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Abstract 
 
 
 
The degrading water quality status of River Narmada can be deciphered by a tool called 

Water Quality Indexing. From the entire river basin seven important sites are chosen. Water 

Quality pertaining to twenty-five parameters are analyzed from 1991-2013. The final results 

are averaged to get the indices for a typical year. The current study commences with some 

preliminary methods. A significance test is conducted to determine three relevant 

parameters from each site. Based on these relevant parameters, Water Quality Indexing is 

done using Functional Data Analysis and Principal Component Analysis and finally error 

analysis of the methods is done. The preliminary analysis show that Biochemical Oxygen 

Demand, Dissolved Oxygen, Chemical Oxygen Demand and Total and Faecal Coliform are 

the most crucial water quality variables along the mainstream of Narmada River Basin.  

Both Principal Component Analysis and Factor Analysis yield seven components from 

which it is concluded that agricultural runoff and industrial wastes account for an increase 

in alkalinity in the river water. It is also concluded that the deterioration in Dissolved 

Oxygen is being rejuvenated by variables causing alkalinity in water.  

Conventional Water Quality Indexing done along the seven sites shows that for Station 

1,2,5,6 and 7, water quality remains excellent almost throughout the year except for Stations 

2 and 4.  Functional Data Analysis and Principal Component Analysis also shows similar 

results. From the error analysis Functional Data Analysis using Entropy Weights is found 

to have least error.  

Thus for a typical year the minimum indices implying the worst water quality are shown in 

a map which can help in deciphering the water quality status of the river well. 

  

 
Keywords: Water Quality Indexing; Functional Data Analysis; Entropy Weights;      

Relative Pollution Degree; Student’s t-test; Principal Component Analysis
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CHAPTER I 

INTRODUCTION 
1.1 General 

 

Water is an indispensable natural resource. It has played a crucial role in the triggering and 

sustenance of civilizations. However, till 1960s, extraction of water was more important than 

its quality assessment. The last three decades of the twentieth century have witnessed the 

importance of water quality in an alarming rate (Abbasi et.al. 2012). 

The water quantity of a resource is defined by the mass of water contained in it. On the other 

hand, water quality has different constraints according to its use. The water required for 

household purpose varies from that invested in industries. Different animals require different 

levels of water quality; same goes with different crops. Thus, water quality depends on 

anything and everything that it might have gathered during its travel from clouds to the surface 

or water body; in any form, be it dissolved, colloidal or suspended. The tag of being a 

“Universal Solvent” expands the canopy of its miscibility. 

The quality of water can be described by listing out the concentration of all the chemicals 

present in a sample. But, such an assessment would be too lengthy depending on the 

constituents present and would be correctly deciphered by technical experts only.  

The question also arises of how to compare two samples having different chemical 

constituents. The danger of consuming a sample with five components having 5% more 

concentration than the permissible limit (and hence objectionable): pH, Electrical 

Conductivity, Hardness, Sodium and chloride may not be equivalent to a sample containing at 

least 1 MPN of Coliform Count.  
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Thus all the constituents present in a sample should be addressed differently but depicted under 

a single value. Water Quality Indices solve the vexing problem of quality assessment by 

following the same formula. They translate the constituents and their corresponding 

concentrations into a single value on the basis of a system. 

The concept of using indices to represent a system is not a novel idea. Be it Dow Jones Index 

of New York or Sensex of stock exchange of Mumbai, indices have already reserved their 

place in the field of economics, trade and commerce. Even in ecology, indices have been 

thoroughly implemented through Shannon Index, Simpson Index and so on.  

Thus, indices compositely represent a condition deduced by combining, in several ways, a 

number of relevant yet incommensurate measurements. This aggregation results in an ordinal 

number which assists in understanding and inferring the overall contribution of the 

measurements to the number. 

Water Quality Index is an important component of environmental indices. It is used as 

communication tool by regulatory boards to describe the ‘health’ of any environment system; 

water, air, sediments or soil. It also helps in the evaluation of various regulatory policies on 

the different environmental practices. 

1.2 Initiation of Water Quality Indices (WQIs) 

The concept of water quality assessment had its first introduction in Germany in 1848. There, 

the water was considered fit or otherwise based on the presence or absence of some organisms. 

Since then European countries have used different classification systems for assessing water 

quality in their regions. There are two types of classification systems: one concerned with the 
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amount of pollutants present and the other concerned with the number of living communities 

(macroscopic or microscopic) of organisms present. 

These classification systems grouped water bodies into different pollution classes. Unlike this, 

indices assign a numerical value to represent the condition of water quality of a water body. 

The use of such a numerical scale begins with Horton’s Index in 1965. 

1.3 More on the benefits of Water Quality Indices 

The use of indices are well-entrenched by the regulatory agencies which are responsible for 

checking the status of water pollution. After the development of Water Quality Indices, they 

are further implemented to examine trends, showcase the environmental conditions and 

evaluate the potential of the regulatory measures of the government. The other uses of water 

quality indices are resource allocation, R&D, ranking of allocations and environmental 

planning.   

The water quality indices can also be classified into two categories; indices based on physico-

chemical parameters and indices based on bioassessment. Usually water quality indices belong 

to the category based on physico-chemical parameters, including Horton’s Index which 

includes coliforms as a variable. The present study is also classified under physico-chemical 

parameters. 

1.4 Conventional Water Quality Indices Used in Indian Rivers 

The first water quality index developed in India and perhaps in Asia too, is developed by 

Bhargava in 1983 and 1985. This method sub-divides the water quality variables into four 

groups namely, bacterial group, toxicants, physical and non-toxic parameters. A multiplicative 
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aggregation is used to combine the sub-indices obtained from different functions. This method 

has been applied to River Yamuna at New Delhi. 

An index system, based on National Sanitary Foundation-Water Quality Index, is developed 

exclusively for River Ganga by Ved Prakash et.al from 2000 to 2010.  

In 1995, Dhamija and Jain have used nine water quality parameters to summarize the water 

quality of Hanuman Lake at Jabalpur.  

Sargaonkar and Deshpande in 2003, have developed “Overall Index of Pollution” to evaluate 

the surface water quality of Indian Rivers. 

Swamee and Tyagi in 2000 and 2007 have improved the expressions of sub-indices and 

aggregation methods for conveying the water quality. 

1.5 Functional Data Analysis 

A branch of statistics and developed by Ramsay (1997), Functional Data Analysis, is a method 

which works on information represented by functions varying over a continuum, usually time. 

For this, the sampling data need not be identical and may have missing values. This highly 

flexible dynamic method has been thoroughly used in the fields of medicine, economy and 

ecology. A detailed account of this method is given in the further chapters. 

1.6 Multivariate Analysis 

This statistical method involves the observation and analysis where more than one variables 

occur as outcomes. The techniques used in the present study are Principal Component 

Analysis, Factor Analysis, Clustering, Discriminant Analysis and MANOVA. These methods 

have been explained later. 
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1.7 Problem Statement 

The lifeline of Madhya Pradesh and one of the major rivers of India, Narmada, is being readily 

polluted by municipal wastes, anthropogenic sewage and industrial wastes. As a result, the 

water quality has deteriorated to Category ‘B’ i.e. ‘Fit for Outdoor Bathing’ along the river. 

Hence to create awareness among the people using its water is necessary. Water Quality 

Indexing is such a technique with which common people can understand the water quality 

status of a water body. Conventional and Modern Methods of Water Quality Indexing are used 

in the current research. The objectives of the research are as follows: 

i) Applying a Conventional WQI method to the river. 

ii) Apply WQI method based on Functional Data Analysis and Modern Statistical 

Techniques. 

iii) Compute the Final Indices along the Mainstream of the River after comparison. 

iv) Predict the Water Quality Using Clustering and MANOVA. 

1.8 Thesis Outline  

Chapter I acquaints one about the origin of Water Quality Indices and highlights about the 

methods to be used. The problem statement has been elaborated in this chapter 

Chapter II reflects the work done by researchers in the study area and the methods used. It also 

brings out a critical review of the past works. 

Chapter III narrates in detail about the study area, the water quality variables used and their 

variations in a typical year. 

Chapter IV describes about the methodologies incorporated in the research. 

Chapter V comprises of the results obtained from the research. 
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CHAPTER II 

LITERATURE REVIEW 
 

2.1 Regarding Study Area 

 

Ahmad et.al (2001) state that the water quality of many rivers like the Ganges, the Sutlej, 

the Cauvery, Sabarmati, Krishna, Khan-Kshipra, Betwa and River Narmada are 

comparable. The pH in these rivers varies from 6 to 9. DO and BOD are also very poor.   

Sharma et.al (2007) have studied the effect of domestic sewage and effluents from the 

paper mills on the water quality and ecology of River Narmada at Hoshangabad. 

Experimental studies are done for four stations namely, Post Office Ghat (SS1), Korighat 

sewage mixing point (SS2), Landianalla sewage mixing point (SS3), and Dongarwara 

(SS4). The water quality parameters studied are temperature, pH, nitrate, chloride, 

phosphate, Total Suspended Solids, DO, BOD, Coliform Count and phyto-plankton. The 

results are explained through the minimum, maximum and average values along with 

statistical evaluations like standard deviation, standard variance, standard error and 95% 

confidence limit. The study gives us informative data regarding the wastewater 

contamination and ecology of the river. In some water samples, the hydro-biological 

characteristics exceed the permissible limits. The results can be employed for future 

planning of water quality. 

