurrence of peaks at similar 

positions has affirmed that no remarkable phase alteration has taken place as a result of 

EDM. 

 

XRD analysis has revealed that ‘normal’ Inconel 825 basically has consisted of Iron-

Nickel and Chromium based cubic solid solution matrix with precipitates of Copper 

Nickel [Reference Code: 47-1406 and Chemical Formula: Cu0.81Ni0.19]. However, the 

peak pattern of unaffected Inconel 825 has exactly matched to that of Iron Nickel 

[Reference Code: 47-1405 and Chemical Formula: Fe0.64Ni0.36] and also Iron Nickel 

[Reference Code: 18-0646 and Chemical Formula: FeNi]. 

 

The XRD analysis from (Fig. 4.6.2) of the EDMed Inconel 825 work surface obtained by 

using NTT (at parameters setting: Ip=10A, Ton=300µs, τ=85%) has identified presence of 

matrix of Iron Nickel [Reference Code: 47-1405 and Chemical Formula: Fe0.64Ni0.36] with 

precipitates of Copper Nickel [Reference Code: 47-1406 and Chemical Formula: 

Cu0.81Ni0.19] and Nickel Aluminum Titanium Carbide [Reference Code: 19-0035 and 

Chemical Formula: Ni3(Al, Ti)C]. Such carbides are expected to be deposited along the 

grain boundaries of the specimen. Carbide formation can be attributed due to Carbon 

enrichment onto the machined zone during pyrolysis of the dielectric medium. Similar 

information has been retrieved from the XRD spectra of the EDMed Inconel 825 work 

surface obtained by using CTT (at parameters setting: Ip=10A, Ton=300µs, τ=85%) as 

shown in Fig. 4.6.3.  
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Table 4.2: The variation of crystallite size  ,L and dislocation density    for (1) ‘As received’ 

Inconel 825, (2) EDMed work surface of Inconel 825 obtained by using NTT, and (3) EDMed 

work surface of Inconel 825 obtained by using CTT  

 
Sl. No. Data of the highest 

intensity peak of XRD for 

different specimens  

2  0
 FWHM 

 L  

][rad  

Crystallite 

size  L

][nm    

(1) ‘As received’ Inconel 825 50.8245 0.00294 60.686 

(2) EDMed work surface of 

Inconel 825 obtained by 

using NTT 

50.9457 0.004134 43.1854 

(3) EDMed work surface of 

Inconel 825 obtained by 

using CTT 

50.9736 0.013776 12.9593 

 

Table 4.2 (Continued) 

Sl. No. Data of the 

highest intensity 

peak of XRD 

for different 

specimens  

Miller 

indices 

 lkh ,,  

Inter planner spacing between 

the atoms  d ][ 0A  

(Obtained from X’pert 

HighScore Plus Software) 

Lattice 

constant  a

][ 0A  

Dislocation 

density  
410  

(1) ‘As received’ 

Inconel 825 

[2 0 0] 2.08632 4.1726 3.9327  

(2) EDMed work 

surface of 

Inconel 825 

obtained by 

using NTT 

[2 0 0] 2.08135 4.1627 7.7853 

(3) EDMed work 

surface of 

Inconel 825 

obtained by 

using CTT 

[2 0 0] 2.08029 4.16058 86.4878  

N.B: radnmA 0175.01;1.01 00   

 

 Computation of Crystallite Size, and Dislocation Density 

The variation of crystallite size  ,L and dislocation density    for (1) ‘as received’ 

Inconel 825, (2) EDMed work surface of Inconel 825 obtained by using NTT, and (3) 

EDMed work surface of Inconel 825 obtained by using CTT has been depicted in Table 

4.2. Considering a particular crystallographic plane in the direction [2 0 0] corresponding 

to the highest intensity peak selected from the peak pattern of XRD spectra, it has been 

observed that as compared to (1) ‘as received’ Inconel 825 (which has corresponded to 
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nm60.686~L and -410 3.9327~  ), (2) EDMed work surface of Inconel 825 obtained 

by using NTT and at parameters setting: IP=10A; Ton=300µs; τ=85%, and (3) EDMed 

work surface of Inconel 825 obtained by using CTT and at similar parametric setting have 

exhibited sufficient grain refinement followed by decrease in crystallite size and 

consequently, increase in dislocation density. However, the degree of grain refinement 

has been found relatively high for the case of (3) EDMed Inconel 825 work surface 

obtained by using CTT  -410 86.4878~12.9593nm;~ L  as compared to the case of (2) 

EDMed Inconel 825 work surface obtained by using NTT 

 .10 7.7853~43.1854nm;~ -4L   

 

4.3.3 Effects of Using CTT during EDM: Tool Wear and Tool Shape 

Retention Capability  

While comparing micro-hardness of the cryogenically treated Copper tool to that of 

normal tool electrode; it has been found that cryogenic treatment has improved hardness 

of the tool material due to substantial gain refinement and internal stress relief (refer to 

Table 4.1). Results have indicated that ‘normal’ Copper has shown micro-hardness values 

falling in the range ~ from 94.1 HV to 99.3 HV; whilst cryogenically treated Copper 

electrode has exhibited micro-hardness values falling in the range ~ from 114.2 HV to 

119.8 HV. This has been found in good agreement of the comment made by (Lal et al., 

2001; Leskovsek et al., 2006; Molinari et al., 2001) that CT of metals/alloys improves 

their hardness and consequently the wear resistance. Thus, tool wear of lesser extent is 

expected for the case of EDM using cryogenically treated tool.  

Macroscopic view of the edge of the tool electrode (NTT and CTT, both) after EDM 

operations on Inconel 825 has been depicted in Fig. 4.7. Carbon deposition has been 

observed at the bottom surface as well as around the edge of the tool electrode during 

EDM operation.  

This can be explained by the fact that during electrical discharge, pyrolysis of the 

dielectric medium takes place. Due to the pyrolysis of dielectric fluid (also called 

dielectric cracking), Carbon atoms come out and get deposited onto the bottom/edge of 

the tool (and also on the work surface) forming a blackish layer. However, as compared 

to normal tool, cryogenically treated tool electrode has exhibited presence of very thin 

layer of the deposited Carbon. As observed under optical microscope [Model No: OM-19; 
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Make: Radical Instruments; Country: India], the thickness of the deposited layer (after 

EDM experiments using NTT) has appeared as ~0.4871mm (Fig. 4.8a); whilst the 

deposited layer has been found to be very tiny (~0.1203 mm) after EDM operations with 

CTT (Fig. 4.8b).  

 

 
 

Fig. 4.7: Macroscopic view of the edge of (a) NTT (average thickness of deposited layer wC = 

0.4871mm), and (b) CTT (average thickness of deposited layer wC = 0.1203mm) after EDM 

operation on Inconel 825 specimen  

 

 
Fig. 4.8: EDS elemental spectra revealing chemical composition at the bottom surface of tool 

electrode: (a) NTT, and (b) CTT after EDM operation on Inconel 825 specimen  

 

Cryogenic treatment of tool electrode has thus found advantageous due to less Carbon 

deposition (may be deposited material is in the form of Copper Carbide) at the bottom 

surface as well as along the edge of the electrode. This may be due to the fact that through 

cryogenic treatment, the electrical and thermal properties of tool material are substantially 

improved (Amini et al., 2012). Hence, electrode material can dissipate heat at a faster 
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case (than in the case of normal electrode) which in turn suppresses the tendency of the 

Carbon atoms to be deposited and thus restricts the formation of carbides. The improved 

thermal and electrical conductivity of the tool material is expected to improve tool life 

and thus to reduce electrode wear. Moreover, lesser extent of deposited Carbon layer 

along the electrode edge has been found favorable from the viewpoint of shape retention 

capability of the tool electrode. On the contrary, relatively thick Carbon layer has been 

found set down both at the bottom surface and also along the edge of NTT after EDM. 

Formation of such layer creates a barrier for the heat to be transmitted through the 

electrode material and thus more heat is required to execute the same for the progress of 

EDM operation. It imposes untoward effect on the tool electrode with excessive tool wear 

and reduced tool life. Shape retention capability of the tool electrode is also adversely 

affected. The phenomenon of formation of thin carbon layer at the bottom surface and 

edge of the cryogenically treated tool electrode has also been supported by the 

information (wt% of C) obtained from the EDS elemental spectra of the bottom surface of 

the tool electrodes (Fig. 4.8). It has clearly been noticed that as compared to NTT which 

has corresponded to 39.37 wt% Carbon at the bottom surface; the bottom surface of the 

CTT has corresponded to lesser extent of carbon content (35.51 wt%) owing to the 

formation of very thin deposited layer of Carbon (or possibly carbides). 

 

4.4 Conclusions 

The conclusions drawn from the aforesaid research have been summarized below. 

 Deep cryogenic treatment of Copper tool electrode has attributed decrease in 

crystallite size resulting relatively more refined grain structure as compared to that of 

‘non-treated’ Copper. Cryogenic treatment of the electrode material has resulted 

reduced (~12%) crystallite size and increased (~28%) dislocation density as compared 

to NTT material. Moreover, cryogenic treatment has resulted reduced residual stress 

and crystal imperfections; thus ensuring improved tool life and improved tool shape 

retention capability; and also reduced tool wear.  

 Top surface morphology of the EDMed work surface of Inconel 825 has exhibited 

presence of crater mark, globules of debris, spherical deposition, pock marks (or 

chimneys), and surface cracks. However, the intensity of aforesaid surface 

irregularities has been found relatively less for the case of EDM with CTT as 

compared to the case NTT. Reduced crack density (and also the crack opening width) 
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for the case of EDM using CTT could be found beneficial for the fatigue life of the 

EDMed part component whilst subjected to service. For a constant setting of process 

parameters: [IP=10A; Ton=100µs; τ=85%], surface crack density has been found 

relatively less (~73%) for the EDMed Inconel 825 work surface obtained by using 

CTT, as compared to the case of NTT. 

 The white layer has been found relatively thick onto the top surface of the EDMed 

Inconel 825 specimen obtained by using CTT. Increased heat conduction rate and 

thereby reduced tool wear has resulted decrease in energy density at the discharge 

gap. Due to smooth deposition of molten material, thicker white layer has been 

formed. Results have indicated that relatively thick white layer (~26%) has been 

attributed to the EDMed Inconel 825 specimen obtained by using CTT, as compared 

to the case of NTT for a common parameters setting: [IP=6A; Ton=300µs; τ=85%]. 

 As compared to ‘normal’ Inconel 825 parent material, EDS elemental spectra of 

EDMed work surface has exhibited higher Carbon content (wt%). This has been 

attributed due to the Carbon enrichment onto the work surface during pyrolysis of 

dielectric fluid. However, for the case of EDM using CTT, Carbon enrichment on the 

work surface has been found relatively less as compared to the case of EDM using 

NTT.  

 As compared to ‘normal’ Inconel 825 work material, the average micro-hardness 

(obtained at the transverse-cut section of the EDMed specimen; approximately at the 

mid-depth of the thickness of while layer measured from the top surface) has been 

found more for EDM using NTT and CTT both. This may be explained due to 

thermo-electrical effect of EDM process which has resulted considerable grain 

refinement (decease in crystallite size) within the work material. However, for the 

case of the EDMed specimen obtained using CTT, average micro-hardness has been 

found the highest. As compared to the EDMed work surface of Inconel 825 obtained 

by using NTT (at parameters setting: IP=10A; Ton=300µs; τ=85%), the EDMed 

Inconel 825 work surface obtained by CTT has exhibited relatively less crystallite size 

(~70% reduced) due to the formation of more refined grain structure. Hence, the 

EDMed Inconel 825 specimen obtained by using CTT has exhibited higher hardness 

values as compared to the case of NTT.     

 As compared to ‘normal’ Inconel 825 work material, the residual stress has been 

found more for the EDMed specimen obtained using NTT and CTT both. However, 

for the case of EDM with CTT, evolution of residual stress within the EDMed 
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specimen has been found relatively less in magnitude as compared to the case of 

EDM using NTT.  

 XRD spectra of EDMed Inconel 825 work surfaces have identified presence of 

Nickel-Iron solid solution with precipitates of carbides of varied extent. As compared 

to the EDMed surface obtained by using NTT; use of CTT has caused relatively more 

grain refinement. This has further been found in good agreement to the decrease in 

crystallite size and consequently the increase in dislocation density.  

 In comparison with NTT, use of CTT has resulted relatively tiny layer of deposited 

Carbon at the bottom as well as edge of the tool electrode. This in turn has facilitated 

increased rate of heat transfer through the bulk of the electrode material. This is 

expected to cause reduction of tool wear, and hence, substantial improvements of tool 

shape retention capability. As compared to NTT, deposited Carbon (possibly 

carbides) layer of relatively less thickness (~75%) has been observed at the edge of 

the tool electrode for CTT, after execution of EDM operation.  

 During electro-discharge machining operations, stresses are induced within the work 

material resulting in internal stresses, strains, voids and dislocations. The combined 

effect of those creates a barrier (resistance) to heat transfer through the bulk of the 

work material. This in turn, results in decreased rate of heat transfer through the work 

material; as a result, EDM performance is adversely affected. During cryogenic 

treatment of the work material, internal stresses and strains are substantially reduced 

with refinement of the grain structure. These effects are expected to favourably 

improve thermal conductivity of the work material thereby improving performance of 

the EDM process. 
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Chapter 5 

 

Electro-Discharge Machining of 

Cryogenically Treated Inconel 825  

Using Copper Tool Electrode  

 
 

 

5.1 Coverage  

In the present work, an attempt is made to compare performance of electro-discharge 

machining (using Copper tool electrode) on deep cryogenically treated Inconel 825 

workpiece to that of achieved on ‘as received’ work material. Effects of using 

Cryogenically Treated Workpiece (CTW) during EDM have been evaluated in terms of 

surface topographical features viz. Surface Crack Density (SCD) and White Layer 

Thickness (WLT) developed onto the top surface of the EDMed end product. It has been 

observed that as compared to EDM on Non-Treated Workpiece (NTW), use of CTW of 

Inconel 825 has ensured lesser extent of surface cracking and formation of relatively thick 

white layer. Experimental results have been interpreted with scientific relevance to the 

data obtained from EDS, XRD, residual stress, and micro-hardness tests. Effects of 

cryogenic treatment as well as thermo-electric effects imposed by the EDM operation on 

Inconel 825 work material have been analyzed from perspectives of metallurgical 

information like crystallite size, and dislocation density present within the EDMed test 

specimens as compared to ‘as received’ Inconel 825. Moreover, effects of cooling rate 

(used in cryogenic treatment of the workpiece) have also been investigated on influencing 

overall EDM performance on CTW of Inconel 825. 
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5.2 Scope of the Work  

Extensive literature survey has been made to retrieve potential benefits of cryogenic 

treatment of hard and high temperature resistant work materials in order to improve 

thermal and electrical properties thus providing additional advantages during execution of 

the machining operation (Bensely et al., 2006; Das et al., 2007; Das et al., 2008; 

Akhbarizadeh et al., 2009; Gill and Singh, 2010; Patil and Tated, 2012; Kumar et al., 

2014; Kumar et al., 2015; Khanna and Singh, 2016; Kumar et al., 2016a). Super alloy 

Inconel 825 being ‘difficult-to-cut’; it is expected that cryogenic processing (cryogenic 

treatment) of the work material may yield satisfactory EDM performance in terms of 

higher material removal rate, reduced tool wear, lower surface crack density, improved 

corner size machining accuracy etc. Literature provided substantial evidence of past 

research pursued by pioneers on emphasizing machinability of Inconel super alloys for 

electro-discharge machining; however, feasibility on using cryogenically treated Inconel 

workpiece (as compared to normal or non-treated workpiece) during EDM has rarely 

been studied.  

Moreover, majority of the existing literature have considered MRR, Tool Wear Rate 

(TWR), and surface roughness (of the EDMed Inconel end product) as EDM performance 

features; the phenomenon of surface cracking and the formation white layer formation 

(followed by their quantitative measures like SCD and WLT) have not been extensively 

reported so far.  

Cryogenic processing of work material (for example, Titanium alloy, D3 Steel etc.) has 

been reported in the literature to examine improvements in MRR, TWR etc. (Gill and 

Singh, 2010; Khanna and Singh, 2016); whilst it is felt that effect of the same on SCD, 

WLT, chemical composition of the machined surface, metallurgy of the machined zone, 

residual stress and micro-hardness of EDMed end product need to be investigated in 

detail, especially for EDM of cryogenically treated Inconel 825 work material. To this 

context, the objectives of the present work have been pointed out below. 

1. To study the effects of cryogenic treatment of Inconel 825 work material on its 

electrical and thermal conductivities, aspects of surface metallurgy viz. phases 

present, crystallize size, dislocation density, extent of grain refinement etc. (as 

compared to ‘as received’ Inconel 825) that are expected to improve machinability of 

Inconel 825 during EDM operation. It is worth of investigating how use of 
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Cryogenically Treated Workpiece (CTW) facilitates EDM operation as compared to 

the case of EDM executed on Non-Treated Workpiece (NTW).  

2. To study surface morphology of the EDMed Inconel 825 specimens (obtained through 

using NTW, and CTW both) as compared to that of ‘as received’ Inconel 825 

specimen. 

3. To examine chemical constituents, metallurgical aspects (phases present: matrix and 

precipitates, degree of grain refinement, crystallize size, dislocation density etc.), 

residual stress and micro-hardness of the EDMed Inconel 825 end product (obtained 

through using NTW as well as CTW) as compared to that of ‘as received’ Inconel 

825. 

4. To investigate effects of cooling rate (applied in the cryogenic processing cycle for 

CT of the work material) on machining performance during EDM on CTW, for a 

particular (constant) setting of process parameters. 

5. Finally, to infer whether use of CTW of Inconel 825 proves beneficial to facilitate 

EDM operation and thereby, to improve overall machinability of Inconel 825. 

 

5.3 Results and Discussion  

5.3.1 Effects of Cryogenic Treatment of Inconel 825 Work Material  

In this section, effects of deep cryogenic treatment on Inconel 825 work material have 

been analyzed in perspectives of residual stress and micro-hardness test data. It has been 

expected that remarkable grain refinement taking place due to cryogenic treatment of the 

workpiece resulting reduced crystallite size and consequently higher dislocation density. 

Such grain refinement has been expected to help in removing crystal imperfections, stress 

lines, voids and dislocations. These in turn have been expected to contribute towards 

improving thermal as well as electrical conductivities of Inconel 825 work material.  

As compared to ‘as received’ Inconel 825 (i.e. NTW) which has corresponded to 

compressive residual stress (-413.0 to -261.4 MPa) and micro-hardness (in the range ~ 

235.6 HV to 242.1 HV); deep cryogenically treated Inconel 825 (CTW) has exhibited 

presence of residual stress (tensile in nature) falling in the range ~ (297.4 to 494.6 MPa) 

and has shown higher micro-hardness value (range~ 265.5HV to 275.0 HV). This has 

been found in support of the claim that during cryogenic treatment of the work material 

significant grain refinement taking place through relief of internal stresses inherently 

present within the ‘as received’ work material of Inconel 825. 
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5.3.2 Effects of using Cryogenically Treated Workpiece (as Compared to 

Normal Workpiece) during EDM on Inconel 825 

5.3.2.1 Surface Topography: Emphasis on Surface Cracking and Formation of 

White Layer  

As compared to Inconel 825 ‘as received’, the EDMed work surface of Inconel 825 

specimen has exhibited poor surface integrity in terms of surface morphology depending 

on the condition of the workpiece (i.e. NTW, and CTW) employed. SEM micrographs 

taken at the top surface of the EDMed Inconel 825 specimens have exhibited presence of 

crater marks, globules of debris, pockmarks or chimneys, surface cracks as well as white 

layer. However, intensity of such surface irregularities has been found largely dependent 

on the condition of the work material used i.e. NTW/CTW.    

 

 
Fig. 5.1.1: SEM micrographs revealing existence of surface cracks on the machined Inconel 825 

surface obtained through EDM using (a) NTW (SCD~0.0155µm/µm
2
), and (b) CTW 

(SCD~0.0080µm/µm
2
), for a constant parameters setting i.e. [IP=10A; Ton=100µs; τ=85%]  

 

SEM micrographs revealing existence of surface cracks on the machined Inconel 825 

work surface obtained through EDM using (a) NTW, and (b) CTW, for a constant 

parameters setting i.e. [IP=10A; Ton=100µs; τ=85%] have been depicted in Fig. 5.1.1-

5.1.2. It has clearly been understood that cryogenic treatment of the work material has 

appeared beneficial since intensity of surface cracks developed on the EDMed work 

surface of Inconel 825 has been found lesser as compared to that obtained through EDM 

using NTW. Since presence of surface cracks is highly unappealing from the perspective 

of the product’s fatigue life whilst subjected to practical application field; reduced crack 

density thus obtained, strongly motivates application of cryogenic treatment of the 

workpiece in the context of EDM on Inconel 825 work material.  
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Fig. 5.1.2: SEM micrographs comparing the severity of crack formation (crack opening width, 

wC ) at EDMed Inconel 825 work surface obtained by using (a) NTW, and (b) CTW at 

parameters setting: [IP=10A; Ton=300µs; τ=85%] 

 

Literature depicts that cryogenic treatment improves electrical as well as thermal 

conductivity of the work material (as per Wiedemann-Franz-Lorenz Law, shown in Eq. 

5.1) which in turn facilitates increased rate of heat transfer through the bulk of the work 

material as compared to the case of EDM with NTW. This results evolution of thermal 

stress (of relatively less magnitude) within the specimen; and, hence severity of cracking 

gets suppressed. 

The Wiedemann-Franz-Lorenz Law states that for all metals at not too low temperature, 

the ratio of the thermal conductivity K  to the electrical conductivity  is directly 

proportional to the temperatureT along with the constant of proportionality L , whose 

value is independent of the particular metal (Isaak and Reitz, 2008). 

LT
K




                                                                                                                          (5.1) 

Theoretically, the proportionality constant, known as the Lorenz Number, is equal to: 

281044.2   KW
T

K
L


   

SEM micrographs revealing existence of white layer developed onto the top surface of 

the machined Inconel 825 obtained through EDM using (a) NTW, and (b) CTW, for a 

constant parameters setting [IP=6A; Ton=300µs; τ=85%] have also been depicted in Fig. 

5.2.  
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Fig. 5.2: SEM micrographs revealing existence of white layer on the machined Inconel 825 

surface obtained through EDM using (a) NTW (WLT~14.14µm), and (b) CTW 

(WLT~21.692µm) for a constant parameters setting i.e. [IP=6A; Ton=300µs; τ=85%]  

 

It has been noticed that relatively thick white layer has been attributed for the EDMed 

specimens using CTW as compared to the EDMed samples obtained by using NTW. This 

may be due to the enhancement of heat dissipation capacity of the work material during 

cryogenic treatment which results in increased heat transfer rate through the bulk of the 

parent material. Due to increased rate of heat transfer, molten material gets smoothly 

cooled (at faster rate) and uniformly deposited onto the top surface of the machined zone. 

