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Abstract 

Drag offered by fluid medium on submerged object is subject of intense research as needed in 

multiple process and solid handling applications. In spite of this, the literature remains silent on 

some critical problems. Catering the issues and limitations in literature is the main motivation of 

this work. Movement of sphere along inclined plane is involved in numerous applications. 

Nevertheless, a few published articles are available to deal with this for a limited scope of 

diameter ratio and angle of inclinations, θ. In the prospective of extending this work for broader 

range of diameter ratio and tube inclinations, this study encompasses diameter ratio 0.09 to 0.37 

and channel inclination 10o-90o. The terminal velocity shows an increasing trend (reverse of the 

available experimental data) with d/D ratio. It also increases with θ due to increase in downward 

force. The drag coefficient, CD, is reported as a function of Re, d/D and θ. CD also shows the 

reverse trend with d/D ratio. The dependency of CDRe on fluid viscosity and θ are expressed in 

terms of the developed correlations. The variation of CD with the inverse of Re is studied 

graphically to find out the flow regimes of the experimental data which are at laminar or early 

state of transition flow. The experimental CD values are validated with numerically calculated 

data using Ansys Fluent v15.0 for both vertical and inclined channels. The close agreement with 

experimental results confirms the applicability of the used numerical approximation. 

Like, solid object, hollow objects are also involved in numerous industrial processes but, 

no single research article is available in literature to explain the fluid dynamic interaction for 

hollow particle. Hence, here the fluid dynamic behavior of flow over hollow frustum and 

cylinder are studied in terms of terminal velocity and drag coefficient in both vertical and 

inclined channel. Like sphere, the predictive equations are also developed for each tube 



Abstract 

inclination for the hollow objects. The numerical prediction using Ansys Fluent is employed to 

predict the drag coefficient for above mentioned hollow objects and an excellent agreement is 

observed while comparing with experimental drag coefficients.  

In spite of having the experimental results for conical shaped particle, the numerical 

study still untouched in open sources. In view of this, the effect of blockage ratio i.e. diameter 

ratio of cone, d, and flow channel, D on the drag coefficients of Newtonian fluid flow over cone 

is studied numerically by solving the CFD equations in Ansys FLUENT. The drag coefficients 

(CD) as a function of Reynolds number (Re) and d/D are reported for the range of Re: 0.01-30000 

and d/D: 0.0015-0.9. The CD values are obtained higher for confined flow (high d/D) than 

unconfined flow. The variations of angle of separation and its effect on the drag coefficients are 

examined and justified. The comparative studies among the drag coefficients of sphere, cylinder 

and cone, are carried out in terms of wall effect, re-circulation length and slope of axial velocity 

profile. The observations revealed the following order of CD : cylinder>cone>sphere. The 

hydrodynamic interactions between wall and fluid medium are presented with the help of 

velocity contour plots. The simulated results presented herein for unconfined flow are in good 

agreement with the literature data. Furthermore, the variation of drag coefficient due to change of 

shape the particle from cone to cylinder are also studied to enrich the literature and for industrial 

applications. 

Keywords: Drag Coefficient, Terminal Velocity, Reynolds Number, Wall effect, Frustum, 

Sphere, Cone, Inclined Channel 
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CHAPTER 1 

INTRODUCTION TO FLOW OVER AN OBJECT AND 

DRAG COEFFICIENT 

Introduction 

Force exerted by the fluid on the solid surface in the direction of flow is called the drag force. 

The condition for the existence of the drag force is the relative velocity between the submerged 

body and fluid. It is usually expressed in term of drag coefficient, CD a dimensionless number. It 

is an important parameter used for designing the fixed and fluidized bed reactors, processing of 

large food particles, and pneumatic and hydraulic conveying of particles [1]. It is also an 

essential parameter for determining the settling behavior of solid particles in liquids frequently 

countered in chemical blending, mineral processing, powder sintering and other solid handling 

process. Because of this, it is important to estimate the drag coefficient of a particle. A particle 

falling or rolling in the liquid medium under the influence of gravity will accelerate until the 

resistance forces comprised of buoyancy force and drag force do not balance the gravitational 

force. At the balanced condition of the forces, particles move with constant velocity called the 

settling velocity or terminal velocity. Volumes of correlations were developed for the estimation 

of drag coefficient as a function of any flow parameter, especially Reynolds number [4].Owing 

to the wide range of application, it is a subject of intense research since many decades.  
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1.1. Terminal Velocity and Drag Coefficient 

As mentioned above, movement of particle through a liquid medium observes three 

forces, I: Gravitational force (𝐹𝑔), which acts downward, II: Buoyant force (𝐹𝐵), which acts 

parallel with the gravitational force but in opposite direction, and III: The Drag force (𝐹𝐷), which 

acts in upward direction and it is always towards pressure applied by the fluid on the particle [1]. 

When a particle is allowed to move in fluid, the object accelerates from zero to a maximum 

velocity. The drag force and buoyancy forces will maintain equilibrium with weight, and the 

particle will settle with a consistent or terminal velocity. The free body diagram is shown in 

Fig.1.1.  

 

 

 

 

 

 

The net drag force on a solid body depends on two resistive forces called viscous or 

friction drag and pressure or form drag. For a moving object in a fluid medium, pressure drag, 𝐶𝑃 

and the viscous drag, 𝐶𝐹 appears due to the total applied pressure on the object and the shear 

force (produced by the viscous force) distribution on the body along the flow direction, shown in 

Fig.1.2. The schematic diagram of flow over a streamline body and component of drag force is 

presented in Fig.1.2. 

 

Fig.1.1 Free body diagrams of an object falling in quiescent fluid medium [1] 
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At equilibrium (i.e. when the particle moves with a terminal velocity), the force balance equation 

can be written as, 

    𝐹𝑔 = 𝐹𝐵 + 𝐹𝐷                                                                                                                          (1.1) 

𝑚𝑝𝑔 = (
𝑚𝑝

𝜌𝑝
) 𝜌𝐹𝑔 +

1

2
 𝐶𝐷𝜌𝐹𝑉2𝐴                                                                                               (1.2) 

𝐶𝐷   =
𝑚𝑔(1−

𝜌𝐹
𝜌𝑝

)

0.5𝐴𝑉2𝜌𝐹
                                                                                                      (1.3)                                                                                     

Where, 𝜌𝑝 is the density of particle, 𝑚𝑝 is the mass of solid particle and the the  𝑔 is the 

acceleration due to gravity.  Eq. (1.3) is widely used to evaluate the drag coefficient irrespective 

of the shape of the solid body. 

1.2. Variation of Drag Coefficient with Reynolds Number, (Re) 

Drag coefficient is not identical always; it varies with flow speed, object size, fluid 

density and fluid viscosity, terminal velocity and a characteristic length scale of the object 

[4].Hence, these flow parameters are incorporated into a dimensionless quantity called the 

Reynolds number, Re. The drag coefficient is a function of Reynolds number, which gives 

 

 Fig.1.2. Flow over a streamline body [3] 
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importance insights about the nature of fluid flow i.e. laminar, transition and turbulent flow. It is 

a relative measurement of inertial to the viscous force of stream flow. The mathematical 

expression is 

𝑅𝑒 =
𝜌𝐹𝑉𝑑

𝜇
                                                                                                                                 (1.4) 

Based on Reynolds number, fluid flow is categorized into three regions namely,  

I. Laminar Zone (Re ≤ 2300); II: Transition Zone (2300 ≤ Re ≤ 4000); III: Turbulent Zone (Re ≥ 

4000). The drag coefficient is high at low Reynolds number i.e. in the laminar zone and found to 

decrease with Reynolds number owing to the prominent effect of the viscous force over inertial 

force. However, when this region is finished, transition zone starts; here the impact of Reynolds 

number on drag coefficient is diminished. In the turbulent zone, high terminal velocity leads to 

very low drag coefficient, and it becomes independent of Re at the higher range of Reynolds 

number. Thus, the drag coefficient and Reynolds number are reciprocal to each other, especially 

in laminar zone. The variation of CD-Re is shown in Fig.1.3 for smooth sphere and smooth 

cylinder. 

 

 

 

 

 

 

 

 

Fig.1.3. Drag Coefficient as a function of Reynolds number of sphere and cylinder [2] 
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Fig.1.3 shows that, at low Reynolds, number CD varies linearly with Re. A sudden change 

is observed at point E. This is due to the reduction in the size of the wake and the pressure on the 

object. Drag coefficient affected largely by the geometry. Hence the CD-Re curve is not identical 

to all system of consideration.  

1.3. Drag Coefficient Experienced by Regular Shaped Body  

(a) In Vertical Channel 

The pioneering works of Clift et al. [1], Chhabra [4]; Khan and Richardson [5]; Uhlherr 

and Chhabra [6] included the drag coefficient of the spherical body. Similar kinds of studies for 

solid cylindrical objects were carried out by Unnikrishnan and Chhabra [7 & 8], where they 

developed the predictive correlations for the drag coefficient and discussed the effect of walls on 

the drag coefficient. Along with the experimental work, a majority of the theoretical analysis for 

sphere and cylinder is available in the Krishnan and Kaman [9] and Chakraborty et al. [10]. The 

effect of the wall on the drag coefficient was discussed theoretically in Nitin and Chhabra [11] 

and Munshi et al. [12]. Apart from this, Chhabra [13], Sharma, and Chhabra [14] reported some 

qualitative insights for cone and non-spherical particle respectively. 

(b) In inclined Channel 

In numerous processes, the particles may be sliding or rolling over the inclined planes.  

For example, the flow of fluid in inclined packed and fluidized beds, dredging underwater silt 

and gravel, and storage in large containers, etc. As compared to vertical channel, quite a few 

works were reported on the flow over solid objects especially for non-spherical particles in an 

inclined channel. Carty [15] first reported it for a spherical particle in the smooth inclined plane. 
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Subsequently, Garde and Sethuraman [16] also repeated the same experiment of Carty [15] in 

both smooth and rough inclined planes. Jan and Chen [17] and Chhabra et al. [18] also 

communicated the similar kind of observations for Newtonian fluid flow in both the smooth and 

rough inclined planes. Chhabra and Ferreira [19] and Jalal and Ganji [20] developed a set of 

equations for the terminal velocity and drag coefficient for the inclined channel using numerical 

analysis. In all the above-discussed literature, CD-Re empirical equations were developed. 

1.3. Origin and Objective of the Work 

As discussed in proceeding paragraphs, a number of qualitative efforts have been made to 

accord the fluid dynamic interaction for all regular shaped particle like a sphere, cylinder, and 

disk. Comparatively, sphere and solid cylinder draw maximum attention. Falling or rolling of the 

solid object along inclined plane encounters in many industrial processes. However, quite a few 

research was carried out to study the solid-fluid interaction in an inclined plane in terms of 

settling velocity and drag coefficient with a restricted scope of particle diameter to channel 

diameter ratio and angle of inclination i.e. ≤ 300. In the literature, angle independent CD-Re 

correlations were proposed for incline flow channel which creates the ambiguity for real life 

application. Several kinds of hollow particles are used in chemical process industries, especially 

as a packing material. In spite of having abundant published literature on the hydrodynamics of 

fluid flow over solid particles, no attempts were made earlier in regards to the estimation and 

reporting of the terminal velocity and drag coefficient of any hollow object. Numerical analysis 

of flow over regular shaped particles are now available considering many aspects, but, no 

numerical study was communicated in regards to flow over conical particle and the surrounding 

effects on drag coefficient. The variation of drag coefficient as flow geometry changes from 

cone-to-cylinder is still unattempted. 
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Based on the above gap in existing literature following objectives are opted in the present 

study 

 Experimental findings of the terminal velocity and drag coefficient for Newtonian fluid 

flow over a sphere in an inclined channel having a wide range of diameter ratio and 

angle of inclination. Development of the angle dependent predictive equations of the 

drag coefficient. Theoretical validation of the drag coefficient with experimental results. 

 Experimental findings of the terminal velocity and drag coefficient for Newtonian fluid 

flow past a hollow frustum and hollow cylinder in both vertical and inclined channels 

with a broad range of diameter ratio and angle of inclination. Empirical model 

development for drag coefficient for each angle of inclination as a function of diameter 

ratio and Reynolds number. Theoretical validation of the drag coefficient with 

experimental results. 

 Prediction and analysis of the drag coefficient of the cone using flow models available in 

Ansys Fluent v15.0. 

 To find and analyze the effect of change of the shape of the solid particle from cone to 

the cylinder on the drag coefficient. 

1.4. Organization of Thesis 

The thesis is divided into seven chapters. Introduction chapter is the very fast chapter, 

which pronounces the brief introduction to flow over a solid object, drag coefficient, Reynolds 

number, flow separation, etc. It also includes the motivation and objective of the present work. 

An extensive literature survey on many aspects of flow over several kinds of solid objects 

including both experimental and theoretical work is discussed in Chapter 2. Chapter 3 
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describes the Newtonian flow past a sphere in an inclined plane for a wide scope of diameter 

ratio and angle of inclination, and it reveals the effect of the wall and confined boundary on 

terminal velocity and drag coefficient. The effect of diameter ratio and tube inclination on 

terminal velocity and a drag coefficient of Newtonian fluid flow over hollow frustum and 

circular cylinder in both vertical and inclined plane is discussed in Chapter 4 and Chapter 5 

respectively. Chapter 6 embodies the flow over the conical object and the effect of the finite and 

infinite boundary on drag coefficient through numerical investigation. A set of comparison 

among cone, sphere, and cylinder in terms of re-circulation length, the angle of separation, wall 

effect, etc. are also discussed. The variation of drag coefficients for the transition of solid 

geometry from cone-to-cylinder is studied numerically and discussed here.  Chapter 7 includes 

the overall conclusions of the present research output and scope of future work.  

 

 

 

 



 
 

CHAPTER 2 

LITERATURE REVIEW 

  

Introduction 

The resistance on a body in a fluid medium; is a quantity of central interest for numerous 

designing applications. Over the years, a substantial amount of studies were proposed to quantify 

the resistance or drag observed by the body or conversely, the net force required to travel in fluid 

medium through experimental and theoretical investigations. A class of solution with a 

qualitative description of flow nature under several flow condition is now accessible for a regular 

shaped object like a sphere, cylinder, and circular disk, etc. Before presenting the findings and 

the observations of present work, it is necessary and informative to discuss the earlier studies and 

the conclusion drawn by past researchers.  