Telang et.al (2009) have analyzed the aftermath of mass bathing at Hoshangabad. They say 

that the water takes more time to rejuvenate through self-purification process. 

Experimental analysis is done according to APHA standards. Three ghats namely, a place 

near Bandhra ban, SethaniGhat and MangalwaraGhat are chosen. Water samples are 
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collected before, during and after sometime of the mass bathing ritual during January 2008. 

It is seen that the parameters considered such as, pH, DO, BOD, COD and TC are 

deteriorating on account of the organic pollution load. The authors have recommended 

awareness programmes for all the citizens who are associated with the river. 

Malviya et.al (2010) have identified and characterized six sites, four at Hoshangabad, one 

at Handia and one at Nemawar. This is carried throughout the year. DongarwaraGhat (Site 

IV), at Hoshangabad is found to be more polluted than the rest. The various physico-

chemical and biological parameters were determined as per methods suggested by APHA 

(1976). Temperature, pH and Dissolved oxygen were recorded immediately after collection 

of sample at the sites, while other parameters were analysed in the laboratory within 24 

hours. The various sites are characterized by low COD values (at DongarwaraGhat), high 

BOD values (at Vivekananda Ghat (I), SethaniGhat (II), Handia Ghat (V) and 

NemawarGhat (VI). High values of alkalinity and chloride are found at Dongarwara and 

Handia.  

Sharma et.al (2011) have carried out statistical analysis on parameters like pH, EC, 

Turbidity, Calcium Hardness, Nitrite, Sulphate, Chloride, phosphate and Dissolve Oxygen. 

Local anthropogenic factors, industrial effluents and agricultural are held responsible for 

the decreasing water quality. 

Soni et.al (2013) have conducted pre-impoundmental studies on water quality of the 

Western part of River Narmada. The study is carried out at Omkareshwar (U/S), 

Omkareshwar (D/S), Maheshwar Dam, Mandleshwar and Koteshwar. The physic-

chemical parameters are analyzed using APHA standards and water quality indexing is 
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done using Brown’s Method. The WQI ranges from 69.10(very good) to 124.03 (unfit). 

Organic pollution and anthropogenic activities are held responsible for the deterioration.  

Deshkar et.al (2014) have studied the temporal changes in the fluxes of the macronutrients 

in the Narmada estuary from 2005-10. Temperature, salinity, nitrates and phosphates are 

analyzed.  One-way ANOVA is done and it is found that these nutrients change over a 

period of time. Effluent flow, Sewage drainage, catchment runoff and tides have greater 

influence on the nutrients. 

2.2 Regarding Functional Data Analysis 

Champely and Doledec (1997) have used FDA to separate long term trends from periodic 

variation of pollutants in the Seine River. They have sampled 17 parameters irregularly 

from 1983-1991 on 212 occasions and have incorporated 9% missing values. To overcome 

certain difficulties in modelling and multivariate analysis, they propose a statistical 

approach based on data modelling by non-parametric smoother Loess and application of 

Functional Principal Component Analysis (FPCA). They smooth 17 curves using 

Periodical Trend Loess (PTL) and later use FPCA to determine the structure of long term 

variation in data. Results show that FPCA processed on non-parametric models helps to 

solve some of the problems associated with missing data and irregular sampling. 

Bjornstad (1998) maps about the regional transition to cyclicity in a vole scientifically 

named as Clethrionomys rufocanus in Hokkaido, Japan. Data is collected from 1962 to 

1992 in terms of time series of different lengths. Using FDA, it is found that the population 

of the vole is relatively stable in the west and south-west regions and is cyclic in north-east 

and east.  
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Ramsay et.al (2002) have analyzed the dynamics of a monthly production index adjusted 

non-seasonally. They say that a third-order Ordinary Differential Equation describes the 

data and the evolutionary dynamics of the 70 year span series is accordingly determined.  

This study thus illustrates the flexibility of using functional data analysis in the dynamics 

of production index. 

Fabrice et.al (2005) have extended the study of classical Multilayer Perceptron to 

Functional Data Analysis. MLP is a feedforward ANN model and maps input data sets into 

approximate output data. It consists of multilayer nodes fully connected with the adjacent 

layers in a directed graph. Consistent results are obtained using Functional Data Analysis 

and hence prove the approach to be statistically well defined. 

Henderson (2006) has explored the differences in nutrient and sediment trends in three 

dams in South East Queensland using FDA. Functional data analysis is briefly reviewed, 

concentrating in particular on the techniques of functional principal component analysis, 

functional linear modelling and functional cluster analysis. 

Muniz et.al (2012) have expressed water quality monitoring data of San Esteban estuary in 

Spain, as curves or time-dependent functions instead of discrete values. The outliers in 

water quality monitoring samples are detected. Results are defined in terms of the origin 

of the outliers and their causes. A comparison is done between the functional approach and 

the vector approach.  

Iglesias et.al (2015) have studied the variability of the Ebro River (Spain) water quality 

through a global quality index (GQI) using two methods: functional data analysis (FDA) 

and Stewhart-type control charts for statistical process control (SPC). The data was 

collected in 2008 at the El Bocal station, which is a strategic location. Temperature, 
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ammonium content, nitrate content, conductivity, dissolved oxygen, pH, and turbidity were 

measured every 15 min.  

Yan et.al (2015) have developed a dynamic water quality index based on Functional Data 

Analysis for River Changjiang at Sanjianying for 2012 and find that the water quality index 

curves derived from functional data analysis are more generalized and flexible as compared 

to those obtained using conventional indexing. The weights for the indices are determined 

using importance and relative pollution degree of each of the three water quality variables.  

The current research work is principally based on this paper. 

2.3 Regarding Multivariate Analysis 

Noori et.al (2010) have determined non-principal and principal monitoring stations in 

River Karoon using Principal Component Analysis. Samples from 17 stations are collected 

from 1999-2002. Four insignificant stations are removed and all the water quality variables 

namely, Biochemical Oxygen Demand, Chemical Oxygen Demand, Electrical 

Conductivity, Nitrate Ions concentration, Sulphate Ions concentration, temperature, 

Chloride Ions concentration, Dissolved Oxygen, hardness, Total Dissolved Solids, pH, and 

turbidity, are deemed important.  

Najar et.al (2011) have conducted cluster analysis, principal component analysis and factor 

analysis on Anchar Lake, Khushalsar Lake and Dal Lake to evaluate the water quality of 

thirteen parameters. The physicochemical parameters vary considerably within the sites. 

The hierarchical cluster analysis divides the variables into heavily, moderately and less 

polluted groups. Domestic and agricultural runoff and catchment geology are held 

responsible for the water quality on the basis of factor analysis. 
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Wang et.al (2012) have used cluster analysis and principal component and principal factor 

analysis to evaluate the 15 water quality variables for six sites at Songhua River Harbin 

region from 2005-2009. Cluster analysis groups the variables into high, moderate and low 

pollution levels. Principal Component Analysis is conducted on the three groups and five 

latent factors are deduced. The causes for water quality degradation are found to be organic 

sources, agricultural runoff, industrial effluents and natural sources. 

Selle et.al (2013) have used principal components analysis to understand the processes 

governing the water quality of surface, spring and groundwater from Ammer catchment at 

South-western Germany. Solutes from land use and geology affect the water quality in 

surface water and ground water. Principal Component Analysis Scores are found to 

interpret the results more accurately. 

Gomes et.al (2014) have optimized the water quality monitoring of Leca River, Portugal, 

with principal component analysis at seven sites for five campaigns in 2006. These 

methods help in determining minimum number of stations and thus support management 

decisions. 

Bonansera et.al (2015) have employed principal component analysis and cluster analysis 

to evaluate the water quality data sets in Rio Tercero Reservoir at Argentina. Six stations 

are chosen for assessing 21 water quality parameters from 2003-2010. Four principal 

components and three clusters are extracted accounting for mineralization and other 

pollutants.  

Kim et.al (2016) have applied multivariate analysis to Chilika Lagoon to determine the 

changes in water quality with respect to space and time post construction of the new 

channel. Thirty sites are analyzed on monthly basis from 1999-2009 and it is found that 
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salinity is an important factor for water quality. The nitrate to phosphate ratio is found to 

be increasing steadily. Thus multivariate analysis provides a clear understanding of the 

changing patterns with respect to space and time. 

2.4 Regarding Water Quality Indexing 

Brown et.al (1970) have finalized 11 out of 35 water quality variables through a panel of 

142 persons. The variables are ranked and rating curves are developed for each variable. 

Weights are calculated using comparative analysis and by multiplicative aggregation 

formula, final indices are developed. This method is also called National Sanitary 

Foundation Index.  

Akkaraboyina et.al (2012) have assessed the water quality indices of Godavari River Basin 

at Rajahmundry using eight water quality variables from 2009-2012. They have also 

predicted the water quality for 2012-2015 and have found the results to be adequate 

according to NSF indexing. 

In the present study, this method has been used as conventional indexing because of its 

robustness in Indian Rivers. 

Canadian Council of Ministers of the Environment Water Quality Index (CCME) in 2001, 

proposed a model to summarize the complexities of water quality data. Three elements are 

incorporated here: Scope (F1) which is the number of water quality variables not meeting 

the criteria; Frequency (F2) which is how many times the criteria have not been fulfilled; 

and Amplitude (F3) which is the extent to which the criteria have not been fulfilled. Terrado 

et.al (2010) say that CCME-WQI is most suitable for continuous monitoring.  