The occurrence of which, in turn, increases thickness of the deposited layer as compared 

to the case of EDM using NTW. Smooth deposition of the molten material also results in 

evolution of residual stress of lesser extent and thus reduces the likelihood of occurrence 

of surface cracks to some extent.          

Next to white layer, usually a zone is expected to appear in which no melting takes place 

but it is greatly affected by the heat energy generated during the EDM process. This zone 

corresponds to micro-structural alternation (as compared to the machined zone as well as 

base material) is denoted as heat affected zone. HAZ may consist of several layers; 

however, they are not prominently distinguishable. The transition between white layer 

and HAZ may clearly be visualized under SEM; whereas, it is very difficult to identify 

the demarcation line between the HAZ and the base material. In the present study, HAZ 

has not been clearly visualized from the SEM micrographs shown herein. 
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Fig. 5.3.1: EDS elemental spectra revealing chemical composition of ‘as received’ Inconel 825  

 

 

 

Fig. 5.3.2: EDS elemental spectra revealing chemical composition of the EDMed Inconel 825 

work surface obtained using NTW at parameters setting: [IP=10A; Ton=300µs; τ=85%] 

 

 

 

Fig. 5.3.3: EDS elemental spectra revealing chemical composition of the EDMed Inconel 825 

work surface obtained using CTW at parameters setting: [IP=10A; Ton=300µs; τ=85%] 
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5.3.2.2 EDS Analysis and Micro-Hardness Test  

Energy Dispersive X-Ray Spectroscopy (EDS) elemental spectra revealing chemical 

composition (wt%) of (1) ‘as received’ Inconel 825, the EDMed work surfaces of Inconel 

825 obtained through using (2) NTW, and (3) CTW (for a constant setting of EDM 

parameters i.e. Ip=10A, Ton=300µs, τ=85%) have been shown in Fig. 5.3.1-5.3.3, 

respectively. It has been observed that Carbon content has been increased during EDM 

due to Carbon enrichment onto the machined zone while dielectric cracking has been 

incurred. The EDM oil (used as dielectric medium) being a hydrocarbon; during spark 

discharge pyrolysis of dielectric takes place. Thus, carbon gets deposited on the machined 

zone leading to increase in Carbon content of the EDMed work surface as compared to 

the ‘as received’ parent material. EDS analysis has exhibited that as compared to ‘as 

received’ Inconel 825 (0.08 wt% C), Carbon content of the EDMed Inconel 825 work 

surface (obtained at parameters setting: Ip=10A, Ton=300µs, τ=85%) has been increased 

to 4.2% (for the case of EDM using NTW), and 1.54% (for the case of EDM using 

CTW).  

It has been observed that as compared to EDM with NTW, use of cryogenically treated 

workpiece (i.e. CTW) has resulted in lesser extent of Carbon enrichment onto the 

machined zone which has been found beneficial. Since the topmost layer of the EDMed 

work surface is detrimental for the service life of the part component when subjected to 

fatigue loading. Surface cracks do initiate at this surface. Thus, post machining operation 

is indeed a necessity to remove such unwanted layer. Lesser Carbon content of this layer 

corresponds to lower hardness values; thus, facilitating easy and economic removal of the 

same. The decrement of Carbon content onto the top surface of the EDMed Inconel 825 

(obtained through using CTW) as compared to that obtained by NTW can be attributed to 

the fact that cryogenic processing improves electrical and thermal properties of the work 

material. Hence, as compared to normal EDM, large crater is formed resulting high 

volumetric material removal rate. The rate of material removal being more than that of 

Carbon enrichment (deposition) onto the machined zone (due to dielectric cracking), wt% 

of Carbon tends to decrease.             

The reduced Carbon content of the EDMed work surface of Inconel 825 (obtained by 

using CTW) may be due to refined microstructure of the work material, which restricts 

the penetration of Carbon attoms into the surface being machined; thus suppressing the 

tendency to carbide formation and its precipitation over the machined zone. The results of 

EDS analysis has been found in good agreement of the micro-hardness test data.  

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi43OT9gY7PAhVN1WMKHXvMDFUQFggmMAE&url=http%3A%2F%2Fwww.edax.com%2FProducts%2FEDS%2FIndex.aspx&usg=AFQjCNGeAQ7OKbhvpVCJbUv1qgL-ahoJdA&sig2=wyhEy1kRcjbr-EYWM4mNBw&bvm=bv.132479545,d.dGo
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As compared to ‘as received’ Inconel 825 (micro-hardness in the range of ~ 235.0 HV to 

242.1 HV) and CTW of Inconel 825 (micro-hardness in the range of ~ 265.5 HV to 275.0 

HV), the EDMed work surface (obtained at parameters setting: IP=10A, Ton=300µs, 

τ=85%) has exhibited higher hardness values falling in the range of ~(568.0 HV to 632.8 

HV), and ~(739.2 HV to 800.6 HV) for two different cases of EDM  using viz. NTW, and 

CTW, respectively.  

 

5.3.2.3 Analysis of Residual Stress 

Cryogenic treatment of work material imposes beneficial effects mainly due to relief of 

internal stresses. ‘As received’ material is subjected to internal residual stresses inherently 

attributed during phase transformation. When molten material is transformed from liquid 

phase to solid phase, solidification starts from the surfaces as well as edges of the mould 

cavity at a faster rate than the interior part of the mould. This is because these areas are 

cooled down quickly. During solidification, dendritic (and columnar shaped) crystals first 

appear at the surface and edges; then, they grow in size gradually towards inner part of 

the mould. When, growth of a dendrite is restricted by another one, a stress line is 

generated which results in occurrence of dislocations, voids, crystal imperfections, slip, 

twining etc. Moreover, when the solidified cast product (in the form of billet, plat etc.) is 

subjected to heat treatment (to normalize its mechanical properties like tensile strength, 

hardness, impact strength etc.) and subsequent rolling, forging, machining operations, 

additional stress is evolved within the material. The aggregated effect of such residual 

stresses appears detrimental in perspectives of fatigue life of the part component as 

residual stress is the prime cause for development of cracks. Cryogenic treatment of 

workpiece reduces induced residual stresses by removing dislocations, voids, and other 

defects; thus, providing a more refined grain structure. Such grain refinement is expected 

to increase hardness of the cryogenically treated material and remarkably improves wear 

resistance.                        

Therefore, it is well understood that EDM process parameters along with particular 

workpiece (viz. NTW, and CTW, considered in the present case) should carefully be 

selected to suppress possible detrimental effect of the induced residual stress of high 

magnitude. It has been observed that ‘as received’ Inconel 825 has corresponded to the 

compressive residual stress (-413.0 to -261.4 MPa). The residual stress of tensile nature 

has been attributed to the EDMed specimen of Inconel 825 (obtained at constant 

parameters setting: IP=10A, Ton=300µs, τ=85%) for the case of EDM using NTW 
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(Range~868.7 to 1492.3 MPa), and CTW (Range~609.4 to 970.8 MPa). As cryogenic 

treatment of the work material results in refinement of grain structure (due to stress 

relief); the EDMed Inconel 825 obtained by using CTW has exhibited presence of less 

residual stress as compared to that using NTW.  

 

 

5.3.2.4 XRD Tests: Metallurgical Analyses (Phase Information, Crystallite Size, and 

Dislocation Density of the EDMed work surface of Inconel 825)  

 Phase Analysis 

X-Ray Diffraction (XRD) spectra inferring metallurgical aspects of ‘as received’ Inconel 

825, and the EDMed surface of Inconel 825 obtained by using NTW, and CTW (for a 

constant setting of EDM parameters i.e. Ip=10A, Ton=300µs, τ=85%) have been provided 

in Fig. 5.4.1-5.4.3, respectively. Identification of different phases along with relevant 

metallurgical information has been retrieved from the analysis of these XRD patterns 

through X’Pert High Score software. 

 

As compared to the ‘as received’ parent material (Fig. 5.4.1), peak patterns have appeared 

almost similar (approximately at similar positions; slightly sifted rightward along the 20  

axis) for the EDMed Inconel 825 work surfaces obtained by using NTW, and CTW (Fig. 

5.4.2-5.4.3, respectively). Considering Full-Width-Half-Maximum (FWHM) of the peaks, 

it has been observed that grain refinement has taken place during EDM operation for the 

EDMed work surface as compared to the ‘as received’ Inconel 825; and that too, 

irrespective of the workpiece condition used (viz. NTW and CTW). Occurrence of peaks 

at similar positions has affirmed that no remarkable phase alteration has taken place as a 

result of EDM. 

 

XRD analysis has revealed that ‘as received’ Inconel 825 basically has consisted of Iron-

Nickel and Chromium based Cubic solid solution matrix with precipitates of Copper 

Nickel [Reference Code: 47-1406 and Chemical Formula: Cu0.81Ni0.19]. However, the 

peak pattern of unaffected Inconel 825 almost has exactly matched to that of Iron Nickel 

[Reference Code: 47-1405 and Chemical Formula: Fe0.64Ni0.36] and also Iron Nickel 

[Reference Code: 18-0646 and Chemical Formula: FeNi]. 
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Fig. 5.4.1: XRD spectra of ‘as received’ Inconel 825  

 

Fig. 5.4.2: XRD spectra of the EDMed surface of Inconel 825 obtained at parameters setting: 

[IP=10A; Ton=300µs; τ=85%] using NTW   

 

Fig. 5.4.3: XRD spectra of the EDMed surface of Inconel 825 obtained at parameters setting:  

[IP=10A; Ton=300µs; τ=85%] using CTW 
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The XRD analysis from Fig. 5.4.2 of the EDMed Inconel 825 work surface obtained by 

using NTW (at parameters setting: Ip=10A, Ton=300µs, τ=85%) has identified presence of 

matrix of Iron Nickel [Reference Code: 47-1405 and Chemical Formula: Fe0.64Ni0.36] with 

precipitates of Copper Nickel [Reference Code: 47-1406 and Chemical Formula: 

Cu0.81Ni0.19] and Nickel Aluminum Titanium Carbide [Reference Code: 19-0035 and 

Chemical Formula: Ni3(Al, Ti)C]. Such carbides have been expected to be deposited 

along the grain boundaries of the specimen. Carbide formation can be attributed due to 

Carbon enrichment onto the machined zone during pyrolysis of the dielectric medium. 

Similar information has been retrieved from the XRD spectra of the Inconel 825 work 

surface obtained (at parameters setting: Ip=10A, Ton=300µs, τ=85%) by using CTW (Fig. 

5.4.3). However, in case of EDM using CTW (at parameters setting: Ip=10A, Ton=300µs, 

τ=85%), precipitates of Copper Nickel [Reference Code: 09-0205 and Chemical Formula: 

Cu3.8Ni] has also been observed.  

 

Additionally, XRD peak patterns have been analyzed further to investigate the effects of 

cryogenic treatment of the work material on quantitative metallurgical information like 

Crystallite Size  L  and Dislocation density   of the test specimens. The extent of grain 

refinement and the effect imposed thereof on crystal/grain structure of the work surface 

(obtained under different conditions of EDM) has been interpreted mathematically with 

relevance to the computed data.  

The crystallite size  L  for each of the specimens viz. (1) ‘as received’ Inconel 825, (2) 

cryogenically treated Inconel 825, the EDMed Inconel 825 work surface obtained by 

using (3) NTW, and (4) CTW at parametric combination: [IP=10A; Ton=300µs; τ=85%] 

has been calculated from X-ray diffraction profiles of strong reflections with intensity % 

by measuring the Full-Width-Half-Maximum (FWHM).  The Scherrer equation has been 

applied for computing the crystallite size; similarly, dislocation density has been 

computed using. A sample computation has been given in the APPENDIX.  

The variation of crystallite size  ,L and dislocation density    for (1) ‘as received’ 

Inconel 825, (2) Cryogenically treated Inconel 825 (before machining), (3) the EDMed 

work surface of Inconel 825 obtained by using, and (4) the EDMed work surface of 

Inconel 825 obtained by using CTW has been depicted in Table 5.1. 
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Table 5.1: The variation of crystallite size  ,L and dislocation density    for (1) ‘as received’ 

Inconel 825, (2) Cryogenically treated Inconel 825 prior to EDM, (3) EDMed work surface of 

Inconel 825 obtained by using NTW, and (4) EDMed work surface of Inconel 825 obtained by 

using CTW 

 

Sl. 

No. 

Data of the highest intensity peak of 

XRD for different specimens  
2  0

 FWHM  L  

][rad  

Crystallite size

 L ][nm    

(1) ‘As received’ Inconel 825 50.8245 0.00294 60.686 

(2)  ‘Cryogenically treated’ Inconel 825 

(before machining) 

(Refer to Fig. 4.11a) 

50.9423 0.0041335 43.169 

(3) EDMed work surface of Inconel 825 

obtained by using NTW 

50.9457 0.004134 43.1854 

(4) EDMed work surface of Inconel 825 

obtained by using CTW 

50.9653 0.004821 37.0276 

 

 

Table 5.1 (Continued) 

Sl. 

No. 

Data of the highest 

intensity peak of XRD 

for different 

specimens  

Miller 

indices 

 lkh ,,  

Inter planner spacing 

between the atoms 

 d ][ 0A  (Obtained 

from X’pert 

HighScore Software) 

Lattice 

constant 

 a ][ 0A  

Dislocation 

density  
410  

(1) ‘As received’ Inconel 

825 

[2 0 0] 2.08632 4.1726 3.9327  

(2) ‘Cryogenically 

treated’ Inconel 825 

(before machining) 

[2 0 0] 2.08148 4.16296 7.78695 

(3) EDMed work surface 

of Inconel 825 

obtained by using 

NTW 

[2 0 0] 2.08135 4.1627 7.7853 

(4) EDMed work surface 

of Inconel 825 

obtained by using 

CTW 

[2 0 0] 2.08060 4.1612 10.5919  

 

While comparing data of the highest intensity peaks of the XRD spectra (Table 5.1) for 

(1) ‘as received’ Inconel 825, and (2) Cryogenically treated Inconel 825, it has been 

found that grain refinement has taken place resulting reduced crystallite size

 nm43.169~L for the cryogenically treated work surface than that of ‘as received’ 

Inconel 825  nm60.686~L  at a particular crystallographic plane in the direction [2 0 0]. 

Such grain refinement has been attributed to the increase in dislocation density
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 -4107.78695~  for the EDMed specimen surface as compared to the case of ‘as 

received’ Inconel 825 corresponding to the value of dislocation density

 .10 3.9327~ -4   

 

While comparing data of the highest intensity peaks of the XRD spectra (Table 5.1) for 

(1) ‘as received’ Inconel 825, and (3) the EDMed work surface of Inconel 825 obtained 

by using NTW (at parameters setting: IP=10A; Ton=300µs; τ=85%), it has been found that 

grain refinement has taken place during EDM operation which has resulted reduced 

crystallite size  nm43.1854~L for the EDMed work surface than that of ‘as received’ 

Inconel 825  nm60.686~L  at a particular crystallographic plane in the direction [2 0 0]. 

Such grain refinement has been attributed to the increase in dislocation density

 -4107.7853~  for the EDMed specimen surface as compared to the case of ‘as 

received’ Inconel 825 corresponding to the value of dislocation density

 .10 3.9327~ -4   

 

Similar observation has been made whilst comparing the highest intensity peak pattern of 

XRD spectra of (1) ‘as received’ Inconel 825, and (4) the EDMed work surface of Inconel 

825 obtained by using CTW (at parameters setting: IP=10A; Ton=300µs; τ=85%), (refer to 

Table 5.1). Significant grain refinement has been found taking place for the EDMed work 

surface of cryogenically treated Inconel 825 (corresponding to lower crystallite size i.e. 

nm37.0276~L and consequently higher dislocation density i.e. -410 10.5919~  ) for 

the particular crystallographic plane in the direction [2 0 0]. Also, for the crystallographic 

plane in the direction [2 0 0], extent of grain refinement has been found much more for 

the EDMed work surface of cryogenically treated Inconel 825 (obtained through EDM by 

using CTW) with respect to the case of EDMed work surface of Inconel 825 obtained 

through NTW. It has also been found clear that decrease in crystallite size has appeared as 

the strong indication of occurrence of grain refinement followed by the increased 

dislocation density. The variation of crystallite size  L  with respect to different 

dislocation density   has been graphically presented in Fig. 5.5. 
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Fig. 5.5: Variation of crystallite size  L  with respect to dislocation density    for ‘As received’ 

Inconel 825, the EDMed work surface of Inconel 825 obtained by using NTW, and the EDMed 

work surface of Inconel 825 obtained by using CTW 

 

 

5.3.2.5 Effects of Cooling Rate (During DCT of workpiece) on EDMed surface of 

Inconel 825   

Effects of cooling rate (ramp-down and same also for ramp-up) during cryogenic 

treatment of the work material has been investigated on influencing the extent of Carbon 

enrichment onto the machined surface of Inconel 825 during EDM using NTCTW. It has 

already been stated that EDM experiments as discussed in Chapter 2 (Phase II, Fig. 2.7), 

have been conducted considering cryogenically treated workpiece; where, cryogenic 

treatment has been performed at a cooling rate 1
0
C/min.  

An additional experiment has been performed later for EDM of Inconel 825 using CTW 

in which cooling rate of 0.5
0
C/min has been set in the cryogenic treatment cycle executed 

for the workpiece. It has been observed that decrease in cooling rate in turn has reduced 

Carbon content of the EDMed work surface of Inconel 825. The weight percentage of 

Carbon has been observed as 1.34% (Fig. 5.3.3) for the EDMed surface obtained at 

parameters setting: [IP=10A; Ton=300µs; τ=85%] by using CTW; in this case the cooling 

rate of 1
0
C/min has been set during cryogenic treatment of the workpiece. On the 
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contrary, 1.29% (by weight) Carbon content has been found in the EDS elemental spectra 

of the EDMed Inconel 825 work surface obtained at the similar parametric condition of 

[IP=10A; Ton=300µs; τ=85%] whilst using CTW that too obtained by setting 0.5
0
C/min 

cooling rate in the cryogenic treatment cycle of the workpiece (Fig. 5.6).   

 

 

Fig. 5.6: EDS elemental spectra revealing chemical composition of the EDMed Inconel 825 

surface obtained using CTW (ramp down rate during cryogenic treatment = 0.5
0
C/min) at 

parameters setting: [IP=10A; Ton=300µs; τ=85%] 

 

 

XRD spectra providing metallurgical information of the EDMed work surface of Inconel 

825 obtained at parameters setting: [IP=10A; Ton=300µs; τ=85%] using CTW has been 

shown herein; in which (a) fast cooling rate (1
0
C/min) and (b) slow cooling rate 

(0.5
0
C/min) has been applied during cryogenic treatment cycle of the work material (Fig. 

5.7a-5.7b). As compared to the EDMed workpiece using CTW (considering CT at 

1
0
C/min cooling rate) (Fig. 5.7a), peak patterns have appeared almost similar for the 

surface of the EDMed Inconel 825 obtained by using CTW, considering slow cooling rate 

of 0.5
0
C/min in the CT cycle (Fig. 5.7b). Occurrence of peaks approximately at similar 

positions has confirmed that no significant phase alteration has taken place as a result of 

variation of cooling rate during CT of the workpiece prior to conducting EDM operations.  
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Fig. 5.7: XRD spectra of the EDMed surface of Inconel 825 obtained at parameters setting: 

[IP=10A; Ton=300µs; τ=85%] using CTW for (a) fast cooling rate (1
0
C/min) and (b) slow cooling 

rate (0.5
0
C/min)   

 

However, the XRD spectra for EDMed work surface of cryogenically treated Inconel 825 

(for slow cooling in the CT cycle) has exhibited occurrence of an extra peak (of very less 

intensity) at 52.2188
0
 at  02 axis. This may be due to precipitation of (i) Manganese 

Carbide Silicon (Reference Code: 71-0000 and Chemical formula: 44.56.22 CSiMn ), (ii) 

Manganese Silicon Carbide (Reference Code: 71-0029 and Chemical formula:

33.18.153.7 CSiMn ), and Aluminum Nickel Carbide (Reference Code: 29-0058 and Chemical 

formula: 5.03CAlNi ) of very less magnitude. This phenomenon may be attributed due to 

the cryogenic treatment (with slow cooling) of the work material combined with the 

effect of EDM, similar to the case of precipitation of micro-fine ‘eta carbides’ in case of 

cryogenic treatment of tool steels.      

Considering Full-Width-Half-Maxima (FWHM) of the peaks, it has been observed that 

grain refinement of greater extent has taken place for the case of EDM using CTW with 

slow cooling rate. During CT of workpiece with slow cooling rate, the effect of grain 

refinement has become predominant as compared to the case of fast cooling. Additional 

grain refinement has been found attributed to the workpiece due the thermal effect of the 

EDM process itself. Hence, it has been viewed that for a common setting of process 

parameters i.e. [IP=10A, Ton=300µs, τ=85%], EDMed Inconel 825 obtained using CTW 

(with slow cooling rate) has exhibited relatively less residual stress ~ (608.7 to 930.1 

MPa) and relatively low micro-hardness (range~ 577.6 HV to 637.3 HV) as compared to 

the case of fast cooling in CT cycle executed during cryogenic treatment of the work 

material; which has corresponded to residual stress value falling in the range~ (609.4 to 

970.8 MPa) and micro-hardness in the range ~ (739.2 HV to 800.6 HV). 



116 

 

Table 5.2: Effects of cooling rate on crystallite size  ,L and dislocation density    for (1) the 

EDMed work surface of Inconel 825 obtained by using CTW (fast cooling ~ 1
0
C/min during CT 

cycle), and (2) the EDMed work surface of Inconel 825 obtained by using CTW 

(Slow cooling ~ 0.5
0
C/min during CT cycle) 

 

Sl. 

No. 