Compared to other, the sphere has received maximum attention. Most of the studies have 

attempted to devise a model for prediction of drag coefficient as a function of Reynolds number 

for several flow regime. In accordance to this, abundance empirical equations were proposed 

based on experimental results are listed in Table 2.1. However, a comprehensive discussion on 

this is available in the book or article of Clift et al. [1], Chhabra [4], Khan and Richardson [5] for 

a spherical particle in the Newtonian and non-Newtonian fluid. In the line of this, for cylinder 

and circular disk, a good number of experimental and numerical studies were conducted. The 

relevant literature to this study are appended below.  
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Table 2.1  

CD-Re relationship 

Cheng [21] 𝐶𝐷=
24

𝑅𝑒
(1 + 0.27𝑅𝑒)0.43 + 0.47(1 −

𝑒𝑥𝑝(−0.04𝑅𝑒0.38)) 

𝑅𝑒 < 106 

Brown and 

Lawler [22] 
𝐶𝐷 =

24

𝑅𝑒
(1 + 0.15𝑅𝑒)0.681 +

0.407

1 + 8710𝑅𝑒−1
 

𝑅𝑒 < 2 ∗ 105 

 

 

 

 

 

 

Clift et al.[1] 

𝐶𝐷 =
24

𝑅𝑒
+

3

16
 

𝑅𝑒 < 0.01 

𝐶𝐷 =
24

𝑅𝑒
+ (1 + 0.1315𝑅𝑒0.82−0.05𝑙𝑜𝑔𝑅𝑒) 

0.01 < 𝑅𝑒
≤ 20 

𝐶𝐷 =
24

𝑅𝑒
+ (1 + 0.1935𝑅𝑒0.6305) 

20 < 𝑅𝑒 ≤ 260 

𝐶𝐷 = 101.6435−1.1242𝑙𝑜𝑔𝑅𝑒+0.1558𝑙𝑜𝑔2𝑅𝑒 260 < 𝑅𝑒
≤ 1500 

𝐶𝐷 = 10−2.4571+2.5558𝑙𝑜𝑔𝑅𝑒−0.9295𝑙𝑜𝑔2𝑅𝑒+0.1049𝑙𝑜𝑔3𝑅𝑒 1500 < 𝑅𝑒
≤ 1.2 ∗ 104 

𝐶𝐷 = 10−1.9181+0.637𝑙𝑜𝑔𝑅𝑒−0.063𝑙𝑜𝑔2𝑅𝑒 1.2 ∗ 104 < 𝑅𝑒
≤ 1.4 ∗ 104 

𝐶𝐷 = 10−4.339+1.5809𝑙𝑜𝑔𝑅𝑒−0.154𝑙𝑜𝑔2𝑅𝑒 4.4 ∗ 104 < 𝑅𝑒
≤ 3.38 ∗ 105 

𝐶𝐷 = 29.78 − 5.3𝑙𝑜𝑔𝑅𝑒 3.38 ∗ 105

< 𝑅𝑒 ≤ 4 ∗ 105 

𝐶𝐷 = 0.1𝑙𝑜𝑔𝑅𝑒 − 0.49 4 ∗ 105 < 𝑅𝑒
≤ 106 

𝐶 𝐷 =
0.19 − 8 ∗ 104

𝑅𝑒
 

106 < 𝑅𝑒 

Flemmer and 

Banks [23] 
𝐶𝐷=

24

𝑅𝑒
 10𝛼 ,𝛼 = 0.261𝑅𝑒0.369 − 0.105𝑅𝑒0.431 −

0.124

1+𝑙𝑜𝑔2𝑅𝑒
 

𝑅𝑒 < 3 ∗ 105 

Turton and 

Levenspiel [24] 
𝐶𝐷=

24

𝑅𝑒
(1 + 0.173𝑅𝑒0.657) +

0.413

1 + 16300𝑅𝑒−1.09
 

𝑅𝑒 < 2 ∗ 105 
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Engelund and 

Hansen [25] 
𝐶𝐷=

24

𝑅𝑒
+ 1.5 

𝑅𝑒 < 2 ∗ 105 

Khan and 

Richardson [5] 
𝐶𝐷 = (2.49𝑅𝑒−0.328 + 0.34𝑅𝑒0.067)3.18 𝑅𝑒 < 2 ∗ 105 

Clift and Gauvin 

[26] 
𝐶𝐷 =

24

𝑅𝑒
(1 + 0.15𝑅𝑒0.687) +

0.42

1 + 42500𝑅𝑒−1.16
 

 

 

2.1. Wall and Diameter Ratio Effect on Drag Coefficient 

In confined flow, the particle flows along flow axis in a flow channel. The wall of the channel 

applies an additional retarding effect on the terminal velocity of the particle which is called wall 

effect and can be represented by the wall factor defined as [7&14] 

𝑓 =
𝑉

𝑉∞
             (2.1) 

In which 𝑉 and 𝑉∞ are the terminal velocity of the particle in bounded and unbounded fluids 

respectively. In Newtonian fluid 𝑓, is a function of the ratio of the diameters of free falling 

particle and flow channel, and Reynolds number. 

The presence of the tube wall makes the behaviour of the bounded flow different from 

the unbounded flow due to three factors (Singha and Sinhamahapatra [27]) which control the 

spread of the wake, moves the separation point in the downstream site, and changes vortex 

interaction due to interaction between vortices from the flow wall and solid particles.   

The unconfined drag coefficient 𝐶𝑑∞ was determined experimentally by many researchers [7& 

14] just by finding the drag coefficient as 𝑑 𝐷 → 0⁄  which are obtained from 𝐶𝑑 vs. 𝑑 𝐷⁄  data of 

confined flow of the particle. 

In the solid handling process, the mixture contains solid particles of different shapes. It is 

always beneficial for the efficient designer to know the drag coefficient of all possible shaped 
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particles especially from the simulated data with high accuracy. The simulated drag coefficient 

and wall effect data are available for spherical, cylindrical and other regular shaped particles. 

However, it is unavailable for the cone shaped particles. 

Uhlherr and Chhabra [6] showed that the drag coefficient of the sphere while falling in 

cylindrical tubes is affected by both the falling sphere to flow tube diameter ratio and Reynolds 

number, shown in Fig.2.1. They concluded that at low (𝑅𝑒 ≤ 0.5) and large (𝑅𝑒 ≥ 100) 

Reynolds numbers the wall factor, f depends only on the diameter ratio. They used the following 

equation to find directly the unconfined drag coefficient from the logarithmic plot of 𝐶𝐷 against 

Re using diameter ratio as the parameter. 

 𝐶𝐷𝑅𝑒2 = Constant           (2.2) 

 

 

Fig.2.1. Variation of CD with d/D [6] 
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Chhabra et al. [28] also examined the wall effect on the terminal velocity of the sphere 

which settles along the axis of a cylinder filled with Newtonian fluids. According to their 

observations, the wall factor, f changed only with the sphere to flow channel diameter ratio at 

very low and very high Reynolds number, but it is a function of both the ratio and Reynolds 

numbers for the intermediate values of these. Many researchers studied the effect of the blockage 

ratio and Reynolds number on the drag coefficient and wall factors of the particles settling in 

non-Newtonian fluids [29-33]. 

Both the hydrodynamics and heat transfer behavior of laminar flow of Newtonian fluid 

over a hot confined sphere were theoretically studied by Krishnan and Kaman [9]. They showed 

that the wall effect is predominant at lower particle Reynolds number, and the accuracy of the 

prediction of wall effect became better at higher blockage ratio and Reynolds number. Stalnaker 

and Hussey [34] studied the wall effect due to the transverse motion of long length and short 

diameter cylinder through a Newtonian fluid. The effect of the wall on the dimensionless drag 

coefficient was categorized into the strong boundary and weak boundary regions. The effect was 

seen less in the weak boundary zone than the strong region. Unnikrishnan and Chhabra [7] 

studied the wall effects on the drag coefficient of cylinders falling through different Newtonian 

fluids with a wide range of viscosity. The ratio of the cylinder to flowing tube radius was varied 

in the range of 0.08 to 0.4, cylinder length to cylinder diameter from 0.05 to 2 and Reynolds 

number 0.2 to 180. The unconfined terminal velocity was calculated by extrapolating the 

experimental terminal velocity versus diameter ratio profile to the ratio value of zero. The work 

showed the dependency of the terminal velocity and wall factor on the length of the cylinder and 

wall factor on Reynolds number of low magnitude. Analytical expression of the unconfined drag 

coefficients given below was developed by them.  
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𝐶𝐷∞ =
17.5

𝑅𝑒∞
(1 + 0.68𝑅𝑒∞

0.43)        for 0.0513 ≤ 𝐿 𝑑⁄ ≤ 2                 (2.3) 

in which 𝐶𝐷∞ and 𝑅𝑒∞ are the drag coefficient and Reynolds number at unconfined terminal 

velocity, 𝐿 and 𝑑 are the length and diameter of the cylinder, and 𝐷 is the diameter of flow 

channel.   

According to them, for Re < 30, the wall factor of the cylinder can be calculated from the 

sphere wall factor provided the diameter of the sphere is replaced by equivalent volume diameter 

of the cylinder. Eq. 2.4 was developed by them to calculate the wall factor for Re >30. 

𝑓 = 1 − 0.69
𝑑

𝐷
           for 𝑅𝑒 > 30         (2.4) 

Chakraborty et al. [10] carried out numerical analysis of the hydrodynamic behavior of 

Newtonian fluid flow over a circular cylinder confined in a rectangular channel. Reynolds 

number and the ratio of the cylinder diameter to flow channel width were varied in the range of 

0.1 to 200 and 0.05 to 0.66 respectively. They too observed that the drag coefficient decreased 

with decreasing the diameter ratio and increasing the Reynolds number.  

Experimental results on the wall effect and drag coefficient of cone shaped particles 

settling in both the Newtonian and non-Newtonian fluids was reported by Sharma and Chhabra 

[14]. The study was carried out for a wide range of system parameters where cone angle was 

varied in the range of 43o to 93.7o, flow behavior index, n ranges 1 to 0.62 with the consistency 

index, m 3.73𝑋10−3 < 𝑚 < 4 Pa sn , and the ratio of the cone to flow channel diameter varied 

in the range of 0.148 to 0.4343. The unconfined flow Reynolds number changes between very 

low to 500. The wall effect, f independent of the apex angle and power law index, was mostly 

affected by the diameter ratio (linearly varies) and Reynolds number.  The study on the wall 
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factor was not only limited to spherical and cylindrical shaped particles. Chhabra [13] reported 

the wall factor for a range of non-spherical particles like cubes, parallelepipeds, cylinders, 

needles, thin plates and circular discs sedimented in stationary Newtonian liquids. The falling 

tube diameter was varied in the range of 20-100 mm. The wall factor showed to vary with the 

shape of the particle and size of the fall tube at low Reynolds number. They also developed the 

correlations for the wall factor with the particle to tube diameter ratio. They showed that all 

shapes except thin cylinders (L/d > 10) experiences smaller wall effects than a sphere of equal 

volume. Nitin and Chhabra, and Munshi et al. [11 & 12] solved numerically the effect of the 

flow channel wall on the total pressure and friction drags of a disk oriented normal to the 

direction of flow.   The study comprised of Reynolds number: 1 to 100 and disk to flow channel 

diameter ratio: 0.02 to 0.5. The effect of the disk thickness on the wall effect decreased with the 

Reynolds number.  

2.2. Evaluation of Drag Coefficient of Sphere in Inclined Plane 

In all above said literature, the sphere does not interact with boundary wall, but there are 

numerous circumstances, where the sphere is descending along the inclined plane due to the 

action of gravity while immersed in the Newtonian fluid. The critical examples are long-term 

storage of household products in suspension form, dredging underwater silt and gravel, and 

storage in large containers, etc. [15 & 16]. Few more other uses of the rolling of particles on the 

inclined surface are given in Chhabra et al. [17]. As compared to a normal plane, a less number 

of open source literature are available in this field. The very first study made by Carty [15] 

showed the drag in the inclined plane is larger than normal plane due to additional retardation 

force from inclined plane.  

  



Literature Review 

17 
 

The study included the drag coefficient values for the sphere to channel diameter ratios 

(d/D) in the range 0.003 - 0.055. Following the same trend, Garde and Sethuraman [16] also 

conducted the experiment but for the range d/D of 0.04 to 0.11. However, the experimental 

outcomes of Carty [15] did not match with the Garde and Sethuraman [16] due to differences in 

tube length and the diameter ratio. 

Jan and Shen [35] studied on the fall of a sphere over a rough inclined (30-270) surface 

submerged in a Newtonian fluid. They considered a constant d/D ratio of 0.94. Jan and Chen 

[17] also established a set of CD-Re relationship for sphere rolling down an inclined plane 

submerged in an incompressible Newtonian fluid. Experiments were carried out for the limited 

range of angle of inclination (θ) i.e. 2°≤θ ≤10°. They demonstrated the effect of the wall on the 

drag coefficient over the range of d/D of 0.22-0.96. The experimental set-up and equation used 

by [17] as follows 

 

 

 

 

 

 

 

 

 

 

Fig.2.2. Schematic view of Jan and Chen [17] for inclined plane experiment 
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Their proposed Reynolds number dependent CD-Re relations are given in Table 2.2. 

Table 2.2 

CD - Re correlations [17]                               

CD-Re Relationship Reynolds Number Range 

𝐶𝐷 =
322

𝑅𝑒
   Re<10 

𝐶𝐷 = 10[3.02−1.89 log 𝑅𝑒+0.411 (log 𝑅𝑒)2−0.033  log 𝑅𝑒3]  
 

10<Re<20000 

𝐶𝐷 = 0.74  

 

 Re>2000 

 

Chhabra and Ferreira [19] established a simpler correlation, Eq. (2.6) for the CD-Re valid for 

0.1≤Re≤105:  

               𝐶𝐷 = 𝛼 +
𝛽

𝑅𝑒
                                                                                                                (2.6) 

Where 𝛼 and 𝛽 are the constants. The mathematical structure of Eq. (2.6) is the same to 

equations used for the free fall sphere drag coefficient [36]. With the estimated constants using 

the experimental data of Jan and Chen [17], the Eq. (2.6) becomes  

𝐶𝐷 = 0.861 +
321.906

𝑅𝑒
                                                                                                  (2.7) 

Chhabra et al. [18] experimentally estimated the drag coefficient for sphere is moving 

down a smooth inclined (3o – 30o) plane for a wide range of Reynolds number (10-6≤Re≤3000). 

The d/D was varied in the range of 0.114-0.58. They also developed the empirical relations for 

CD-Re given in Table 4.2. 
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Table 2.3 

CD - Re correlations [18] 

CD-Re Relationship Reynolds Number Range 

𝐶𝐷 =
225

𝑅𝑒
  Re<1 

𝐶𝐷 = 1 +
235

𝑅𝑒
  

 

1<Re<250 

𝐶𝐷 = 1.23 +
177.5

𝑅𝑒
  

 

Re>250 

 

Jalal and Ganji [20] developed an analytical solution using homotopy perturbation 

method for the estimation of settling velocity, acceleration and terminal position of the sphere 

while falling over an inclined surface. They compared successfully the computed homotopy 

results with the numerical outcomes using 4th order Runga-Kutta method. 

2.3. Effect of Polymer on Drag Reduction 

Reduction of drag by adding polymer and surfactant in a fluid medium is a subject of 

intense research for many decades as drag reduction is very vital for many industrial 

applications. Successfully the drag reduction or drag crisis was achieved for solid particle by 

adding a small amount of polymer in parts per million (ppm). Polymers are viscoelastic in 

nature. Hence, the elongation and recovery are time depended called memory effect which leads 

to a continuous decay of the stress when fluid motion allowed to stop. The extensive elongational 

viscosity of polymer chain arrangement stabilized the turbulent boundary layer and caused for 

minimum energy dissipation. This is called drag crisis, and the effect of polymer on drag crisis is 

mostly notable for the turbulent flow regime [37]. The drag reduction using polymeric additives 

is a phenomenon that was first reported by Toms [38].The author showed that the addition of 

small quantities of polymers of high molecular weight in a turbulent flow could reduce 
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significantly (80%) the friction factor. Later, Lumley [39] defined the drag reduction as the 

reduction of friction factor of the additives solution with respect to the solvent, measured in the 

same Reynolds number. Thenceforth, the phenomenon has been extensively studied, due to the 

great benefit reached in practical applications in several areas of the engineering. Drag reduction 

additives can be classified into three categories: high and low molecular weight polymers, 

cationic-anionic-zwitterionic surfactants and fibers. Among these, the most effective drag 

reducer is the high molecular weight polymers, but their high degradation rate decreases the 

effectiveness of the recirculation systems. Surfactant additives also suffer from temporary 

mechanical and thermal degradations, but they have the capability of ‘repairing’ themselves in 

the order of seconds [40]. Vlachogiannis .et .al [41] examined the drag reduction effects of these 

polymers are most effective when the polymers are adaptable with a large structure. In recent 

past, Khadom et al. [42] demonstrated the impact of polyacrylamide (PAM) as drag decreasing 

polymer on a stream of raw petroleum in channel lines, and very recently, Tian et al. [43] 

analyzed that addition of Hydroxypropyl xanthan gum (HXG) increases the drag reducing rate as 

the concentration of HXG increases. In some cases, it also noticed that the higher amount of 

polymer causes for higher viscosity magnitude, hence the drag ingresses significantly [37].  