Qian et.al (2007) have combined different multivariate methods to compute the water 

quality index of Florida River Lagoon in south Indiana. They have used thirteen water 



13 
 

quality variables and have log transformed the data set. Hierarchical Clustering, Principal 

Component Analysis, Exploratory Factor Analysis and Trend Analysis have been 

comprehensively used. The indices developed are found satisfactory. 

The present study incorporates the indices developed using Principal Component Analysis 

used by Qian et.al (2007). 

Jha et.al (2008) used entropy to evaluate the water quality of seven river systems in India 

namely Baitarni, Malaprabha, Brahmani, Pachin, Yamuna and Gomti using Dissolved 

Oxygen and Biochemical Oxygen Demand. They say that entropy can be satisfactorily 

used to evaluate the water quality. 

Liu et.al (2009) have used fuzzy theory and information entropy method for assessment of 

water quality of three gorges of China. Here, exponential membership function has been 

used and information entropy method has been employed to modify the weights to obtain 

necessary information. They say that this comprehensive method gives better results than 

the traditional method of indexing. 

Sahoo (2014) studied about the water quality of five gauging stations at Brahmani River 

for the span 2003-2012. Various multivariate techniques along with fuzzy methods for 

water quality prediction are done and Principal Component Analysis is found to give 

satisfactory results. 
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CHAPTER III 

STUDY AREA AND DATA COLLECTION 

 
3.1 General 

The Narmada River Basin stretches out over the states of Madhya Pradesh, Chhattisgarh, 

Maharashtra and Gujarat. This major river system heralds a territory of 98,796 square kilometres 

which is equivalent to 3 percent of the aggregate geographical expanse of the country. The 

maximum length of the river is 923 kilometres and its maximum width is 161 kilometers. It 

expands over 72°32’ E to 81°43’E longitudes and 21°27’N to 23°37’N latitudes. The Vindhya 

Ranges confine the river from the north, in the south it is limited by Satpura Ranges and the 

Maikala Ranges bound it from the north. The location of the river demarcates between the North 

and South India. This peninsular river flows towards the west, covering a distance of 1,312 

kilometres and finally drains itself into the Arabian Sea via Gulf of Khambat, near the city of 

Bharuch at Gujarat. Figures 3.1 and 3.2 illustrate the location of River Narmada Basin and the 

various hydro-meteorological stations along River Narmada and its course with some of its 

tributaries.  

 
Fig 3.1: Map showing the location of the study area along with its general course and some tributaries 
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Fig 3.2: Map showing the Stations selected for the analysis 

          

3.1.1 The River Course and Physiography 

 

The river originates from Maikala Range near the pilgrim town of Amarkantak in 

Annupur district, Madhya Pradesh with an elevation of approximately, 1057 metres. 

Along the mainstream, for the initial 1079 kilometres, it covers Madhya Pradesh. Later 

on, it constitutes a boundary between Maharashtra and Madhya Pradesh for 39 

kilometers and Gujarat and Maharashtra for 35 kilometers. The state of Gujarat 

withholds 39 kilometers of the river. The different tributaries of the river system are 

the Banjar, the Burhner, the Shakkar, the Sher, the Dudhi, the Ganjal, the Tawa, the 

Goi, the Kundi and the Karjan. These tributaries connect with the river from the left. 
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The tributaries of Tendoni, Hiran, Kolar, Barna, Uri, Man, Orsang and Hatni connect 

with the river from the right.  

The Narmada River Basin can be split up into plain and hilly areas.  The hilly areas are 

covered with forests and cover the upper and lower middle expanses. The central area 

between the upper and lower reaches constitute of pain regions which are suitable for 

cultivation. 

3.1.1.1 Stations selected for the study 

In the present study, seven stations have been chosen along the mainstream of the 

river. The sites are chosen according to the availability of data in a government portal. 

The different stations chosen are illustrated in the Table 3.1. 

Table 3.1: Description of the Stations Studied 

Sl. No. Name  Location Resources/ 

Importance 

Population  Distance  

Station 1 Dindori 22°50’44”N 

latitude 

81°4’31.8”E 

longitude 

 

A hub of 

mineral 

resources like 

coal, bauxite, 

white ash, okars, 

high iron laterite 

and limestone 

704,218 

(according 

to 2011 

census) 

89.4 km from 

Amarkantak 

Station 2 Barmanghat 23°1’58.8”N 

latitude, 

79°1’14.52”E 

longitude 

It is a holy place 

where River 

Warahi and 

Narmada unite. 

A fair is held 

each year during 

January. 

7000 

(according 

to 2008 

census) 

Located 

211.4 km 

from Station 

1. 

Station 3 Sandhia 22°1’0.012”N 

latitude and 73°46’ 

0.012” E longitude 

It is a medium 

sized village 

767 (2011 

census) 

Located 

551.3 km 

away from 

Station 2. 

Station 4 Hoshangabad 22°44’38.76”N 

latitude, 

77°44’13.2”E 

longitude 

A very 

significant 

station. Of 

religious 

importance. 

117956 

(2011) 

Located 

416.1 km 

away from 

Station 3. 



17 
 

Ritual of mass 

bathing during 

mid-January. 

Station 5 Handia 25°21’41.76”N 

latitude, 

82°11’21.48”E 

longitude 

This is a large 

village with 

many temples in 

the name of 

River Narmada 

4221 

(2011) 

Located 

537.6 km 

away from 

Station 4. 

Station 6 Mandleshwar 22°10’36.84”N 

latitude, 

75°39’36.36”E 

longitude 

It is an 

important town 

with a hydro-

electric project 

near Maheshwar 

Dam. 

Agriculture is an 

important 

occupation here. 

11345 

(2001) 

Located 

752.7 km 

away from 

Station 5. 

Station 7 Garudeshwar 21°53’32.64”N 

latitude and  

73°39’7.56”E 

longitude 

An important 

holy place and a 

small village. 

2452 

(2011) 

Located 

209.4 km 

away from 

Station 6. 

 

3.1.2 The Climate and Rainfall 

The overall climate of the river basin remains humid tropical. In the east it is sub-humid 

and in the west it is semi-arid. In the hilly areas, humid climate is prevalent.  

The Tropic of Cancer divides the basin into a small northern zone and a large southern 

zone. The seasons of cold-weather (temperature 17.5 to 20°C), hot weather 

(temperature 30 to 32.5°C), south-west monsoon (temperature 27.5 to 30°C), and post-

monsoon (temperature 25 to 27.5°C) are distinct in the basin.  

The normal annual rainfall in the basin is 1178 centimetres with the predominant rainy 

season being the south-west monsoon from June to October. The upper hilly as well as 

plain expanses of the basin receive maximum rainfall.  
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3.1.3 Water Quality of mainstream Narmada River Basin 

The percentage of utilization of surface water from River Narmada is 23 which is not 

very high as the river is inaccessible at most of the places. The river has attained global 

priority for conservation of aquatic biodiversity since 1988 by Jetkins and 

Groombridge. The water level has also degraded as per a report in 2014. More than 

fifty species of fishes have been made extinct because of the degrading water quality 

and anthropogenic activities. 

According to the Water Quality Status Report of 2012, by Central Pollution Control 

Board, the desirable limits are being exceeded along the main stream of the river at 

Mandla, Hoshangabad, and Saraswati Ghat in Madhya Pradesh and at Bharuch and 

Panetha in the state of Gujarat. The lowest DO level measured at Narmada is 2.2 mg/L 

while the Coliform Count and Faecal Coliform count reach to 9000 and 7000 

MPN/100mL respectively. 

3.2 Data Collection and Analysis 

Monthly water quality data are collected from relevant government sites from the year 1991 to 

2013 for the seven chosen stations. Following are the twenty six parameters chosen for the 

analysis. The variation of each estimate for a typical year has been illustrated with the help of 

graphs. 

3.2.1 Discharge (in cubic metres per second): 

The water quality estimates measured in a river system account more for the river 

chemistry than the temporal dynamics. Distinct seasonal changes in such a system result 

in prominent variations in the river discharge. The concept of yearly loading of nutrients 
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into the river system depends on how the river chemistry transforms according to the 

temporal changes in discharge. Though River Narmada is rain fed, it gets a moderately 

heavy discharge due to the fairly heavy yearly average rainfall, especially in the upper 

catchment expanse. Figure 3.3 shows the variation of discharge across all the stations for 

a typical year. 

 
Fig 3.3: Variation of Discharge for all the sites in a typical year 

 

3.2.2 Temperature (in Degrees Celsius): 

This is the most common physical water quality variable which affects the 

bio-chemical characteristics and the life system in water. The concentration 

of Dissolved Oxygen and various biological activities depend on what the 

temperature is. Figure 3.4 shows the variation of temperature across all the 

stations for a typical year. 
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Fig 3.4: Variation of Temperature for all the sites in a typical year 

 

3.2.3 pH 

pH is another water quality estimate influenced by chemicals which in turn 

influences the acidity or the basicity of water. Bicarbonates of different 

metallic ions are responsible for alkalinity while mineral acids account for 

the acidity of water. Figure 3.5 shows the variation of pH across all the 

stations for a typical year. 
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Fig 3.5: Variation of pH for all the sites in a typical year 

 

3.2.4 Electrical Conductivity in micro mho/cm 

It is the measure of the capacity of water to allow electrical flow through it. 