Data of the highest intensity 

peak of XRD for different 

specimens  

2  0  FWHM 

 L  

][rad  

Crystallite 

size  L

][nm    

(1) EDMed work surface of Inconel 

825 obtained by using CTW 

(Fast cooling ~ 1
0
C/min during 

CT cycle) 

50.9653 0.004821 37.0276 

(2) EDMed work surface of Inconel 

825 obtained by using CTW 

(Slow cooling ~ 0.05
0
C/min 

during CT cycle) 

50.9680 0.0061985  28.801 

 

 

Table 5.2 (Continued)  

Sl. No. Data of the 

highest intensity 

peak of XRD for 

different 

specimens  

Miller 

indices

 lkh ,,  

Inter planner 

spacing between 

the atoms  d

][ 0A  

(Obtained from 

X’pert HighScore 

Software) 

Lattice 

constant  a

][ 0A   

Dislocation 

density  
410  

(1) EDMed work 

surface of 

Inconel 825 

obtained by using 

CTW (Fast 

cooling ~ 

1
0
C/min during 

CT cycle) 

[2 0 0] 2.08060 4.1612 10.5919  

(2) EDMed work 

surface of 

Inconel 825 

obtained by using 

CTW (Slow 

cooling ~ 

0.05
0
C/min 

during CT cycle) 

[2 0 0] 2.08050 4.1610 17.5089 

N.B: radnmA 0175.01;1.01 00   
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In addition to that, data for the highest intensity peaks from the XRD spectra of test 

specimens has been interpreted to understand effects of cooling rate (for the CT cycle) on 

crystallite size  ,L and dislocation density    for (1) the EDMed work surface of Inconel 

825 obtained by using CTW (fast cooling ~ 1
0
C/min during CT cycle), and (2) the 

EDMed work surface of Inconel 825 obtained by using CTW (slow cooling ~ 0.5
0
C/min 

during CT cycle) as presented in Table 5.2. 

Significant grain refinement has been attributed for the EDMed work surface of 

cryogenically treated (using slow cooling) Inconel 825 specimen as compared to the case 

of fast cooling, for a particular crystallographic plane in the direction [2 0 0]. This has 

resulted in lower crystallite size  nm28.801~L and consequently higher dislocation 

density  -41017.5089~  for the EDMed work surface of slow-cooled-cryogenically 

treated Inconel 825 in comparison to that obtained in the EDMed work surface of fast-

cooled-cryogenically treated Inconel 825 which has shown  nm37.0276~L and

 .10 10.5919~ -4       

 

 
Fig. 5.8.1: Influence of cooling rate (ramp down rate during cryogenic treatment) on SCD on the 

top surface of the EDMed Inconel 825 obtained by using CTW at parameters setting: [IP=10A; 

Ton=300µs; τ=85%] (a) Fast cooling (at 1
0
C/min): SCD~0.0144 µm/µm

2
, and (b) Slow Cooling 

(at 0.5
0
C/min): SCD~0.0031 µm/µm

2 

 

 

Influence of cooling rate (ramp down rate during cryogenic treatment) on surface crack 

density developed onto the top surface of the EDMed Inconel 825 specimen obtained by 

using CTW at parameters setting: [IP=10A; Ton=300µs; τ=85%] has been depicted in  Fig. 

5.8.1-5.8.2. From the micrographs shown in Fig. 5.8.1-5.8.2, it has clearly been 

understood that slow cooling rate has promoted relatively less surface cracking onto the 

work surface during EDM operation with CTW. This can be explained as follows: during 
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cryogenic treatment of the work material, slow cooling rate results larger extent of grain 

refinement as compared to the case of fast cooling. Moreover, grain refinement causes 

sufficient relief of internal stresses (compressive residual stress) present within the work 

material. Above all, cryogenic treatment of the workpiece at a slow cooling rate incurs 

improvement in its thermo-electrical properties (as compared to fast cooling). This 

favorably influences in heat dissipation at a faster rate (than the case of fast cooling) and 

thereby reduces magnitude of tensile residual stress developed within the EDMed 

specimen. These in turn reduces tendency of surface cracking.  

 

 

 

Fig. 5.8.2: SEM micrographs comparing the severity of crack formation (crack opening width, wC

) at the EDMed Inconel 825 work surface obtained by using CTW at parameters setting: [IP=10A; 

Ton=300µs; τ=85%] (a) Fast cooling (at 1
0
C/min), and (b) Slow Cooling (at 0.5

0
C/min)  

 

 

 

Fig. 5.9: Influence of cooling rate (ramp down rate during cryogenic treatment) on WLT on the 

top surface of the EDMed Inconel 825 obtained by using CTW at parameters setting: [IP=10A; 

Ton=300µs; τ=85%] (a) Fast cooling (at 1
0
C/min): WLT~11.462 µm, and (b) Slow Cooling (at 

0.5
0
C/min): WLT~22.222 µm 
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Increased heat transfer rate as experienced during EDM operations performed on 

cryogenically treated workpiece (corresponding to slow cooling rate), has resulted in 

smooth deposition of the molten material promoting formation of thicker white layer in 

contrast to the case of fast cooling during cryogenic treatment of the work material (Fig. 

5.9). 

 

5.4 Conclusions 

The conclusions drawn from the aforesaid research have been summarized below. 

 Deep cryogenic treatment is expected to improve electrical and thermal conductivities 

of Inconel 825 work material. These have been attributed due to the decrease in 

crystallite size resulting relatively more refined grain structure for the cryogenically 

treated work material as compared to that of ‘as received’ Inconel 825. Such grain 

refinement has resulted decrease in crystallite size and also increase in dislocation 

density. Moreover, cryogenic treatment reduces residual stress and crystal 

imperfections; thus increases the rate of heat transfer. This in turn reduces energy 

density at the spark discharge gap (during execution of EDM operation) and facilities 

formation of large crater of relatively wider dimension. As a consequence, volumetric 

material removal rate is expected to be increased.   

 Top surface morphology of the EDMed work surfaces of Inconel 825 (NTW and 

CTW both) has exhibited presence of crater mark, globules of debris, spherical 

deposition, pock marks (or chimneys), and surface cracks. However, the amount of 

such surface irregularities has been found relatively less for the case of EDM on CTW 

as compared to the case of EDM on NTW of Inconel 825. Reduced crack density (and 

also the crack opening width) has appeared beneficial for the fatigue life of the 

EDMed part component whilst subjected to service. 

 The white layer of relatively thick has been found developed onto the top surface of 

the EDMed specimen obtained on cryogenically treated work material. Increased heat 

conduction rate as attributed during cryogenic treatment of the workpiece has resulted 

decrease in energy density at the discharge gap. A uniform spark discharge has thus 

been taken place resulting higher volumetric material removal rate. Due to smooth 

deposition of molten material, thicker white layer has been formed.  

 It has been observed that, as compared to ‘as received’ Inconel 825, Carbon content 

(wt%) onto the top surface of the EDMed Inconel 825 specimen has been increased 
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due to effect of Carbon enrichment during pyrolysis of the dielectric medium. This 

has resulted in increase of micro-hardness of the EDMed specimen (three trials taken 

at the transverse-cut section of the specimen within 20µm depth from the top surface) 

as compared to the ‘as received’ parent material. Amongst all EDMed specimens 

(obtained using NTW, and CTW) analysed through EDS, the minimum extent of 

Carbon enrichment (on the top surface of machined zone) has been attributed for the 

case of EDM using CTW.  

 The average micro-hardness has been found relatively high for the EDMed work 

surface of cryogenically treated Inconel 825 as compared to the EDMed specimen 

obtained by using NTW. This may be due to precipitation of fine carbides along with 

boundaries of refined grains attributed due to the combined effect of cryogenic 

treatment as well as electro-discharge machining. 

 As compared to ‘as received’ Inconel 825, it has been observed that irrespective of the 

workpiece condition (i.e. normal/cryogenically treated) used during EDM operations 

(NTW and CTW); residual stress of tensile nature has been developed within the 

specimens of EDMed Inconel 825. Amongst the EDMed samples (as produced by 

NTW and CTW), induced tensile residual stress of lesser magnitude has been 

attributed to the EDMed Inconel 825 prepared by using CTW. Evolution of residual 

stress of relatively less magnitude in turn reduces severity of surface cracking.  

 During EDM on CTW, Carbon enrichment onto the machined zone has been found 

less (and hence, less micro-hardness) in case of slow cooling (during cryogenic 

treatment of work material) as compared to fast cooling. Similarly, tensile residual 

stress of relatively less magnitude has been attributed within the EDMed sample of 

‘slow cooled-cryogenically treated’ Inconel 815 (resulted due to larger extent of grain 

refinement; and thus decrease in crystallite size and increase in dislocation density) as 

compared to the EDMed surface of NTW of Inconel 825. 

 During EDM on CTW, severity of surface cracking (in terms of surface crack density 

and crack opening width) has been found relatively less in case of ‘slow cooled-

cryogenically treated’ workpiece. However, relatively wide white layer has been 

developed onto the EDMed surface of ‘slow cooled-cryogenically treated’ Inconel 

825 as compared to that of ‘fast cooled-cryogenically treated’ work material. 
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APPENDIX 

Sample calculation for determining crystallite size and dislocation density: 

With reference to Table 5.1; the crystallite size and dislocation density of the ‘as 

received’ Inconel 825 work material have been computed.  





cosL

K
L   

9.0K  (Scherrer constant) 

 = radiation wavelength ( Co =1.7906A
0
 for CoK ) 

 FWHML = 0.00294 rad 

Crystallite size: nmL 686.60

2

8245.50
cos00294.0

1.07906.19.0
0












  

N.B: radnmA 0175.01;1.01 00   

 

 

aL

L

4

cos15 
   

a Lattice constant   

    022222 1726.4020208632.2 Alkhda   

The notations lkh ,, denote Miller indices representing a particular crystallographic 

direction.  

Dislocation density: 
24

0

109327.3
686.601.01726.44

2

8245.50
cos00294.015














 nm  
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Chapter 6 

 

Surface Integrity and Metallurgical 

Characteristics of the EDMed Work 

Surfaces of A2 Tool Steel (SAE 304SS), 

Inconel 601 and Ti-6Al-4V:  

A Comparative Analysis 

 
 

 

6.1 Coverage  

In the present work, a comparative analysis on surface integrity and metallurgical 

characteristics of the machined surface A2 tool steel (304SS), Inconel 601 super alloy and 

Titanium alloy (Ti-6Al-4V) has been attempted during execution of electro-discharge 

machining. Experiments have been conducted at different values of peak discharge 

current to study morphology as well as topographical features of the EDMed work 

surface in terms of Surface Crack Density (SCD) as well as White Layer Thickness 

(WLT). XRD analysis has also been carried out to understand metallurgy of the EDMed 

work surface. Results have been interpreted with relevance to EDS and micro-hardness 

test data. Effects of peak discharge current on the EDMed work surface topography have 

also been examined. 

 

 

6.2 Properties and Applications of 304SS, Super Alloy Inconel 

601 and Ti-6Al-4V  

SAE 304 Stainless Steel (also known as A2 Stainless Steel or Staybrite 18/8 Stainless 

Steel) contains both Chromium (~18%) and Nickel (~8%) metals as the main non-iron 

constituents. It is basically an austenite steel. SAE 304SS is not very electrically or 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&cad=rja&uact=8&ved=0ahUKEwiQ7Z_I05_PAhUB5iYKHfKOBJ4QFghQMAo&url=https%3A%2F%2Fcartech.ides.com%2Fdatasheet.aspx%3Fi%3D101%26E%3D269&usg=AFQjCNFtZ9mm3AUCR9iT02CKt8zE1dHTJQ&sig2=np-DShWUigAqMa7IDdZhTQ&bvm=bv.133387755,d.cGc
https://en.wikipedia.org/wiki/Stainless_steel
https://en.wikipedia.org/wiki/Chromium
https://en.wikipedia.org/wiki/Nickel
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Austenite
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thermally conductive and exhibits non-magnetic character. It offers high corrosion 

resistance than regular steel and finds huge application because of the ease of forming/ 

machining to transform into various shapes. It generally contains 17.5–20% Chromium, 

8–11% Nickel, and less than 0.08% Carbon, 2% Manganese, 1% silicon, 0.045% 

Phosphorus, and 0.03% Sulfur. 304SS has excellent resistance to a wide range of 

atmospheric environments and many corrosive media; therefore, it is used for a variety of 

household (viz. kitchen and food applications) and industrial applications such as screws, 

machinery parts, car headers, and food-handling equipment, and also in the architectural 

field for exterior accents such as water and fire features. 

Aspects of machinability of variety of steels (mild steel, stainless steel, and tool steel) 

have been studied in (Guu et al., 2003; Pradhan and Biswas, 2010; Lingadurai et al., 

2012; D’Urso et al., 2014; Natarajan and Suresh, 2015; Wang et al., 2016; Nayak et al., 

2016). 

 

Nickel-based high temperature super alloys (i.e. Inconel 601, in the present case) are 

often found in aerospace engine and power generation turbine components, as well as in 

petrochemical, food processing, nuclear reactor, and pollution control equipment. Inconel 

exhibits poor machinability. The unique feature that provides superior high temperature 

strength makes them ‘difficult-to-cut’. Additionally, reduced speeds of the cutting tool 

can hamper productivity. The common problems that arise during machining of Inconel 

include: 

 Evolution of high cutting temperatures; generation of enormous heat at the tool-tip, 

heavily concentrated in the cutting edge area (as compared to conventional alloy 

steel machining); limitation in cutting speed capability. 

 Low thermal conductivity of Inconel results more heat to be absorbed by the tool (as 

compared to the workpiece); which in turn causes high temperature at the tool-tip as 

well as excessive tool wear. This tends to limit cutting speeds and reduce useful tool 

life. 

  The hard, abrasive intermetallic compounds and carbides present on the Ni-based 

solid solution matrix of Inconel causes severe abrasive wear (crater wear and severe 

plastic deformation) at the tool-tip. This affects tool geometry adversely leading to 

catastrophic failure of the cutting tool. 

https://en.wikipedia.org/wiki/Conductive
https://en.wikipedia.org/wiki/Corrosion
https://en.wikipedia.org/wiki/Chromium
https://en.wikipedia.org/wiki/Nickel
https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Manganese
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Phosphorus
https://en.wikipedia.org/wiki/Sulfur
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 Tendency of work hardening causes depth-of-cut notching on the tool, which can 

lead to formation of burr, BUE and coating delamination on the workpiece. Hence, 

surface integrity of the finished part may be disappointing.  

 The chips produced whilst machining of Inconel appear tough as well as continuous, 

and hence require superior chip breaker geometry. 

 Heat generated during machining can remarkably alter the alloy microstructure; 

induces residual stress/surface cracks that can further deteriorate fatigue life of the 

end product.  

Aspects of machinability of super alloy Inconel have been studied in (Hewidy et al., 

2005; Ramakrishnan and Karunamoorthy, 2008; Newton et al., 2009; Ay et al., 2013; Lin 

et al., 2013; Mohanty et al., 2014a; Dhanabalan et al., 2014; Aggarwal et al., 2015; Torres 

et al., 2016). 

Inconel 601 is considered as a general-purpose engineering material that exhibits 

excellent resistance to high-temperature oxidation. The alloy also has good resistance to 

aqueous corrosion, possesses high mechanical strength.  

The alloy’s Nickel based solid solution matrix, in conjunction with substantial Chromium 

content, provides resistance towards many corrosive media and high-temperature 

environments. Oxidation resistance is further enhanced by the Aluminum content. Inconel 

601 is widely used in many fields viz. thermal processing, chemical processing, pollution 

control, aerospace, and power generation. 

 

Nowadays, Titanium (Ti) alloys are widely used in the area of aerospace (such as jet 

engine and airframe components), spacecraft, military applications, automotive 

(connecting rods on expensive sports cars and some premium sports equipment) and 

biomedicine (ex. dentistry) due to their excellent mechanical properties (viz. 

extraordinary corrosion resistance, a high strength–weight ratio, and high temperature 

strength) and biocompatibility (Josef et al., 2011; Petr et al., 2012). The excellent 

strength-to-weight ratio of Ti-alloys results in reduction of aircraft weight and causes 

minimum fuel consumption and emission. Therefore, Titanium alloys are increasingly 

replacing Aluminum (and its alloys) in various domains of engineering applications 

(Lütjering and Williams, 2007).  

Ti-6Al-4V (Ti-alloy Grade 5) has a chemical composition of 6% Aluminum, 4% 

Vanadium, 0.25% (maximum) iron, 0.2% (maximum) Oxygen, and the remainder 

Titanium. It is significantly stronger than commercially available pure Titanium; while 
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having the same stiffness and thermal properties (excluding thermal conductivity, which 

is about 60% lower in Grade 5 than in commercially pure Ti). Ti-6Al-4V is also called

and   alloys, which are metastable and generally include some combination of both 

and   stabilizers; it can also be heat treated. Ti-6Al-4V is known as the ‘workhorse’ of 

the Titanium industry because it accounts for more than 50% of total Titanium usage.  

 

However, the utilization is somewhat restricted by high cost and processing difficulties 

due to its poor machinability (Ezugwu and Wang, 1997). The common challenges being 

encountered while machining of Ti-alloys are very low thermal conductivity, chemical-

reactivity (tendency to chemically react with the Cobalt binder which exists in most of the 

tool materials and low elastic modulus (Kibri et al. 2010). Therefore, Ti-alloys are 

recognized as ‘difficult-to-cut’ materials mainly because of their susceptibility to work 

hardening during execution of machining operations. Additionally, other obstacles during 

conventional machining of Ti-alloys are due to cutting speed limitation, chipping, and 

premature failure of the cutting tools. Thus, traditional machining operations are found 

inefficient to achieve satisfactory machining performance on Ti-alloys in regards of 

surface integrity, dimensional accuracy of the part component as well as tool life.  

 

In order to overcome technical difficulties in conventional machining processes, non-

conventional machining processes like electro-discharge machining and micro-EDM 

(drilling, milling etc.) are increasingly being attempted for the machining of Ti-alloys. 

These non-traditional routes are basically electro-thermal process of removing materials 

regardless of hardness of the work material; where, the force between the workpiece and 

the tool electrode is negligible (Tsai and Masuzawa, 2004). Moreover, the phenomenon 

of tool deformation due to cutting force action is almost zero. Problems associated with 

chatters, mechanical stress, and vibration during machining operation are basically nil; as 

there is no direct contact between the electrode and the workpiece (Ho and Newman, 

2003). Aspects of machinability of Ti alloys as studied by previous researchers have been 

well documented in (Chen et al., 1999; Hascalık and Caydas, 2007a; Hascalık and 

Caydas, 2007b; Lin et al., 2000; Alias et al., 2012; Sivaprakasam et al., 2014; Kolli and 

Kumar, 2015; Khan et al., 2015; Kao et al., 2010; Tiwary et al., 2015; Altug et al., 2015; 

Amorim et al., 2014; Yadav and Yadava, 2015). 

 



127 

 

6.3 Scope of the Work 

Owing to the widespread engineering applications of Nickel as well as Titanium based 

super alloys (viz. Inconel 601 and Titanium alloy: Ti-6Al-4V, respectively, in the present 

case), machining and machinability aspects of these materials have become an important 

research agenda today. Since, conventional machining operations are inappropriate for 

those materials; non-conventional machining routs viz. EDM, WEDM, EDD etc. are 

being adapted by the manufacturing companies to obtain desired shape and contour of the 

machined end product with intricate geometry and dimensions that are really difficult to 

achieve through traditional machining operations. However, low material removal and 

inferior surface finish seem to be a challenge. 

Inconel 601 as well as Titanium alloy Ti-6Al-4V possess very low thermal conductivity 

that results in poor heat dissipation through the work material whilst subjected to 

machining. Moreover, Titanium alloy is highly chemically reactive exhibiting the 

tendency of producing galling, welding and smearing along with rapid destruction of the 

cutting tool. 

Since, EDM is the most commonly used non-traditional machining route in which 

material is removed from the workpiece due to occurrence of spark; and, hence erosion of 

the work material takes place by high velocity electrons in the spark gap between two 

electrodes (tool and workpiece). Therefore, EDM performance is greatly influenced by 

the thermal conductivity of the work material as well as the tool electrode. 

As Inconel 601 and Ti-6Al-4V do possess very low thermal conductivity as compared to 

conventional metal and alloys (for example 304SS); the EDM performance is expected to 

be adversely affected while these low conductive super alloys are being machined. 

Therefore, extent of machinability of these super alloys during EDM is required to be 

investigated in detail. In this context, the present study has aimed at examining 

machinability of super alloys (Inconel 601 and Titanium alloys) as compared to A2 Steel 

(SAE 304SS) during EDM operation. 

Morphology of the EDMed work surface of Inconel 601 and Ti-6Al-4V has been 

compared to that of 304SS. In this experimental study, the EDM performance has been 

evaluated in terms of EDMed surface topography which includes surface crack density as 

well as white layer thickness. Metallurgical observations have also been carried out 

through XRD. Results have been interpreted physically in support of EDS analysis and 

micro-hardness test data. Additionally, effects of peak discharge current on influencing 
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various process-performance features have also been studied. In short, a comparative 

study has been made to understand the machinability of Inconel 601 as well as Ti-6Al-4V 

as compared to 304SS during electro-discharge machining.  

 

6.4 Results and Discussion 

6.4.1 XRD Analysis (Metallurgical Observations) 

X-ray diffraction (XRD) measurements have been performed on the specimens for phase 

identification, using a Panalytical X’Pert PRO diffractometer with CoKα radiation (λ= 

1.7906A
0
). The XRD patterns have been indexed with X’Pert HighScore Plus software 

containing PDF-2 files database. 

 

Fig. 6.1: XRD spectrum of 304SS (a) ‘As received’, and (b) the EDMed work surface obtained by 

using peak discharge current IP= 10A  

 

XRD elemental spectra for ‘as received’ 304SS has exhibited five different peaks of 

varied intensity at positions 51.5193
0
,
 
59.8688

0
, 89.7170

0
, 111.1182

0
 and 119.3202

0
 along 

the 2θ axis (with 2θ limit 40
0
-120

0
) (Fig. 6.1). The corresponding directions of the 

crystallographic planes have been identified as: [1 1 1], [2 0 0], [2 2 0], [3 1 1], and [2 2 

2]. The peak pattern for ‘as received’ 304SS has exactly matched with that of 

Cr0.19Fe0.7Ni0.11 (Reference Code: 33-0397). As compared to ‘as received’ 304SS, the 

peak pattern for the EDMed work surface of 304SS (obtained by using highest discharge 

energy i.e. highest level of peak discharge current; 10A) has exhibited slight alteration in 

peak positions along the 2θ axis. Moreover, few extra peaks have been detected herein 

due to formation of FeC (PDF Index Name: Iron Carbide; Reference Code: 06-0686). The 
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formation of FeC is attributed due to pyrolysis of dielectric fluid during spark discharge 

(Fig. 6.1).  

 

Fig. 6.2: XRD spectrum of Inconel 601 (a) ‘As received’, (b) the EDMed work surface obtained 

by using peak discharge current IP= 10A  

 

XRD elemental spectra for ‘as received’ Inconel 601 has indicated peaks of varied 

intensity that have been observed at crystallographic planes in directions [1 1 1], [2 0 0], 

[2 2 0] and [3 1 1], respectively corresponding to positions 51.2757
0
, 5981.82

0
, 90.1449

0
 

and 111.6793
0 

along the 2 axis (Fig. 6.2). It has corresponded to a Nickel-Iron-

Chromium based cubic solid solution matrix in which highest intensity peak has been 

observed at crystallographic plane in the direction [1 1 1].  