 

 



 
 

CHAPTER 3 

WALL EFFECT ON THE TERMINAL VELOCITY AND 

DRAG COEFFICIENT FOR THE NEWTONIAN FLOW 

PAST A SPHERE IN INCLINED PLANE 

Introduction 

The through literature survey showed that the studies on the effect of d/D on the settling velocity 

and the effect of angle of inclination on both the drag coefficient and settling velocity were 

performed for a limited range of d/D ratios except two studies [17,18].  In most of the literature, 

the angle of inclinations was restricted up to 300.  Hence, this work is concerned to fill the voids 

in literature and to establish empirical equations to relate the drag coefficient with the Reynolds 

number for a different angle of inclination i.e. (100-900) in a smooth circular tube domain, filled 

with incompressible Newtonian liquid. The current study includes the effect of d/D ratio on the 

terminal velocity and drag coefficient for 0.09 ≤  𝑑 𝐷⁄ ≤ 0.37. 

3.1. Physics around the Solid Particle 

The falling state of a sphere with all the forces acting on it is shown in Fig. 3.1. The angle 

of inclination of the cylindrical flow channel is 𝜃. The active forces on the sphere are the drag 

force (FD), the net body weight of the sphere (FB), and solid–solid resistance (FR) along with the 

weight of the sphere (w). At equilibrium (i.e. when the particle moves with a terminal velocity), 

the force balance equation may be written as , 

𝐹𝐵 sin 𝜃 = 𝐹𝐷 + 𝐹𝑅                                                                                                     (3.1) 



Chapter 3 
 

22 
 

In which the drag force 𝐹𝐷 can be expressed as  

𝐹𝐷 =
1

2
 𝐶𝐷𝜌𝐹𝑉2𝜋𝑅2                                                                                                    (3.2) 

𝐹𝑅 becomes zero for smooth plane. The expression of the 𝐶𝐷 for the smooth plane finally can, be 

written as 

 𝐶𝐷 =
4𝑔𝑑

3𝑉2
 (

𝜌𝑆−𝜌𝐹

𝜌𝐹
) sin 𝜃                                                                                            (3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Experimental 

3.2.1. Materials 

The spheres of steel, aluminum and POM (Polyoxometalate) are used with diameters 

ranging from 3 mm to 11.4 mm and densities from 1420.93 to 9330.02 kg/m3. The diameters are 

measured by digital caliper, and the average values are used. The densities are calculated by 

 
Fig.3.1. Schematic representation of flow over sphere in inclined plane  

https://en.wikipedia.org/wiki/Polyoxometalate
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mass and volume of the sphere. 1200 mm long perplex tube of diameter 30.1 mm is used as the 

flow domain for all sphere. In this work, the diameter ratio (d/D) is varied by changing only the 

sphere diameter. Four aqueous solutions of glycerin with different glycerin concentrations and 

pure glycerin (all are Newtonian) are used as the process fluid. The viscosities and densities of 

the fluids are measured using Rheometer (Anton Parr, Germany, RheolabQC ) and pycnometer, 

respectively. All the essential physical properties are listed in Table 3.1.  

Table 3.1 

Physical properties of test fluids at 250C 

Soln. No. Fluid Density 

(kg/m-3) 

Viscosity 

(Pa. s) 

1 100% Glycerin 1250.93 0.7533 

2 80%   Glycerin 1198.34 0.0571 

3 70%   Glycerin 1167.66 0.024 

4 50%   Glycerin 1144.81 0.0059 

5 35%   Glycerin 1121.23 0.003 

 

3.2.2. Experimental Setup and Procedure 

A transparent tube of 1200mm length and 30.1 mm diameter is supported on a frame of 

plywood with a facility of changing the angle of inclination from 100 to 900. The angles are 

measured at the fix-end of tube and clamps are hooked at the different angular position. The 

movable end of the tube is shifted from one angle to other to perform the experiment. The test 

fluids are loaded 24hrs before the experiment to maintain thermal equilibrium and bubble free 

condition [17, 19]. The spheres are released using forceps, and a stopwatch is used to note its 

terminal settling time for the specified section of the tube. The test section was taken sufficiently 

away from the top end of the flow channel not only to confirm the negligible end effects but also 

to allow sufficient distance to attain the constant terminal velocity [17]. Each experiment was 
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repeated for five times and mean settling time is recorded for the calculation of the terminal 

velocity, in turn, the drag coefficient and Reynolds number. 

 

3.3. Result and Discussion  

3.3.1. Variation Settling Velocity (V) with d/D  

The estimation of terminal velocity of the spherical is necessary to estimate the drag 

coefficient of the sphere. In the present work, the terminal velocities are estimated for 0.08 ≤

𝑅𝑒 ≤ 5504, 0.09 ≤ 𝑑 𝐷⁄ ≤ 0.37 and 10𝑜 ≤ 𝜃 ≤ 90𝑜. The variations of terminal velocity of the 

sphere with the (d/D) ratio for different Newtonian fluids are shown in Fig. 3.2. The angle of 

inclination of the flow channel 𝜃 is used as the parameter. The figure depicts that the measured 

fall velocity increases with increasing the angle of inclination. It occurs due to increase of the 

downward force, 𝐹𝐵𝑆𝑖𝑛𝜃 with increasing the plane inclination. In the figure, the measured fall 

velocity shows an increasing trend with d/D ratio, which contradicts the decreasing trend of the 

terminal velocity with d/D ratio [7, 14]. In the latter case, the d/D ratio was varied by changing 

the flow channel diameter, D for a particular sphere diameter, d, where the wall effect was 

reduced due to increase of D, which in turn reduces the obstruction to the free fall movement of 

the body. In the present work, d/D is reduced by decreasing the sphere diameter, d, which also 

helps to reduce the wall effect. But at the same time, the weight of the body acting in downward 

direction decreases with decreasing its diameter, d. Overall, the reduction of the body weight 

supersedes the favorable reduced wall effect, and thus, the terminal velocity increases with 

increasing d/D ratio while sphere diameter d is varied keeping D as constant. Fig 3.2 also depicts 

an asymmetric nature of the velocity variation curves at lower 𝜃 compared to the monotonically 

increasing trend at higher angle of inclination. 
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In the previous work [7, 14], the terminal velocity, 𝑉∞ at infinite domain with zero wall 

effect was calculated taking 𝑑 𝐷 → 0⁄ . But in the present work, the same treatment results in the 

negative values of 𝑉∞. It leads to calculate the required diameter of the sphere, 𝑑𝑉=0 at zero 

terminal velocity of the sphere when sphere just floats in fluid. 𝑑𝑉=0 is calculated by substituting 

the terminal velocity as zero in the fit equation of the velocity of the sphere with (d/D) ratio. The 

variation of 𝑑𝑉=0with the angle of inclination is illustrated in Fig. 3.3. The resistance to flow of 

sphere increases with increasing the viscosity of the fluid. Thus, 𝑑𝑉=0  increases with increasing 

the viscosity of the Newtonian fluid.  A zigzag variation of it is observed with the angle of 

inclination. 

The effect of d/D ratio on CD for a different angle of inclination 𝜃 is depicted in Fig. 3.4. 

It shows a decreasing trend for CD with d/D ratio for all 𝜃 which is reverse of the observations 

made by Uhlherr and Chhabra [6]. The physical explanation follows the explanations given 

above for the terminal velocity. 

 

 

 

 

 

 

 

 



Chapter 3 
 

26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) 

 

 (B) 

 

 
(C) 

 

 
(D) 

 

 

(E) 

Fig. 3.2.Variation of measured terminal velocity on diameter ratio (d/D) and angle of inclination (𝜃) in 

(A) 35% glycerin, (B) 50% glycerin, (C) 70% glycerin, (D) 80% glycerin and (E) 100% glycerin  
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Fig. 3.3. Variation of  𝑑𝑉=0  with angle of inclination  

 

 

 
Fig. 3.4. Variation of drag coefficient as function of diameter ratio (d/D) and inclination angle in 

80% glycerin solution 
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3.3.2. CD-Re relationship  

The variations of CD with Re for a different angle of inclination of the flow channel and, for five 

Newtonian fluids are shown in Fig. 3.5. It is observed that the drag coefficient decreases with 

both the angle of inclination and Reynolds number irrespective of the fluid medium.  

Hasan [44] developed the following Reynolds number and d/D ratio dependent expression for CD 

which is valid for d/D < 0.707.  

𝐶𝐷𝑅𝑒 = 15.717{1 − (𝑑 𝐷⁄ )}−2.5                                                                               (3.4) 

But, the Eq. (3.4) does not include the effect of the angle of inclination on the drag coefficient. 

The present work has developed the expression of the variation of CD with Re and (d/D) ratio 

where the coefficient parameters of the correlation in Eq. (3.5) are a function of the inclination 

angle, 𝜃. A least-square method is used to find the value of the coefficients i.e. A, B, C and E for 

a particular n and m values.  The best values of the parameters to achieve the regression 

coefficient R2 > 0.99 are given in Table 3.2. The R2 vales of Table 3.2 confirm the viability of the 

correlation for the drag coefficient in Eq. (3.5). The negative values of n and m indicate a 

decreasing trend of CD with both Reynolds number and d/D ratios. Similar trend is observed in 

Fig. 5. In the equation, the variations of A, B, C, E, n and m with 𝜃 are given in Table 3.3. The 

tabulated data shows that the magnitude of E is much lower than A and B and thus, it proves the 

lesser effect of (d/D) ratio on the drag coefficient than the Reynolds number.   

𝐶𝐷 = 𝐴 + 𝐵𝑅𝑒−1 + 𝐶𝑅𝑒𝑛 + 𝐸 (
𝑑

𝐷
)

𝑚

                                                                     (3.5)       
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Fig. 3.5. Drag coefficient against Reynolds number plot for angle of inclination 900-100 with d/D 

in the range of 0.09 – 0.37 

 

Table 3.2 

Coefficients of Eq. 3.5 for different angle of inclination 

Angle of 

inclination, 

θ 

A B C E n m R2 

90 0.5641 -10.6782 3.8045 0.0011 -0.4 -0.3 0.99137 

70 0.9641 -40.5848 7.1269 0.08 -0.9 -0.3 0.99983 

45 0.9693 -83.0075 1.022 0.09 -0.1 -0.05 0.99976 

35 1.0245 -125.261 1.652 0.1 -0.2 -0.3 0.99975 

30 2.197 -127.042 1.1037 0.0535 -0.4 -0.7 0.99987 

25 0.6 -153.788 2.9324 0.0811 -0.1 -0.3 0.99983 

20 0.262 -645.549 16.2828 -0.0054 -0.3 -0.7 0.99981 

15 0.344 -194.908 18.2269 0.02475 -0.3 -0.5 0.99931 

10 0.5417 -309.688 22.9745 0.0295 -0.25 -0.7 0.99843 
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Table 3.3  

Relationships of obtained coefficients with angle of inclination, θ 

Coefficients Fitting line equation 

A 
1.717𝑒(−((𝜃−30.51)/3.677)

2
) + 4.208 × 1014𝑒(−((𝜃+483.6)/83.88)

2
) +

1.11𝑒(−((𝜃−60.45)/33.7)
2

)
  

 

B 
−500.6𝑒(−((𝜃−19.77)/0.7143)

2
) − 7.32 × 1017𝑒(−((𝜃+1909)/322.1)

2
)
     

C 332.4𝑠𝑖𝑛(0.004343 × 𝜃 + 2.87) + 50.74𝑠𝑖𝑛(0.03681 × 𝜃 + 4.138)
+ 3.495𝑠𝑖𝑛(0.3052 × 𝜃 − 4.104) 

E 0.09512𝑠𝑖𝑛(0.02971 × 𝜃 + 0.2725) + 0.02162𝑠𝑖𝑛(0.2072 × 𝜃 + 1.333)
+ 0.03766𝑠𝑖𝑛(0.09118 × 𝜃 − 2.621) 

n 0.5353𝑠𝑖𝑛(0.03662 × 𝜃 + 2.515) + 0.3073𝑠𝑖𝑛(0.1016 × 𝜃 − 2.965)
+ 0.1372𝑠𝑖𝑛(0.3318 × 𝜃 − 5.878) 

m 0.6398𝑠𝑖𝑛(0.006824 × 𝜃 + 5.511) + 0.2224𝑠𝑖𝑛(0.09718 × 𝜃 − 3.382)
+ 0.1028𝑠𝑖𝑛(0.298 × 𝜃 − 4.603) 

 

According to Eq. (3.4), the product term 𝐶𝐷𝑅𝑒 is function of only (d/D) ratio. To 

examine it, the 𝐶𝐷𝑅𝑒 data of the present work are plotted against (d/D) ratio for different tube 

inclination and fluids in Fig. 3.6. The figure depicts the dependency of 𝐶𝐷𝑅𝑒 on the both the 

angle of inclination and fluid viscosity. The third term in Eq. (3.5) accounts the dependency of 

𝐶𝐷 on the fluid viscosity. Table 3.2 shows that the magnitudes of C are lower than B in all the 

cases; it shows that the effect of Re on CD is higher than the fluids viscosity. Fig. 3.6 also depicts 

a decreasing variation of 𝐶𝐷𝑅𝑒 with (d/D) ratio at higher viscous solution. It occurs due to 

increase of the terminal velocity of the sphere with decreasing the viscosity of fluid. 

A linear variation of CD with 1/Re is observed in Fig. 3.7. It shows that the estimated drag 

coefficients are in laminar and early transition flow regions. According to Fig. 3.5 CD, have 

higher values at lower 𝜃 for a particular Re. Hence, a decreasing trend of the slope of the CD vs. 
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1/Re plots with increasing the angle of inclination, 𝜃 of the flow channel is observed in Fig. 3.7. 

It also shows a redetection of 1/Re range with 𝜃. It occurs due to increase of the terminal velocity 

of the sphere with 𝜃 in presence of higher gravitational force at higher 𝜃.  

  

(A) (B) 

  

(C) (D) 

 

(E) 

Fig.3.6. Variation of CDRe with diameter ratio (d/D) and angle of inclination (𝜃) in (A) 35% 

glycerin, (B) 50% glycerin, (C) 70% glycerin, (D) 80% glycerin and (E) 100% glycerin  
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Fig. 3.7. Variation of CD with inverse Reynolds number for different angle of inclination.  

 

3.4. Prediction of Drag Coefficient through Numerical Approximation 

3.4.1. Model Equations and Geometry 

In the present study, the experimental data of the drag coefficient are predicted by Ansys Fluent 

v15.0. The following steady state model equations are used for the incompressible Newtonian 

fluids under consideration in the present study. 

∇. (𝜌𝑢) = 0               (3.6) 

∇. (𝜌𝑢𝑢) = −∇𝑃 + ∇𝜏 + 𝜌𝐹𝑔                                                                                                    (3.7) 

Where 𝜌𝐹 is the fluid density,  𝑢 is the velocity of the fluid, 𝑃 is the pressure, 𝜏 is the stress 

tensor and, 𝑔 is the acceleration due to gravity. 