Thus it accounts for the number of ions present in the water body. It is also 

an approximate estimate of Total Dissolved Solids. Metallic ions are 

responsible for an increase in Electrical Conductivity. Figure 3.6 shows the 

variation of discharge across all the stations for a typical year. 
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Fig 3.6: Variation of Electrical Conductivity for all the sites in a typical year 

 

3.2.5 Total Dissolved Solids in micro mho/cm 

This parameter constitutes of all the ions, both organic and inorganic, which 

are less than 2 microns. Figure 3.7 shows the variation of Total Dissolved 

Solids across all the stations for a typical year. 

 
Fig 3.7: Variation of Total Dissolved Solids for all the sites in a typical year 
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3.2.6 Ammonia Ion Concentration in mg N /L: 

This is a chemical water quality variable that reduces dissolved oxygen and 

harmful for aquatic life even when its concentration reaches 0.06 mg/L. The 

inflow of sewage results in accumulation of the parameter. Figure 3.8 shows 

the variation of Ammonia Ion Concentration across all the stations for a 

typical year. 

 
Fig 3.8: Variation of Ammonia Ion concentration for all the sites in a typical year 
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Nitrate ion concentration accounts for agricultural waste, waste water, 

human and animal wastes. Nitrite can be produced by Nitrosomonas 

Bacteria in stagnated water conditions with limited oxygen supply. Figure 

3.9 shows the variation of Nitrate and Nitrite Ions Concentration across all 

the stations for a typical year. 
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         Fig 3.9: Variation of Nitrate and Nitrite Ion concentration for all the sites in a typical year 
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variation of Silicon Dioxide across all the stations for a typical year. 
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Fig 3.10: Variation of Silica concentration for all the sites in a typical year 

 

3.2.9 Dissolved Oxygen in mg/L: 

This is an important chemical parameter in water quality analysis. A certain 

amount of oxygen gets dissolved in a water body, is acclaimed as Dissolved 

Oxygen and accounts for the life within water. This parameter is sensitive 

to an increase in organic or inorganic pollution. Figure 3.11 shows the 

variation of Dissolved Oxygen across all the stations for a typical year. 

 
Fig 3.11: Variation of Dissolved Oxygen concentration for all the sites in a typical year 
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3.2.10 Biochemical Oxygen Demand in mg/L: 

This parameter accounts for the amount of pollutants and organisms present 

in water. It is the quantity of DO consumed by microbes to catabolize 

organic matter in a water body. Hence an increase in BOD is harmful for 

the aquatic ecosystem. Figure 3.12 shows the variation of Biochemical 

Oxygen Demand across all the stations for a typical year. 

 
Fig 3.12: Variation of Biochemical Oxygen Demand for all the sites in a typical year 
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Fig 3.13: Variation of Chemical Oxygen Demand for all the sites in a typical year 

 

3.2.12 Phenol Ions Concentration in mg/L: 

Initially employed as a disinfectant, this organic pollutant accounts for 
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industries. Figure 3.14 shows the variation of Phenol Ions Concentration 

across all the stations for a typical year. 
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Fig 3.14: Variation of Phenol Ion Concentration for all the sites in a typical year 

 

3.2.13 Total Alkalinity in mg CaCO3 /L: 

This parameter accounts for the resistance of water body to change its pH 

and is identified by the concentration of carbonates, hydroxides and 

bicarbonates. Figure 3.15 shows the variation of Total Alkalinity across all 

the stations for a typical year. 

 
Fig 3.15: Variation of Total Alkalinity for all the sites in a typical year 
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3.2.14 Total Hardness in mg CaCO3 /L: 

This estimate is reflected by the concentration of Calcium and Magnesium 

Ions present. Hard water is difficult to use and hence should be properly 

treated. Figure 3.16 shows the variation of Total Hardness across all the 

stations for a typical year. 

 
Fig 3.16: Variation of Total Hardness for all the sites in a typical year 
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Fig 3.17: Variation of Calcium Hardness for all the sites in a typical year 

 

3.2.16 Fluoride Ion Concentration in mg/L: 

This variable when between 1.0 mg/L and 1.5 mg/L is good. If less than the 

permissible range, it causes tooth decay and if more causes skeletal and 

dental fluorosis. The main source of this pollutant are pesticides and 

pharmaceuticals. Figure 3.18 shows the variation of Fluoride Ions 

Concentration across all the stations for a typical year. 

 
Fig 3.18: Variation of Fluoride Ion Concentration for all the sites in a typical year 
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3.2.17 Calcium Major Ion Concentration in mg/L: 

Originating from rocks like that of limestone and marble, this variable is a 

measure of the hardness of water. The maximum limit of calcium ions in 

drinking water is 50 mg/L. Figure 3.19 shows the variation of Calcium 

Major Ions Concentration across all the stations for a typical year. 

 
Fig 3.19: Variation of Calcium Major Ion Concentration for all the sites in a typical year 
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across all the stations for a typical year. 
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Fig 3.20: Variation of Magnesium Ion Concentration for all the sites in a typical year 

 

3.2.19 Sodium Ion Concentration in mg/L: 

This is a very common estimate present in water. Saline intrusion, effluents 

from sewage and mineral deposits can result contribute to the presence of 

sodium ions in water. Figure 3.21 shows the variation of Sodium Ion 

Concentrations across all the stations for a typical year. 

 
Fig 3.21: Variation of Sodium Ion Concentration for all the sites in a typical year 
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3.2.20 Potassium Ion Concentration in mg/L: 

An essential constituent in human body, this parameter is usually within its 

permissible limits in water. Weathering of minerals and leaching of 

fertilizers result in an increased concentration of potassium ions in water. 

Figure 3.22 shows the variation of Potassium Ion Concentration across all 

the stations for a typical year. 

 
Fig 3.22: Variation of Potassium Ion Concentration for all the sites in a typical year 

 

3.2.21 Chloride Ions Concentration in mg/L: 

Leached from different rocks, chloride ions account for the salty taste to 

water when present above 250 mg/L. These ions may occur due to industrial 

and domestic wastes. Figure 3.23 shows the variation of Chloride Ions 

Concentration across all the stations for a typical year. 
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Fig 3.23: Variation of Chloride Ion Concentration for all the sites in a typical year 

 

3.2.22 Sulphate Ions Concentration in mg/L: 

This water quality variable originates from minerals like barite, epsomite 

and gypsum. The concentrations depend upon the cations associated with 

the sulphate ions. The wastewater from smelters and mines develop the 

concentration of this variable in water. Figure 3.24 shows the variation of 

Sulphate Ions Concentration across all the stations for a typical year. 

 
Fig 3.24: Variation of Sulphate Ion Concentration for all the sites in a typical year 
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3.2.23 Carbonate Ion Concentration in mg/L: 

This estimate accounts for an increase in pH and alkalinity in a water 

sample. It is usually formed from the dissociation of carbon dioxide in 

water. Figure 3.25 shows the variation of Carbonate Ion Concentration 

across all the stations for a typical year. 

 
Fig 3.25: Variation of Carbonate Ion Concentration for all the sites in a typical year 

 

3.2.24 Bicarbonate Ion Concentration in mg/L: 

Resulting from the attempt to balance the carbonate equilibria, this 

parameter is abundantly found in running waters. The erosion of limestone 

results in the formation of this anion. Figure 3.26 shows the variation of 
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Fig 3.26: Variation of Bicarbonate Ion Concentration for all the sites in a typical year 

 

3.2.25 Total Coliform Count in MPN/100 mL: 

This variable is the collection of different bacteria in water. This may not 

be harmful but has the potential of being victimized by pathogens. Severe 

environmental pollution is responsible for this estimate. Figure 3.27 shows 

the variation of Total Coliform Count across all the stations for a typical 

year. 

 
Fig 3.27: Variation of Total Coliform for all the sites in a typical year 
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3.2.26 Faecal Coliform Count in MPN/100 mL: 

This variable results from anthropogenic pollution. The presence of 

pathogens is more prominent if a water sample contains Faecal Coliform. 

Figure 3.28 shows the variation of Faecal Coliform Count across all the 

stations for a typical year. 

 
Fig 3.28: Variation of Faecal Coliform for all the sites in a typical year 
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CHAPTER IV 

METHDOLOGY 
 

4.1 WATER QUALITY INDEX 

Water quality indices can be devised by using increasing or decreasing scale indices. The method 

used in the current research work is of decreasing scale indices where the degree of pollution is 

inversely related to the index values. The formulation of water quality index involves four steps: 

i) Selection of Parameters: 

ii) Transformation of the selected parameters, having different units, into a common scale. 

iii) Assigning weights to the transformed parameters. 

iv) Aggregating the results obtained in step (iii) to determine a final index value. 

Out of the above given steps, all are mandatory except step (iii). Water Quality Indices facilitate 

common people to understand the level of pollution of any water resource. However, formulation 

of Water Quality Index is not that simple. Various subjective opinions and references from experts 

are necessary and complete objectivity cannot be attained. The steps mentioned are explained 

below: 

4.1.1  Parameter Selection: 

A Water Quality Index would become clumsy if all the constituents present in a water 

sample would be included in the process. Therefore one needs to select a set of variables 

which as a whole reflect the overall quality of water for any given use. This is the place 

where subjectivity pops out. Different experts may have different opinions regarding 

the choice of sensitive parameters.  
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In the current work, a method of Student’s t-test has been used to select three significant 

parameters from each chosen site. 