It has been also found that with increase in peak discharge current (and consequently 

energy input); peak broadening has taken place at the same crystallographic plane 

direction. Considering Full-Width-Half-Maximam (FWHM) of the peaks (at direction of 

the crystallographic plane [1 1 1]; approximately at (~51
0
) position along the 2 axis) for 

the EDMed Inconel 601 work surfaces obtained at different energy input; it has been 

inferred that grain refinement of increasing magnitude has incurred with increase in peak 

discharge current. However, as compared to ‘as received’ Inconel 601, formation of 

Cu0.81Ni0.19 (PDF Index Name: Copper-Nickel; Reference Code: 47-1406) and NiC (PDF 

Index Name: Nickel Carbide; Reference Code: 14-0020) have been found at 

crystallographic planes in directions: [1 1 1] and [2 0 0] (Fig. 6.2). This has been caused 

due to thermo-electrical effect of EDM process. Formation of Copper-Nickel is attributed 

due to wear of Copper tool during EDM operation. Formation of carbide is due to 

pyrolysis of dielectric fluid during spark discharge.    
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Fig. 6.3: XRD spectrum of Ti-6Al-4V (a) ‘As received’, (b) the EDMed work surface obtained by 

using peak discharge current IP= 10A  

 

XRD elemental spectra of ‘as received’ Titanium alloy (Ti-6Al-4V) has exhibited a peak 

pattern almost similar to Ti (PDF Index Name: Titanium; Reference Code: 44-1294). 

Peaks of different intensities have been observed at crystallographic planes in directions 

viz. [1 0 0], [0 0 2], [1 0 1], [1 0 2], [1 1 0], and [1 0 3] corresponding to the positions 

41.3801
0
, 44.9771

0
, 47.1546

0
, 62.7153

0
, 75.1316

0
, and 84.7021

0
, respectively, along the 

2θ axis (Fig. 6.3). In addition, two peaks at positions 92.2074
0 

and 115.1413
0
 have also 

been observed herein which may be due to presence of Titanium oxides on the surface of 

Ti-6Al-4V.  

However, on analysis of XRD patterns of the EDMed Ti-6Al-4V work surface with 

different discharge energy; it has been observed that in comparison with ‘as received’ Ti-

6Al-4V, the machined surface of has undergone remarkable alteration (in peak pattern) 

irrespective of the peak current supplied. All EDMed Ti-6Al-4V work surfaces have 

exhibited highly intense peak of TiC (PDF Index Name: Titanium Carbide; Reference 

Code: 03-1213) at crystallographic planes in directions: [1 1 1], [2 0 0], [2 2 0], [3 1 1], [2 

2 2], and [4 0 0], respectively (Fig. 6.3).  

Additionally, it has also been found that the amount of carbide precipitation has been 

found increased with increasing spark energy input. Carbide formation may be attributed 

due to the phenomenon of dielectric cracking during electric discharge. The dielectric 

fluid being a hydrocarbon, Carbon atoms are generated during pyrolysis of the same. 

These carbon atoms react with Titanium forming a Carbide layer onto the top of the 

machined surface. The formation of such carbide layer over the machined surface is 
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experienced as highly detrimental as it obstructs smooth machining operation to be 

executed. 

 

 

Fig. 6.4.1: EDS elemental spectra revealing chemical composition of work surface for  

(a) ‘As received’ 304SS, and (b) the EDMed 304SS at IP=10A  

 

EDS analysis has exhibited significant Carbon enrichment onto the machined surface of 

304SS, Inconel 601 as well as Ti-6Al-4V; this has resulted in increase of Carbon 

percentage (wt%) at the EDMed work surface as compared to the unaffected parent 

material (Fig. 6.4.1-6.4.3). It has been found that as compared to ‘as received’ 304SS 

(wt% of~0.06%), the EDMed work surface of 304SS has exhibited more Carbon content 

(wt% of~17.54%) as shown in Fig. 6.4.1. Similar conclusion has been made for the 

EDMed work surface of Inconel 601 which has shown significant Carbon enrichment 

(wt% of C~35.99%) as compared to unaffected parent material (wt% of C~0.028%) as 

indicated in Fig. 6.4.2. A representative figure of EDS elemental spectra showing Carbon 

enrichment has been provided for the EDMed work surface of Ti-6Al-4V (wt% of 

C~1.08%) while compared with ‘as received’ Ti-6Al-4V (wt% of C~0.04%) work 

material (Fig. 6.4.3). Such carbon enrichment has resulted formation of carbides onto the 

top surface of EDMed specimen leading to increase in micro-hardness value (Table 6.1).      
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Fig. 6.4.2: EDS elemental spectra revealing chemical composition of work surface for  

(a) ‘As received’ Inconel 601, and (b) the EDMed Inconel 601 at IP=10A  

 

 

Fig. 6.4.3: EDS elemental spectra revealing chemical composition of work surface for 

(a) ‘As received’ Ti-6Al-4V, and (b) the EDMed Ti-6Al-4V at IP=10A  
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6.4.2 Effects of Peak Discharge Current 

SEM micrographs revealing surface integrity of EDMed 304SS, Inconel 601 and Ti-6Al-

4V specimens have exhibited poor surface morphology in terms of crater marks, globules 

of debris, melted material deposition, spherical deposition, pockmark (or chimney), large 

surface cracks, micro-cracks and white layer (Fig. 6.5). However, it is expected that 

intensity of aforesaid surface irregularities may vary with variation of work material as 

well as spark energy input.  

 

Table 6.1: Results of micro-hardness test  

Specimen Micro-hardness [HV0.025] 

Trial 1 Trial 2 Trial 3 Average 

‘As received’ 304SS  295.8 292.1 281.9 289.9 

EDMed 304SS at IP=10A 397.5 486.8 383.2 422.5 

‘As received’ Inconel 601  278.4 255.7 248.1 260.7 

EDMed Inconel 601 at IP=10A 432.4 375 439.2 415.5 

‘As received’ Ti-6Al-4V  328.8 308.5 310.5 315.9 

EDMed Ti-6Al-4V at IP=10A 409.2 483.8 437.1 443.4 
 

 

 

 
Fig. 6.5: SEM micrographs showing inferior surface integrity of the EDMed work surface of  

(a) 304SS, (b) Inconel 601, and (c) Ti-6Al-4V obtained at IP=10A 

 

According to (Ekmekci, 2007), residual stress generated within the EDMed specimen is 

the effect of non-homogeneity of heat flow and metallurgical transformations or the 

localized inhomogeneous plastic deformation that occurs during EDM operation. It is 

well known that the residual stress resulted by rapid cooling and phase changes in the 

white layer, induce surface cracking. Literature on the residual stress of the EDMed part 

component reported that the residual stress is of tensile in nature whose magnitude 

appears to be the highest at the surface. It was also reported that the residual stress 

increases with increase in pulse energy. Such residual stress is harmful since its 

magnitude stimulates surface cracking.  

   



134 

 

 

Fig. 6.6.1: SEM micrographs revealing existence of surface cracks on the EDMed 304SS work 

surface (a) (SCD~0.004µm/µm
2
) at IP=6A, and (b) (SCD~0.015µm/µm

2
) at IP=8A, and  

(c) (SCD~0.0135/µm
2
) at IP=10A  

 

 

 

 
 

Fig. 6.6.2: SEM micrographs revealing existence of surface cracks on the EDMed Inconel 601 

work surface (a) (SCD~0.0064µm/µm
2
) at IP=6A, and (b) (SCD~0.0086µm/µm

2
) at IP=8A, and 

(c) (SCD~0.012µm/µm
2
) at IP=10A  

 

 

 

 
 

Fig. 6.6.3: SEM micrographs revealing existence of surface cracks on the EDMed Ti-6Al-4V 

work surface (a) (SCD~0.0062µm/µm
2
) at IP=6A, and (b) (SCD~0.0115µm/µm

2
) at IP=8A, and 

(c) (SCD~0.012µm/µm
2
) at IP=10A  

 

 

Lee et al. (2004) reported that the formation of surface crack is basically due to the 

differentials of high contraction stresses exceeding the work material’s ultimate tensile 

stress within the white layer depth. However, severity of surface cracking largely depends 
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on thermal conductivity, the ultimate tensile strength and also the fracture toughness of 

the work material. Hence, varied degree of crack intensity (surface crack density), crack 

opening width etc. are found with variation in work materials. In the present work, it has 

been found that SCD has increased with increase in peak discharge current; and, such an 

increasing trend has been found irrespective of the work material studied (Fig. 6.6.1-

6.6.3). Increase in peak discharge current results in increase of the spark energy thereby 

evolution of enormous heat in the vicinity of the surface being machined. This causes 

huge thermal stress stimulating surface cracks to develop. 

As compared to 304SS (thermal conductivity: 14.76 W/m-
0
C at 20 

0
C), the low thermal 

conductivity of Inconel 601 (thermal conductivity: 11.2 W/m-
0
C at 20 

0
C) obstructs the 

heat (that is generated during EDM operation) to be dissipated through bulk of the work 

material. Hence, immense heat is accumulated at the machining zone resulting evolution 

of huge thermal (residual) stress. When such induced residual stress exceeds ultimate 

tensile strength of the work surface of Inconel 601, surface cracking takes place. The 

fracture toughness of Inconel 601 being relatively less as compared to 304SS (228 

MPa.m
1/2

); severity of cracking is expected to be more for the case of the EDMed Inconel 

601 work surface.  

On the contrary, Ti-6Al-4V alloy exhibits very poor thermal conductivity (7.2 W/m-
0
C at 

20 
0
C). Moreover, it has a fracture toughness value much lower (107MPa.m

1/2
) as 

compared to 304SS. Hence, it is expected that severity of surface cracking is likely to be 

more for the EDMed work surface of Ti-6Al-4V. However, XRD analysis has 

predominantly revealed the existence of TiC layer onto the top surface of EDMed Ti-6Al-

4V specimens. Hence, surface cracking that is supposed to be incurred on the EDMed 

work surface of Ti-6Al-4V is surely going to be influenced by the presence of TiC. As 

TiC exhibits high degree of brittleness and possess very low thermal conductivity (even 

less than that of Ti-6Al-4V alloy) as well as low fracture toughness; consequently, 

severity of surface cracking with relatively high crack opening width has been observed 

on most of the EDMed specimen of Ti-6Al-4V (Fig. 6.7).      

Experimental data also has exhibited the effect of peak discharge current on WLT. It has 

been found that with increase in peak current, WLT has assumed approximately an 

increasing trend. This can be explained by the fact that increase in peak current intern 

increases energy input at the spark gap causing more material to be eroded out. Dielectric 

fluid appears increasingly inefficient to flush out the bulk of the total eroded material 
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(debris). During Toff, remaining material re-solidifies adhering on the top of machined 

surface forming white layer.  

 

 

Fig. 6.7: Severity of surface cracking observed on the TiC layer deposited on the  

EDMed Ti-6Al-4V work surface (at IP =10A) 

 

SEM micrographs revealing existence of white layer on the top surface of the EDMed 

specimen have been arranged to infer the effect of peak discharge current on WLT for the 

EDMed 304SS, Inconel 601 and Ti-6Al-4V specimens. With increase in peak discharge 

current, it has been found that irrespective of the work material chosen, WLT has 

assumed an increasing trend. However, the rate of increase of WLT has been found 

different for different work material (Fig. 6.8.1-6.8.3). 

 

 
Fig. 6.8.1: SEM micrographs revealing existence of white layer on the EDMed 304SS work 

surface (a) (WLT~21.875µm) at IP=6A, and (b) (WLT~25.625µm) at IP=8A, and (c) 

(WLT~32.362µm) at IP=10A  
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Fig. 6.8.2: SEM micrographs revealing existence of white layer on the EDMed Inconel 601 work 

surface (a) (WLT~21.732µm) at IP=6A, and (b) (WLT~25.635µm) at IP=8A, and (c) 

(WLT~26.72µm) at IP=10A  

 

 

 

 
Fig. 6.8.3: SEM micrographs revealing existence of white layer on the EDMed Ti-6Al-4V work 

surface (a) (WLT~10.317µm) at IP=6A, and (b) (WLT~14.286µm) at IP=8A, and (c) 

(WLT~19.524µm) at IP=10A  

 

 

 

Fig. 6.9: Non-uniform deposition of the molten material (forming while layer) observed on the  

EDMed Ti-6Al-4V work surface (at IP =8A)  
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It has been noticed that as compared to electro-discharge machined 304SS as well as 

Inconel 601 work surfaces, the while layer developed on the EDMed Ti-6Al-4V specimen 

has corresponded to non-uniform deposition of the molten material (Fig. 6.9). This has 

been caused due to low material removal rate. The poor thermal conductivity of Ti-6Al-

4V has restricted heat to be dissipated thus affecting cooling of the specimen adversely. 

The formation of TiC layer over the machined surface also creates a barrier towards heat 

conduction. As a consequence of the above, molten material has deposited in a non-

uniform manner onto the EDMed work surface of Ti-6Al-4V.   

 

 

6.5 Conclusions 

The conclusions drawn from the aforesaid research have been pointed out below.  

 EDMed work surface of 304SS has exhibited FeC precipitates.  

 Grain refinement has been found attributed to the EDMed work sample of Inconel 

601 at crystallographic plane in the direction [1 1 1]. Moreover, precipitates of 

Cu0.81Ni0.19 and NiC have been observed at crystallographic planes in directions: [1 1 

1] and [2 0 0].  

 Highly intense layer of TiC has been formed on the EDMed work surface of Ti-6Al-

4V. Such carbide precipitation has been found increased with increase in peak 

discharge current. 

 Peak discharge current has shown positive effect on SCD as well WLT. Irrespective 

of the work material chosen; it has been experimentally noticed that with increase in 

peak discharge current, SCD and WLT have assumed an increasing trend.  

 Severity of surface cracking has been found predominant for the EDMed Ti-6Al-4V 

due to presence of brittle TiC layer with very poor thermal conductivity. 

 Non-uniform deposition of molten material (white layer) has been found on the 

EDMed Ti-6Al-4V work surface mainly due to low material removal rate, formation 

of TiC and above all very low thermal conductivity of Ti-6Al-4V as well as TiC.  

 EDS analysis has revealed significant Carbon enrichment onto the EDMed surfaces of 

304SS, Inconel 601 and Ti-6Al-4V due to dielectric cracking. Such Carbon 

enrichment has been attributed to the deposition of carbide layer and consequently 

increase in micro-hardness of the EDMed work surface as compared to ‘as received’ 

parent material.      
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Chapter 7 

 

Machining Performance Optimization 

during EDM of Inconel 718: Application 

of Satisfaction Function Approach 

Integrated with Taguchi Method 
 

 

 

7.1 Coverage  

The present work aims to determine an appropriate setting of process parameters (viz. gap 

voltage, peak discharge current, pulse-on time, duty factor and flushing pressure) for 

achieving optimal machining performance during electro-discharge machining of super 

alloy Inconel 718 by using Copper tool electrode. Experiments have been performed 

based on L25 orthogonal array design of experiment by varying each of the aforesaid 

process parameters at five different levels. The machining performance has been 

evaluated in terms of Material Removal Rate (MRR), Electrode Wear Rate (EWR), 

Surface Roughness (Ra), Surface Crack Density (SCD), White Layer Thickness (WLT), 

and Micro-Hardness (MH) of the EDMed Inconel 718 end product. 

In this part of work, a novel optimization route (combining satisfaction function, distance 

measure approach in conjugation with Taguchi’s philosophy) has been introduced. 

Application feasibility of aforementioned approach has been compared to that of 

Principal Component Analysis (PCA) and Combined Quality Loss (CQL) concept 

integrated with Taguchi method. Additionally, morphology of the EDMed work surface 

of Inconel 718 has been investigated.  
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7.2 Scope of the Work      

Literature depicts that a considerable volume of work has been carried out by the pioneers 

to investigate machining and machinability of Inconel super alloys of different grades 

(Thakur et al., 2009; Rahman et al., 1997; Ho and Newman, 2003; Newton et al., 2009; Li 

et al., 2003; Sengottuvel et al., 2013; Li et al., 2014; Ramakrishnan and Karunamoorthy, 

2008; Kuppan et al., 2008; Newton et al., 2009; Kumar et al., 2011; Kuppan et al., 2011; 

Ay et al., 2013; Li et al., 2003; Lin et al., 2013; Sengottuvel et al., 2013; Ahmad and 

Lajis, 2013; Mohanty et al., 2014a; Dhanabalan et al., 2014; Mohanty et al., 2014b; Li et 

al., 2014; Li et al., 2015; Nayak and Mahapatra, 2015; Sharma et al., 2015; Bozdana and 

Ulutas, 2016). Owing to the difficulties in conventional machining, non-conventional 

machining routes like EDM, WEDM, micro-machining etc. have been recommended to 

get quality end product. During electro-discharge machining there are several controllable 

parameters viz. OCV (also called gap voltage), peak discharge current, pulse-on time, 

duty factor, flushing pressure etc. on the EDM setup (Jameson, 2001). Proper tuning 

(controlling) of these parameters surely results satisfactory machining yield. However, 

these parameters interact in a complicated manner and hence affect the machining 

responses (outputs). In this context, research interest has been evolved to search for a 

suitable machining environment (setting of controllable process parameters) to satisfy 

multi-requirements of process performance yields in terms of Material Removal Rate 

(MRR), Electrode Wear Rate (EWR), roughness average (Ra), Surface Crack Density 

(SCD), While Layer Thickness (WLT) and micro-hardness of the EDMed end product of 

Inconel 718.    

Literature survey reveals that most of the past researchers have considered MRR, EWR, 

and surface roughness of the EDMed Inconel as the major focus towards evaluating 

machining performance; aspects of surface crack and white layer formation (and their 

quantification) have not been emphasized intensively. Hence, it is indeed a necessity to 

optimize aforementioned EDM responses simultaneously and thereby to select the most 

appropriate setting of process parameters for achieving satisfactory machining 

performance. This invites a multi-response optimization problem in which the optimal 

solution (parameters setting) needs to be determined from the discrete domain of the 

controllable process parameters under consideration.        

Since, controllable process parameters assume a discrete domain of variation (as per 

specification and provision of factorial adjustment on the EDM setup), application of 
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Taguchi method seems fruitful in this context. However, traditional Taguchi approach 

(Phadke, 1998; Phadke 1989; Park, 1996; Yang and Tarng, 1988; Ghani et al., 2004; Pang 

et al., 2014) fails to solve multi-response optimization problem. As the current problem is 

associated with multiple performance characteristics (responses) of EDM, it is necessary 

to aggregate multi-performance features into an equivalent single index; which can finally 

be optimized by Taguchi method.  

Literature is rich in addressing a variety of multi-response optimization problems in 

manufacturing domain. Application of grey-Taguchi (Datta et al., 2008), TOPSIS-

Taguchi (Singh et al., 2011), desirability function based Taguchi (Singh et al., 2013), and 

Utility based Taguchi (Singh et al., 2006) approaches etc. have been recommended in 

existing literature. However, these approaches rely on their own principle (philosophy to 

search the optimal solution); and hence, the expected outcome may be different for 

different approaches. Thus, the expertise of the Decision-Maker (DM) plays an important 

role to recommend the most suitable compromise solution from amongst the set of 

possible optimal solutions. Hence, research is still being continued to develop alternative 

approaches to provide reliable outcome of such a multi-response optimization problem.  

In course of optimizing multi-responses simultaneously, the aggregation of multi-

responses must be carried out to compute a unique performance index so as to convert the 

present problem into an equivalent single objective optimization case. Then Taguchi 

method can be attempted to optimize the unique quantitative index.  

However, in such a multi-response optimization problem, assignment of priority weight 

to individual responses is very important whilst converting multi-responses into a unique 

performance index. This is because, assignment of response priority weight solely 

depends on the discretion of the DM; and it can vary according to the variation of human 

perception from a Decision-Maker to another one. Another drawback of aforementioned 

approaches is that these methods assume negligible response correlation which seems 

practically invalid. In order to overcome this, application of Principal Component 

Analysis (PCA) has been prescribed by past researchers (Datta et al., 2009). This 

technique is capable of eliminating response correlation and thus it converts correlated 

responses into uncorrelated quality indices. The uncorrelated quality indices (also called 

principal components or PCs) can now be treated as ‘new response variables’ to go for 

optimization by different Taguchi based multi-response optimization approaches.                    

In this context, the present work aims to develop an integrated approach towards multi-

response optimization in a case experimental study focusing on EDM of Inconel 718 
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super alloys. Principal Component Analysis (PCA) integrated with satisfaction function 

and distance based approach has been proposed herein in amalgamation with Taguchi 

method to optimize machining performance features during EDM of Inconel 718. The 

optimal setting thus obtained has been verified to that of using Principal Component 

Analysis (PCA) and Combined Quality Loss (CQL) based Taguchi approach already 

highlighted in existing literature resource (Routara et al., 2010). Optimal setting has been 

verified finally by confirmatory test. Apart from that, surface morphology of EDMed 

Inconel 718 work surface has been studied in detail with the help of scanning electron 

microscopy. 

 

 

7.3 Data Analysis: Methodology  

7.3.1 Satisfaction Function  

Martel and Aouni (1990) used the concept of the satisfaction functions as a powerful tool 

to aggregate simultaneously several quality characteristics. The satisfaction functions are 

not necessarily linear and symmetric as in the case of fuzzy membership functions. The 

general shape of the satisfaction function is shown in Fig. 7.1, where  xS is the 

satisfaction function associated with deviation ;x  idx the indifference threshold; ox is the 

dissatisfaction threshold; and vx is the veto threshold (Cherif et al., 2008). The DM is fully 

satisfied when the deviation x is within the interval  .,0 idx  Therefore, within the range of 

indifference  ,,0 idx the deviation x is not penalized and the DM’s satisfaction level will be 

at its maximal value of 1. Outside this interval, where  ,, oid xxx the DM’s satisfaction 

function is decreasing monotonously. Besides, any solution leading to a deviation that 

exceeds the veto threshold vx will be rejected. Briefly, satisfaction function converts the 

deviations in the interval of  vid xx , to a satisfaction value in the interval of  .1,0  In this 

work, satisfaction function approach has been used to convert of the machining 

performance parameters viz. MRR, EWR, Ra, SCD, WLT and MH to satisfaction values 

between 0 and 1, regardless of their physical units. When no information about the 

preference of the DM is available, the satisfaction function is assumed to be linear (Suh, 

1990; Chen, 1997; Chen, 2001; Fiat et al., 2008; Kentli and Kar, 2011). 
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Fig. 7.1: General shape of the satisfaction function 

 

Using the values obtained from the satisfaction functions for each of the machining 

characteristics, a distance function has been explored to combine these values into a 

composite number. This function is similar to Euclidean norm. The parametric setting 

which corresponds to the minimum distance Td from the ideal point (ideal satisfaction 

values for each of the performance characteristics) is the most suitable one. 
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Assume that there exist a total n number of performance characteristics; iS is the 

satisfaction value of thi response. 