The meshed geometries prepared in Ansys Workbench are shown in Fig 3.8 (A) and (B) for the 

vertical and inclined flow channels, respectively. In the vertical channel, the vertically oriented 



Wall Effect on the Terminal Velocity and Drag Coefficient for the Newtonian Flow over a Sphere in Inclined Plane 

33 
 

sphere is placed symmetrically at the center of the channel. However, for the inclined channel, 

the sphere is placed off-centered at the mid-height of the channel. The exact off-centered 

location of the sphere is determined by adjusting its position to match the experimental data. In 

the present study, at all the channel inclinations and diameter ratios, the sphere is kept 0.15 mm 

away from the wall. 

 

 

 

 

 

 

 

 

3.4.2. Boundary Conditions 

The inlet velocity in the flow direction is specified as the terminal velocity. The surface is 

opposite to inlet assigned as pressure outlet boundary with specified zero gauge pressure. The 

no-slip condition is imposed on channel and sphere. For inclined channel, the acceleration due to 

gravity is used as gsinθ.  

3.4.3. Solution Methods 

 

(A) 
 

(B) 

Fig.3.8. Top view of generated mesh for (A) vertical and (B) inclined plane 
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The experimental results are in the range of laminar and early transition zone, hence to achieve 

the best and consistent results over the ranges of Re, various models including laminar flow 

model available in Ansys Fluent are tested. However, Reynolds Stress Model (RSM) model 

predicted better, and consistency in results is seen over all the ranges of Re. Hence, the predicted 

drag coefficient using RSM is presented in this work. The default values of the RSM parameters 

are used in the present study. SIMPLE algorithm and the second order upwind scheme are 

chosen for the faster convergence and higher accuracy. The convergence criteria are kept 

0.00001 for all the flow variables. 

3.4.4. Mesh Independency Test 

Meshing is very important for the solution purpose and the sensitivity on the mesh quality and 

quantity affect largely the results. The triangular meshes with fine relevance center and high 

smoothing are chosen. In order to get fine mesh quality, an additional feature i.e. the Relevance 

is increased with a periodic increase of 10 for automatic refinement of the existing mesh. After 

60-relevance center, no further improvements in the results are noticed. The number of nodes 

and elements are varied along with the diameter ratio. The mesh independency tests are carried 

out for the optimum grid. In Table 3.4 the changes of CD values with the grid is given for Re = 

3.914588513, d/D=0.37. This schema is also tested for other Reynolds numbers and d/D. 
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Table 3.4 

Mesh independence test for Re= 3.91, d/D=0.37, Experimental value =17.62 

No. of Elements No. of Nodes CD 

15907 71991 15.85 

18876 86739 16.22 

25051 117526 16.88 

32127 153886 17.23 

35668 172542 17.43 

38421 195241 17.54 

 

3.4.5. Discussion of the Predicted results 

The experimental terminal velocity is used as the inlet velocity of the working fluid. The 

simulation results for all the channel inclinations are compared successfully with the 

experimentally obtained drag coefficients in Fig.3.5. The velocity counter profile for Re= 0.6 is 

shown in Fig.3.9. The Fore and aft symmetry for both the vertical and inclined channels confirms 

the laminar flow behavior of fluid flow over the sphere. The prediction of drag coefficient with 

negligible errors confirms the viability and applicability of the numerical models available in the 

Ansys Fluentv15.0 for both the vertical and inclined flow channels. 
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3.5. Conclusions  

Terminal velocity and drag coefficient of the sphere in vertical; and inclined plane are estimated 

for a series of the angle of inclination and diameter ratio. The terminal velocity of the falling 

sphere trend was increased with increasing the d/D ratio of the sphere and flow channel. The 

increasing trend is just opposite of the decreasing trend the drag coefficient of the sphere with 

increasing the d/D ratio. The terminal velocity was increased with increasing the angle of 

inclination due to increasing the downward body force with the flow channel inclination. The 

 
 

(A) 
(B) 

Fig.3.9. Velocity distribution around sphere in (A) vertical plane and (B) inclined plane 
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estimated diameter of the sphere for zero terminal velocity showed dependency on both θ and 

d/D ratio. The drag experienced by the sphere for the inclined channel was represented by the 

drag coefficient, which was estimated for 0.08 ≤ 𝑅𝑒 ≤ 5504, 0.09 ≤ 𝑑 𝐷⁄ ≤ 0.37 and 10𝑜 ≤

𝜃 ≤ 90𝑜. The CD values were higher for lower angle of inclination due to the decreasing trend of 

terminal velocity.  Appropriate prediction equations for CD as function of Re, d/D and θ were 

developed by the least square method. The product of 𝐶𝐷𝑅𝑒 showed its dependency on both the 

angle of inclination and fluid viscosity. It showed a declining trend with the viscosity of solution. 

The linear variation of CD with 1/Re showed the collected experimental data are in laminar and 

early transition flow regions. The experimental drag coefficients are numerically predicted using 

Reynolds Stress Model (RSM) model and observed accuracy for both vertical and inclined plane 

consideration. 

 



 
 

CHAPTER 4 

NEWTONIAN FLOW OVER HOLLOW FRUSTUM IN 

VERTICAL AND INCLINED PLANE: AN 

EXPERIMENTAL OBSERVATION FOR TERMINAL 

VELOCITY AND DRAG COEFFICIENT 

Introduction 

In preceding paragraphs of Chapter, the literature included the drag coefficient data of solid regular 

shaped body in the vertical and inclined flow channels. To the best of the author’s knowledge, no 

attempt was reported for the drag coefficient due to the flow of Newtonian fluid over any hollow 

particle. Looking at the usefulness of the hollow particles in process industries, to fill the void and 

to enrich the existing literature, the present work is undertaken to estimate the drag coefficient of 

the hollow tapered cylindrical body called hollow frustum (Fig. 4.1, A) flowing in the Newtonian 

fluid in both the vertical and inclined channels. Pure glycerin and its aqueous solutions are used as 

the working fluid in the present study. 

4.1. Contribution of the work 

 Based on the literature gaps, the following objectives are adopted for the present work. 

 To estimate the effect of the angle of inclination, θ on the terminal velocity and drag 

coefficient of the hollow frustum, which is still unreported in the open literature. 
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 To estimate the effect of the inner diameter to outer diameter ratio (di/do) of the hollow 

frustum and the outer diameter of the hollow frustum to the flow channel diameter ratio 

(do/D) on the measured terminal velocity and estimated drag coefficient. 

 To develop the correlation for the drag coefficient, CD as a function of Re, di/do, do/D for 

a different angle of inclination, θ. 

4.2. Physics around particle 

The schematic representation of the hollow frustum is given in Fig.4.1. When a hollow 

frustum is moving down in fluid inside an inclined channel, the forces exerting on hollow frustum 

are drag force (FD), the net body weight of the hollow frustum (𝐹𝐵 sin 𝜃), and solid–solid resistance 

(FR). The force balance equation at equilibrium is 

𝐹𝐵 sin 𝜃 = 𝐹𝐷 + 𝐹𝑅                                                                                                                    (4.1) 

The expression of drag force is 

𝐹𝐷 =
1

2
 𝐶𝐷𝜌𝐹𝑉2𝐴                                                                                                                   (4.2) 

For smooth plane with 𝐹𝑅 zero, the expression of 𝐶𝐷 becomes 

𝐶𝐷 =
𝑚𝑔(1−

𝜌𝐹
𝜌𝑝

)

0.5𝐴𝑉2𝜌𝐹
𝑠𝑖𝑛𝜃                                                                                                                    (4.3) 

For vertical channel consideration, Eq. (4.3) is reduced to  

𝐶𝐷 =
𝑚𝑔(1−

𝜌𝐹
𝜌𝑝

)

0.5𝐴𝑉2𝜌𝐹
                                                                                                                            (4.4) 
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The diameter ratios (di/do, do/D) and the angle of inclination are the vital parameters to affect the 

drag coefficient in inclined plane consideration, hence the total drag coefficient 𝐶𝐷 may be written 

as follows  

𝐶𝐷= f (Re, do/D, di/do,𝜃)               (4.5) 

 

 

 

 
Fig.4.1. Schematic representation of flow over hollow frustum in (A) normal plane and (B) in inclined 

plane 

 

4.3. Experimental 

4.3.1. Materials 

Hollow frustums (SS 304L) of different dimension (listed in Table 4.1) and density 7849.46 

kg/m3 are machined in wire EDM (Electrical Discharge Machining) and used as hollow obstacles 

in 30.1×1200 mm circular Perspex tube. The viscosities of working fluid are measured using 

Rheometer (RheolabQC, Anton Parr, Germany,), and the densities are estimated by pycnometer. 

The rheological properties of test fluids are listed in Table 4.2. 

(A) (B) 
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Table 4.1. Physical dimensions (all are in mm) of hollow frustum  

Sl. No. do  di dc de H 

1 10 7 

8 2 12 

2 10 4 

3 10 3 

4 9 7 

4 9 4 

6 9 2 

7 6 4 

8 6 3 

9 6 2 

 

Table 4.2. Physical properties of test fluids 

Soln. No. Fluid Temperature 

(K) 

Density 

(kg/m3) 

Viscosity 

(Pa.s) 

1 100% Glycerin 298 1247.09 0.7433 

2 98%   Glycerin 298 1241.906 0.4378 

3 96%   Glycerin 298 1246.723 0.4024 

4 94%   Glycerin 298 1241.439 0.3044 

4 92%   Glycerin 298 1236.346 0.2606 

6 90%   Glycerin 298 1231.172 0.2094 

 

4.3.2 Experimental Setup and Procedure 

The inclination angles (900-400) are varied by rotating the moveable end of the tube around 

the fixed end. The schematic representation of the experimental setup is shown in  

Fig. 4.1 (B). The test fluids are loaded in the tube 24hrs before starting the experiment to make the 

fluid bubble free [17,18]. The test location is taken sufficiently away from the inlet to allow the 

frustum to reach constant terminal velocity. The hollow frustums are released by forceps and 

stopwatch is used to measure settling time. Every experiment is repeated for five times and mean 

settling time is taken for the calculation of terminal velocity followed by Reynolds number and 

CD. 
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4.4. Result and Discussion 

4.4.1. Effect of do/D and di/do on measured terminal velocity 

Measured terminal velocity is one of the vital parameters for the estimation of drag coefficient and 

Reynolds number, and it depends on the ratio of the particle and channel diameters [7, 14]. In this 

study, the particle is hollow; hence, it is believed that the ratio of inner diameter, di to the outer 

diameter, do of the hollow frustum may possess some effect on the terminal velocity. Fig. 4.2 

represents the variation of the measured terminal velocity of the hollow frustum with do/D using 

di/do as the parameter. The angle of inclination is 90o here. The do/D ratio is varied by changing 

do keeping D fixed. For a particular di/do, the increase of do makes the particles heavier. Thus, the 

terminal velocity of the frustum increases with increasing the do/D ratio. The increasing trend of 

the velocity with do/D ratio contradicts the declining trend of it for fixed diameter, d solid spherical, 

cylindrical and conical [7, 14]. In the latter case, the d/D ratio was increased by reducing the flow 

channel diameter, D for a particular sphere diameter, d which thus decreased the terminal velocity 

due to increasing the wall effect on the free falling sphere. In the present study, the di/do ratio is 

also an important parameter. The hollow frustum becomes thinner and lighter with increasing the 

di/do ratio for a particular do. Thus, the terminal velocity as shown in Fig. 4.2 decreases with 

increasing di/do.  
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Fig.4.2. Variations of terminal velocity with d0/D for different di/do in 100% glycerin and 900 

angle of inclination  

 

The effect of angle of inclination (900-400) on the terminal velocity is illustrated in Fig.4.3 

for pure glycerin. It shows an increasing trend of the terminal velocity with do/D ratio for all the 

angle of inclinations. The most profound variation of the terminal velocity with the do/D ratio is 

observed for vertical flow channel, and it becomes less with decreasing the angle of inclining. This 

occurs due to decreasing the effect of body force on the terminal velocity with decreasing the angle 

of inclination of the flow channel. For other operating fluids, the similar trend is observed.  
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Fig.4.3. Variation of terminal velocity with do/D and θ for di/do = 0.4 in 100% Glycerin (R2 

>0.99) 

 

4.4.2. Drag coefficient and Reynolds number relationship 

The drag coefficient and Reynolds numbers are calculated from the fundamental properties 

of the hollow frustum and fluid, and the terminal velocity for different angle of inclination, do/D 

and di/do. The orientation of the hollow frustum was normal to the flow direction in the 900 and 

horizontal for all other acute angles. Hence, appropriate projected areas and characteristic lengths 

are considered for the estimation of CD and Re.  

According to Eq. (4.5), the drag coefficient is also a function of Re. The effect of Re on CD  

is shown in Fig.4.4. It shows the expected decreasing trend of CD with Re for all the angles of 

inclination. The variation of drag coefficient with Reynolds number is matching with the trend 

obtained by investigators for regular shaped particle [1, 4&5]. The CD value obtained as the 

maximum for the vertical orientation of the tube where the orientation of hollow frustum is normal 

as shown in Fig. 4.1 (A). For the other inclined tubes, the hollow frustum becomes horizontal 
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shown in Fig.4.1 (B) and thus the drag coefficient increases with decreasing the θ. The highest 

value at 900 is obtained due to normal orientation which gives lesser projected area than other 

inclined channels. 

 
Fig.4.4. Drag coefficient against Reynolds number plot for angle of inclination 900- 400  

 

For 40o to 80o inclinations, projected areas are same, but as mentioned above the terminal 

velocity decreases with decreasing the angle of inclination. According to Eq. (4.3) and (4.4) CD is 

inversely proportional to V2. Hence, it increases with decreasing the 𝜃 values. The drag coefficient 

is also inversely varied with the projected area, A, which is the minimum for the normally oriented 

frustum. Thus, CD is the maximum for the vertical channel in spite of having the highest terminal 

velocity. 

Hasan [44] developed the following Reynolds number and d/D ratio dependent expression 

for CD for spherical particles falling in an inclined channel.  

𝐶𝐷𝑅𝑒 = 14.717{1 − (𝑑 𝐷⁄ )}−2.4                                                                                       (4.6) 
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They did not explore any effect of the angle of inclination on the drag coefficient expression. The 

present work has developed the expression of CD given in Eq. (4.7) which includes the dependency 

of it on all the variables like Re, di/do and do/D ratio. The coefficients of the correlation in the 

equation are also a function of the inclination, 𝜃. A least-square method is used to find the value 

of the coefficients i.e. A, B, C, E and F for a particular n, m and k values. The estimated parameters 

with regression coefficient R2 ≥ 0.97 are given in Table 4.3. R2 values closer to 1.0 show the 

viability of the correlation, Eq. (4.7). The declining trend of CD  with Reynolds number and di/do, 

do/D ratios leads to negative values of n, m and k.  In the equation, the 𝜃 dependent A, B, C, E, F, 

n, m and k with are given in Table 4.4. The tabulated data shows that the magnitude of E and F is 

much lower than A and B, which shows weak effect of di/do and do/D ratio on the drag coefficient 

than the Reynolds number and this agrees with the conclusion drawn in [31]. 