4.1.1.1 Student’s t-test: 

Let us think of a small sample with size n from a normal population, 

having mean µ and standard deviation σ. Let ӯ be the mean and σs be the 

standard deviation of the sample drawn. Then,‘t’ statistic is given by 

equation 4.1 as 

𝑡 =
ӯ−µ

σ
√𝑛-------------------- (4.1) 

where n is the number of observations. When the‘t’ statistic of each 

sample is calculated, we get a t distribution which is essentially symmetric 

and is normally distributed for large samples. The t-test was found by W.S 

Gosset in 1908 under the pen name of Student and hence the name 

‘Student’s t-test’. This hypothesis test tells us whether means of two 

samples are statistically significantly different from each other, the null 

hypothesis being the means are the same. Thus, t-test belongs to the 

category of inferential statistics. If the t value is big, then the two samples 

can be considered significantly different or vice versa. How big the t value 

should be is better determined using the p-value which is the probability 

of the t value of lying with the region of significance. There are two levels 

of significance i.e. 5% and 1%. If for a t-test p>0.05 (for 5% level of 

significance), the difference between ӯ and σ  is not significant and if 

p<0.05 the means are significantly different. In the current study 5% 

significance level has been chosen. Considering monthly discharge as an 
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independent parameter, the t-test is conducted between each water quality 

variable and discharge. Thus from this hypothesis testing we identify the 

variables which are independent of discharge. Further a two-tailed test is 

adopted thus assuming the relationship possibility to be in both the 

directions. The concept of a t-distribution has been elaborated in Figure 

4.1. 

 
Fig 4.1: A typical two-sided t-distribution (PDF = probability density function) 

 

4.1.2 Conversion of parameters of different units into a common scale: 

Different parameters have different ranges of occurrence and different are measured in 

different units. pH has no unit and is limited to a value of 14. Dissolved Oxygen is 

measured in mg/L and is rarely beyond 12mg/L while sodium, being measured in the 

same unit may extend up to 1000mg/L. Toxic constituents like mercury occur mostly 

below 1mg/L. On the other hand, alkalinity and hardness always occur above 1mg/L. 

Still a water sample with a chloride content of 10mg/L is as healthy as one containing 

chloride fifteen times higher the former. But a water sample constituting of mercury of 

level 0.001mg/L is acceptable and one containing even twice of that is harmful. 
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Therefore transformation of the different parameters into a common scale is a necessity.  

The scale usually ranges from zero to one. It may also range from zero to hundred.  

4.1.2.1  Development of Sub-indices: 

Various mathematical functions are applied to formulate different pollutant 

variables, thus, generating sub-index functions. For n water quality variables x1, x2, 

x3 and so on each variable is represented by a sub-index S.I.i calculated using a 

function as per Equation 4.2: 

𝑆. 𝐼.𝑖 = 𝑓𝑖(𝑥𝑖)--------------------------------------- (4.2) 

After computation of the sub-indices, they are aggregated to form a final value in 

the next mathematical step as shown in Equation 4.3.  

𝐼 = 𝑔(𝑆. 𝐼1, 𝑆. 𝐼2, … 𝑆. 𝐼3) -------------------------- (4.3) 

The function may be a summation or a multiplicative operation or some other 

aggregation method. The overall procedure for development of sub-indices has 

been explained in the Figure 4.2: 

 
Fig 4.2: Mechanism of Water Quality Indexing 
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4.1.2.2 Various types of Sub-Indices: 

The sub-indices can be of the following types: 

i) Linear Function Sub-Indices: This is the simplest function to compute 

sub-indices and is directly proportional to the pollutant concentration. 

ii) Segmented Linear Function Sub-Indices: Such functions constitute of two 

or more linear functions resulting in straight line segments which are 

connected at threshold levels. These functions are used in BIS, WHO and 

other administrative limits. The current research work also incorporates 

this method. 

iii) Non-Linear Function Sub-Indices: This function is used when the 

relationship between cause and effect is non-linear. It can either be plotted 

on a graph (implicit function) or can be defined by a mathematical 

equation (explicit function). 

iv) Segmented Non-Linear Function Sub-Indices: These are similar to 

segmented linear functions with at least one segment being non-linear. 

4.1.3 Assigning Weights to the Sub-Indices: 

Out of the numerous water quality variables, very few have to be shortlisted, 

thus keeping a balance between the index size, the authenticity of the water 

quality data and the potency of the indices. Again after shortlisting the 

variables, all of them may not be of equal importance. The assignment often 

becomes subjective. Hence proper care must be taken to assign the weightages 

judiciously. The following techniques are used for assigning weightages to the 

indices: 
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4.1.3.1 Information Entropy Method 

Originating from thermodynamics, the concept of the theory of entropy 

was mingled by Shannon in 1948 with information theory. The degree of 

disorderliness of a system is explained by information theory. More the 

entropy value in an information system, more will be the randomness 

possessed by the system and hence less will be the information sought 

from the data (Abbasi and Abbasi, 2012; Zeleny, 1982). Thus entropy is 

an account of the uncertainties as well as the information retrieved from a 

system. Hence, it can be applied as an objective means of determining the 

weights of the variables based on the amount of useful information 

available in a dataset. More the entropy, more will be the uncertainty and 

less will be the useful information. Entropy and entropy weight are 

inversely related. 

There are three significant variables (m=3) and 276 samples (n=276) 

collected month wise from 1991 to 2013. The raw values of each variable 

are normalized using the efficiency type construction function as shown 

in Equation 4.4. 

𝑧𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑖𝑗𝑚𝑖𝑛

𝑥𝑖𝑗𝑚𝑎𝑥−𝑥𝑖𝑗𝑚𝑖𝑛

 -------------------------- (4.4) 

   wherei=1,2,..m;  j=1,2,3..n and 𝑥𝑖𝑗𝑚𝑎𝑥
− 𝑥𝑖𝑗𝑚𝑖𝑛

≠ 0. 

  Now the ratio of the value of the jth index in the ithsample is computed 

using Equation 4.5 

𝑅𝑖𝑗 =
𝑧𝑖𝑗

∑ 𝑧𝑖𝑗
𝑚
𝑖=1

-------------------------------- (4.5) 
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where ∑ 𝑧𝑖𝑗
𝑚
𝑖=1 ≠ 0. 

The information entropy is obtained by Equation 4.6. 

𝑒∗
𝑗 = −

1

ln 𝑚
∑ 𝑅𝑖𝑗 ln 𝑅𝑖𝑗

𝑚
𝑖=1 ---------------- (4.6) 

 

where ln m ≠ 0. 

The value of entropy is inversely proportional to the useful information  

of the water quality variable. The entropy weight is finally calculated as in 

Equation 4.7. 

𝑤∗
𝑖𝑗 =  

1−𝑒∗
𝑗

∑ 1−𝑒∗
𝑗

𝑛
𝑗=1

------------------- (4.7) 

where ∑ (1 − 𝑒∗
𝑗)𝑛

𝑗=1 ≠ 0. 

The entropy weight of a variable is directly proportional to the useful 

information extracted from the dataset, and inversely proportional to the 

entropy. 

4.1.3.2 Relative Pollution Degree 

If entropy weight accounts for the deteriorating water quality, another 

weight can account for the improvement in water quality. This can be 

done by subtracting the calculated sub-index values from the ideal value 

(here, 100). This can be used as a measure for finding the rejuvenating 

capacity of the river. Equation 4.8 has been used to determine the monthly 

weights of all the significant parameters and later they are averaged to 

obtain the weights for a typical year. 
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𝑤𝑅.𝑃 =
100−𝑆.𝐼

∑ (100−𝑆.𝐼)𝑛
𝑖=1

---------------------------- (4.8) 

where n is the number of observations and ∑ (100 − 𝑆. 𝐼)𝑛
𝑖=1 ≠ 0. 

4.1.4 Sub-Indices Aggregated to Form the Final Index 

The three most basic methods of aggregation of sub-indices are additive, 

multiplicative and logical. Horton’s Indices (1965) and Indices of Brown 

(1970) are based on additive aggregation; Indices of Bhargava (1985) and 

Dinius (1987) are based on multiplicative aggregation; Smith Indices (1990) 

are based on logical aggregation. These operations have also been combinedly 

used by scientists like Inhaber (1975) and Dojlido (1994) to compute the final 

indices. Nowadays fuzzy techniques, principal component analysis, genetic 

algorithms, entropy and other concepts are being increasingly used to develop 

the final indices.  The operators of Ordered Weighted Averaging (OWA) 

formulated by Yager in 1988 are also being used in water quality indexing.  

4.1.4.1 Linear Sum Index: 

This is worked out by adding unweighted sub-indices given by Equation 

4.9: 

𝐼 = ∑ 𝑆. 𝐼𝑖
𝑛
𝑖=1 ------------------------------ (4.9) 

whereS.Ii is the sub-index for the water quality variable i and n is the total 

number of variables. This method is simple yet is susceptible to the 

problem of ambiguity (when the final index violates the permissible limit 

though the variables are well within the limits). 

4.1.4.2 Weighted Sum Index: 

This index is defined by Equation 4.10 
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𝐼 = ∑ 𝑤𝑖𝑆. 𝐼𝑖
𝑛
𝑖=1 ---------------------------- (4.10) 

where S.Ii is the sub-index value for the ith water quality variable and wi 

is the corresponding weight. Here the problem of ambiguity is removed. 