When the value of EWR, Ra, SCD, WLT and MH (individually) is at the minimum of the 

set, it provides the best satisfaction, and when it is at the maximum, it provides zero 

satisfaction. Similarly, when the MRR is at the minimum of the set, it provides zero 

satisfaction, and when it is at the maximum it provides the maximum satisfaction. 

How the satisfaction function is to be used is shown in Fig. 7.2.1 in the case where the 

maximum satisfaction is obtained from the minimum value of the performance 

characteristics, such as EWR, Ra, SCD, WLT and MH. Fig. 7.2.2 shows the case where 

the maximum satisfaction is obtained from the maximum value of the performance 

characteristic, say MRR. 
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Fig. 7.2.1: Degree of satisfaction chart for a characteristic where the minimum value provides the 

best satisfaction (Lower-is-Better; LB) 

 

 

 

Fig. 7.2.2: Degree of satisfaction chart for a characteristic where the maximum value provides the 

best satisfaction (Higher-is-Better; HB) 
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7.3.2 Proposed Optimization Module  

A satisfaction function and distance based approach has been attempted herein in 

conjugation with Taguchi’s philosophy for optimization of EDM performance features on 

Inconel 718. Principal Component Analysis (PCA) has been carried out to eliminate 

response-correlation and to transform correlated responses into lesser number of 

uncorrelated quality indices, called major principal components (PCs). Quality Loss (QL) 

concept has been introduced herein representing the absolute deviation of individual PCs 

with respect to the ideal values. Satisfaction values corresponding to the QL of individual 

PCs for each experimental run have been computed next. A minimum value of QL yields 

maximum satisfaction; as QL corresponds to Lowe-is-Better (LB) criteria. Now, 

satisfaction values of individual PCs have been utilized to compute a unique distance 

measure  Td . This distance measure represents the deviation of the machining yield from 

the ideal satisfaction value. Finally, Td has been optimized (minimized) by Taguchi 

method. The optimal parametric setting thus obtained has been compared to that of PCA 

and Combined Quality Loss (CQL) based Taguchi optimization approach (Routara et al., 

2010). The flow chart of aforesaid two optimization approaches has been depicted in 

APPENDIX, provided at the end of this chapter.  

 

7.4 Results and Discussion   

Experimental data as depicted in Table 2.12 of Chapter 2 (Phase V), have been 

normalized first. Normalization has been carried out to eliminate criteria conflict and 

dimensional effect. For normalizing the dataset of MRR (which corresponds to HB 

criteria), the following formula has been used. 

ni

i

i
x

x
x

,...,2,1max

*



                                                                                                             (7.2) 

Here *

ix is the normalized data for thi experimental run  ;,...,2,1 ni  ix is the experimental 

data for thi experimental run; maxx is the maximum value of the data series .,...,2,1 nixi   

For normalizing the dataset of EWR, Ra, SCD, WLT and MH (all correspond to LB 

criteria), the following formula has been used. 

nii

i
x

x
x

,...,2,1

min*



                                                                                                              (7.3) 
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Here *

ix is the normalized data for thi experimental run  ;,...,2,1 ni  ix is the experimental 

data for thi experimental run; minx is the minimum value of the data series .,...,2,1 nixi   

It is to be noted that after normalization, the criteria requirement of the normalized 

responses appear as Higher-is-Better (HB); and the ideal normalized data corresponds to a 

value unity. The normalized data have been depicted in Table 7.1.  

As the present research aims at optimizing multi-response features in relation to EDM of 

Inconel 718 by applying a satisfaction function and distance measure based Taguchi 

approach; the specific requirements of Taguchi method need to be examined first. Multi-

objective optimization by Taguchi method can be applicable only in the case where 

responses are uncorrelated. Hence, a correlation test has been carried out on exploring 

normalized dataset of the responses (Table 7.1) and results obtained has been furnished in 

Table 7.2. Pearson’s correlation coefficients between two response pairs (along with p-

value) have been shown in Table 7.2. The non-zero value of correlation coefficient of all 

response pairs indicates the existence of correlation to some extent. The correlation 

between MRR ~ SCD and EWR ~ Ra appears significant (at 95% confidence level) with 

correlation coefficient 0.697 (p-value 0) and 0.422 (p-value 0.032), respectively. 

 

Table 7.1: Normalized data 

Sl. No. Normalized response data 

MRR EWR Ra SCD WLT MH 

Ideal sequence 1.000 1.000 1.000 1.000 1.000 1.000 

1 0.100 0.100 0.561 0.354 0.864 0.803 

2 0.158 0.500 0.337 0.337 0.850 0.909 

3 0.431 0.500 0.234 0.371 0.982 0.799 

4 0.544 0.143 0.216 0.412 0.895 0.760 

5 0.989 0.100 0.281 0.397 0.942 0.905 

6 0.055 0.071 0.571 0.364 0.873 0.901 

7 0.170 0.083 0.485 0.368 0.975 0.681 

8 0.302 0.250 0.264 0.368 0.950 0.907 

9 0.435 0.200 0.278 0.359 0.820 0.943 

10 1.000 0.077 0.222 1.000 0.938 0.898 

11 0.059 1.000 0.719 0.296 0.838 0.894 

12 0.113 1.000 0.386 0.344 0.829 0.904 

13 0.205 1.000 0.294 0.333 0.828 0.868 

14 0.552 0.500 0.250 0.602 0.856 0.869 

15 0.892 0.167 0.219 0.448 0.872 0.903 

16 0.026 1.000 0.500 0.326 0.909 0.918 

17 0.055 0.500 0.405 0.357 0.921 1.000 

18 0.253 0.500 0.296 0.519 0.918 0.914 

19 0.503 0.500 0.376 0.667 0.891 0.903 

20 0.550 1.000 0.216 0.509 0.884 0.858 

21 0.015 1.000 1.000 0.359 0.946 0.932 

22 0.081 1.000 0.376 0.479 1.000 0.946 

23 0.209 0.333 0.291 0.412 0.940 0.938 

24 0.282 0.250 0.232 0.483 0.843 0.883 

25 0.539 0.500 0.206 0.560 0.873 0.816 
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Table 7.2: Check for response correlation 

Correlation between 

response pairs 

Pearson’s correlation 

coefficient 

p-value Remark  

MRR ~ EWR -0.287 0.156 Insignificant  

MMR ~ Ra -0.237 0.244 Insignificant  

MRR ~ SCD 0.697 0.000 Significant  

MRR ~ WLT 0.189 0.355 Insignificant  

MRR ~ MH 0.027 0.894 Insignificant  

EWR ~ Ra 0.422 0.032 Significant  

EWR ~ SCD -0.013 0.949 Insignificant  

EWR ~ WLT 0.017 0.933 Insignificant  

EWR ~ MH 0.354 0.076 Insignificant  

Ra ~ SCD 0.08 0.697 Insignificant  

Ra ~ WLT 0.252 0.214 Insignificant  

Ra ~ MH 0.276 0.173 Insignificant  

SCD ~ WLT 0.328 0.102 Insignificant  

SCD ~ MH 0.211 0.300 Insignificant  

WLT ~ MH 0.44 0.830 Insignificant  

 

Table 7.3: Results of PCA 

Eigen analysis of the correlation matrix 

 PC1 PC2 PC3 PC4 PC5 PC6 

Eigenvalue 1.9102 1.8211 0.9606 0.5739 0.5087 0.2254 

Eigenvector 

035.0

316.0

616.0

139.0

261.0

657.0





 

495.0

295.0

240.0

570.0

530.0

062.0











 

554.0

712.0

128.0

313.0

180.0

199.0




 

667.0

370.0

288.0

192.0

513.0

188.0









 

026.0

409.0

084.0

697.0

581.0

034.0









 

031.0

050.0

675.0

185.0

131.0

699.0


 

Accountability 

proportion (AP) 

0.318 0.304 0.160 0.096 0.085 0.038 

Cumulative 

Accountability 

proportion (CAP) 

0.318 0.622 0.782 0.878 0.962 1.000 

 

In order to eliminate response correlation, Principal Component Analysis (PCA) [Su and 

Tong, 1997; Tong and Wang, 2002; Fung and Kang, 2005; Tong et al., 2005; Liao, 2006; 

Sibalija and Majstorovic, 2009; Gauri and Pal, 2014] has been carried out on the dataset 

of Table 7.1; results have been depicted in Table 7.3. It has been seen from Table 7.3 that 

first three principal components (PC1, PC2 and PC3) could take care 31.8%, 30.4% and 

16% data variation, respectively. Rest of the principal components viz. PC4, PC5 and 

PC6 have corresponded to very low accountability proportion i.e. 9.6%, 8.5% and 3.8%, 

respectively. Hence, first three principal components (PC1, PC2, and PC3) have been 
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considered as major principal components (with cumulative accountability proportion 

87.8%) and considered for further analysis.  

By utilizing normalized response data from Table 7.1 and the components of eigenvector 

of PC1, PC2 and PC3 obtained from the PCA result in Table 7.3; the values of major 

principal components have been computed as shown in Table 7.4. Table 7.4 has 

represented values of individual principal components in all experimental settings 

including ideal situation. Thus, by exploring PCA, correlated multi-response features (i.e. 

MRR, EWR, Ra, SCD, WLT, MH) have been transformed into three uncorrelated quality 

indices called principal components PC1, PC2 and PC3 to be utilized further in course of 

Taguchi based optimization approach. Now, Quality Loss (QL) estimates for individual 

principal components have been computed for each of the experimental runs as shown in 

Table 7.5.  

Table 7.4: Computed major Principal Components (PCs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sl. No. Major Principal Components (PCs) 

PC1 PC2 PC3 

Ideal sequence 1.224 -2.068 0.036 

1 0.481 -1.104 -0.263 

2 0.435 -1.229 -0.042 

3 0.687 -1.146 -0.106 

4 0.853 -0.905 -0.097 

5 1.159 -0.973 0.008 

6 0.469 -1.151 -0.231 

7 0.582 -1.023 -0.373 

8 0.655 -1.082 -0.105 

9 0.708 -1.032 0.020 

10 1.550 -1.067 0.101 

11 0.157 -1.697 -0.097 

12 0.265 -1.517 0.037 

13 0.330 -1.438 0.063 

14 0.869 -1.200 0.070 

15 1.096 -0.970 0.076 

16 0.207 -1.614 -0.068 

17 0.395 -1.345 -0.082 

18 0.636 -1.266 -0.033 

19 0.872 -1.318 0.023 

20 0.693 -1.427 0.133 

21 0.162 -1.926 -0.241 

22 0.384 -1.618 -0.049 

23 0.593 -1.170 -0.086 

24 0.682 -1.049 -0.020 

25 0.844 -1.145 0.035 
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Table 7.5: Computed Quality Loss (QL) estimates 

 

For example, (for Run No. 1) QL(1) i.e. quality loss estimate for PC1 has been computed 

as the absolute value of the deviation of PC1 with respect to the ideal value i.e.

.481.0224.1  Now, satisfaction values with respect to the quality loss of individual 

principal components have been computed and shown in Table 7.6. In computing 

satisfaction values of quality loss estimates (corresponding to three major PCs), the 

Lowe-is-Better (LB) criteria requirement has been used (refer to Fig. 7.2.1). Next, the 

total distance measure (dT) for each of the experimental runs has been computed (using 

Eq. 7.1) and shown in Table 7.6. The total distance measure  Td  has been treated as 

single objective function and finally optimized (minimized) by Taguchi method. Table 

7.7 has exhibited mean response (S/N ratio of dT) values for different factorial settings; 

the same has been plotted in Fig. 7.3 in order to predict the optimal setting. The optimal 

setting has appeared as (A4B5C1D5E3) i.e. OCV=80V, IP=11A, Ton=100µs, τ =85% and 

FP=0.4 bar. The predicted S/N ratio of dT as obtained through Taguchi analysis at the 

Sl. 

No. 

Quality loss (QL) 

estimates 

Combined Quality Loss 

(CQL) [Lower-is-Better] 

Corresponding S/N 

ratio 

[dB] 

Predicted 

S/N ratio 

[dB] QL(1) QL(2) QL(3) 

1 0.743 0.964 0.299 0.738 2.63887 8.52912 

2 0.789 0.839 0.078 0.663 3.56973 

3 0.537 0.922 0.142 0.606 4.35055 

4 0.371 1.163 0.133 0.630 4.01319 

5 0.065 1.095 0.028 0.458 6.78269 

6 0.755 0.917 0.267 0.718 2.87751 

7 0.642 1.045 0.409 0.751 2.48720 

8 0.569 0.986 0.141 0.643 3.83578 

9 0.516 1.036 0.016 0.616 4.20839 

10 0.326 1.001 0.065 0.535 5.43292 

11 1.067 0.371 0.133 0.605 4.36489 

12 0.959 0.551 0.001 0.604 4.37926 

13 0.894 0.630 0.027 0.614 4.23663 

14 0.355 0.868 0.034 0.489 6.21382 

15 0.128 1.098 0.040 0.487 6.24942 

16 1.017 0.454 0.104 0.611 4.27918 

17 0.829 0.723 0.118 0.642 3.84930 

18 0.588 0.802 0.069 0.565 4.95903 

19 0.352 0.750 0.013 0.437 7.19037 

20 0.531 0.641 0.097 0.485 6.28517 

21 1.062 0.142 0.277 0.544 5.28802 

22 0.840 0.450 0.085 0.534 5.44917 

23 0.631 0.898 0.122 0.631 3.99941 

24 0.542 1.019 0.056 0.628 4.04081 

25 0.380 0.923 0.001 0.513 5.79765 
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setting (A4B5C1D5E3) appears as (-1.55193 dB); which has been found the highest as 

compared to the entries of S/N ratios for all experimental settings (refer to Table 7.6). 

This has inferred satisfactory prediction of the optimal setting. This has further been 

validated by confirmatory test to be discussed in later sections. 

 

Table 7.6: Computed satisfaction values 

 

7.5 Comparative Analysis 

A comparative analysis has been made to validate application potential of satisfaction 

function and distance based approach in combination with Taguchi philosophy. The 

optimal setting as obtained in aforesaid part of data analysis has been compared to that 

obtained by exploring Combined Quality Loss (CQL) (adapted from PCA) based Taguchi 

method (Routara et al., 2010). In Weighted Principal Component Analysis (WPCA) 

Sl. No. Satisfaction value Total distance 

measure 

Td [Lower-is-

Better] 

Corresponding S/N 

ratio 

[dB] 

Predicted S/N 

ratio 

[dB] 
SQL(1) SQL(2) SQL(3) 

Ideal 

sequence 

1.000 1.000 1.000 0.000 - - 

1 0.304 0.171 0.269 1.474 -3.36995 -1.55193 

2 0.261 0.279 0.809 1.438 -3.15518 

3 0.497 0.207 0.653 1.372 -2.74708 

4 0.652 0.000 0.675 1.456 -3.26323 

5 0.939 0.058 0.932 1.375 -2.76605 

6 0.292 0.212 0.347 1.457 -3.26919 

7 0.398 0.101 0.000 1.473 -3.36405 

8 0.467 0.152 0.655 1.415 -3.01513 

9 0.516 0.109 0.961 1.424 -3.07020 

10 0.694 0.139 0.841 1.354 -2.63237 

11 0.000 0.681 0.675 1.450 -3.22736 

12 0.101 0.526 0.998 1.426 -3.08239 

13 0.162 0.458 0.934 1.413 -3.00284 

14 0.667 0.254 0.917 1.291 -2.21852 

15 0.880 0.056 0.902 1.380 -2.79758 

16 0.047 0.610 0.746 1.436 -3.14309 

17 0.223 0.378 0.711 1.411 -2.99054 

18 0.449 0.310 0.831 1.334 -2.50312 

19 0.670 0.355 0.968 1.235 -1.83334 

20 0.502 0.449 0.763 1.246 -1.91036 

21 0.005 0.878 0.323 1.416 -3.02127 

22 0.213 0.613 0.792 1.330 -2.47703 

23 0.409 0.228 0.702 1.395 -2.89148 

24 0.492 0.124 0.863 1.423 -3.06410 

25 0.644 0.206 0.998 1.325 -2.44432 
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(Liao, 2006), accountability proportions of individual principal components are treated as 

priority weights, thus facilitating computation of Composite Principal Component (CPC). 

ni wPCnwPCiwPCwPCCPC  ......21 21                                          (7.3) 

Assuming there are a total n number of principal components and iw is the accountability 

proportion (treated as priority weight) of thi principal component i.e. .PCi Also, .1
1




n

i

iw  

 

Table 7.7: Mean response (S/N ratio of Td ) table: Prediction of optimal setting by optimizing dT 

 

Level Mean response values at different factorial levels  

A B
*
 C D E 

1 -3.060 -3.206 -2.640 -2.865 -3.047 

2 -3.070 -3.014 -2.789 -3.000 -2.880 

3 -2.866 -2.832 -2.863 -2.734 -2.663 

4 -2.476 -2.690 -2.990 -2.990 -2.785 

5 -2.780 -2.510 -2.970 -2.664 -2.877 

Delta 0.594 0.696 0.349 0.336 0.384 

Rank 2 1
 4 5 3 

*The most significant factor 
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Fig. 7.3: Prediction of optimal setting (A4B5C1D5E3) by optimizing (minimizing) Td  

 

This CPC is finally optimized (maximized) by using Taguchi method. However, in the 

present data analysis, (refer to Table 7.4), the values of PC1 for all experimental runs 

have appeared positive; whereas, for values of PC2, all have appeared as negative; and for 
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PC3 combination of negative and positive values. Thus, difficulty has been experienced 

in computing CPC. Therefore, quality loss estimates (corresponding to individual PCs) 

have been computed as depicted in Table 7.5.  

A Combined Quality Loss (CQL) (corresponding to individual experimental runs) has 

been computed by aggregating quality loss estimates of individual PCs (using Eq. 7.4) as 

shown in Table 7.5. 

NNN wQLwQLwQLCQL 321 )3()2()1(                                                               (7.4) 

Here, QL(1), QL(2) and QL(3) have been the quality loss estimates for major principal 

components (PC1, PC2 and PC3). Also, 160.0,304.0,318.0 321  www  have been the 

weights (accountability proportion) of principal components (PC1, PC2 and PC3), 

respectively. Since all principal components (PC1 to PC6) have not been considered here, 

therefore, .1321  www  Thus, normalized weights have been explored in (Eq. 7.4), so 

as to satisfy the condition .1321  NNN www  

Finally, Taguchi method has been explored to optimize (minimize) CQL. Table 7.8 has 

represented mean response (S/N ratio of CQL) values at different factorial levels. The 

same has been plotted in Fig. 7.4. The predicted optimal setting has appeared as 

(A4B5C1D5E3) [i.e. OCV=80V, IP=11A, Ton=100µs, τ =85% and FP=0.4 bar] by 

optimizing CQL through Taguchi method. Taguchi predicted S/N ratio value of CQL (at 

the optimal setting) has appeared as (8.52912 dB) which has been found to be the highest 

as compared to all S/N ratio entries of CQL for all experimental runs (refer to Table 7.5). 

This has indicated pleasant prediction result. It has also been observed that the optimal 

setting has appeared the same in aforesaid two approaches (i) optimization of dT in 

satisfaction function and distance based Taguchi method and (ii) optimization of CQL in 

PCA based Taguchi method.   

 

Table 7.8: Mean response (S/N ratio of CQL) table:  

Prediction of optimal setting by optimizing CQL  

Level Mean response values at different factorial levels  

A B* C D E 

1 4.271 3.890 4.939 4.302 4.123 

2 3.768 3.947 4.777 4.312 4.580 

3 5.089 4.276 4.306 4.618 5.328 

4 5.313 5.133 4.461 4.599 4.572 

5 4.915 6.110 4.873 5.525 4.752 

Delta 1.544 2.220 0.633 1.222 1.205 

Rank 2 1 5 3 4 
*The most significant factor 
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Fig. 7.4: Prediction of optimal setting (A4B5C1D5E3) by optimizing (minimizing) CQL  

 

 

Fig. 7.5: Characteristics of EDMed work surface of Inconel 718 obtained at parameters setting 

[OCV=50V, IP=11A, Ton=500µs, τ =85% and FP=0.6bar]   
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7.6 Study of the characteristics of EDMed work surface of 

Inconel 718 

It has been observed that EDM process has produced much damage on the machined 

Inconel 718 work surface such as globules of debris, pockmarks, melted drops, craters of 

varying sizes and cracks (Fig. 7.5) resulting an uneven surface profile. Fig. 7.6a, b has 

depicted characteristics of the EDMed Inconel 718 work surface as compared to ‘as 

received’ parent material. As compared to the work surface before machining, the 

EDMed surface has appeared disappointing due to uneven surface texture, melted metal 

deposition, formation of while layer, pockmarks, surface cracks etc.; the causes behind 

formation of such surface irregularities has clearly been reported in (Hasçalik and 

Çaydaş, 2007;  Rao et al., 2014).  

 

 

Fig. 7.6: SEM micrographs of Inconel 718 before and after machining: (a) ‘As received’ Inconel 

718, and (b) EDMed work surface obtained at parameters setting (A1B1C1D1E1) i.e. [OCV=50V, 

IP=3A, Ton=100µs, τ =60% and FP=0.2 bar]  

 

Table 7.9: Results of confirmatory test  

 

 

Setting(s) Experimental data 

MRR 

[mm
3
/min] 

EWR 

[mm
3
/min] 

Ra 

[μm] 

SCD  

[μm/μm
2
] 

WLT 

[µm] 

MH 

[HV0.05] 

A2B3C4D5E1 26.92124 0.044793 8.067 0.0152 17.523 388.9667 

A4B5C1D5E3 

(Optimal) 

54.67643468 0.156950673 3.9000 0.00407 5.4120 319.5667 
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7.7 Confirmatory Test 

In order to validate the predicted optimal setting, confirmatory test has been conducted on 

that particular setting i.e. (A4B5C1D5E3) [OCV=80V, IP=11A, Ton=100µs, τ =85% and 

FP=0.4 bar] and corresponding response features have been noted down. Table 7.9 has 

depicted a comparative study on the values of machining performance characteristics 

obtained by exploring the optimal setting (A4B5C1D5E3) to that of obtained by using an 

arbitrary setting i.e. A2B3C4D5E1 (apart from the optima). It has been observed that 

optimal setting has produced better results in terms of higher MRR and lesser extent of 

Ra, SCD, WLT and MH. The SEM images revealing improvement in SCD and WLT 

(reduced) in optimal setting (as compared to setting A2B3C4D5E1) have also been 

provided in Fig. 7.7a, b and Fig. 7.8a, b, respectively.  