𝐶𝐷 = 𝐴 + 𝐵𝑅𝑒−1 + 𝐶𝑅𝑒𝑛 + 𝐸 (
𝑑𝑖

𝑑𝑜
)

𝑚

+ 𝐹 (
𝑑𝑜

𝐷
)

𝑘

                                                                      (4.7) 

According to Eq. (4.6), the product term 𝐶𝐷𝑅𝑒 is function of only (d/D) ratio. To examine 

it, the 𝐶𝐷𝑅𝑒 data of different Newtonian fluids are plotted in Fig. 4.5 against (do/D) ratio keeping 

di/do = 0.5. The figure depicts that 𝐶𝐷𝑅𝑒 varies with both the fluid viscosity and angle of 

inclination along with the Reynolds number. Fig. 4.5 portrays a decreasing trend of CDRe with 

viscosity in both the angle of inclination owing to well-known inverse relation of terminal velocity 

with viscosity. The magnitudes of C (stands for viscosity affect in Eq. 4.7) as given in Table 4.3 

are lower than B for all the tube inclinations, which confirms the effect of Re is higher on the drag 

coefficient than the viscosity. The terminal velocity of the hollow frustum decreases with 

increasing the fluid viscosity and thus, a lesser variation of 𝐶𝐷𝑅𝑒 with do/D ratio is observed in the 

figure. 
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Table 4.3. Obtained coefficients of Eq.6 for different angle of inclination, θ 

θ A B C E F n m k R2 

90 0.00641 -100.6782 94.044 1.0002 1.002218 -0.1 -0.03 -0.6 0.97 

80 0.1137 -34.9284 9.088 0.012 0.1441 -0.01 -0.1 -0.4 0.978 

70 0.1089 -39.2276 11.1669 0.0011 0.4167 -0.1 -0.1 -0.4 0.9932 

60 0.1261 -47.7332 12.1739 0.11 0.1184 -0.1 -0.3 -0.6 0.989 

40 0.1124 -43.3212 19.9844 0.2246 0.3914 -0.1 -0.4 -0.7 0.993 

44 0.1681 -40.8861 34.2011 0.0611 0.0967 -0.1 -0.4 -0.4 0.979 

40 0.0061 -47.3412 42.1484 0.0111 0.4427 -0.01 -0.1 -0.2 0.979 

 

Table 4.4.   Relationship among the coefficients of Eq. 6 and angle of inclination, θ                                                                       

Coefficient Fitting line equation 

A 
0.4869𝑒(−((𝜃−47.21)/1.836)

2
) + 0.1344𝑒(−((𝜃+67.4)/18.36)

2
)  

 

B 
−49.11𝑒(−((𝜃−41.11)/33)

2
) − 7.32 × 1016𝑒(−((𝜃−404.2)/70.69)

2
)     

C 
1.444 × 1042𝑒(−((𝜃−740.3)/68.61)

2
) − 4.976 × 1026𝑒(−((𝜃+1944)/262)

2
)     

E 
1.432𝑒(−((𝜃−94.22)/6.47)

2
) − 0.2072𝑒(−((𝜃+43.37)/6.773)

2
)     

F 2.439 × 106 − 3.366 × 106 cos(0.001679𝜃) − 3.614
× 104 sin(0.001679𝜃) + 8.273 × 104 cos(0.001679𝜃) + 1.797
× 104 sin(0.001679𝜃) 

n −7.243 × 107 + 9.646 × 107 cos(−0.0003434𝜃) − 1.729
× 106 sin(−0.0003434𝜃) − 2.413 × 107 cos(−0.0003434𝜃)
+ 8.646 × 104 sin(−0.0003434𝜃) 

m 3.827 × 109 − 4.102 × 109 cos(0.0002293𝜃) − 8.04
× 107 sin(0.0002293𝜃) + 1.274 × 109 cos(0.0002293𝜃)
+ 4.019 × 107 sin(0.0002293𝜃) 

k  1.146𝑠𝑖𝑛(0.04742 × 𝜃 + 0.7786) + 0.7248𝑠𝑖𝑛(0.08442 × 𝜃 + 1.001)            
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Fig.4.5. Dependency of CDRe on do/D and the viscosity of fluid for (A) 900 and (B) 400 angle of 

inclination at di/do=0.4 

 

 

(A) 

(B) 
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The variation of the drag coefficient with 1/Re is studied in Fig. 4.6 where all the present 

drag coefficients are plotted against 1/Re. The range of 1/Re in the figure confirms that all the 

present experimental data are valid in laminar flow state. The variation is approximately linear 

especially at lower angles of inclination.  

 

 
Fig.4.6. Variation of CD with 1/Re for different angle of inclination 

 

4.5. Prediction of Drag Coefficient through Numerical Approximation 

4.5.1. Model Equations and Geometry 

In the present study, the experimental data of the drag coefficient are predicted by Ansys Fluent 

v15.0. The following steady state model equations are used for the incompressible Newtonian 

fluids under consideration in the present study. 

∇. (𝜌𝑢) = 0               (8) 
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∇. (𝜌𝑢𝑢) = −∇𝑃 + ∇𝜏 + 𝜌𝐹𝑔                                                                                                      (9) 

Where 𝜌𝐹 is the fluid density,  𝑢 is the velocity of the fluid, 𝑃 is the pressure, 𝜏 is the stress tensor 

and, 𝑔 is the acceleration due to gravity. 

The meshed geometries prepared in Ansys Workbench are shown in Fig. 4.7 (A) and (B) for the 

vertical and inclined flow channels, respectively. In vertical channel, the vertically oriented hollow 

frustum is placed symmetrically at the center of the channel. But for the inclined channel, the 

horizontal hollow frustum is placed off-centered at the mid-height of the channel. The exact off-

centered location of the hollow frustum is determined by adjusting its position to match the 

experimental data. In the present study, at all the channel inclinations and diameter ratios, the 

hollow frustum is kept 0.87 mm away from the wall. 

 

 

 

 

 

 

 

 

 

 

  
(A) (B) 

Fig. 4.7. Top view of generated mesh for (A) vertical and (B) inclined plane 
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4.5.2. Boundary Conditions 

The inlet velocity in the flow direction is specified as the terminal velocity. The surface is opposite 

to inlet assigned as pressure outlet boundary with specified zero gauge pressure. The no-slip 

condition is imposed on the channel and hollow frustum walls. For inclined channel, the 

acceleration due to gravity is used as gsinθ.  

4.5.3. Solution Methods 

The experimental results are in the range of laminar and early transition zone, hence to achieve the 

best and consistent results over the ranges of Re, various models including laminar flow model 

available in Ansys Fluent are tested. Up to Reynolds number 2.84, both the laminar and Reynolds 

Stress Model (RSM) models predict the experimental drag coefficient equally well, but RSM is 

found as a better model for higher Reynolds number. Overall, the predicted drag coefficient using 

RSM is presented in this work. The default values of the RSM parameters are used in the present 

study. SIMPLE algorithm and the second order upwind scheme are chosen for the faster 

convergence and higher accuracy. The convergence criteria are kept 0.00001 for all the flow 

variables. 

4.5.4. Mesh Independency Test 

Meshing is very important for the solution purpose and the sensitivity on the mesh quality and 

quantity affect largely the results. The triangular meshes with fine relevance center and high 

smoothing are chosen. In order to get fine mesh quality, an additional feature i.e. the Relevance is 

increased with a periodic increase of 5 for automatic refinement of the existing mesh. After 85-

relevance center, no further improvements in the results are noticed. The number of nodes and 
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elements are varied along with the diameter ratio. The mesh independency tests are carried out for 

optimum grid. In Table 4.5 the changes of CD values with grid is given for Re = 0.359475, do/D= 

0.33 and di/do=0.7. This schema is also tested for other Reynolds numbers, di/do and do/D.  

Table 4.5 

Mesh independence test for Re= 0.359475, do/D=0.33 and di/do=0.7. Experimental value =276.18 

No. of Elements No. of Nodes CD 

19521 91470 241.24 

26343 126083 248.11 

39069 192224 257.14 

43978 218656 266.88 

48847 245460 275.14 

51792 261788 275.54 

 

4.5.5. Discussion of the Predicted results 

The experimental terminal velocity is used as the inlet velocity of the working fluid. The simulation 

results for all the channel inclinations are compared successfully with the experimentally obtained 

drag coefficients in Fig.4.4. Fore and aft symmetry is observed in Fig.4.9 for both the vertical and 

inclined channels. It confirms the laminar flow behavior of fluid flow over the hollow frustum and 

it accords the experimental laminar flow regime according to the Reynolds number. The prediction 

of drag coefficient with negligible errors confirms the viability and applicability of the numerical 

models available in the Ansys Fluentv15.0 for both the vertical and inclined flow channels. 
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4.6. Conclusions  

The through experimental study on Newtonian flow over hollow frustum for terminal velocity and 

drag coefficient reveals that, at any particular di/do, the terminal velocity has been increased 

monotonically with the ratio of the frustum outer diameter and channel diameter, do/D. The 

increasing trend is just opposite of the decreasing trend of the drag coefficient of the regular shaped 

solid particles. The terminal velocity of the hollow frustum has been increased with decreasing the 

di/do ratio, for a constant do/D.  The terminal velocity of the frustum has also been increased due 

to increasing the downward body force with increasing the angle of inclination.  The drag 

 

(A) (B) 

Fig.4.8. Velocity distribution around hollow frustum in (A) vertical and (B) inclined plane 
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experienced by the hollow frustum for the inclined channel has been reported in the form of the 

drag coefficient, CD estimated for 0.13 ≤ 𝑅𝑒 ≤ 8.41,0.19 ≤ 𝑑𝑜 𝐷⁄ ≤ 0.33,  0.22 ≤ 𝑑𝑖 𝑑𝑜⁄ ≤

0.83 and 40𝑜 ≤ 𝜃 ≤ 90𝑜.The CD values have shown increasing trend with decreasing the angle of 

inclination of the channel. Appropriate predictive correlation for CD as a function of Re, di/do, 

do/D and θ has been developed using the least square method.  The angle of inclination and fluid 

viscosity sensitive 𝐶𝐷𝑅𝑒 term has shown a declining trend with the do/D ratio. The variation of CD 

with 1/Re has shown linear variation at lower angles of inclinations. 

  



 

 
 

CHAPTER 5 

EXPERIMENTAL FINDINGS AND ANALYSIS OF 

TERMINAL VELOCITY AND DRAG COEFFICIENT OF 

HOLLOW CYLINDER IN VERTICAL AND INCLINED 

PLANE 

Introduction 

In the case of a hollow cylinder, the wetted surface area is more than the solid cylinder. A 

larger resistance is therefore expected to be experienced by the hollow cylinder while falling 

through a confined fluid. In spite of abundant available literature on the hydrodynamics of fluid 

flow over solid particle, no attempts were made earlier in regards to the estimation and reporting 

of the terminal velocity and drag coefficient of any hollow object. Hence, it is thus safe to claim 

the novelty of the present work where hollow cylinder is taken as an obstacle, and the pure glycerin 

and its aqueous solutions are used as flow media. The following objectives are undertaken for this 

study to fill the void and to accessorize the literature. 

 To show the effect of the angle of inclination, outer diameter to inner diameter ratio (di/do) 

of the hollow cylinder and the outer diameter of the hollow cylinder to the flow channel 

diameter ratio (do/D) on measured terminal velocity and drag coefficient, CD. 

 Prediction of drag coefficient with the developed correlation of it as a function of Re, di/do, 

do/D and θ. 

 Prediction of Drag coefficient using numerical model available in Ansys Fluent v15. 
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5.1. Physics around particle 

The forces acting on a moving hollow cylinder in an inclined channel as shown in Fig. 5.1 

are drag force, FD, sine component of the body weight force  (FB sin θ), solid–solid resistance (FR) 

and the weight of the hollow cylinder (W). The rolling resistance is negligible here for the smooth 

plane. The force balance equation at equilibrium is 

𝐹𝐵𝑆𝑖𝑛𝜃 = 𝐹𝐷 + 𝐹𝑅              (5.1) 

The expression of drag force is 

𝐹𝐷 =
1

2
 𝐶𝐷𝜌𝐹𝑉2𝐴                                                                                                                          (5.2) 

Substitution of Eq. 2 in Eq. 1 gives the following expression for CD  

𝐶𝐷 =
𝑚𝑔(1−

𝜌𝐹
𝜌𝑝

)

0.5𝐴𝑉2𝜌𝐹
𝑠𝑖𝑛𝜃                                                                                                                       (5.3) 

For vertical plane consideration Eq. 3 is reduced to  

𝐶𝐷 =
𝑚𝑔(1−

𝜌𝐹
𝜌𝑝

)

0.5𝐴𝑉2𝜌𝐹
                                                                                                                            (5.4) 

In general, CD is a function of the Reynolds number, diameter ratios (di/do and do/D) and angle of 

inclination. Mathematically, 

CD = f (Re, do/D, di/do,𝜃)                                                                                                       

Where Reynolds number is  𝑅𝑒 = 𝜌𝐹(𝑑𝑂 − 𝑑𝑖)𝑉 𝜇⁄  .    
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Fig.5.1. Schematic representation of flow over hollow cylinder in (A) vertical and (B) in 

inclined channel 

 

5.2. Experimental 

Hollow cylinders (SS 304L) of density 7859.56 kg/m3 are machined in wire EDM 

(Electrical discharge machining) to use as hollow obstacles in 30.1×1200 mm circular Perspex 

tube. The sizes of the hollow cylinders are listed in Table 5.1. The rheological properties of test 

fluids are listed in Table 5.2. Rheometer (RheolabQC, Anton Parr, Germany,) is used to measure 

the viscosity of the fluids, and densities are measured by the pycnometer.  

Table 5.1  

Physical dimensions (all are in mm) of hollow cylinder   

Sl. No. do di H 

1 10 7  

 

 

 

12 

2 10 5 

3 10 3 

4 9 7 

5 9 5 

6 9 2 
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7 6 5 

8 6 3 

9 6 2 

 

Table 5.2 

Physical properties of test fluids 

Soln. No. Fluid Temperature 

(K) 

Density 

(kg/m-3) 

Viscosity 

(Pa.s) 

1 100% Glycerin 298 1257.09 0.7533 

2 98%   Glycerin 298 1251.906 0.5378 

3 96%   Glycerin 298 1246.723 0.4025 

4 94%   Glycerin 298 1241.539 0.3054 

5 92%   Glycerin 298 1236.356 0.2606 

6 90%   Glycerin 298 1231.172 0.2094 

 

The Perspex tube is supported on a plywood frame. The angles (900-400) are measured 

from a fixed end, and the hooks are clamped at every angular position. The movable end is shifted 

from one angle to other for different tube inclinations. The schematic representation is shown in 

Fig. 5.1 (B). The test fluids were loaded 24hrs before to make the fluid bubble free [17, 18]. The 

test location is taken sufficiently away from the inlet to avoid the entrance effect on the terminal 

velocity. The hollow cylinders are released by forceps and stopwatch is used to measure settling 

time. Every experiment is repeated for five times and mean settling time is taken for the calculation 

of terminal velocity. 

5.3. Result and Discussion  

5.3.1. Variation of Terminal Velocity  

The initial manifesto of the work is to understand the variation of terminal velocity with 

di/do and do/D. For this objective, the variation of it is shown in Fig. 5.2 for both the diameter 

ratios. At any particular do/D, it shows an increasing trend with decreasing di/do. The thickness 
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of the hollow cylinder increases with decreasing di/do, which increases the body weight and results 

in higher terminal velocity. In this work, the channel diameter is kept fixed; hence, the do/D is 

varied by altering only the outer diameter of the hollow cylinder.  Fig. 5.2 also shows an increasing 

trend of velocity with increasing the do/D. The studies in [7, 14] showed a decreasing trend of 

velocity with increasing the diameter ratio (d/D) for the cylindrical and conical object. Thus the 

present study contended their observations. A reason may be drawn in respect of this deviation is, 

in previous studies, the channel diameter,  D was varied while the obstacle diameter was fixed, 

hence for higher d/D an additional retardation force was applied on the flow path due to the wall, 

thus lesser velocity was obtained. However, in the current study, the diameter ratio do/D is varied 

due to changing of do keeping D fixed. As a result of increasing the weight of the hollow cylinder, 

the terminal velocity increases with do/D ratio. The effect of angle of inclination, θ on terminal 

velocity is shown in Fig. 5.3 for pure glycerin. The terminal velocity gradually increases with 

increasing the θ because of the increase of the downward body weight component  𝐹𝐵𝑠𝑖𝑛𝜃. The 

same states of results are observed for other working fluid. 