But this method of aggregation is often affected by the problem of 

eclipsing, where the final index does not reflect the violation of the 

permissible limits by one or more pollutant variables. Weighted Sum 

Index has been used in the current research work.  

Another problem associated with water quality index is rigidity. This 

problem comes into play when additional water quality variables are 

needed to define the water quality based on a new region or a new 

circumstance. 

4.2 FUNCTIONAL DATA ANLYSIS 

This is a new statistical technique which is used to assess a huge set of longitudinal data.  The 

data set is represented in the form of curves and each curve becomes a single entity. The first 

step converts discrete data into smooth concentration curves. The question of smoothing 

arises if there is considerable measurement error. The combination of basis functions may be 

used as shown in Equation 4.11 

𝑦𝑖(𝑡) = ∑ 𝛼𝑖𝑚𝜏𝑖𝑚(𝑡)𝑀
𝑚=1    𝑖 = 1,2 … 𝐿; 𝑡 ∈ 𝑇-------------------------------- (4.11) 

where T is the time domain, 𝜏𝑖𝑚(𝑡) is the basis function (Fourier Series, B-splines, wavelets) 

and 𝛼𝑖𝑚 are the coefficients found from the equation 4.12: 

𝑚𝑖𝑛 {∑ (∑ 𝛼𝑖𝑚𝜏𝑖𝑚(𝑡) −𝑀
𝑚=1 𝑦𝑖(𝑡𝑖𝑘))

2𝑎𝑖
𝑘=1 }--------------------------------- (4.12) 

Fourier series are used when the data is periodic, B-splines used when non-periodic and 

wavelets used in case of severe fluctuations. In the current method smoothing spline is used 
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to cover the discrete sub-index values obtained from MATLAB Programming. The weights 

assigned to the sub-indices in this method are based on Entropy Weight method, Relative 

Pollution Degree and Conventional Water Quality Indexing. The following logic is used to 

compute the sub-indices. 

For the variables where a larger value improves the water quality, Equation 4.13 defines the 

indices. 

𝑦𝑖(𝑡) = {

100                                    𝑤ℎ𝑒𝑛 𝑥𝑖(𝑡) > 𝑐𝑖0

100(5−𝑗)

5
+

100

5
.

𝑥𝑖(𝑡)−𝑐𝑖𝑗

𝑐𝑖(𝑗−1)−𝑐𝑖𝑗
                𝑤ℎ𝑒𝑛 𝑐𝑖𝑗 < 𝑥𝑖(𝑡) ≤ 𝑐𝑖(𝑗−1)

0                                       𝑤ℎ𝑒𝑛 𝑥𝑖(𝑡) ≥ 𝑐𝑖5

---------- (4.13) 

 

And for the variables which deteriorate the water quality, the sub-indices are found out by 

Equation 4.14: 

𝑦𝑖(𝑡) = {

100                                    𝑤ℎ𝑒𝑛 𝑥𝑖(𝑡) < 𝑐𝑖0

100(5−𝑗)

5
+

100

5
.

𝑐𝑖𝑗−𝑥𝑖(𝑡)

𝑐𝑖𝑗−𝑐𝑖(𝑗−1)
                𝑤ℎ𝑒𝑛 𝑐𝑖(𝑗−1) ≤ 𝑥𝑖(𝑡) < 𝑐𝑖𝑗

0                                       𝑤ℎ𝑒𝑛 𝑥𝑖(𝑡) ≥ 𝑐𝑖5

---------- (4.14) 

where𝑦𝑖(𝑡) is the sub-index curve for each indicator. 

4.3 MULTIVARIATE STATISTICS 

4.3.1 Principal Component Analysis 

This is one of the multivariate techniques used for identifying the linear 

components belonging to a huge set of data. Multivariate analysis, on the other 

hand, refers to those where more than one outcome variables are expected. 

Principal Component Analysis thus gives a direction towards maximum 

variance. In this method we deal with a correlation matrix. This matrix defines 

the linear dependence between a pair of variables. From this matrix, variates 
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are calculated using the Eigen vectors from the correlation matrix and their 

number is same as the number of variables. Only large Eigen values are 

extracted thus accounting for maximum variance. Equation 4.15 is used to 

define a component. 

𝑍𝑖 = 𝑎1𝑋1𝑖 + 𝑎2𝑋2𝑖 + ⋯ + 𝑎𝑛𝑋𝑛𝑖--------------- (4.15) 

where 𝑎1, 𝑎2 … 𝑎𝑛 represent the loadings which are the Eigen vectors and 

𝑋1𝑖, 𝑋2𝑖. . 𝑋𝑛𝑖 are the normalized values of the variables. 

For use in indexing the first component is extracted. Equation 4.16 is used to 

calculate each index. 

𝑊𝑄𝐼 = ∑ {
𝐼𝑖

∑ (𝐼𝑖×𝐿𝑖
𝑛
𝑖 )

×
[𝐶𝑖]

[𝑆𝑖]
}𝑛

𝑖=1 --------------- (4.16) 

where I is the amount of variance explained by a component i, L is the loading 

of the ith component, C is the concentration of the water quality variable in the 

ith component and S is the quality criterion of the water quality variable in the 

ith component and i=1,2,3..n and the denominator i.e.  ∑ ((𝐼𝑖 × 𝐿𝑖
𝑛
𝑖 ) × [𝑆𝑖]) ≠ 0 

. In the present study the only first component for each station is considered. 

4.3.2 Principal Factor Analysis 

Principal Factor Analysis is another multivariate technique used for identifying 

the probability of correlations between variables occurring due to one or more 

latent variables. Each latent variable occurs in the form of a linear model. The 

factors account for the underlying variables. In a correlation matrix, the large 

off-diagonal coefficients between variable subsets imply that those variables 

can be the measuring aspect of a similar underlying dimension. This underlying 

dimension is referred to as a factor. Thus data set is reduces into a few factors 
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attaining parsimony and also explaining maximum common variance. The 

mathematical representation of a factor is identical as that of a component i.e. 

Equation 4.15. 

4.3.3 Cluster Analysis 

This multivariate data mining technique classifies data into clusters. The 

concept of clustering adheres to homogeneity within then and heterogeneity 

across depending on the characteristics. There is no objective function and 

hence, no dependent variable. Since clustering depends on the values of input 

parameters, it is often known as subjective segmentation and hence, 

unsupervised classification. This method may be of various types: K-means, 

Functional Embedding (FEM), Hierarchical Clustering, Support Vector 

Machines, K-Nearest Neighbour and so on. The method used in the current 

work is hierarchical clustering.  

Hierarchical Clustering starts from each variable as an independent cluster. At 

each step, when two clusters are closer to each other, they are combined as a 

single one. This process is continued till a single cluster is obtained. Thus 

sequential partitional clustering leads to hierarchical clustering. This method 

holds good for a smaller set of data. However, it can also be satisfactorily used 

for a bigger data set. The results are shown in the form of a dendogram which 

displays the relationship between clusters and their sub-clusters and the order 

in which clusters are split or merged. 
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4.4 MISCELLANOUS METHODOGIES 

Standard Deviation is a measure of data dispersion about the mean. A value close to 1 

refers to a compact data set while a larger value refers to a dispersed data set thus 

showing more fluctuations and perhaps deterioration of water quality, in case of 

assessment of water quality variables. This statistic is computed using equation 4.  

𝜎 = √
∑ (ȳ − 𝑦𝑖)

𝑛
𝑖=1

𝑛 − 1
 

    where ȳ  is the mean, yi are the individual values and the denominator √𝑛 − 1 ≠ 0 . 

 Skewness is another measure of variability of data accounting for the asymmetric 

distribution of data. A value near zero indicates a symmetric distribution. The data that 

are right-skewed have positive skewness and those which are left-skewed have negative 

skewness. 

Kurtosis is a measure of the peakedness of a data set. A higher value represents more 

variance resulting from occasional deviations. 

A scree plot is used to display the number of factors that should have been extracted. It 

is a plot between Eigen values (or the variance explained) and the components formed. 

In a typical graph, a sharp descent is followed by a gradual tailing off. The point of 

deflection or the elbow of the plot is used as the means for extraction. 

Rotation of results improves the solution without changing it. The types of rotation may 

be orthogonal or oblique. The type of rotation used in the present work is varimax which 

belongs to orthogonal rotation. This method maximizes the dispersion of loadings with 

a factor or a component. Thus a lesser number of variables are highly loaded onto a 

component making the result more interpretable.  
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Kaiser-Meyer-Olkin Measure of sampling adequacy (KMO) represents the ratio of 

squared correlations to the squared partial correlations among variables. This value 

spans between 0 and 1. A value close to zero implies that there is more partial correlation 

thus more diffusion in the correlation patterns. In this case, factor analysis is not to be 

used.  A value close to one indicates compact patterns of correlations and factor analysis 

is appropriate in this case. Values lying between 0.5 and 0.7 are mediocre and between 

0.7 and 0.8 are good.  

Bartlett’s test of sphericity checks whether the correlation matrix is an identity matrix. 

The determinate of the correlation matrix is converted into a chi square value and further 

tested for significance. For a large sample, the chi square value is also large. The level 

of significance is kept at 5%. 