 

 

Fig. 7.7: Comparison on SCD of EDMed work surface of Inconel 718 obtained at parameters 

setting (a) A2B3C4D5E1 [OCV=60V, IP=7A, Ton=400µs, τ =85% and FP=0.2 bar], and (b) 

A4B5C1D5E3 i.e. Optimal Setting [OCV=80V, IP=11A, Ton=100µs, τ =85% and FP=0.4 bar] 

 

 

However, it seems that the setting A2B3C4D5E1 offers better result in term as of EWR 

(0.044793 mm
3
/min) as compared to the optimal which corresponds to EWR value of 

0.156950673 mm
3
/min. As, EWR corresponds to Lower-is-Better (LB) criteria, 

apparently it seems that the selected arbitrary setting is better as compared to the 

predicted optimal. However, it is to be noted that optimization is nothing but searching a 

compromise solution. In case of multi-response optimization problem, where multiple 

responses are aggregated to compute a single index for final optimization; 100% 

fulfillment of all the responses cannot be possible simultaneously. It is said that the 

optimal setting is capable of satisfying the responses up to the maximum possible extent. 
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This has been well understood from Table 7.9 in the sense that the predicted optimal 

setting has been found superior (as compared to the setting A2B3C4D5E1) as it has 

satisfied the requirements of majority of the response features viz. MRR, Ra, SCD, WLT 

and MH. 

 

 

 

Fig. 7.8: Comparison on WLT obtained onto the top surface EDMed Inconel 718 obtained at 

parameters setting (a) A2B3C4D5E1 [OCV=60V, IP=7A, Ton=400µs, τ =85% and FP=0.2bar], and 

(b) and A4B5C1D5E3 i.e. Optimal Setting [OCV=80V, IP=11A, Ton=100µs, τ =85% and FP=0.4bar] 

 

 

7.8 Conclusions  

The conclusions of the aforesaid work have been pointed out below.  

 The proposed satisfaction function and distance based approach in conjugation with 

Taguchi’s philosophy has been demonstrated herein to determine the best suitable 

combination of EDM parameters (viz. gap voltage, peak current, pulse-on-time, duty 

factor and flashing pressure) to improve machining performances in terms of MRR, 

EWR, Ra, SCD, WLT, and MH. Owing to the inability of Taguchi method to solve 

multi-response optimization problem, the proposed satisfaction function and distance 

measure based approach seems helpful in aggregating multiple response features into 

an equivalent single index (i.e. Td  in the present case) which has been optimized 

finally by Taguchi method.  

 Application potential of proposed satisfaction function and distance measure based 

Taguchi optimization route has been verified by Combined Quality Loss (CQL) 

concept (adapted from PCA) based Taguchi approach. The optimal setting has 

appeared the same in both the cases. With the EDM setup utilized herein and within 
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selected parametric domain, the optimal machining environment has been obtained as: 

OCV=80V, Ip=11A, Ton=100µs, τ =85% and FP=0.4 bar to maximize MRR and 

minimize EWR, Ra, SCD, WLT and MH. Optimal result has also been verified by 

confirmatory test. 

 Before analysing experimental data to go for applying Taguchi based optimization 

routes, it is customary to check for response correlation. Hence, application of PCA 

has been recommended at this stage to eliminate response correlation and to convert 

correlated responses into equal or lesser number of uncorrelated quality indices called 

principal components. This helps in reduction of number of responses in the case 

where responses are very large in number. Based on accountability proportion, major 

principal components can be considered and treated as uncorrelated responses to go 

for further optimization computations.   

 Mean response tables (mean S/N ratio of Td  and mean S/N ratio of CQL) have 

indicated that peak current (IP) has been found to be the most significant parameter to 

influence machining performances.     

 SEM images of the EDMed work surfaces of Inconel 718 have also been analysed 

herein. It has been observed that by proper tuning of process parameters surface 

defects, irregularities, formation of cracks, white layer etc. can be controlled. 

Confirmatory experiment has revealed that by utilizing optimal setting of process 

parameters, formation of surface cracks, and white layer could be minimized to a 

major extent.  

 The proposed satisfaction function and distance measure based approach (in 

conjugation with Taguchi’s philosophy) seems more practical than CQL based 

Taguchi approach; the former does not require assignment of response weight in 

computing Td . Whilst in case of computing CQL, accountability proportions of major 

principal components are assumed as individual response weights. In practice 

assignment of exact weight of the response is indeed difficult since it depends on 

perception of the Decision-Makers.  
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APPENDIX: Flowchart of the optimization modules attempted herein 

Selection of parametric domain and design of 

experiment 

Experimentation and data collection 

Data normalization 

Check for correlation 

Application of PCA: Computation of major 

Principal Components (PCs) 

Computation of Quality Loss (QL) estimates 

Computation of Satisfaction 

values 

Computation of Combined 

Quality Loss (CQL) 

Computation of total distance 

(d
T
) measure 

Optimization of CQL by 

Taguchi method 

Optimization of d
T
 by Taguchi 

method  

Confirmatory test 

Confirmatory test 

Optimization Route 2 Optimization Route 1 
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Chapter 8 

 

Machining Performance Optimization 

during Electro-Discharge Machining of 

Inconel 601, 625, 718 and 825 Super 

Alloys 
 

 

8.1 Coverage  

Nickel-based super alloy (such as Inconel) is widely used in aerospace, nuclear, and 

chemical industries because of their excellent mechanical and chemical properties at 

elevated temperatures. Inconel comes under the category of ‘difficult-to-cut’ materials. 

Difficulty is faced whilst machining of Inconel because of its poor thermal conductivity, 

high toughness, high hardness, and extremely high work hardening behaviour. Moreover, 

it contains highly abrasive carbide particles which tend to stick on the tool surface, 

resulting inferior surface finish. Moreover, enormous heat is generated during machining 

which leads to reduction in tool life. Hence, machining and machinability aspects of 

Inconel have become a predominant research agenda today.  

Technological advances have led to an extensive usage of high strength, high hardness 

materials in manufacturing industries. In course of machining ‘difficult-to-cut’ materials, 

conventional manufacturing processes are increasingly being replaced by the advanced 

techniques such as electro-discharge machining, ultrasonic machining, electro-chemical 

machining and laser machining. Amongst these, EDM has found widespread application 

in MEMS (Micro-Electro-Mechanical Systems); tool and die, automobile and aerospace 

industries. Therefore, promoting the quality of the EDMed product and thereby achieving 

satisfactory machining performance; a thorough understanding of the relationship 

between the EDM parameters and the machined surface integrity in consideration with 

the particular tool-work combination has become an important research focus. EDM is an 

electro-thermal machining process, where electrical energy is used to generate electrical 

spark and material removal mainly occurs due to thermal energy of the spark. It has 
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become an excellent option to machine ‘difficult-to-cut’ materials and high temperature 

resistant alloys; super alloy Inconel, in the present case. 

An experimental investigation on assessing machining performance during electro- 

discharge machining of Inconel 625, 718, 601 and 825 has been delineated herein. 

Attempt has been made on evaluating optimal machining parameters setting to achieve 

satisfactory machining yield. Based on 5-factor-4-level L16 orthogonal array, experiments 

have been carried out by varying gap voltage, peak current, pulse-on time, duty factor and 

flushing pressure (each varied at four discrete levels) to examine the extent of machining 

performance in terms of material removal rate, electrode wear rate, surface roughness, 

and surface crack density of the EDMed end products obtained by utilizing different 

parameters settings (for different grades of Inconel viz. 601, 625, 718, 825, respectively). 

An integrated optimization route combining satisfaction function approach, Fuzzy 

Inference System (FIS) in conjugation with Taguchi’s philosophy has been proposed for 

simultaneous optimization of aforementioned multiple performance indices. The most 

favourable machining parameters setting has been obtained as: [gap voltage= 90V, Peak 

current= 5A, Pulse-on time= 200µs, duty factor = 70%, flushing pressure= 0.6 bar] for 

Inconel 625; [gap voltage = 90V, Peak current = 5A, Pulse-on time = 200µs, duty factor = 

85%, flushing pressure = 0.4 bar] for Inconel 718; [gap voltage = 80V, Peak current = 

7A, Pulse-on time = 500µs, duty factor = 80%, flushing pressure = 0.3 bar] for Inconel 

601; and [gap voltage = 80V, Peak current = 5A, Pulse-on time = 300µs, duty factor = 

85%, flushing pressure = 0.4 bar] for Inconel 825. In addition to that, analysis of SEM 

micrographs has been carried out to understand surface irregularities in terms of surface 

cracks, white layer for the EDMed Inconel end products (of different grades).  

 

 

8.2 Scope of the Work 

Rapid innovations and advancements in the field of space research, missile and nuclear 

industry require highly complicated and precise components made out of advanced 

materials such as super alloys. However, super alloys (for example Inconel) are difficult 

to be processed through traditional machining routes, from the standpoint of production 

economics as well as environmental hazards and safety (Yao et al., 2005). 

Aforementioned challenges have imposed an impulsive motivation towards development 

of non-traditional machining alternatives (Jain, 2008). The fact is well attributed that 
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traditional manufacturing/production processes are unsuitable to machine innovative 

materials such as super alloys like Inconel, as well as to produce intricate geometrical 

shapes in the hard and high temperature-resistant alloys (Singh et al., 2005). On the 

contrary, non-traditional machining routes have been found advantageous in this respect. 

In view of the widespread application of super alloy Inconel especially over automotive 

and aerospace industries and the challenges being faced thereof whilst machining of this 

super alloy; the increasing need for better understanding on (i) aspects of machining 

complexity and possible solution, and (ii) extent of machinability of different grades of 

Inconel has motivated to define the present research problem.      

Literature has depicted that substantial volume of work has been carried out by pioneer 

researchers for understanding of machining and machinability aspects of Inconel 

(different grades) in EDM, WEDM, micro-machining etc. (Feyzi and Safavi, 2013; 

Hewidy et al., 2005; Sharma et al., 2015; Torres et al., 2016; Rodrigues et al., 2015; 

Ramakrishnan and Karunamoorthy, 2008; Newton et al., 2009; Rajesha et al., 2010; 

Rajesha et al., 2012; Lin et al., 2013; Li et al., 2013; Ay et al., 2013; Ahmad and Lajis, 

2013; Li et al., 2015; Aggarwal et al., 2015). Influence of process variables on various 

performance attributes has been experimentally investigated and mathematically 

analyzed. Effort has also been made to optimize process responses towards determining 

the most favorable process environment (parameters setting) for EDM of Inconel work 

material. It is felt that the ease of machining i.e. the extent of machinability would tend to 

vary for Inconel of different grades due to variation in their chemical composition, 

mechanical properties etc. Process parameters also interact in a complicated manner; 

thereby, influencing EDM performance characteristics. However, aforementioned studies 

have considered a particular grade of Inconel alloy (especially Inconel 718).  Literature 

has been found sparse to deliver a consolidated database comparing machinability aspects 

of different grades of Inconel for electro-discharge machining.  

Based on extensive literature review, specific research gaps/questions have been 

identified as mentioned below. 

 

1. Is there a unique optimal setting of process parameters which can simultaneously 

satisfy multi-requirements of process performance yields in terms of MRR, EWR, Ra 

and SCD during EDM of different grades of Inconel super alloy?   
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2. In deriving the most favourable (optimal) setting of process parameters, it seems 

necessary to aggregate multi-performance features into a unique quality index which 

can finally be optimized using Taguchi method. Literature is rich enough in addressing 

application of Taguchi based optimization approaches like grey-Taguchi, desirability 

function based Taguchi, utility theory based Taguchi, TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution) based Taguchi etc. in optimizing 

process/product in the domain of manufacturing. However, these approaches consider 

priority weight of individual responses in course of aggregating multiple response 

variables into a unique performance index. As assignment of response priority weight 

is absolutely based on the personal judgment of the Decision-Maker (DM); the weights 

set may vary from person to person. This invites uncertainties in decision making. It is 

worth of investigating whether optimal parameters’ setting is sensitive to the change in 

weights of the response variables. In order or avoid this limitation, the present work 

proposes application of satisfaction function integrated with Fuzzy Inference System 

(FIS) for logical aggregation of multi-performance features into a unique performance 

index. Such an aggregation is performed in FIS internal hierarchy, and it does not 

require utilizing response priority weight assigned by the Decision-Makers.     

 

3. Most of the earlier studies (Ay et al. 2013; Sengottuvel et al., 2013; Mohanty et al., 

2014a, b; Aggarwal et al., 2015) focused on multi-response optimization in machining 

of Inconel considering the objective functions like MRR, EWR and Ra. Few studies 

have emphasized on dimensional deviation and form tolerances of the EDMed end 

product. Aspects of formation of surface cracks as well as white layer have still been 

untouched. Therefore, in the present work, a unified attempt has been made to include 

surface crack density in the list of response functions (including MRR, EWR and Ra) 

to be optimized simultaneously. Apart from this, few micrographic analyses have been 

carried out on selected specimens of the EDMed Inconel work material to check 

whether variation in Inconel grades (i.e. variation in chemical constituents) influences 

thickness of the white layer generated during EDM onto the machined surface.   

      

To address these issues, present work aims to perform an experimental study to compare 

machining behaviour of Inconel 601, 625, 718 and 825, respectively, during EDM with a 

graphite electrode. The specific objective of the current work is to determine a suitable 

parameters setting consisting of gap voltage, peak current, pulse-on time, duty factor and 

http://www.sciencedirect.com/science/article/pii/S2211812814004404


163 

 

flushing pressure, for achieving satisfactory machining yield in terms of MRR, EWR, Ra, 

SCD etc. for electro-discharge machining of Inconel 601, 625, 718 and 825, respectively. 

In accomplishing this, application of satisfaction function approach, Fuzzy Inference 

System (FIS) integrated with Taguchi method is aimed to be attempted to determine an 

optimal process environment (for each grade of Inconel) to ensure high MRR, lesser 

extent of EWR, Ra as well as SCD.  

 

 

8.3 Data Analysis  

8.3.1 Methodology   

8.3.1.1 Fuzzy Inference System (FIS) 

Fuzzy logic is a mathematical theory of inexact reasoning that facilitates modelling of the 

reasoning process of human in linguistic terms (Zadeh, 1976; Cox, 1992; Mendel, 1995; 

Yager and Filev, 1999). It seems very efficient in defining the relationship between 

system inputs and desired output(s). Fuzzy controllers and fuzzy reasoning have found 

particular applications in extremely complicated industrial systems that cannot be 

modelled precisely even under various assumptions and approximations (Tzeng and 

Chen, 2007). A fuzzy system is basically composed of a fuzzifier, an inference engine, a 

knowledge base (rule and data base), and a defuzzifier (Fig. 8.1). 

The execution of fuzzy inference system involves exploration of membership functions, 

fuzzy logic operators, and IF-THEN rules considering relationships of inputs with respect 

to output(s). 

The parameters of the IF-THEN rules (referred to as antecedents or premises in fuzzy 

modelling) define a fuzzy region of the input space; whilst the output parameters (also 

used as consequents in fuzzy modelling) specify the corresponding output. Two types of 

FISs, the Mamdani FIS and the Sugeno FIS, have been widely used in various 

applications. Aforesaid two types of inference systems vary somewhat in the way by 

which output(s) is/are determined. Literature depicts that Mamdani FIS is intuitive and its 

rule base can easily be interpreted. The Mamdani FIS can be used directly for both Multi-

Input-Single Output (MISO) systems and Multi-Input-Multiple-Output (MIMO) systems 

(Kovac et al., 2014). In terms of usage, Mamdani FIS is more widely used; mostly 

because it provides reasonable results with a relatively simple structure, and also due to 

the intuitive and interpretable nature of the rule base.   
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Fig. 8.1: FIS architecture 

 

8.3.1.2 Taguchi Method 

Taguchi method pioneered by Dr. Genichi Taguchi in 1940s is an engineering 

methodology for improving productivity in manufacturing processes at an economic cost. 

According to Taguchi, a robust design is one that is created with a system of design tools 

to reduce variability in product (or process), while simultaneously guiding the 

performance towards an optimal setting. A product that is robustly designed is expected 

to provide customer satisfaction even when subjected to extreme conditions on the 

manufacturing floor or in the service environment. Taguchi method is based on 

performing evaluation or experiments to test the sensitivity of a set of response variables 

with respect to a set of control parameters (or independent variables) by considering 

experiments as per orthogonal array design of experiment aiming to attain the optimum 

setting of the control parameters. Orthogonal array provides the best set of well balanced 

(minimum) experiments; thus, reducing experimental time and execution cost. In Taguchi 

method, experimental data are transferred into Signal-to-Noise (S/N) ratios which are 

assessed statistically by ANOVA to determine significant process control parameters and 

to obtain the optimal parameters setting to maximize process performance/product quality 

etc. The concepts behind Taguchi methodology are summarized below (Lin et al., 2009). 

 Quadratic quality loss functions (Fig. 8.2.1-8.2.3) are used to quantify the loss 

incurred by the customer due to deviation from target performance. 
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 Taguchi technique uses S/N ratio as a performance measure to choose control levels 

of process parameters. The S/N ratio considers both the mean and the variability of 

response data. The change in quality characteristics of a product response to a factor 

introduced in the experimental design is the signal of the desired effect. The effect of 

the external factors of the outcome of the quality characteristic under test is termed as 

noise.  Taguchi recommends the use of S/N ratio to measure the quality characteristics 

deviating from the desired value. The S/N ratio for each level of process parameters is 

computed based on the S/N analysis and converted into a single metric. The aim in 

any experiment is to determine the highest possible S/N ratio for the result 

irrespective of the type of the quality characteristics. A high value of S/N implies that 

signal is much higher than the random effect of noise factors. In the Taguchi method 

of optimization, the S/N ratio is used as the quality characteristic of choice.  

 Orthogonal arrays are used for gathering dependable information about control factors 

(design parameters) with a reduced number of experiments. 

 

 

 

Fig. 8.2.1: Taguchi’s loss function of Target-the-Best (TB) type  
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The different S/N ratio characteristics have been depicted in (Fig. 8.2.1-8.2.3), for 

Nominal-the-Best (NB) or Target-the-Best (TB), Lower-is-Better (LB) and Higher-is-

Better (HB) types, respectively. The computation formulae for converting experimental 

(response) data into corresponding S/N ratio have been provided in (Eq. 8.1-8.3). 
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Here iy is the response value obtained at thi experimental trial; n be the total number of 

trials for a particular parameters setting;  is the mean response value and indicates 

standard deviation. 

 

Fig. 8.2.2: Taguchi’s loss function of Lower-is-Better (LB) type  

 

Fig. 8.2.3: Taguchi’s loss function of Higher-is-Better (HB) type  
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8.3.1.3 Proposed Optimization Route  

An integrated optimization route combining satisfaction function approach, Fuzzy 

Inference System (FIS) and Taguchi method has been proposed in this work for 

optimizing multiple response characteristics of EDM on Inconel super alloys. As 

traditional Taguchi approach alone cannot solve multi-response optimization problem; 

application of grey relational analysis (Chiang and Hsieh, 2009; Kuram and Ozcelik, 

2013), desirability function approach (Sait et al., 2009), utility theory (Walia et al., 2006), 

TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) (Şimşek et al., 

2013) etc. have been recommended in literature for logical and systematic aggregation of 

multi-response features into a unique performance index; which is to be optimized finally 

by Taguchi method. Literature provides immense evidence on application of grey-

Taguchi, desirability-Taguchi, utility-Taguchi etc. for multi-response optimization 

problems mostly in manufacturing environment. However, limited application of 

satisfaction faction has been noticed in existing literature; that too in the field of industrial 

decision making (Kentli and Kar, 2011).  

In this context, present work explores satisfaction function approach to convert 

experimental data into satisfaction scores of individual responses. Satisfaction scores of 

individual responses are to be fed as inputs to a fuzzy inference engine; thereby, obtaining 

aggregated unique output termed as combined satisfaction score  cS . The combined 

satisfaction score needs to be optimized (maximized) by Taguchi method. The flowchart 

of the proposed optimization route has been provided in Fig. 8.3.  

FIS plays an important role in aggregating multi-inputs into a single output which is 

treated as unique objective function in Taguchi’s optimization module. The additional 

advantage of exploring FIS is that the inference engine operates under a rule-base in 

relation to the mapping of inputs versus output and provides a single output. Such an 

aggregation does not require assignment of response priority weight which often appears 

uncertain and depends on the Decision-Makers’ perceptions.  

Thus, proposed optimization route seems advantageous as compared to grey-Taguchi, 

utility-Taguchi etc. which consider priority weight of individual responses whilst 

combing multi-performance features into a unique index measure (for example, grey 

relational grade, overall utility degree, overall desirability etc.). 

The theories of satisfaction function approach and related computational formulae have 

already been discussed in Chapter 7 (Section 7.3.1). 
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Fig. 8.3: Flowchart of the proposed optimization route  
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Optimization of (Sc) by 

Taguchi Method 
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8.3.2 Results and Discussion  

8.3.2.1 Machining Performance Optimization  

Experimental data (refer to Table 2.16 of Chapter 2, Phase VI) in relation to process 

responses viz. MRR, EWR, Ra and SCD obtained by experimenting at different 

parametric settings (for Inconel 625, 718, 601 and 825, respectively) have been utilized 

herein to obtain the most favourable parameters setting (for each of the Inconel grades) to 

satisfy multi-requirements of process performance yields, simultaneously. The most 

suitable process environment (parametric setting) is to be selected so as to optimize 

various process responses up to the maximum possible extent. In order to increase 

productivity, MRR should correspond to Higher-is-Better (HB) type; whereas, to ensure 

extended tool life, EWR should be as less as possible (Lower-is-Better; LB type). In order 

to ensure quality and performance of the end product up to the desired level, Ra and SCD 

of the EDMed work surface of Inconel need to be minimized to the maximum possible 

extent. Thus, it is understood that Ra and SCD both correspond to LB type. Since 

traditional Taguchi approach fails to solve multi-response optimization problem; in order 

to satisfy aforesaid responses of contradicting requirements simultaneously, it seems 

necessary to aggregate individual response data into an equivalent single performance 

index. Once a multi-response optimization problem is approximated to the problem of 

optimizing a single performance measure; Taguchi method can be applied at this stage to 

get the optimal solution. Since different response features considered herein are 

contradicting in nature (also correspond to different unit/dimension), a logical 

normalization is indeed required to convert raw experimental data into corresponding 

normalized values. Once data are normalized, the problem of criteria conflict and also 

unit effect are automatically eliminated; normalized data of all individual responses come 

under a common domain in between [0,1]. In this work, satisfaction function approach 

has been attempted to convert individual response data (experimentally obtained) into 

their corresponding satisfaction measures. While converting experimental data of EWR, 

Ra and SCD into corresponding satisfaction score  SCDREWR SSS
a
,, the satisfaction chart 

for LB type (refer to Fig. 7.2.1 of Chapter 7); and for converting experimental data of 

MRR in corresponding satisfaction score MRRS , the satisfaction chart of HB type (refer to 

Fig. 7.2.2 of Chapter 7); and for has been used. Computed satisfaction scores of 

individual responses for all experimental runs have been depicted in Table 8.1.1-8.1.4, for 

Inconel 625, 718, 601 and 825, respectively. Satisfaction scores of individual responses
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 SCDREWRMRR SSSS
a
,,, have been fed as inputs to a Fuzzy Inference System (FIS) for 

logical aggregation of inputs into a unique performance index i.e. combined satisfaction 

score  .cS The FIS predicted combined satisfaction score has been treated as single 

objective function and finally optimized (maximized) by Taguchi method. 