 

 

Fig.5.2. Variation of terminal velocity with di/do and do/D in pure glycerin for vertical channel 
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5.3.2. CD – Re Relationship 

            The obtained CD and Re from the fundamental properties of a hollow cylinder and test fluid 

are plotted in Fig.5.4.The test fluids are high viscous. Hence the expected linear decreasing trend 

of CD with the Reynolds number is observed. The orientation of the hollow cylinder in Fig. 5.1(A) 

is vertical for the vertical flow channel, which gives lesser projected area but high terminal velocity 

with maximum CD. Having horizontal orientation of the hollow cylinder shown in Fig. 5.1 (B), the 

other flow channel inclinations produce higher projected area and also lesser downward body 

force. The decreasing trend of the terminal velocity leads to an increasing trend of the drag 

coefficient as tube inclinations decreases from 80o to 40o.  

Hasan [44] developed a correlation for the estimation CD, under the scope of d/D < 0.707, 𝐶𝐷𝑅𝑒 =

15.717{1 − (𝑑 𝐷⁄ )}−2.5                (5.5) 

 

 
Fig.5.3. Variation of terminal velocity with do/D and tube inclination in pure glycerin (R2 

>0.98) 



Experimental findings and analysis of terminal velocity and drag coefficient of hollow cylinder in vertical and inclined 
plane 

61 
 

 

 
Fig.5.4. CD-Re relationship  

 

In Eq. (5.5) Hasan [44] did not include the effect of angle of inclination. Hence, in this work, a 

correlation in the form of Eq. (5.6) Is proposed as a function of di/do, do/D and Re for individual 

tube inclination. An iterative least square method is employed to obtain the coefficients A, B, C, E 

and F of Eq. (5.6) for any arbitrary selection of n, m, and k. The best values of the parameter to 

achieve regression coefficient R2 ≥ 0.98 are given in Table 5.3. The R2 values confirm the 

reliability and viability of the proposed correlations. The flow channel inclination dependent 

expressions of the coefficients are given in Table 5.4. The estimated very less magnitude of E and 

F as compared to A and B confirms quite less dependence of the drag coefficient on di/do and do/D 

ratios than the Reynolds number. This analysis agrees with the conclusion drawn by Chhabra et 

al. [18]. 

𝐶𝐷 = 𝐴 + 𝐵𝑅𝑒−1 + 𝐶𝑅𝑒𝑛 + 𝐸 (
𝑑𝑖

𝑑𝑜
)

𝑚

+ 𝐹 (
𝑑𝑜

𝐷
)

𝑘

                                                                         (5.6) 
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Table 5.3  

Obtained coefficients of Eq. (5.6) for a different angle of inclination, θ 

θ A B C E F n m k R2 

90 0.0075638 -113.766366 105.3304 1.120224 1.12248416 -0.3 -0.01 -0.7 0.995 

80 0.134166 -40.599092 10.17856 0.01344 0.172592 -0.1 -0.05 -0.1 0.981 

70 0.128502 -44.327188 12.506928 0.001232 0.578704 -0.1 -0.8 -0.4 0.994 

60 0.148798 -53.938516 13.634768 0.1232 0.13272 -0.3 -0.6 -0.3 0.986 

50 0.132632 -48.952956 22.383648 0.251552 0.438368 -0.01 -0.8 -0.4 0.991 

45 0.198358 -57.501293 38.305232 0.068432 0.108304 -0.7 -0.1 -0.8 0.986 

40 0.007198 -53.495556 47.20632 0.012432 0.619024 -0.01 -0.01 -0.3 0.993 

 

Table 5.4 Relationships among the coefficients of Eq. (5.6) and angle of inclination, θ                                                                       

Coefficient Fitting line equation 

A 
0.5869𝑒(−((𝜃−47.21)/1.836)

2
) + 0.1344𝑒(−((𝜃+67.5)/18.36)

2
)  

 

B 
−49.11𝑒(−((𝜃−51.11)/33)

2
) − 7.32 × 1016𝑒(−((𝜃−504.2)/70.69)

2
)     

C 
1.544 × 1042𝑒(−((𝜃−750.3)/68.61)

2
) − 5.976 × 1026𝑒(−((𝜃+1954)/262)

2
)     

E 
1.532𝑒(−((𝜃−94.22)/6.47)

2
) − 0.2072𝑒(−((𝜃+53.37)/6.773)

2
)     

F 2.539 × 106 − 3.366 × 106 cos(0.001679𝜃) − 3.614
× 105 sin(0.001679𝜃) + 8.273 × 105 cos(0.001679𝜃) + 1.797
× 105 sin(0.001679𝜃) 

n −7.243 × 107 + 9.656 × 107 cos(−0.0003535𝜃) − 1.729
× 106 sin(−0.0003535𝜃) − 2.413 × 107 cos(−0.0003535𝜃) + 8.646
× 105 sin(−0.0003535𝜃) 

m 3.827 × 109 − 5.102 × 109 cos(0.0002293𝜃) − 8.04
× 107 sin(0.0002293𝜃) + 1.275 × 109 cos(0.0002293𝜃) + 4.019
× 107 sin(0.0002293𝜃) 

k  1.146𝑠𝑖𝑛(0.04752 × 𝜃 + 0.7786) + 0.7248𝑠𝑖𝑛(0.08552 × 𝜃 + 1.001)            
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According to Eq. (5.5), CDRe is a function of d/D ratio. In order to verify this for 900 and 400; the 

variation of CDRe with do/D is shown in Fig. 5.5. A decreasing trend of CDRe is observed with 

increasing fluid viscosity. The variation of CD with the inverse of Reynolds number, 1/Re is shown 

in Fig.5.6, which shows a linear profile for all tube inclination. The range of 1/Re confirms the 

collected data are in the laminar region of Newtonian flow. 

 

 
 

 
Fig.4.5. Dependency of CDRe on do/D and the viscosity of fluid for (A) 900 and (B) 400 angle of 

inclination at di/do=0.4 

 

(A) 

(B) 
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5.4. Comparison with solid circular cylinder 

Unnikrishnan and Chhabra [7] developed an empirical equation for the estimation of drag 

coefficient of solid circular cylindrical particle, which is 

𝐶𝐷 =
17.5

𝑅𝑒
 (1 + 0.68𝑅𝑒0.43)                                                   (5.7) 

To compare the drag coefficients of hollow and solid cylinder for the vertical channel orientation, 

Eq. 5.7  is employed to find the CD for the solid cylinder at any particular Re.  The comparison is 

shown in Fig. 5.7. The figure depicts that the CD values are higher for hollow cylinder than solid 

cylinder at any particular Re owing to lesser projected area and lesser body weight, which results 

in lesser terminal velocity. Also, due to the higher wetted surface area, the hollow cylinder 

experiences higher resistance during free falling than the solid cylinder, hence, the drag coefficient 

for the hollow cylinder is higher than the solid cylinder.  

 

 Fig.5.6. Inverse relationship of Re with CD 
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5.5. Prediction of Drag Coefficient through Numerical Approximation 

5.5.1. Model Equations and Geometry 

In the present study, the experimental data of the drag coefficient are predicted by Ansys Fluent 

v15.0. The following steady state model equations are used for the incompressible Newtonian 

fluids under consideration in the present study. 

∇. (𝜌𝑢) = 0               (5.8) 

∇. (𝜌𝑢𝑢) = −∇𝑃 + ∇𝜏 + 𝜌𝐹𝑔                                                                                                    (5.9) 

Where 𝜌𝐹 is the fluid density,  𝑢 is the velocity of the fluid, 𝑃 is the pressure, 𝜏 is the stress tensor 

and, 𝑔 is the acceleration due to gravity. 

 

 

Fig.5.7. Comparison of drag coefficient between hollow cylinder and solid cylinder 

Unnikrishnan and Chhabr [13] 



Chapter 5 
 

66 
 

 

 

 

 

 

 

 

 

The meshed geometries prepared in Ansys Workbench are shown in Fig. 5.8 (A) and (B) for the 

vertical and inclined flow channels, respectively. In the vertical channel, the vertically oriented 

hollow cylinder is placed symmetrically at the center of the channel. But for the inclined channel, 

the horizontal cylinder is placed off-centered at the mid-height of the channel. The exact off-

centered location of the hollow cylinder is determined by adjusting its position to match the 

experimental data. In the present study, at all the channel inclinations and diameter ratios, the 

hollow cylinder is kept 0.4598 mm away from the wall. 

5.5.2. Boundary Conditions 

The inlet velocity in the flow direction is specified as the terminal velocity. The surface is opposite 

to inlet assigned as pressure outlet boundary with specified zero gauge pressure. The no-slip 

condition is imposed on the channel and hollow cylinder walls. For inclined channel, the 

acceleration due to gravity is used as gsinθ.  

 

 

 

 

 

 

(A) 
(B) 

Fig.5.8. Top view of the generated mesh for (A) vertical plane and (B) inclined plane 
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5.5.3. Solution Methods 

The experimental results are in the range of laminar and early transition zone, hence to achieve the 

best and consistent results over the ranges of Re, various models including laminar flow model 

available in Ansys Fluent are tested. Up to Reynolds number 1.81, both the laminar and Reynolds 

Stress Model (RSM) models predict the experimental drag coefficient equally well, but RSM is 

found as a better model for higher Reynolds number. Overall, the predicted drag coefficient using 

RSM is presented in this work. The default values of the RSM parameters are used in the present 

study. SIMPLE algorithm and the second order upwind scheme are chosen for the faster 

convergence and higher accuracy. The convergence criteria are kept 0.00001 for all the flow 

variables. 

5.5.4. Mesh Independency Test 

Meshing is very important for the solution purpose and the sensitivity on the mesh quality and 

quantity affect largely the results. The triangular meshes with fine relevance center and high 

smoothing are chosen. In order to get fine mesh quality, an additional feature i.e. the Relevance is 

increased with a periodic increase of 10 for automatic refinement of the existing mesh. After 80-

relevance center, no further improvements in the results are noticed. The number of nodes and 

elements are varied along with the diameter ratio. The mesh independency tests are carried out for 

the optimum grid. In Table 5.5 the changes of CD values with grid is given for Re = 1.380161, 

do/D= 0.33 and di/do=0.7. This schema is also tested for other Reynolds numbers, di/do and do/D.  
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Table 5.5 Mesh independence test for Re= 1.38, do/D= 0.33 and di/do=0.7, Experimental value 

84.83 

No. of Elements No. of Nodes CD 

217001 41007 80.07 

235369 44487 81.19 

259687 49256 82.16 

316613 59728 83.50 

394993 73796 84.68 

450802 83586 84.74 

 

5.5.5. Discussion of the Predicted results 

The experimental terminal velocity is used as the inlet velocity of the working fluid. The simulation 

results for all the channel inclinations are compared successfully with the experimentally obtained 

drag coefficients in Fig.5.4. Fore and aft symmetry is observed in Fig.5.9 for both the vertical and 

inclined channels. It confirms the laminar flow behavior of fluid flow over the hollow cylinder, 

and it accords the experimental laminar flow regime according to the Reynolds number. The 

prediction of drag coefficient with negligible errors confirms the viability and applicability of the 

numerical models available in the Ansys Fluentv15.0 for both the vertical and inclined flow 

channels. 
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5.6. Conclusions 

The terminal velocity and drag coefficient of hollow cylinder flowing through Newtonian fluids 

in vertical and inclined channels are estimated experimentally. The correlations for the drag 

coefficient are developed for individual tube inclination as a function of di/do, do/D and Re using 

iterative least square method. The effect of system parameters like Reynolds number, diameter 

ratios and angle of inclination on the terminal velocity and drag coefficient are exhibited. The 

terminal velocity, V of the hollow cylinder increases with decreasing di/do. The increasing trend 

of V with do/D ratio for the hollow cylinder is opposite of the trend obtained for cone and cylinder 

object. Owing to increase of the downward body force component, the hollow cylinder terminal 

 

(A) 
(B) 

Fig.5.9. A generalized axial view of velocity distribution over hollow cylinder in (A) vertical 

channel and (B) inclined channel 
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velocity increases with increasing the angle of inclination, θ. The drag coefficient of the hollow 

cylinder decreases linearly with Re, which agrees with the trend of the other regular shaped object 

available in the open literature. This study confirms the lesser effect of di/do and do/D on CD, for 

the scope of 0.19 ≤ di/do ≤ 0.33 and 0.22 ≤ do/D ≤ 0.83 than Reynolds number. The product of CD 

and Re decreases with the viscosity of the working liquids and increases with the angle of 

inclination. The linear CD vs. 1/Re plot confirms the expected trend in the laminar flow state. The 

Reynolds Stress Model available in Ansys Fluent predicts excellently the drag coefficient for both 

the vertical and inclined flow channels. 

 



 
 

CHAPTER 6 

A NUMERICAL STUDY OF THE WALL EFFECTS FOR 

NEWTONIAN FLUID FLOW OVER A CONE 

Introduction 

 The through literature survey showed that, the availability of both the experimental and 

numerical results for the wall effect study of the regular shaped particles like a sphere, cylinder, 

spheroids, disk, etc. The studies predict the experimental data and also explain the effect of the 

Reynolds number, particle to flow channel diameter ratio and the non-Newtonian power law 

models parameter on the drag coefficient. Experimental results of the wall effect of the cone 

shaped particles are available in Sharma and Chhabra [14], but to the best of the authors’ 

knowledge, no one has yet predicted these useful experimental data.  

The aim of the present work is to fill the void in the literature. It predicts the effect of the 

Reynolds number and cone to flow channel diameter ratio on the wall factor due to flow over the 

cone. The effects of blockage ratio on the drag coefficient and wall factor are shown at the given 

values of unconfined Reynolds number (𝑅𝑒∞). The validity of the CD Re2
=Constant relation is 

proved for the cone shaped body. The relative effects of the particle to channel diameter ratio of 

the sphere, cylinder and cone shaped particles on the drag coefficients, wall factors, velocity 

contours, recirculation length and angle of separation are found in the present work. The root 

cause of the variation of the drag coefficient and wall factors are also analyzed with the help of 

velocity contour plots. 
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6.1. Description of Physical System 

In the present simulation study, the hydrodynamic behaviors of Newtonian fluid flow 

over the submerged cone shaped body are studied in terms of the finding the drag coefficient and 

wall effect. The geometry of cone shaped particles is the same to (Sharma and Chhabra [14]). 

The detailed physical specifications and properties of the cone and fluids are given in Table 6.1 

and Table 6.2. The geometrical details of cylindrical (Unnikrishnan and Chhabra, [7]) and 

spherical (Ullhar and Chhabra, [6]) particles are also included in the table. The schematic 

representations of fluid flow over the particles of each shape are shown in Fig. 6.1. To vary the 

diameter ratio, the outer diameter i.e. flow domain diameter is changed with maintaining 

constant particle diameter. In this work, the solid particle will remain in static condition, while 

the fluid medium flows over the particle. 