4.5 PERMISSIBLE WATER QUALITY CRITERIA 

On account of the methods mentioned above Table 4.1 briefly describes the acceptable 

and permissible limits of the water quality variables used in the present study.  

Table 4.1 Permissible and acceptable limits of water quality parameters 
Sl. No Water Quality 

Parameter 

Acceptable Limit  Permissible Limit 

(where alternative 

source is absent) 

Undesirable Effect 

Beyond Permissible 

Limit 

1 Temperature in °C 10-15 - High water 

temperature can 

increase its solubility 

and decrease the 

amount of Dissolved 

Oxygen in it. 

2 pH 6.5-8.5 No relaxation pH affects the 

mucous system of the 

human body and the 

water supply system 

as well. 

3 EC in µmho/cm 

(max) 

500 2000 Beyond this 

palatability decreases 

and may cause Gastro 

intestinal irritation 

4 TDS in µmho/cm 

(max) 

500 2000 Beyond this 

palatability decreases 



52 
 

and may cause Gastro 

intestinal irritation 

5 NH3 ion 

concentration in 

mg/L (max) 

0.5 No relaxation High Ammonia 

concentration 

indicates faecal 

pollution and 

agricultural run-off. 

This often reduces 

the quantity of 

Dissolved Oxygen. 

6 NO2 and NO3 ion 

concentration in 

mg/L (max) 

45 No relaxation Beyond this 

methaemoglobinemia 

takes place. 

7 SiO2 ion 

concentration in 

mg/L 

0 2 May disturb 

phosphorylation of 

human body and 

causes boiler scale in 

industry 

8 DO in mg/L 15 4 Mortality rates of 

fishes will rise and 

the concentration of 

stable pollutant 

compounds will 

increase. 

9 BOD in mg/L 0 No relaxation This indicates 

reduced level of 

oxygen, hence 

reduced aquatic life 

and rejuvenating 

power of the stream. 

10 COD in mg/L 0 No relaxation This indicates 

reduced level of 

oxygen, hence 

reduced aquatic life 

and rejuvenating 

power of the stream. 

11 Phenol ion 

concentration in 

mg/L (max) 

0.001 0.002 Beyond this, it may 

cause objectionable 

taste and odour 

12 Total  Alkalinity in 

mg/L 

200 600 Beyond this limit, 

taste becomes 

unpleasant 

13 Total Hardness (as 

CaCO3) in mg/L 

300 600 Encrustations in 

water supply 

structure and adverse 

effect on domestic 

use 

14 Ca Hardness in 

mg/L (max) 

200 600 Scaling of utensils 

and also of hot water 

systems; scums in 

soaps. 

15 F- ion concentration 

in mg/L (max) 

1.0 1.5 Fluoride may be kept 

as low as possible. 

High fluoride may 

cause fluorosis 



53 
 

16 Ca Major Ion 

concentration in 

mg/L (max) 

75 200 Encrustations in 

water supply 

structure and adverse 

effect on domestic 

use 

17 Mg2+ ion 

concentration in 

mg/L (max) 

30 100 Encrustations in 

water supply 

structure and adverse 

effect on domestic 

use 

18 Na+ ion 

concentration in 

mg/L 

20-250 - Non-volatile and 

found associated with 

particulate matter. 

19 K+ ion concentration 

in mg/L 

8 400 Abnormal increase in 

K+ ions may cause 

toxicity and breathing 

problems. 

20 Cl- ion 

concentration in 

mg/L (max) 

250 1000 Beyond this limit 

taste, corrosion and 

palatability are 

affected 

21 SO4
2- ion 

concentration in 

mg/L (max) 

200 400 Beyond this causes 

Gastro intestinal 

irritation when 

magnesium or 

sodium are present 

22 CO3
2- ion 

concentration in 

mg/L 

90 450 Increases the SAR 

index in irrigation 

water. 

23 HCO3
- ion 

concentration in 

mg/L 

90 450 Increases the SAR 

index in irrigation 

water. 

24 TC in MPN/100mL Shall not be 

detectable in any 

100 ml sample 

Shall not be 

detectable in any 

100 ml sample 

Presence of Coliform 

indicate presence of 

pathogenic bacteria 

25 FC in MPN/100mL Shall not be 

detectable in any 

100 ml sample 

Shall not be 

detectable in any 

100 ml sample 

Presence of Coliform 

indicate presence of 

pathogenic bacteria 
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CHAPTER V 

RESULTS AND DISCUSSIONS 
 

5.1 PRELIMINARY ANALYSIS 

5.1.1 Descriptive Statistics: 

Descriptive statistical analysis is carried out on the water quality variables from 2009-2013 to 

know about the recent water quality status and are displayed in Table 4.1. Many of the variables 

deviate from the recommended water quality criteria as mentioned in Chapter IV. Important 

variables like Biochemical Oxygen Demand, Chemical Oxygen Demand, Coliform Count and 

Faecal Coliform show unusual variations in terms of their maximum values, standard deviation, 

skewness and kurtosis as mentioned in Table 5.1.  

Table 5.1- Descriptive Statistics for the span of 2009-2013 

Water Quality 

Variables 

N Minimum Maximum Mean 
Std. 

Deviation 
Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Statistic 
Std. 

Error 
Statistic 

Std. 

Error 

Discharge in cumecs 504 0.7 4407.9 365.4 6.6 3.1 0.1 13.7 0.2 

Temperature in °C 504 7.6 35 28.4 2.5 22.4 0.1 1.8 0.2 

pH 504 6.8 8.9 8.2 0.2 -1.3 0.1 4.2 0.2 

EC in µmho/cm 504 108.0 759.0 270.3 9.6 1.5 0.1 9.9 0.2 

TDS in µmho/cm 504 96.0 713.0 184.0 6.3 1.6 0.1 4.5 0.2 

NH3 ion concentration 

in mg/L 
504 0.0 604.0 24.7 6.9 3.1 0.1 3.5 0.2 

NO2 and NO3 ion 

concentration in mg/L 
504 0.0 54.0 94.3 7.1 21.0 0.1 5.2 0.2 

SiO2 ion 

concentration in mg/L 
504 0.0 64.4 23.5 1.3 -0.4 0.1 1.3 0.2 

DO in mg/L 504 0.0 15.9 9.4 8.9 3.7 0.1 6.5 0.2 

BOD in mg/L 504 0.0 10.2 5.1 0.6 0.6 0.1 0.3 0.2 

COD in mg/L 504 7.0 30.7 23.8 2.2 1.5 0.1 7.3 0.2 

Phenol ion 

concentration in mg/L 
504 0.0 20.6 3.3 4.7 1.2 0.1 0.2 0.2 

Total  Alkalinity in 

mg/L 
504 57.1 410.2 156.6 8.8 1.9 0.1 6.2 0.2 

Total Hardness in 

mg/L 
504 53.2 286.4 115.7 4.5 1.0 0.1 4.3 0.2 

Ca Hardness in mg/L 504 41.0 210.8 69.9 2.1 0.7 0.1 0.7 0.2 

F- ion concentration in 

mg/L 
504 0.0 2.8 2.1 0.2 0.8 0.1 0.9 0.2 

Ca Major Ion 

concentration 
504 16.4 44.3 28.0 4.8 0.7 0.1 0.7 0.2 

Mg2+ ion 

concentration in mg/L 
504 1.0 50.5 11.0 4.3 1.9 0.1 3.9 0.2 

Na+ ion concentration 

in mg/L 
504 1.8 33.5 10.2 4.1 1.4 0.1 3.8 0.2 
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K+ ion concentration 

in mg/L 
504 0.1 6.8 1.8 0.9 2.0 0.1 5.2 0.2 

Cl- ion concentration 

in mg/L 
504 3.9 33.2 9.2 3.2 1.9 0.1 7.8 0.2 

SO4
2- ion 

concentration in mg/L 
504 0.1 48.4 9.1 9.0 2.3 0.1 5.0 0.2 

CO3
2- ion 

concentration in mg/L 
504 60.0 325.2 124.2 5.8 1.1 0.1 0.2 0.2 

HCO3
- ion 

concentration in mg/L 
504 71.0 491.0 177.1 4.9 1.7 0.1 7.4 0.2 

TC in MPN/100mL 504 95 21500 1439.0 22.5 5.1 0.1 9.8 0.2 

FC in MPN/100mL 504 36 9460 504.0 25.5 5.4 0.1 5.5 0.2 

Valid N (list wise) 504         

 

5.1.2 PRINCIPAL COMPONENT ANALYSIS AND PRINCIPAL FACTOR 

ANALYSIS 

 

5.1.2.1 Correlation Matrix 

 

The correlation matrix accounts for the dependencies between two variables. The Table 

5.2 represents the correlation matrix of all the variables accounted for. It can be seen that 

Electrical Conductivity has a significant positive relationship with Total Dissolved Solids 

(R2=0.87), Calcium Hardness (R2=0.57), Calcium Major Ions (R2=0.57) and pH (R2=0.87). 