 

Table 8.1.1: Satisfaction values (corresponding to each response) for all experimental runs: 

Computed combined satisfaction score  cS  

Run 

No. 
Inconel 625 

Satisfaction values (Higher-is-Better) 
cS  

(Combined 

satisfaction 

score) as FIS 

output 

S/N ratio of 

cS [dB] 

Predicted 

S/N ratio (at 

optimal 

setting) [dB] 

 

MRRS  EWRS  
aRS  

SCDS  

1 0.120 1.000 0.571 0.000 0.506 -5.91699 -4.85072 

 2 0.058 0.750 0.483 0.932 0.444 -7.05234 

3 0.102 0.250 0.244 0.970 0.437 -7.19037 

4 0.275 0.250 0.117 0.842 0.438 -7.17052 

5 0.051 0.750 0.976 0.759 0.445 -7.03280 

6 0.429 0.500 0.415 0.782 0.493 -6.14306 

7 0.224 0.250 0.576 0.323 0.438 -7.17052 

8 0.569 0.000 0.376 1.000 0.484 -6.30309 

9 0.008 0.750 0.732 0.842 0.467 -6.61366 

10 0.035 1.000 0.663 0.827 0.43 -7.33063 

11 0.529 0.750 0.302 0.925 0.493 -6.14306 

12 0.437 0.250 0.151 0.714 0.438 -7.17052 

13 0.000 1.000 1.000 0.880 0.5 -6.02060 

14 0.056 0.750 0.571 0.489 0.555 -5.11414 

15 0.291 0.500 0.341 0.684 0.472 -6.52116 

16 1.000 0.500 0.000 0.361 0.5 -6.02060 

 

 

The proposed FIS architecture has been shown in Fig. 8.4. FIS transforms crisp inputs 

into corresponding linguistic values (Fuzzifier), explores a linguistic rule-base for 

understanding of relational mapping in between inputs and output (rule base/ inference 

engine), predicts linguistic output and finally defuzzifies linguistic output into a crisp 

score (defuzzifier). In order to fuzzify crisp inputs i.e.  SCDREWRMRR SSSS
a
,,, , three 

triangular membership functions viz. Low (L), Medium (M) and High (H) have been 

selected for each of the inputs (Fig. 8.5.1-8.5.4). Similarly, aforesaid three membership 

functions (L, M, H) (Fig. 8.6) have been chosen for obtaining output i.e.  cS in terms of 

fuzzy number. A set of 81 fuzzy rules (Table 8.2; Fig. 8.7) has been utilized so as to 

capture the relationship of inputs/output with the inference engine.  
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Table 8.1.2: Satisfaction values (corresponding to each response) for all experimental runs: 

Computed combined satisfaction score  cS  

Run 

No. 
Inconel 718 

Satisfaction values (Higher-is-Better) 
cS  

(Combined 

satisfaction 

score) as FIS 

output 

S/N ratio of 

cS [dB] 

Predicted 

S/N ratio (at 

optimal 

setting) [dB] 

 

MRRS  EWRS  
aRS  

SCDS  

1 0.046 1.000 0.735 0.000 0.555 -5.1141 -2.54596 

 2 0.157 0.500 0.386 0.266 0.484 -6.3031 

3 0.074 0.500 0.318 0.633 0.467 -6.6137 

4 0.487 0.000 0.283 0.190 0.42 -7.5350 

5 0.033 1.000 0.601 0.823 0.429 -7.3509 

6 0.188 0.500 0.359 0.810 0.478 -6.4114 

7 0.304 0.500 0.740 0.468 0.458 -6.7827 

8 0.447 0.000 0.063 0.709 0.308 -10.2290 

9 0.000 1.000 1.000 0.101 0.675 -3.4139 

10 0.062 1.000 0.744 0.734 0.508 -5.8827 

11 0.535 0.500 0.013 1.000 0.5 -6.0206 

12 0.642 0.000 0.000 0.709 0.384 -8.3134 

13 0.019 1.000 0.856 0.177 0.606 -4.3505 

14 0.196 0.500 0.552 1.000 0.5 -6.0206 

15 0.455 0.500 0.466 0.025 0.498 -6.0554 

16 1.000 0.000 0.036 0.608 0.488 -6.2316 

 
Table 8.1.3: Satisfaction values (corresponding to each response) for all experimental runs: 

Computed combined satisfaction score  cS  

Run 

No. 
Inconel 601 

Satisfaction values (Higher-is-Better) 
cS  

(Combined 

satisfaction 

score) as FIS 

output 

S/N ratio of 

cS [dB] 

Predicted 

S/N ratio (at 

optimal 

setting) [dB] 

 

MRRS  EWRS  
aRS  

SCDS  

1 0.167 1.000 0.649 0.103 0.511 -5.83158 -2.15811 

2 0.220 0.667 0.417 0.782 0.5 -6.02060 

3 0.146 0.667 0.354 1.000 0.472 -6.52116 

4 0.219 0.333 0.266 0.667 0.446 -7.01330 

5 0.059 0.667 0.631 0.385 0.51 -5.84860 

6 0.343 0.667 0.214 0.628 0.497 -6.07287 

7 0.140 0.667 0.192 0.333 0.441 -7.11123 

8 0.306 0.333 0.347 0.705 0.47 -6.55804 

9 0.000 1.000 0.683 0.000 0.533 -5.46546 

10 0.025 1.000 0.513 0.474 0.78 -2.15811 

11 0.459 0.667 0.203 0.038 0.414 -7.65999 

12 0.750 0.333 0.255 0.218 0.47 -6.55804 

13 0.021 1.000 1.000 0.128 0.648 -3.76850 

14 0.218 0.667 0.827 0.244 0.464 -6.66964 

15 0.553 0.333 0.000 0.513 0.472 -6.52116 

16 1.000 0.000 0.170 0.513 0.529 -5.53089 
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Table 8.1.4: Satisfaction values (corresponding to each response) for all experimental runs: 

Computed combined satisfaction score  cS  

Run 

No. 
Inconel 825 

Satisfaction values (Higher-is-Better) 
cS  

(Combined 

satisfaction 

score) as FIS 

output 

S/N ratio of 

cS [dB] 

Predicted 

S/N ratio (at 

optimal 

setting) [dB] 

 

MRRS  EWRS  
aRS  

SCDS  

1 0.184 0.750 0.472 0.798 0.482 -6.33906 -4.52813 

 2 0.163 0.500 0.493 0.000 0.5 -6.02060 

3 0.028 0.500 0.313 1.000 0.465 -6.65094 

4 0.222 0.250 0.176 0.220 0.433 -7.27024 

5 0.010 1.000 0.754 0.615 0.543 -5.30400 

6 0.398 0.500 0.514 0.037 0.5 -6.02060 

7 0.090 0.500 0.363 1.000 0.481 -6.35710 

8 0.155 0.250 0.000 0.642 0.408 -7.78680 

9 0.000 1.000 0.704 0.514 0.588 -4.61245 

10 0.078 0.750 0.458 0.706 0.516 -5.74701 

11 0.816 0.250 0.271 0.138 0.434 -7.25021 

12 0.950 0.000 0.324 0.798 0.41 -7.74432 

13 0.042 0.750 1.000 0.523 0.441 -7.11123 

14 0.190 0.750 0.810 0.606 0.478 -6.41144 

15 0.536 0.500 0.444 0.505 0.498 -6.05541 

16 1.000 0.250 0.197 0.514 0.457 -6.80168 

 

 

 

Fig. 8.4: Proposed FIS architecture  
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Fig. 8.5.1: Membership Functions (MFs) for MRRS     

 

 

Fig. 8.5.2: Membership Functions (MFs) for EWRS   
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Fig. 8.5.3: Membership Functions (MFs) for
aRS   

  

 

Fig. 8.5.4: Membership Functions (MFs) for SCDS   
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Fig. 8.6: Membership Functions (MFs) for cS   

 

Table 8.2: Fuzzy rule matrix 

Rule no. IF  IF  IF  IF  THEN 

MRRS  EWRS  
aRS  

SCDS  cS  

1 L L L L L 

2 L L L M L 

3 L L L H L 

4 L L M L M 

5 L L M M L 

6 L L M H L 

7 L L H L L 

8 L L H M L 

9 L L H H L 

10 L M L L L 

11 L M L M L 

12 L M L H L 

13 L M M L M 

14 L M M M M 

15 L M M H M 

16 L M H L L 

17 L M H M L 

18 L M H H M 

19 L H L L M 

20 L H L M M 

21 L H L H M 

22 L H M L M 

23 L H M M H 

24 L H M H L 

25 L H H L H 

26 L H H M M 

27 L H H H M 

28 M L L L M 

29 M L L M L 

30 M L L H L 
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31 M L M L L 

32 M L M M L 

33 M L M H M 

34 M L H L M 

35 M L H M M 

36 M L H H L 

37 M M L L L 

38 M M L M M 

39 M M L H M 

40 M M M L M 

41 M M M M M 

42 M M M H M 

43 M M H L M 

44 M M H M M 

45 M M H H M 

46 M H L L M 

47 M H L M L 

48 M H L H M 

49 M H M L M 

50 M H M M L 

51 M H M H M 

52 M H H L M 

53 M H H M H 

54 M H H H H 

55 H L L L M 

56 H L L M M 

57 H L L H L 

58 H L M L L 

59 H L M M H 

60 H L M H L 

61 H L H L L 

62 H L H M M 

63 H L H H M 

64 H M L L M 

65 H M L M M 

66 H M L H M 

67 H M M L L 

68 H M M M L 

69 H M M H M 

70 H M H L M 

71 H M H M H 

72 H M H H H 

73 H H L L M 

74 H H L M M 

75 H H L H M 

76 H H M L M 

77 H H M M M 

78 H H M H H 

79 H H H L M 

80 H H H M H 

81 H H H H H 

 

Based on that defuzzifer module, FIS has been provided crisp scores of  cS as unique 

output. The FIS predicted combine satisfaction scores (with respect to each experimental 

run number) have been presented in Table 8.1.1-8.1.4, for Inconel 625, 718, 601 and 825, 

respectively.  

The optimal setting of process parameters has been determined by maximizing  cS

through Taguchi method. According to Taguchi’s philosophy, the objective function 

value i.e.  cS has been converted into corresponding S/N ratio by using HB formulation 

(Eq. 8.1). Optimal setting has been determined by maximizing S/N ratio. The computed 
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S/N ratios of  cS for all experimental runs have been furnished in Table 8.1.1-8.1.4, for 

Inconel 625, 718, 601 and 825, respectively. Optimal parametric combinations have been 

determined by mean S/N ratio plots (of cS ) as depicted in Fig. 8.8.1-8.8.4, for Inconel 

625, 718, 601 and 825, respectively. The optimal setting appears as: A4B1C1D1E4 (for 

Inconel 625), A4B1C1D4E2 (for Inconel 718), A3B2C4D3E1 (for Inconel 601) and 

A3B1C2D4E2 (for Inconel 825).  

 

 

Fig. 8.7: Fuzzy (linguistic) rule base  

 

The predicted S/N ratio (of cS ) obtained at setting A4B1C1D1E4 (for Inconel 625) is (-

4.85072 dB); at setting A4B1C1D4E2 (for Inconel 718) is (--2.54596 dB); and at setting 

A3B1C2D4E2 (for Inconel 825) is (-4.52813dB), each seems the maximum as compared to 

all computed S/N ratio entries of cS (for sixteen experimental runs and for the particular 

Inconel grade) as depicted in Table 8.1.1-8.1.4, respectively. Since S/N ratio always 

corresponds to HB type, the maximum value (as compared to the sixteen experimental 

settings) obtained at predicted optimal setting confirms that the proposed optimization 

route performs satisfactorily.  

The predicted S/N ratio of cS  as obtained at setting A3B2C4D3E1 (for Inconel 601) appears 

(-2.15811dB). This value is found more as compared to all computed S/N ratio entries for 

sixteen experimental runs, except for Run No. 10 (refer to Table 8.1.3). 
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Fig. 8.8.1:  S/N ratio plot: Evaluation of optimal setting (Optimization of cS ) 

[Optimal setting: A4B1C1D1E4] (Inconel 625) 
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Fig. 8.8.2:  S/N ratio plot: Evaluation of optimal setting (Optimization of cS ) 

[Optimal setting: A4B1C1D4E2] (Inconel 718) 
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Fig. 8.8.3:  S/N ratio plot: Evaluation of optimal setting (Optimization of cS ) 

[Optimal setting: A3B2C4D3E1] (Inconel 601) 
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Fig. 8.8.4:  S/N ratio plot: Evaluation of optimal setting (Optimization of cS ) 

[Optimal setting: A3B1C2D4E2] (Inconel 825) 
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In Run No. 10, it has been observed that S/N ratio of cS exactly matches to that of 

predicted optimal setting. Hence, the setting corresponding to Run No. 10 i.e. 

A3B2C4D3E1 is considered as optimal setting. This has also been found evident from mean 

S/N ratio plot of cS (Fig. 8.8.3). Taguchi’s optimal prediction can be treated as a reliable 

solution if it is found that the predicted S/N ratio of the response assumes the maximum 

value at optimal setting as compared to that obtained in all experimental runs included in 

orthogonal array design of experiment. This is because, S/N ratio corresponds to HB 

requirements; higher values are more preferred.   

The predicted optimal setting may be one of the settings that are included in orthogonal 

array (16 runs as indicated in Table 2.16 of Chapter 2; Phase VI); it may be a different 

setting beyond 16 runs of OA; since apart from 16 settings, the remaining  1645 

settings are not experimented. In case on Inconel 601, it has been found that predicted 

optimal setting is A3B2C4D3E1 and it corresponds to Run No. 16 of the OA. Optimal 

results have further been verified by confirmatory tests. 

While comparing the optimal machining parameters settings for different grades of 

Inconel considered herein, it has been found that the optimal parameters settings appear 

almost similar for Inconel 625 and Inconel 718; both possesses optimal parameters: 

OCV=90V, IP=5 A and Ton=200 µs. The variation only has been observed for the values 

of duty factor and flushing pressure. For Inconel 625 optimal parametric setting includes 

τ=70% and FP=0.6 bar; whereas, Inconel 718 corresponds to optimal values of τ and Fp 

i.e. 85% and 04 bar, respectively. As energy per spark depends on the value of gap 

voltage, peak discharge current and pulse-on time, equal heat input is attributed (since 

values of OCV, IP and Ton are same) for Inconel 625 as well as Inconel 718 to produce 

optimized machining response. This may also be attributed due to the fact that the 

chemical composition of aforesaid two grades of Inconel appears almost similar. 

Moreover, both the Inconel grades correspond to nearly same thermal conductivity i.e. 

10.8W/m 
0
C (20-100 

0
C) for Inconel 625 and 11.4 W/m 

0
C at 100 

0
C for Inconel 718.  

From mean response tables (Table 8.3.1-8.3.4 and Table 8.4.1-8.4.4), it has been found 

that duty factor (τ) and dielectric flushing circulation pressure (FP) are not so much 

significant as compared to other electrical parameters (OCV, IP, and Ton) whilst 

influencing most of the machining responses. Hence, slight variation of τ and FP in the 

optimal parameters settings for Inconel 625 and Inconel 718 can be accepted.   
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Table 8.3.1: Mean response table of MRR (for Inconel 625) 

Level Variation of MRR expressed in [mm
3
/min] due to factorial variation  

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 5.228 2.595 15.880 7.192 8.439 

2 10.246 5.385 7.198 9.428 10.364 

3 8.395 9.360 6.478 9.648 8.110 

4 10.761 17.290 5.074 8.362 7.716 

Delta 5.533 14.695 10.806 2.456 2.648 

%Contribution 5.533 14.695 10.806 2.456 2.648 

Rank 3 1 2 5 4 

 

 
Table 8.3.2: Mean response table of EWR (for Inconel 625) 

Level Variation of EWR expressed in [mm
3
/min] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 0.12127 0.06615 0.09923 0.12128 0.11027 

2 0.15438 0.08820 0.12127 0.11027 0.12127 

3 0.09923 0.14333 0.14335  0.11025 0.13230 

4 0.09923 0.17643 0.11025 0.13230 0.11025 

Delta 0.05515 0.11028 0.04412 0.02205 0.02205 

%Contribution 21.74 43.47 17.39 8.69 8.69 

Rank 2 1 3 4 5 

 

Table 8.3.3: Mean response table of Ra (for Inconel 625) 

Level Variation of Ra expressed in [µm] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 9.117 5.933 9.333 8.342 8.200 

2 7.533 7.892 8.200 7.842 8.475 

3 8.375 9.033 8.250 8.317 8.442 

4 8.267 10.433 7.508 8.792 8.175 

Delta 1.583 4.500 1.825 0.950 0.300 

%Contribution 17.28 49.13 19.92 10.37 3.27 

Rank 3 1 2 4 5 

 

Table 8.3.4: Mean response table of SCD (for Inconel 625) 

Level Variation of SCD expressed in [µm/µm
2
] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 0.01897 0.01985 0.02123 0.02303 0.01975 

2 0.01858 0.01802 0.01782 0.01568 0.01992 

3 0.01710 0.01845 0.01713 0.01840 0.01698 

4 0.02008 0.01840 0.01855 0.01762 0.01808 

Delta 0.00298 0.00183 0.00410 0.00735 0.00295 

%Contribution 15.51 9.52 21.34 38.26 15.35 

Rank 3 5 2 1 4 
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Table 8.4.1: Mean response table of MRR (for Inconel 718) 

Level Variation of MRR expressed in [mm
3
/min] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 6.99 1.929 14.637 10.220 8.867 

2 8.575 5.772 10.974 9.994 12.296 

3 10.604 11.587 6.639 10.070 8.211 

4 13.886 20.775 7.814 9.780 10.690 

Delta 6.886 18.846 7.998 0.440 4.084 

%Contribution 18.00 49.26 20.90 1.15 10.67 

Rank 3 1 2 5 4 

 

Table 8.4.2: Mean response table of EWR (for Inconel 718) 

Level Variation of EWR expressed in [mm
3
/min] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 0.08820 0.04410 0.08820 0.08820 0.07717 

2 0.08820 0.07717 0.08820 0.08820 0.08820 

3 0.07717 0.08820 0.08820 0.07717 0.08820 

4 0.08820 0.13230 0.07717 0.08820 0.08820 

Delta 0.01103 0.08820 0.01103 0.01103 0.01103 

%Contribution 8.33 66.65 8.33 8.33 8.33 

Rank ~* 1 ~ ~ ~ 

*Same ranking order for A, C, D, E 

Table 8.4.3: Mean response table of Ra (for Inconel 718) 

Level Variation of Ra expressed in [µm] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 9.167 6.433 10.242 8.600 8.633 

2 9.092 8.575 9.667 9.917 8.350 

3 9.100 9.508 8.775 9.208 9.517 

4 8.817 11.658 7.492 8.450 9.675 

Delta 0.350 5.225 2.750 1.467 1.325 

%Contribution 3.14 47.00 24.73 13.19 11.91 

Rank 5 1 2 3 4 

 

Table 8.4.4: Mean response table of SCD (for Inconel 718) 

Level Variation of SCD expressed in [µm/µm
2
] due to factorial variation 

A [OCV]  B (IP) C (Ton) D (τ) E (Fp) 

1 0.01795 0.01793 0.01533 0.01580 0.01720 

2 0.01455 0.01455 0.01650 0.01585 0.01725 

3 0.01508 0.01590 0.01528 0.01457 0.01550 

4 0.01653 0.01572 0.01700 0.01787 0.01415 

Delta 0.00340 0.00338 0.00173 0.00330 0.00310 

%Contribution 22.80 22.66 11.60 22.13 20.79 

Rank 1 2 5 3 4 
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Table 8.5.1: Mean response table of MRR (for Inconel 601) 

Level Variation of MRR expressed in [mm
3
/min] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 8.305 3.955 18.795 12.814 10.879 

2 9.131 8.767 15.462 10.493 13.545 

3 12.466 13.015 7.602 12.435 12.688 

4 17.275 21.440 5.317 11.433 10.065 

Delta 8.970 17.485 13.477 2.321 3.480 

%Contribution 19.61 38.23 29.46 5.07 7.60 

Rank 3 1 2 5 4 

 

 
Table 8.5.2: Mean response table of EWR (for Inconel 601) 

Level Variation of EWR expressed in [mm
3
/min] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 0.08820 0.05513 0.09923 0.08820 0.08820 

2 0.09923 0.07717 0.11025 0.08820 0.09923 

3 0.07717 0.09923 0.08820 0.09923 0.08820 

4 0.11025 0.14333 0.07717 0.09923 0.09922 

Delta 0.03308 0.08820 0.03307 0.01103 0.01103 

%Contribution 18.75 50.00 18.74 6.25 6.25 

Rank 2 1 3 ~
* 

~ 

*Same ranking order for D, E 

Table 8.5.3: Mean response table of Ra (for Inconel 601) 

Level Variation of Ra expressed in [µm] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 10.192 7.308 11.208 9.658 10.592 

2 10.875 9.550 11.058 9.558 10.700 

3 10.267 12.308 9.008 10.233 9.883 

4 9.492 11.658 9.550 11.375 9.650 

Delta 1.383 5.000 2.200 1.817 1.050 

%Contribution 12.07 43.66 19.21 15.86 9.17 

Rank 4 1 2 3 5 

 

Table 8.5.4: Mean response table of SCD (for Inconel 601) 

Level Variation of SCD expressed in [µm/µm
2
] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 0.01693 0.02070 0.01940 0.02015 0.01840 