Table 6.1  

Dimensions of cone, cylinder, and sphere 

Material d (mm) L (mm) 

 

Cone2 and Cone5 [14] 

Perspex 

(𝜌𝑆 =1204 kgm-3  ) 

15.05 Cone2:17.31  

Cone5: 7.10 

 

Cylinder [7] 

Perspex 

(𝜌𝑆 =1204 kgm-3  ) 

10 20,10,5,2.5 

Glass 

(𝜌𝑆 =2409 kgm-3  ) 

8 6,4.5 

6 3,2 

 

Sphere [6] 

Perspex 

(𝜌𝑆 =1204 kgm-3  ) 

15.05 
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Table 6.2   

Physical properties of working fluid 

Material Density (kg/m3) Viscosity Pa. s 

 

 Cone [14] 

40% Corn Syrup+ Water 1136.4 0.003727 

42.5 % Corn Syrup + Water 1147.0 0.00519 

45 % Corn Syrup + Water 1153.5 0.005325 

Castrol Oil 964.5 0.4008 

 

 Cylinder [7] 

100% Glycerin 1245.2 0.4903 

Castrol Oil 964.5 0.406 

 

Sphere [6] 

90% Glycerin 1233.6 0.2819 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1. Schematic diagrams of flow over (A) cone, (B) cylinder and (C) sphere  

 

     Inlet 

    Outlet 

(A) 

     Inlet 

    Outlet 

(B) 

     Inlet 

    Outlet 

(C) 
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The geometries of the cone, cylinder, sphere and flow domain are created using Design 

Modular (DM) of ANSYS Workbench. After defining the geometry, the meshing is important 

for the solution purpose. The element size, number of node and mesh are changed with the 

geometry and size of the submerged body, and body to flow channel diameter ratio. The display 

of mesh for the cone, cylinder, and sphere are presented in Fig. 6.2. 

6.1.1. Model Equations 

A steady and incompressible fluid flow of Newtonian fluid is considered over the 

submerged object. The equation of continuity and momentum equations are solved together to 

obtain the velocity and pressure fields. Based on the computed velocity and pressure fields the 

 

(A) 

 

  (B) 

 

(C) 

Fig. 6.2. Generated mesh for (A) cone, (B) cylinder and (C) sphere located axially in a 

cylindrical channel 
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drag coefficient is calculated using Eq. (1.3). The general form the continuity and momentum 

equations are  

∇. (𝜌𝑢) = 0               (6.1) 

∇. (𝜌𝑢𝑢) = −∇𝑃 + ∇𝜏 + 𝜌𝑔                                                                                                      (6.2) 

where 𝜌 is the fluid density,  𝑢 is the velocity of the fluid, 𝑃 is the pressure, 𝜏 is the stress tensor 

and, 𝑔 is the acceleration due to gravity. 

6.1.2. Boundary Condition and Solution Method 

Steady state - pressure based solver of ANSYS Fluent is used herein. The gravitational 

force is made active in the direction of flow. The cell zone condition consists of either solid or 

liquid in the respective zone. The no-slip condition is used for boundary wall and solid particle. 

The inlet velocity is calculated from the Reynolds number equation and specified at the inlet of 

geometry. The gauge pressure at the outlet is taken as zero. All the available viscous models in 

FLUENT are tested to validate the experimental results. However, the most accurate and 

consistency results are obtained with Reynolds Stress Model (RSM) with the default values of 

𝐶𝜇 = 0.09, 𝐶1𝜀 = 1.44 and 𝐶2𝜀 = 1.92 . SIMPLE algorithm is used as the simulation algorithm. 

The pressure gradient is discretized by the least square cell based scheme. The turbulent kinetic 

energy, turbulent dissipation rate and Reynolds stress are discretized by the second order upwind 

scheme for the iterative simulation. The default values of the under-relaxation factors are used in 

the present work. The convergence criteria are kept as 0.0001 for the residuals and drag 

coefficient calculation. 
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6.1.3. Mesh Independency Test 

Meshing is very important for the solution purpose and the sensitivity of mesh quality 

and quantity affect largely on the results. The triangular mesh with fine relevance center and high 

smoothing are chosen. The generalized view of the mesh is given in Fig. 6.2. In order to get fine 

mesh quality, the relevance is increased for automatic refinement of the existing mesh. The 

number of node and elements are varied along with the blockage ratio. The mesh independency 

test is important before presenting the simulated results. In Table 6.3 the effect of a number of 

element and nodes on the drag coefficient are presented for Re = 0.8 at d/D = 0.015 for cone 2. 

The observation form the table shows that a small change in the value of the drag coefficient 

occurs for the finest grid (915674 elements) than the fifth grid with a number of elements 

627842. However, the CPU time increased significantly with further increasing the number of 

elements. Thus, the fifth grid in the table is considered. Similar kind of study was carried out for 

other Reynolds number, and d/D ratio, and also for other geometries and the same optimum 

number of the grid is observed. All the simulations are performed in Intel i7, 4 GB RAM, and 

Windows 10 intergraded computer. 

Table 6.3 

Mesh independence test for cone 2 at Re = 0.8 and d/D = 0.015 

No. of Elements No. of Nodes CD 

246111 45912 22.09 

312048 57791 22.88 

398858 73194 23.20 

533667 96785 23.79 

627842 113066 24.56 

915674 162402 24.61 
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6.2. Results and Discussions 

6.2.1. Validation of Results 

In the present study, the values of drag coefficients, CD have been calculated for a wide 

range of Reynolds numbers and d/D ratios (0.01 <Re<30000 and 0.0015 < d/D <0.9) to find 

computationally the effect of Re and d/D on the drag coefficients of the cone. Before going to 

analyze and portray the new results, it is necessary to validate the computed drag coefficients. 

The current research work has presented the simulated data of the cones at the given conditions 

in Sharma and Chhabra [14]. Sharma and Chhabra [14] had compared the experimentally 

obtained CD∞ with the sphere CD∞ values in Eq. (6.3) Obtained by data fitting procedure. They 

found a good agreement between these two. In the same line, the computed CD∞ obtained with 

d/D = 0.0015 (low enough to consider 𝑑 𝐷⁄ → 0) for both the cones are compared in Fig. 6.3 and 

6.4 for all the Newtonian fluids. The figures show that the correspondence is excellent for 40% 

corn syrup.  The closeness of these curves with Eq.  (6.3) results increases with decreasing the 

viscosity of the process fluid especially at higher d/D ratio. It may require decreasing the d/D 

further for the higher viscous fluids. 

𝐶𝐷∞ =
17

𝑅𝑒∞
(1 + 𝑅𝑒∞

0.806)               (6.3) 
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Fig. 6.3. Variation of drag coefficient with Reynolds number in unbounded flow (d/D=0.0015) for 

cone 2 in Newtonian fluid 

 

Fig. 6.4. Variation of drag coefficient with Reynolds number in unbounded flow (d/D=0.0015) 

for cone 5 in Newtonian fluid 
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6.2.2. Effect of Diameter Ratio and Reynolds Number on Drag Coefficient 

To study the variations of 𝐶𝐷 with the diameter ratio, the flow domain diameter is 

adjusted keeping the cone diameter constant. Eight d/D ratios i.e. 0.0015, 0.015, 0.03, 0.1, 0.15, 

0.4, 0.6 and 0.9 are used for 40% corn syrup-water as the working fluid. The combined effects of 

the Reynolds number and d/D ratio on the drag coefficient are presented in Fig. 6.5 and 6.6. 

Similar trends are observed for other working fluids. The effect of Reynolds number on 𝐶𝐷 is 

usual which follows the observations of Chhabra & Uhlherr [6] for Newtonian fluid flow over a 

sphere. The figures show higher drag coefficients at higher d/D ratio. These also show that below 

a certain d/D (say 0.015) the drag coefficient values are not significantly changing for further 

reduction (say 0.0015) of it. The flow area between the cone and the channel wall decreases, and 

simultaneously, the pressure drop across the cone increases with increasing the blockage ratio, 

d/D. The higher pressure drop produces higher frictional loss i.e. higher drag coefficient. 

The computed drag coefficients and Reynolds number at the given settling velocity of 

cones Sharma and Chhabra [14] are placed in Fig. 6.5 and 6.6 which show that all the CD – Re 

points, for a particular working fluid, lie on the same straight lines [fit Eq. (2.2)] having a slope 

of -2 Uhlherr and Chhabra [6]. Thus the CD – Re data satisfy the theoretical relation given in Eq. 

(2.2). 
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 Fig. 6.6. Variation of drag coefficient with Reynolds number and diameter ratio in 40% CS for cone 5 

 

Fig. 6.5. Variation of drag coefficient with Reynolds number and diameter ratio in 40% CS for cone 2 
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6.2.3. Effect of Reynolds Number and Blockage Ratio, d/D on the Velocity Contours  

The two-dimensional velocity contours depicted in Fig. 6.7-6.10 give some very important 

insights. The velocity profiles in Fig. 6.7 and 6.9 show that the flow is symmetric and potential, 

and there is no separation around the cone at very low Reynolds number (Re = 0.01). The drag 

force is all due to skin or frictional drag at Re = 0.01. As Reynolds number increases, separation 

of boundary layer occurs, and thus the total drag coefficient decreases due to a decrease of the 

skin friction and increase of inertial force. At very high Reynolds number (Re = 1000), an 

asymmetric flow is observed in Fig. 6.8 and more in the Fig. 6.10. 

The figures also present the effect of d/D ratio on the velocity contours. At low d/D, more 

symmetric flow around the cones is observed where the flow streams around the cones remain 

unaffected by the boundary layer on the channel wall. Since the cone reaches closer to the 

channel wall at higher d/D = 0.4, there is an interaction between the flow stream of a cone with 

the boundary layer of the channel wall. It provides an extra retardation force to the flow of fluid. 

Thus, the drag coefficient increases with the d/D ratio.  
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Fig. 6.7. Contours plot of axial velocity for Re = 

0.01 at d/D = 0.1 

Fig. 6.8. Contours plot of axial velocity for Re = 

1000 at d/D = 0.1 

  
Fig. 6.9. Contours plot of axial velocity for Re = 

0.01 at d/D = 0.4 

Fig. 6.10. Contours plot of axial velocity for Re = 

1000 at d/D = 0.4 
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6.2.4. Variation of the Wall Factors With Reynolds Number and Blockage Ratio 

Sharma and Chhabra [14] had shown graphically the effect of the blockage ratio (maximum d/D 

= 0.4343) on the wall factor for Re < 1.0. However, their experiment covered a wide range of 

Reynolds number to find the terminal velocity distributions with d/D. In the present work, the 

wall factor, f is calculated from the given terminal velocities, and then the computed wall factors 

are compared with experimental values.  An excellent agreement is observed between these two 

in Fig. 6.11. It also confirms the linear decreasing trend of the wall factor with d/D ratios. All the 

curves are intersecting at f = 1.0, which other way proves the accuracy of the predicted 

unconfined terminal velocity, 𝑉∞. Closeness between the calculated and experimental 𝑉∞ given in 

Sharma and Chhabra [14] is depicted in Fig. 6.12.   

The wall factor, f are calculated from Fig. 6.5 and 6.6 along with the help of Eq. (2.1) and 

(2.2) at any chosen d/D ratio and  𝑅𝑒∞ (Reynolds number at 𝑉∞). The method requires the CD vs. 

Re plot of the unconfined flow. According to Fig. 6.5 and 6.6, there is no significant change in 

drag coefficient due to change of d/D from 0.015 to 0.0015, and hence, the CD vs. Re curve for 

d/D 0.0015 is taken as the required 𝐶𝐷∞𝑣𝑠. 𝑅𝑒∞ curve for the unconfined flow. 𝑉 and 𝑉∞ are 

calculated from 𝑅𝑒 and 𝑅𝑒∞; substituting those in Eq. (2.2) gives the wall factor f. The variation 

of f with d/D using 𝑅𝑒∞ as the parameter is shown in Fig. 6.13. It shows the usual decreasing 

trend of  f with d/D. The rate of change of  f  with d/D is higher at lower 𝑅𝑒∞, and the width of 

the variation of  f  becomes higher at higher d/D ratio.  
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Fig. 6.11. Comparison between experimental (acquired from experimental velocity) and simulated 

(obtained from simulated velocity) wall factor with diameter ratio 

 

Fig. 6.12. Comparison between the experimental and simulated V∞   
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6.2.5. Comparative Study of the Wall Factors of the Cone, Sphere, and Cylinder 

The wall factor is also a function of the shape of submerged object. A comparative study of the 

wall factors of the spherical, cylindrical and cone-shaped particles are carried out at different d/D 

ratios in Fig. 6.14 – 6.16. All the figures show that f increases with Reynolds number in low Re 

region, finally reaching a constant value at higher Re. The trends are in accordance with the 

observations recorded by Sharma and Chhabra [14] for cone and Unnikrishnan and Chhabra [7] 

for the cylinder. The order of wall factor is cylinder > cone > sphere. The physical explanations 

of the order are given below. 

The velocity contour plots in Fig. 6.17-6.19 at high Reynolds number, 100 shows an early 

separation of boundary layer for both the cylinder and cones as compared to the spherical body. 

 

Fig. 6.13. Variation of the wall factors with the diameter ratio and 𝑅𝑒∞ obtained from Fig. 6.5 

by using Eq.(2.2) 
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It results in the lowest CD, and hence, the lowest f values for the sphere. Having relatively more 

streamlined shape, the cone produces less separation and less vortex (Fig. 6.19) than cylinder in 

Fig. 6.18. The cylinder, therefore, gives the maximum drag coefficient and simultaneously the 

wall factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.14. Comparison of wall factors at d/D = 0.015 of cylinder, cone and sphere at different Reynolds 

number  

 

Fig. 6.15. Comparison of wall factors at d/D = 0.5 of cylinder, cone and sphere at different Reynolds 

number 
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Fig. 6.17. Contour plot of axial velocity for 

sphere at d/D = 0.015 and Re = 100 

 

 

Fig. 6.18. Contour plot of axial velocity for 

cylinder at d/D = 0.015 and Re = 100 

 

 

Fig. 6.16. Comparison of wall factors at d/D = 0.8 of cylinder, cone and sphere at different Reynolds 

number 

 



Chapter 6 

88 
 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.6. Re-circulation Length and Angle of Separation  

The re-circulation lengths (i.e. the length of the maximum size vortex) for the sphere, cone, and 

cylinder at different Reynolds number are compared in Fig. 6.20 for the d/D ratio of 0.015, 0.5 

and 0.8. As expected, the re-circulation length gradually increases with the Reynolds number due 

to comparatively higher inertial force than viscous force.  The same observations were reported 

by Nitin & Chhabra [11] for a circular disk. The figure shows that the recirculation length 

decreases with increasing the d/D ratio due to the additional restrictive force from the flow 

channel wall on the wake circulation. The figure also depicts that irrespective of the Reynolds 

number the order of the re-circulation lengths is sphere > cone > cylinder. The increase of 

boundary layer separation with the recirculation length helps to reduce the frictional loss. Thus, 

 

Fig. 6.19. Contour plot of axial velocity for cone 2 at d/D = 0.015 and Re = 100 
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the minimum drag coefficient and wall effect for the sphere, intermediate for cone and the 

highest for cylinder obtained in the present study are justified. 

 

 

 

 

 

 

 

 

 

Owing to the possible asymmetry in the flow field, the angles of separation are 

determined on both the edge 1 and edge 2 of Fig. 6.21. The separation angle with Reynolds 

number, Re at different d/D ratios is shown in Fig. 22 and in Table 6.4. These show an 

exponential decrease of the separation angles on both the edges. At any particular Re, a higher 

separation angle is obtained for higher d/D ratio due to delay in separation in the presence of the 

influence of the wall. In spite of the delay of the separation, the drag coefficient becomes higher 

for higher d/D ratio (Fig. 6.5 and 6.6) due to an increase of the form drag. For the cone, a large 

decrease of the separation angle occurs due to a small increase of the Reynolds number in its low 

region, which is unlike of the sphere and cylinder body. It happens due to the sudden change of 

 

Fig. 6.20. Dependence of Re-circulation lengths on Reynolds number and d/D ratios for sphere, cone 

and cylinder. 
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the shape of the cone behind the edge 3 as compared to the sphere and cylinder where a smooth 

surface transition occurs in the flow direction. 

 

 

 

 

 

 

 

 

 

 

Table 6.4 

Angle of separation at different Re for d/D=0.15 and 0.4 

Re             d/D=0.4              d/D=0.15 

Edge-1 Edge-2 Edge-1 Edge-2 

70 90 89.997972 80.6786 78.6786 

80 17.32 16.14 14.71 10.87 

90 18.36 13.6 13.51 10.05 

100 11.85 13.23 10.91 8.96 

150 9.64 9.53 8.99 8.15 

302 12.87 7.83 7.78 7.74 

401 12.1 7.54 7.5 6.03 

500 7.92 7.45 7.51 5.76 

 

 

 
Fig. 6.21. Schematic diagram to display angle of separation 
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6.3.7. Velocity Distribution around Submerged Body  

The drag is mostly affected by the hydrodynamics of the flowing fluid especially by the slope of 

the velocity nearby the submerged body. To understand the effect, the flow direction component 

velocity is plotted in Fig. 6.23 – 6.27 against the non-dimensional radial distance. The radial 

distance is taken between the flow channel wall and the vertex of the edge 3 of the cone/the 

surface of the sphere and cylinder. The Reynolds number is used as the parameter. The Fig. 6.23-

6.25 include the radial velocity distributions individually for the cone, cylinder, and sphere 

respectively. The relative comparison among the velocity distributions is made in Fig. 6.26 and 

6.27 at low and high Reynolds number. The figures show that the velocity gradient nearby 

cone/sphere/cylinder surface is higher at higher Reynolds number. This occurs due to a decrease 

of the boundary layer thickness with Re. Even with higher velocity gradient, the drag coefficient 

decreases with Re due to a substantial increase of inertial force as compared to the wall shear 

 

Fig. 6.22. Variation of angle of separation (θ) with Reynolds number for edge 1 &2 at d/D 0.1 and 0.4  
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stress, and also as seen in the figure more amount fluid is affected and put resistance to the 

movement of the solid body. The profile is a function of the shape of the submerged object at 

low Reynolds number; the dependency reduces gradually until it becomes invariant of Re of 

higher magnitude. The observed order of drag coefficient in Fig. 6.26 and 6.27 i.e. cylinder > 

cone > sphere follows the similar explanations given for Fig. 6.23 – 6.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 6.24. Effect of Reynolds number on the velocity profiles for cylinder at d/D = 0.15 

 

 

Fig. 6.23. Effect of Reynolds number on the velocity profiles for cone2 at d/D = 0.15 
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    Fig. 6.25. Effect of Reynolds number on the velocity profiles for sphere at d/D = 0.15 

 

 

Fig. 6.26. Comparison of velocity profiles of cone, cylinder and sphere at Re = 10 and d/D = 0.15 
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The effect of d/D ratio on the radial distribution of the velocity profiles of the cone at low 

and high Reynolds number are depicted in Fig. 6.28 and 6.29.   The velocity gradients both at the 

cone and flow channel wall surface shown in Fig. 6.28 at Re = 0.01 increases with the d/D ratio. 

Thus the viscous force acting on the surfaces increases simultaneously with the d/D.  It is 

responsible for the delay in the boundary wall separation and to produce the higher drag 

coefficient at higher blockage ratio. The gradient eventually approaches a d/D ratio independent 

value at higher Reynolds number shown in Fig. 6.29. The viscous drag coefficient, therefore, 

becomes independent of the d/D at higher Reynolds number. 

 

 

 

 

Fig. 6.27. Comparison of velocity profiles of cone, cylinder and sphere at Re=100 and d/D=0.15 
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Fig. 6.29. Effect of diameter ratio on the radial distributions of the velocity profiles for cone at Re = 

100 

 

 

Fig. 6.28. Effect of diameter ratio on the radial distributions of the velocity profiles for cone at Re = 0.01 
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6.3. Numerical Study of Drag Coefficient for Newtonian Fluid Flow over Cone-To-Cylinder 

Body 

Literature review in Chapter 2 reveals that, the flow behavior study around the solid 

geometry under the transition from a conical to cylinder shape has not been studied either 

experimentally or theoretically. The present study encompasses the effect of Reynolds number 

and the ratio of top radius to bottom radius of the cone (r/R) on the drag coefficients using 

computational fluid dynamics (CFD) tools. The radius ratio, r/R for the cone is zero, and it 

increases gradually to 1.0 for the circular cylinder.  The unbounded drag coefficient is calculated 

and analyzed in the current study. The effect of the interactions between the solid body and fluid 

medium on the drag coefficient is investigated with the help of velocity contour plots. The 

schematic diagram and meshed geometries are shown in Fig. 6.30. 

 

 

 

 

 

 

 

 

 

  

 

 
Fig. 6.30. The schematic representation of flow over conical object of (A) r/R=0 and (B) r/R>0, (C) and 

(D) are the generalized view of generated mesh for (A) and (B) respectively. 

(A) (B) (C) (D) 
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6.3.1. Effects of Radius Ratio, r/R on the Drag Coefficient 

The radius ratio, r/R gradually changes from 0.0 for the cone to 1.0 for the circular 

cylindrical body. Ten different radius ratios i.e. 0.06, 0.13, 0.26, 0.39, 0.46, 0.53, 0.66, 0.73, 0.86 

and 0.99 are chosen to study the changes of drag coefficient in the transition of cone to cylinder 

geometry at different Reynolds number for 40% CS. The mutual impacts of both Re and r/R on 

drag coefficient are shown in Fig. 6.31. No effective changes in drag coefficients are seen 

till 𝑟 𝑅⁄ ≤ 0.13, but it gradually increases for higher r/R ratios. The trend of the CD-Re 

relationship is the same to the reported trends in Uhlherr and Chhabra [6] for sphere in 

Newtonian flow media. The drag coefficient is observed to increase with the increase in the top 

to bottom radius ratio. It occurs due to increase in the resistance to fluid flow with the radius 

ratio. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.31. Drag coefficient against Reynolds number plot for cone 2 at different radius ratio (r/R) in 40% 

CS. 
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6.3.2. Radius Ratio (r/R) Effect on Velocity Magnitude Distribution (Contour) Plot 

The axial velocity contour plots at Re 0.01 and 100 are shown in Figures 6.32, 6.33 and 6.34 for 

the r/R 0.00, 0.26 and 0.66. The surface area of the solid body increases with increasing the r/R. 

The larger surface area at higher r/R thus creates larger viscous drag.  The contours of velocity 

distributions for all r/R at low Reynolds number are symmetric, and no separation is observed in 

downstream flow for the pure cone. However, as the top radius increases, the flow produces a 

greater vortex in the downstream, and thus, the increase of the pressure drop with r/R ratio 

increases the drag coefficient even at very low Reynolds number. The same observations are also 

made at higher Reynolds number. The drag coefficient, therefore, increases with r/R ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.32 Velocity contour plot for (A) Re = 0.01 and (B) Re = 100 at r/R = 0 

(A) (B) 
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Fig. 6.34. Velocity contour plot for (A) Re = 0.01 and (B) Re = 100 at r/R = 0.66 

 

(A) (B) 

 

  

Fig. 6.33. Velocity contour plot for (A) Re = 0.01 and (B) Re = 100 at r/R = 0.26 

 

(A) 
(B) 
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6.4. Conclusion 

The three-dimensional CFD simulations were executed to examine the impact of Reynolds 

number and diameter ratio on the drag coefficient and wall factor of the cone. The drag 

coefficient is increased with increasing the diameter ratio; the impact was found more in low 

Reynolds number region than high. The experimental wall factor (acquired from experimental 

settling velocity available in the open literature) and computed wall factors in the present study 

were observed in excellent matching. The relation is given by Eq. (2.2), proposed by Ullher and 

Chhabra [6] was satisfied by the current computed CD-Re data for the cone.  Like sphere and 

cylinder, a decreasing trend of the wall factor with the blockage ratio was observed for a cone. 

The comparative study showed the order of the wall factor as cylinder > cone > circle. The 

velocity gradients at the surface of the drag bodies were invariant with the Reynolds number at 

its high values. The estimated recirculation length increased with the Reynolds number and 

obtained as the highest for the sphere, intermediate for cone and the lowest for the cylinder. It 

was increased with decreasing the blockage ratio.  The angle of separation at various Re on the 

opposite edges of the cone for d/D = 0.1 and 0.4 were evaluated. The angle of separation is 

increased with increasing d/D ratio due to delay in boundary layer separation at higher blockage 

ratio. The reported velocity profiles at various Re and d/D ratio for the cone, circle, and cylinder 

showed that the slope of velocity curve increased with both Re and d/D.  

The variation of drag coefficient under the transition of cone geometry to the cylinder 

geometry i.e. the theoretical analysis and CD-Re relationship for the taper-shaped object 

(0<r/R<1) were discussed. The drag coefficient values were gradually increased with the r/R 

ratio due to an additional opposing force applied by the top surface on the downstream flow. The 
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development and distribution of velocity contour plots around the solid object were found, and 

the effects of the Reynolds number and radius ratio on the drag coefficients were explained.  

 

 

 

 

 



 
 

CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

 

Conclusions 

Flow past an object (may be solid or hollow) is subject of intense research since many decades. 

Extensive application of this study in industries encounters a wealth of published article, where 

experimental, physical and analytical findings were accorded for various flow circumstances. 

However, as said in Chapter 1, while discussing the origin of the work, some critical issues were 

never addressed before our work. It is believed that much work should require filling the gaps in 

the literature. Henceforth, to cater the issues, experimental and theoretical studies are executed. 

The overall conclusion of this study is texted below. 

In Chapter 3, the terminal velocity and drag coefficient of the spherical particle are discussed for 

a wide range of diameter ratio and angle of inclination. The following conclusions are made from 

this study. 

 The terminal velocity of the falling sphere trend was increased with increasing the d/D ratio 

of the sphere and flow channel. The increasing trend is just opposite of the decreasing trend 

the drag coefficient of the sphere with increasing the d/D ratio. 

 The terminal velocity was increased with increasing the angle of inclination due to 

increasing the downward body force with the flow channel inclination. 

 The estimated diameter of the sphere for zero terminal velocity showed dependency on 

both θ and d/D ratio. 
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 The drag experienced by the sphere for the inclined channel was represented by the drag 

coefficient, which was estimated for 0.08 ≤ 𝑅𝑒 ≤ 5504, 0.09 ≤ 𝑑 𝐷⁄ ≤ 0.37 and 10𝑜 ≤

𝜃 ≤ 90𝑜. 

 The CD values were higher for a lower angle of inclination.  

  Appropriate prediction equations for CD as a function of Re, d/D and θ were developed by 

the least square method.  

 The product of 𝐶𝐷𝑅𝑒 showed its dependency on both the angle of inclination and fluid 

viscosity. It showed a declining trend with the viscosity of solution. 

 The linear variation of CD with 1/Re showed the collected experimental data are in laminar 

and early transition flow regions.  

 Reynolds Stress Model (RSM) predicts the experimental drag coefficient with good 

accuracy for both vertical and inclined plane consideration.+  

Based on the experimental analysis of flow over hollow frustum in Newtonian flow media for both 

vertical and inclined plane, the following observations are made. 

 At any particular di/do, the terminal velocity has been increased monotonically with the 

ratio of the frustum outer diameter and channel diameter, do/D. The increasing trend is just 

opposite of the decreasing trend of the drag coefficient of the regular shaped solid particles. 

 The terminal velocity of the hollow frustum has been increased with decreasing the di/do 

ratio, for a constant do/D.  

 The terminal velocity of the frustum has also been increased due to increasing the 

downward body force with increasing the angle of inclination.  
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 The drag experienced by the hollow frustum for the inclined channel has been reported in 

the form of the drag coefficient, CD estimated for 0.13 ≤ 𝑅𝑒 ≤ 8.41,0.19 ≤ 𝑑𝑜 𝐷⁄ ≤

0.33,  0.22 ≤ 𝑑𝑖 𝑑𝑜⁄ ≤ 0.83 and 40𝑜 ≤ 𝜃 ≤ 90𝑜. 

 The CD values have shown increasing trend with decreasing the angle of inclination of the 

channel.  

  The appropriate predictive correlation for CD as a function of Re, di/do, do/D and θ has 

been developed using the least square method.  

 The angle of inclination and fluid viscosity sensitive 𝐶𝐷𝑅𝑒 term has shown a declining 

trend with the do/D ratio. 

 The variation of CD with 1/Re has shown linear variation at lower angles of inclinations. 

In Chapter 5, the flow over hollow cylinder is discussed for terminal velocity and drag coefficient 

in the vertical and inclined plane. The followings are concluded from the study. 

 The terminal velocity, V of the hollow cylinder increases with decreasing di/do. 

 The increasing trend of V with do/D ratio for the hollow cylinder is opposite of the trend 

obtained for cone and cylinder object. 

 Owing to increase of the downward body force component, the hollow cylinder terminal 

velocity increases with increasing the angle of inclination, θ. 

 The drag coefficient of the hollow cylinder decreases linearly with Re, which agrees with 

the trend of the other regular shaped object available in the open literature. 

 This study confirms the lesser effect of di/do and do/D on CD, for the scope of 0.19 ≤ di/do 

≤ 0.33 and 0.22 ≤ do/D ≤ 0.83 than Reynolds number.  

 The product of CD and Re decreases with the viscosity of the working liquids and increases 

with the angle of inclination.  
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 The linear CD vs. 1/Re plot confirms the expected trend in the laminar flow state. 

 The Reynolds Stress Model available in Ansys Fluent predicts excellently the drag 

coefficient for both the vertical and inclined flow channels. 

In Chapter 6, the numerical analysis of flow over conical particle is studied, and the comparison 

of flow parameters are made among sphere, cylinder, and cone. In addition to this, the variation of 

drag coefficient for transition of solid geometry from cone to cylinder also studied.The conclusions 

are 

 The drag coefficient is increased with increasing the diameter ratio; the impact was found 

more in low Reynolds number region than high.  

 The experimental wall factor (acquired from experimental settling velocity available in the 

open literature) and computed wall factors in the present study were observed in excellent 

matching.  

 The relation is given in Eq. (2.2), proposed by Ullher and Chhabra [15] was satisfied by 

the current computed CD-Re data for the cone.  Like sphere and cylinder, a decreasing trend 

of the wall factor with the blockage ratio was observed for a cone. 

  The comparative study showed the order of the wall factor as cylinder > cone > circle. The 

velocity gradients at the surface of the drag bodies were invariant with the Reynolds 

number at its high values.  

 The estimated recirculation length increased with the Reynolds number and obtained as the 

highest for the sphere, intermediate for cone and the lowest for the cylinder. It was 

increased with decreasing the blockage ratio.   

 The angle of separation at various Re on the opposite edges of the cone for d/D = 0.1 and 

0.4 were evaluated. The angle of separation is increased with increasing d/D ratio due to 
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delay in boundary layer separation at higher blockage ratio. The reported velocity profiles 

at various Re and d/D ratio for the cone, circle, and cylinder showed that the slope of 

velocity curve increased with both Re and d/D.  

 The variation of drag coefficient under the transition of cone geometry to the cylinder 

geometry i.e. the theoretical analysis and CD-Re relationship for the taper-shaped object 

(0<r/R<1) were discussed.  

 The drag coefficient values were gradually increased with the r/R ratio due to an additional 

opposing force applied by the top surface on the downstream flow. The development and 

distribution of velocity contour plots around the solid object were found, and the effects of 

the Reynolds number and radius ratio on the drag coefficients were explained.  

7.1. Future Scope 

 Only Newtonian fluid are taken here as working fluid for all the study. Hence this work 

can be extended for other characteristic fluid i.e. power-law fluid. 

 The detail numerical analysis for flow parameters i.e. separation angle, velocity profile 

and re-circulation length of flow over the sphere, hollow cylinder and frustum can be 

studied.  

 This work can be covered for other hollow object. 
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