2 0.01790 0.01775 0.01820 0.01868 0.01873 

3 0.02048 0.01822 0.01810 0.01727 0.01805 

4 0.01917 0.01780 0.01878 0.01837 0.01930 

Delta 0.00355 0.00295 0.00130 0.00288 0.00125 

%Contribution 29.75 24.72 10.89 24.14 10.47 

Rank 1 2 4 3 5 
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Table 8.6.1: Mean response table of MRR (for Inconel 825) 

Level Variation of MRR expressed in [mm
3
/min] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 4.945 2.724 16.060 9.991 7.144 

2 5.295 6.376 11.502 8.517 8.996 

3 12.638 10.335 3.566 8.151 10.009 

4 12.174 15.617 3.925 8.394 8.904 

Delta 7.694 12.893 12.494 1.840 2.866 

%Contribution 20.36 34.12 33.06 4.86 7.58 

Rank 3 1 2 5 4 

 

 
Table 8.6.2: Mean response table of EWR (for Inconel 825) 

Level Variation of EWR expressed in [mm
3
/min] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 0.13230 0.06615 0.14333 0.13233 0.12127 

2 0.12127 0.11025 0.13233 0.14332 0.12127 

3 0.13233 0.14333 0.11025 0.11025 0.14335 

4 0.12127 0.18745 0.12127 0.12127 0.12128 

Delta 0.01105 0.12130 0.03308 0.03307 0.02207 

%Contribution 5.00 54.99 14.99 14.99 10.05 

Rank 5 1 2 3 4 

 

Table 8.6.3: Mean response table of Ra (for Inconel 825) 

Level Variation of Ra expressed in [µm] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 9.758 6.267 9.758 8.542 9.950 

2 9.342 7.817 8.433 9.025 9.042 

3 9.042 9.908 8.875 9.125 8.108 

4 7.400 11.550 8.475 8.850 8.442 

Delta 2.358 5.283 1.325 0.583 1.842 

%Contribution 20.70 46.37 11.63 5.11 16.17 

Rank 2 1 4 5 3 

 

Table 8.6.4: Mean response table of SCD (for Inconel 825) 

Level Variation of SCD expressed in [µm/µm
2
] due to factorial variation 

A [OCV] B (IP) C (Ton) D (τ) E (Fp) 

1 0.02020 0.01903 0.02165 0.01698 0.01847 

2 0.01945 0.02203 0.02048 0.02215 0.02017 

3 0.01982 0.01850 0.01818 0.01797 0.01928 

4 0.01985 0.01978 0.01903 0.02223 0.02140 

Delta 0.00075 0.00353 0.00348 0.00525 0.00293 

%Contribution 4.70 22.14 21.83 32.93 18.38 

Rank 5 2 3 1 4 

N.B.: Delta = (Maximum variationminimum variation)  
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While comparing the optimal parameters settings obtained for Inconel 601 as well as 

Inconel 825, it has been observed that Inconel 825 corresponds to lesser peak current as 

well as lesser pulse-on time as compared to Inconel 601; OCV being same i.e. 80V for 

both the cases. The optimal values of IP and Ton appears as 5A and 300µs, respectively 

(for Inconel 825); while Inconel 601 assumes optimal values IP=7A and Ton=500µs. Low 

values of IP and Ton results in reduced energy per spark and hence Inconel 825 

experiences less heat input as compared to Inconel 601. If we consider thermal 

conductivity of Inconel 601 and Inconel 825; it can be seen that these are approximately 

same i.e. 14.3 W/m 
0
C (at 200 

0
C) for Inconel 601 and 13.8 W/m 

0
C (at 200 

0
C) for 

Inconel 825. Hence, requirement of high heat input to produce optimal machining 

performance may be explained by their chemical composition. It has been found that as 

compared to Inconel 825, the Ni content of Inconel 601 is substantially high. Ni behaves 

like a heat resistant substance in turn results in requirement of high heat input to Inconel 

601. Moreover, presence of considerable amount of Al in Inconel 601 may induce the 

possibility of nonconductive oxide layer on the surface being machined. Such oxide layer 

may behave like an insulator and resists material melting during operation. As a 

consequence, high value of heat input seems necessary to produce desired machining 

yield for Inconel 601. The variation in the optimal values of τ and FP for Inconel 601 and 

Inconel 825 does not bear any alarming indication since from mean response tables 

(Table 8.5.1-8.5.4 and Table 8.6.1-8.6.4) τ and FP have been found insignificant on 

affecting EDM performance.        

In addition to that, the levels of significance of process control parameters on MRR. 

EWR, Ra and SCD have been determined through mean value tables of individual 

responses. Percentage contribution of significant input factors for different response 

parameters has also been furnished herein (Table 8.3.1-8.3.4; 8.4.1-8.4.4; 8.5.1-8.5.4; 

8.6.1-8.6.4). It has been observed that peak discharge current (IP) has appeared as the 

most significant process parameter on influencing MRR, EWR and Ra separately. 

 

8.3.2.2 Analysis of SEM Micrographs 

SEM micrographs revealing surface structure of ‘as received’ Inconel specimens have 

been provided in Fig. 8.9. Observations of the EDMed surface revealed surface 

irregularities in terms of voids, globules of debris, an uneven fusing structure (melted 

metal deposition), shallow craters and pockmarks, as well as surface cracks. Cracks are 
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developed while high thermal stresses generated during operation exceed the fracture 

strength of the material due to excessive plastic deformation. Pockmarks are formed 

during solidification of molten metal while entrapped gases get released. Such surface 

irregularities of substantial extent may be detrimental for the fatigue life of the part 

component while put in service.  Fig. 8.10 depicts various surface irregularities as 

visualized from SEM micrographs of EDMed Inconel of different grades obtained at a 

common parameters setting i.e. [OCV=60V; Ip=5A; Ton=200 µs; τ=70%; Fp=0.3bar]. 

Additionally, SEM micrographs revealing existence of white layer on the surface of 

EDMed Inconel specimens (of different grades) have also been provided in Fig. 8.11.1-

8.11.4.   

 

Fig. 8.9: SEM micrographs revealing surface structure of ‘as received’ (a) Inconel 625,  

(b) Inconel 728, (c) Inconel 601, and (d) Inconel 825  

 

It is true that the formation of white layer is inevitable during EDM operation performed 

on any work material. However, depending on the properties of the workpiece material 

along with the setting of process control parameters, the white layer thickness may vary. 

It is to be noted that in the present experimental scheme, the white layer thickness has not 

been considered as an output response and therefore, not included in the list of 
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objectives/responses for simultaneous optimization with other responses considered 

herein like MRR, EWR, Ra and SCD.  

 

 

Fig. 8.10: SEM micrographs revealing surface structure of the EDMed specimens of (a) Inconel 

625, (b) Inconel 718, (c) Inconel 601, and (d) Inconel 825 obtained at parameters setting:  

[OCV=60V, IP=5A, Ton=200µs, τ=70%, FP=0.3bar]  

 

To exhibit the dependence of control parameters on WLT i.e. to analyse the relationship 

between the white layer and the working conditions; it requires measurement of WLT 

(after surface grinding/polishing/etching of the EDMed surface and viewing under SEM) 

obtained on the EDMed end product in all experimental runs for four types of Inconel 

grades. 

Here, SEM images of white layer, developed on EDMed component of four Inconel 

grades, have been grabbed through exploring a common parameters setting i.e. 

[OCV=90V, IP=11A, Ton=200 μs, τ=80%, FP=04 bar] (off course, this is not the optimal 

setting). Variation of the value of WLT obtained on EDMed component of different 

grades of Inconel reveals its dependency on the property of work material (process 

parameters setting being the same). 
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Fig. 8.11.1: SEM micrograph revealing White Layer Thickness (WLT~32.016 µm) of EDMed 

Inconel 601 obtained at Run No. 16 i.e. [OCV=90V, IP=11A, Ton=200 µs, τ=80%, FP=04 bar] 

 

 

 

 

Fig. 8.11.2: SEM micrograph revealing White Layer Thickness (WLT~28.189 µm) of EDMed 

Inconel 625 obtained at Run No. 16 i.e. [OCV=90V, IP=11A, Ton=200 µs, τ=80%, FP=04 bar] 
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Fig. 8.11.3: SEM micrograph revealing White Layer Thickness (WLT~25.426 µm) of EDMed 

Inconel 718 obtained at Run No. 16 i.e. [OCV=90V, IP=11A, Ton=200 µs, τ=80%, FP=04 bar] 

 

 

 

 

Fig. 8.11.4: SEM micrograph revealing White Layer Thickness (WLT~30.692 µm) of EDMed 

Inconel 825 obtained at Run No. 16 i.e. [OCV=90V, IP=11A, Ton=200 µs, τ=80%, FP=04 bar]  
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The SEM images shown herein only reveal existence of white layer on the EDMed work 

piece. In the present case, the HAZ has not been found beneath the white layer. This may 

be attributed due to the fact that EDM operates under pulse-mode, and the pulse-on time 

being tool small (in the order of µs); time seems insufficient for substantial amount of 

heat conduction through the work piece; since Inconel possesses very low thermal 

conductivity. Continuous flushing of dielectric also reduces the extent of such heat 

transfer. Hence, HAZ could not be identified. It could not be distinguished prominently 

from the base material. 

 

 

8.4 Conclusions 

Conclusions drawn from the aforesaid research have been pointed out below. 

 Application of satisfaction function, fuzzy inference system in conjugation with 

Taguchi’s philosophy has been demonstrated herein as an efficient optimization route 

for simultaneous optimization of multi-requirements of process performance yield in 

relation to MRR, EWR, Ra and SCD during EDM of different grades of Inconel. 

 The present work proposes an integrated optimizing route combining satisfaction 

function, fuzzy inference system and Taguchi method for simultaneous optimization 

of multi-performance features (multi-response) through a case experimental study of 

EDM of different grades of Inconel super alloy. As compared to existing literature, 

the complex mathematical formulation and tedious procedural steps delineated in 

grey-fuzzy, utility-fuzzy and desirability fuzzy approaches, the proposed optimization 

module is quite easier; however, application of which is hardly found in existing 

literature before. This seems to be the unique contribution of the present dissertation 

deserves mention.    

 FIS has been explored for logical aggregation of multi-inputs to compute a unique 

output (combined satisfaction function i.e. CS  in the present case) that is the 

prerequisite of Taguchi’s optimization approach. FIS works under the relationship 

mapping between multi-inputs with respect to the single output; however, while 

aggregating multi-input to transform a unique output, it does not consider priority 

weightages of individual inputs. Therefore, assignment of response priority weightage 

is not required in the proposed optimization module. As exact priority weights is 

difficult to assign for individual responses, Decision-Makers’ judgement is required 
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for assigning response priority weightage; however, Decision-Maker’ judgement may 

vary depending on individuals’ perception thus inviting uncertainty in decision 

making.  

 Literature highlights exploration of (i) grey relation analysis combined with FIS, (ii) 

utility theory combined with FIS and also (iii) desirability function approach 

combined with FIS etc. towards for aggregation of multi-performance features 

(process output responses) to compute a unique performance index (generally called 

Multi-Performance Characteristic Index, MPCI). However, the proposed satisfaction 

function approach in combination with fuzzy inference system has been found a 

unique conceptualization aiming for logical aggregation of multi-responses into an 

equivalent single performance index; i.e. combined satisfaction score CS , which is to 

optimized (maximized) finally by Taguchi method.  

 Within selected experimental domain and on the machining setup explored herein the 

optimal setting for simultaneously satisfying MRR, EWR, Ra and SCD has been 

obtained as (A4B1C1D1E4) i.e. [OCV= 90V, IP= 5A, Ton= 200µs, τ = 70%, FP= 0.6 

bar] for Inconel 625; (A4B1C1D4E2) i.e. [OCV= 90V, IP = 5A, Ton= 200µs, τ = 85%, 

FP = 0.4 bar] for Inconel 718; (A3B2C4D3E1) i.e. [OCV= 80V, IP= 7A, Ton = 500µs, τ 

= 80%, FP = 0.3 bar] for Inconel 601; (A3B1C2D4E2) i.e. [OCV = 80V, IP = 5A, Ton = 

300µs, τ = 85%, FP = 0.4 bar] for Inconel 825. It has been observed that optimal 

parametric combination varies from one Inconel grade to another due to differences in 

their mechanical properties, chemical composition and consequently the ease of 

machining.  

 Analysis of SEM micrographs reveals surface irregularities in terms of cracks, crater 

globules of debris pockmarks etc. on the surface of the EDMed Inconel specimens; 

these can be substantially reduced by proper tuning process control parameters set to 

the optimal level. It has been found that the SCD varies from 0.0148 ~ 0.0281 

µm/µm
2
 for the EDMed surface of Inconel 625 whilst experimented as per L16 design 

of experiment. For Inconel 718, the variation of SCD appears in the range of 

0.0122~0.0201 µm/µm
2
. The range of SCD as observed for Inconel 601 and Inconel 

825 is 0.0141~0.0219 µm/µm
2
 and 0.0148~0.0257 µm/µm

2
, respectively. For a 

common parametric setting i.e. [OCV=90V, IP=11A, Ton=200 µs, τ=80%, FP=04 bar], 

the white layer thickness has been found maximum for Inconel 601 (~32.016 µm) and 

minimum for Inconel 718 (~25.426 µm).  
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Chapter 9 

 

Summary and Contribution   
 

 

9.1 Executive Summary   

In Chapter 3, aspects of machinability of Inconel 718 super alloy have been 

experimentally investigated during electro-discharge machining using Copper tool 

electrode. Based on five-factor-five-level L25 orthogonal array design of experiment, 

experiments have been conducted by varying the following controllable process 

parameters viz. gap voltage, peak discharge current, pulse-on time, duty factor, and 

flushing pressure. Machining performance has been evaluated in terms of multiple 

responses such as roughness average, surface crack density, white layer thickness 

(observed on the EDMed work surface), and micro-hardness of the white layer. In 

addition to this, SEM images of the EDMed work surfaces of Inconel 718 have been 

analyzed in view of various surface irregularities. Effects of process parameters on EDM 

performance outputs have been graphically presented. Finally, utility theory coupled with 

Taguchi method has been attempted to determine the most appropriate setting of process 

parameters to ensure satisfactory machining yield during execution of EDM operation on 

Inconel 718.  

 

In Chapter 4, effects of cryogenic treatment of the electrode material on improving 

machining yield during electro-discharge machining of Inconel 825 super alloys have 

been investigated. The extent of machining performance has been evaluated in terms of 

multiple response features viz. surface crack density and white layer thickness developed 

onto the top surface of the EDMed Inconel 825 work material. Based on three 

controllable process parameters namely, peak discharge current, pulse duration and duty 

factor, EDM experiments have been conducted using Non-Treated Tool (NTT), and 

Cryogenically Treated Tool (CTT), respectively. Attempt has been made to compare 

chemical composition, metallurgical aspects, residual stress and micro-hardness of the 

EDMed Inconel 825 work surface obtained by using CTT with respect to that of obtained 
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using NTT. Morphology of the EDMed Inconel 825 work surface has been examined 

through analysis of SEM micrographs. Moreover, effects of cryogenic treatment of tool 

electrode has been discussed from the viewpoint of shape retention capability, wear and 

extent of Carbon deposition onto the bottom surface of the tool electrode during electro-

discharge machining on Inconel 825 work material.  

 

In Chapter 5, the extent of machinability of Inconel super alloy 825 has been investigated 

during electro-discharge machining using deep Cryogenically Treated Workpiece (CTW) 

as compared to the case of EDM using Non-Treated Workpiece (NTW).  Effects of 

cooling rate (ramp-down) followed during cryogenic treatment cycle of the work material 

have also been examined in purview of various EDM performance features.  

 

In Chapter 6, an experimental investigation has been carried out focusing surface 

integrity and metallurgical characteristics of the EDMed work surface of Inconel 601 

super alloy in comparison with EDMed 304SS as well as EDMed Titanium alloy Ti-6Al-

4V. Degree of severity of surface cracks and depth of white layer thus formed onto the 

EDMed work surface have been studied for aforesaid three work materials upon 

execution of EDM operation. Comparison on machinability of aforesaid three work 

materials has been made with relevance to EDS, XRD analysis and micro-hardness test 

data.  

  

In Chapter 7, machinability aspects of Inconel 718 work material have been 

experimentally investigated during electro-discharge machining using Copper tool 

electrode. Based on five-factor-five-level L25 orthogonal array design of experiment, 

experiments have been conducted by varying the following controllable process 

parameters viz. gap voltage, peak discharge current, pulse-on time, duty factor, and 

flushing pressure. Machining performance has been evaluated in terms of multiple 

responses such as material removal rate, electrode wear rate, roughness average (of the 

EDMed surface), surface crack density, white layer thickness, and micro-hardness of the 

white layer. Objective functions have been selected in such a way that except MRR 

(which has corresponded to Higher-is-Better (HB) requirement); all the response 

variables have corresponded to Lower-is-Better (LB) requirement. Aforesaid multiple 

response variables of conflicting requirements have been optimized simultaneously with a 

goal to determine the best setting of controllable process parameters within selected 
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experimental domain. Owing to the limitation of Taguchi’s optimization philosophy, the 

concept of ‘satisfaction function’ has been articulated in this research to obtain 

satisfaction values of individual responses; thus, facilitating aggregation of multi-

response features into an equivalent single index. A distance measure value has been 

computed next which basically determines the separation of each experimental setting 

(alternative) with respect to the ideal expectation (satisfaction). Finally, this distance 

function has been optimized using Taguchi method.  

In order to validate the proposed satisfaction function and distance measure approach 

integrated with Taguchi method, the optimal setting, thus obtained from the aforesaid 

research, has been compared to that of an established optimization procedure i.e. 

Principal Component Analysis (PCA) and Combined Quality Loss (CQL) concept 

integrated with Taguchi method. It has been observed that both the approaches have 

converged to the same result. Optimal setting has been verified through confirmatory test. 

In addition to this, SEM micrographs of EDMed work surfaces of Inconel 718 have been 

critically analyzed and important inferences have been drawn.  

 

In Chapter 8, an experimental investigation on assessing machining performance during 

electro-discharge machining of Inconel 625, 718, 601 and 825 has been delineated. Based 

on 5-factor-4-level L16 orthogonal array, experiments have been carried out by varying 

gap voltage, peak current, pulse-on time, duty factor and flushing pressure (each varied at 

four discrete levels) to examine the extent of machining performance in terms of material 

removal rate, electrode wear rate, surface roughness, and surface crack density of the 

EDMed end products obtained by utilizing different parameters settings (for Inconel of 

different grades, respectively). An integrated optimization module combining satisfaction 

function approach and Fuzzy Inference System (FIS) in conjugation with Taguchi’s 

philosophy has been proposed for simultaneous optimization of aforementioned multiple 

performance indices. Analysis of SEM micrographs has been carried out to understand 

surface irregularities in terms of surface cracks, formation of white layer etc. for the 

EDMed Inconel end products (of different grades). Aspects of machinability have thus 

been studied by comparing machining responses obtained during EDM of Inconel 625, 

718, 601 and 825, respectively.  
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9.2 Research Contribution  

 Surface Integrity (morphology and topography) of the EDMed work surface of 

Inconel has been studied in detail. 

 Metallurgical characteristics of the EDMed Inconel work surface have been studied 

with respect to unaffected parent material.    

 Ease of electro-discharge machining of Inconel using deep cryogenically treated 

electrode/workpiece has been studied. 

 Machinability of Inconel has been compared to that of 304SS as well as Ti-6Al-4V 

for electro-discharge machining. 

 The most appropriate setting of EDM process parameters has been determined 

towards optimizing multiple indicators (measures) of machining yield.   

 

9.3 Limitations of the Present Work    

The limitations of the present work have also been presented below.  

 For calculation of dislocation density , by considering the highest intensity peak, the 

value of a (the lattice parameter) has been calculated herein from the value of d  (the 

inter planer spacing). However, apart from exploring a single d  value, it would be 

more scientific to use two-five peaks to be analyzed with proper extrapolation. 

Moreover, the equation used herein for computing the values of dislocation density 

has indeed been an approximated one collected from literature. 

 Peak broadening during cryogenic treatment of the specimens is hugely contributed 

by the lattice strain; however, this has been ignored in the present work. In reality, 

peak broadening (due to cryogenic treatment) of tool/work material is affected by (a) 

crystallite size, and (b) micro-strain (ignoring instrumental broadening). In order to 

capture the ‘strain-effect’, it is required to anneal the ‘as received’ sample first and 

then to compare peak broadening of the test samples (with respect to the annealed 

one) and by using Williamson Hall plot crystallite size and strain to be computed. 

However, in during execution of the present experimental work, such as approach has 

been attempted; but it has been observed that the plots of the points have not 

approximately indicated a straight line (exhibiting highly scattered plots). Therefore, 

the data (crystallite size only) have been used. However, it would be more scientific to 

confirm the crystallite size by FESEM/TEM in consideration with the strain part.  

https://www.google.co.in/search?biw=1366&bih=657&site=webhp&q=Williamson+Hall+plot&spell=1&sa=X&ved=0ahUKEwig6vGSg8HSAhXDxLwKHekcBq4QvwUIFigA
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9.4 Future Scope   

The research can be extended in the following directions. 

 Effects of tool electrode (viz. Copper, Tungsten Carbide, Copper Tungsten, graphite, 

brass etc.) as well as dielectric medium (viz. EDM oil, Kerosene, distilled water, used 

transformer oil etc.) are to be studied on influencing EDM performance on Inconel 

work material.  

 Ease of machining of cryogenically treated Inconel work material using cryogenically 

treated tool electrode may be investigated and compared with the case of EDM with 

(a) normal tool and NTW/CTW, (b) normal workpiece and NTT/CTT.   

 Effects of Shallow Cryogenic Treatment (SCT) and Deep Cryogenic Treatment 

(DCT) on tool/work material may be investigated on assessing ease of machining of 

Inconel super alloys by electro-discharge machining using different combinations of 

tool/work material (non-treated and cryogenically treated).   

 Aspects of tool life, quantitative evaluation of tool shape retention capability, corner 

size machining accuracy of the EDMed hole need to be investigated in detail while 

executing EDM operation on Inconel super alloys.  

 Machinability of Inconel needs to be compared to that of other super alloys (like Ti-

6Al-7Nb, Nimonic etc.) in the context of EDM/WEDM operations.  

 Application of evolutionary algorithms (like Genetic Algorithm, Particle Swarm 

Optimization, Ant-Colony Optimization, Harmony Search Algorithm and many 

others) may be attempted for optimization of EDM response outputs in the context of 

machining of Inconel super alloys.       

 

  

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Ti-6Al-7Nb
https://en.wikipedia.org/wiki/Ti-6Al-7Nb
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