Dissolved Oxygen bears a negative correlation with temperature (R2=-0.89), Biochemical 

Oxygen Demand (R2=-0.87), Chemical Oxygen Demand (R2=-0.85). Fluoride is found to 

be positively correlated with Electrical Conductivity (R2=0.57) and Total Dissolved Solids 

(R2=0.77). Calcium Major Ions bears an R2 value of 0.57 with EC and 0.77 with Total 

Hardness. Magnesium Ions bear a positive correlation of 0.84 with Total Hardness and 

0.53 with Electrical Conductivity. Sodium Ion has an R2 value of 0.51 and 0.46 with 

Electrical Conductivity and Total Dissolved Solids respectively. The carbonate ion bears a 

correlation coefficient of 0.96 with phenol and -0.61 with pH. The bicarbonate ion bears 

correlation coefficients of 0.52 with Electrical Conductivity, 0.72 with Total Alkalinity, 

0.61 with Total Hardness and 0.55 with Calcium Major Ions. Coliform Count and Faecal 

Coliform are again positively correlated with an R2 value of 0.96.  

Calcium Major and Calcium Hardness have a correlation coefficient of 1 and hence treated 

as one variable. Positive correlations imply that the increase or decrease in one variable is 

directly proportional to the other. Negative Correlations mean the opposite.  
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Table 5.2 Correlation Matrix 
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5.1.2.2 KMO-Sampling Adequacy 

 

Table 5.3 gives us a measure of KMO sampling adequacy and Bartlett’s 

Test of Sphericity. Kaiser-Meyer-Olkin Measure of Sampling Adequacy 

ranges between 0 and 1. With a minimum value of 0.6, the more the value, 

the better the measure.  

In Bartlett's Test of Sphericity, the null hypothesis that the correlation 

matrix is an identity matrix, is checked and it is preferable to reject the null 

hypothesis. The present results also reject the null hypothesis. This is 

followed by an approximate chi-square distribution whose value should be 

large enough for the correlation matrix to be identical. Here the value of 

chi-square is 45280.53 which is large enough with enough significance. 

From these results, we can conclude that our dataset is fit for principal factor 

analysis or principal component analysis. 

 

Table 5.3: KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.717 

Bartlett's Test of 

Sphericity 

Approx. Chi-Square 45280.53 

df 300 

Sig. .000 

 

5.1.2.3 Total Variance Explained 

 

Table 5.4 illustrates about the variances explained by the principal components 

extracted from the data set. Seven components are extracted and they explain 
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68.57% variance of the system. The decrease in variance of the system is 

because of the diversified data set. The first component accounts for 22.9% of 

variance which is around half of the total variance explained.  

 

Table 5.4: Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 5.508 22.949 22.949 5.508 22.949 22.949 

2 2.640 10.998 33.947 2.640 10.998 33.947 

3 2.318 9.659 43.606 2.318 9.659 43.606 

4 1.915 7.979 51.586 1.915 7.979 51.586 

5 1.764 7.348 58.934 1.764 7.348 58.934 

6 1.208 5.032 63.966 1.208 5.032 63.966 

7 1.106 4.607 68.573 1.106 4.607 68.573 

8 .997 4.156 72.729       

9 .922 3.841 76.570       

10 .854 3.558 80.128       

11 .700 2.916 83.044       

12 .606 2.525 85.569       

13 .558 2.324 87.892       

14 .532 2.219 90.111       

15 .478 1.991 92.102       

16 .438 1.823 93.926       

17 .399 1.664 95.589       

18 .325 1.353 96.942       

19 .284 1.182 98.124       

20 .213 .889 99.013       

21 .122 .510 99.522       

22 .096 .399 99.921       

23 .019 .077 99.999       

24 .000 .001 100.000       

Extraction Method: Principal Component Analysis. 

 

5.1.2.4 Principal Component Matrix 

 

From Table 5.2 shown below, it is found that seven components have been 

extracted. The first component is strongly correlated with Dissolved 

Oxygen (0.854), Biochemical Oxygen Demand (-0.815), Chemical Oxygen 

Demand (-0.847), Total Hardness (0.711), Calcium Hardness (0.865), 

Calcium Major Ions (0.864), Electrical Conductivity (0.796), Coliform 

Count (-0.871) and Faecal Coliform (-0.892). A positive value implies a 
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direct relationship while a negative value states an inverse relationship. 

Thus, as Dissolved Oxygen decreases, Biochemical Oxygen Demand, 

Chemical Oxygen Demand, Coliform Count and Faecal Coliform 

 Increase and the other variables decrease. The results obtained can be 

satisfactorily simulated with the current status report of River Narmada.  

The other components can be similarly interpreted. 

 

 

Table 5.5: Principal Component Matrix  

Water Quality Variables 

 

Component 

1 2 3 4 5 6 7 

Temp -.013 .198 -.104 -.048 .132 -.273 .426 

pH .072 .055 .771 .017 -.167 .053 -.058 

EC .796 .094 .129 -.024 -.060 .156 -.155 

TDS .594 .642 .126 -.025 -.042 .061 -.102 

NH3 .067 .905 .091 -.031 .028 .017 .040 

Nitrate and Nitrite -.069 .375 -.064 .016 -.095 .339 -.050 

SiO2 .103 -.796 -.030 -.012 -.080 .146 -.074 

DO .854 .858 .075 -.053 .013 .058 .021 

BOD -.815 -.034 .050 -.025 -.064 .085 .673 

COD -.847 -.052 -.035 .222 .394 .339 .249 

Phenol .078 .071 .947 -.033 -.077 -.023 .009 

Total Alkalinity .459 -.034 .065 -.017 .112 .662 .085 

Total Hardness .711 -.053 .062 -.029 -.086 .109 -.112 

Calcium Hardness .865 -.060 -.038 .043 -.062 .057 .269 

F -.063 .020 -.050 -.003 .707 .082 .020 

Calcium Major .864 -.059 -.038 .042 -.061 .056 .269 

Mg .628 -.027 .124 -.085 -.078 .114 -.400 

Na .588 .166 .170 -.008 .076 -.102 -.101 

K -.067 .032 -.036 -.004 .708 -.150 -.007 

Cl .139 .033 .018 -.036 .001 .649 -.057 

SO4 .041 .007 -.140 .053 .592 .043 -.036 

CO3 .070 .063 .948 -.034 -.052 -.019 .016 

HCO3 .687 -.025 -.160 -.014 .089 .472 -.020 

TC -.871 -.020 -.019 -0.53 .065 -.003 -.023 

FC -.892 -.041 -.022 -0.78 .041 -.015 -.025 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 6 iterations. 
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5.1.2.5 Scree plot 

 

Figure 5.1 shows the plot of eigen values and the twenty four variables 

considered. The plot shows that seven components show maximum variability. 

The other components do not account much for the variance and the line 

straightens after the seventh one.  

 

 
Fig 5.1: A Scree Plot of Eigen values vs Components 

 

 

5.1.2.6 Rotated Factor Matrix 

 

As mentioned in Table 5.3, Factor Analysis also yields 7 factors. The first 

factor is strongly correlated with Calcium Hardness (0.967), Calcium Major 

Ions (0.966), Dissolved Oxygen (0.822), Biochemical Oxygen Demand (-

0.805), Chemical Oxygen Demand (-0.831), Total Hardness (0.709) and 
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Electrical Conductivity (0.820). The growing agricultural runoff can be 

made responsible for the increasing alkalinity of water. It can also be stated 

that an alkaline environment can help in the rejuvenation of water. The other 

strong correlations are boldfaced. 

 

Table 5.6: Rotated Factor Matrix 

Water Quality Variables 

 

Factor 

1 2 3 4 5 6 7 

Temp -.010 .153 -.066 -.113 -.027 -.057 .119 

pH .041 .059 .608 .048 .011 .049 -.218 

EC .820 .114 .136 .422 -.020 .369 -.118 

TDS .378 .644 .138 .277 -.019 .310 -.099 

NH3 .025 .909 .098 .010 -.024 .047 .020 

Nitrate and Nitrite -.002 .248 -.016 .054 .000 .004 .000 

SiO2 .051 -.710 -.043 .161 -.002 .051 -.079 

DO .822 .802 .088 .030 -.043 .033 .011 

BOD -.805 -.010 .008 .008 -.013 -.039 .026 

COD -.831 -.027 -.058 .142 .142 -.108 .300 

Phenol .046 .058 .971 .004 -.030 .020 -.112 

Total Alkalinity .215 .000 .073 .801 -.002 -.005 .090 

Total Hardness .709 -.048 .082 .318 -.041 .586 -.053 

Calcium Hardness .967 -.021 -.002 .233 .012 -.017 -.034 

F -.039 .033 -.052 .032 .007 -.061 .542 

Calcium Major Ions .966 -.020 -.002 .233 .011 -.017 -.034 

Mg .253 -.050 .124 .278 -.075 .857 -.058 

Na .359 .170 .150 .209 -.010 .206 -.027 

K -.064 .047 -.051 -.065 .008 -.037 .488 

Cl .105 .026 .017 .327 -.013 .042 .024 

SO4 .017 .020 -.114 .038 .043 .019 .412 

CO3 .044 .050 .971 .002 -.032 .012 -.079 

HCO3 .385 .013 -.131 .769 -.005 .177 .061 

TC .736 -.030 -.013 -.014 .977 .017 .105 

FC .710 -.053 -.018 -.020 .966 .021 .076 

Extraction Method: Principal Axis Factoring.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 7 iterations. 
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5.1.2.7 CLUSTER ANALYSIS 

 

In figure 5.1, the results of hierarchical clustering are shown. The Y displayed 

on the left hand side denotes the closeness between individual clusters. The 

rescaled distance cluster combine gives an account of the distances on the basis 

of which the clusters are combined. It may be noted that the ratio of rescaled 

distances in the dendrogram and those of the original distances are the same. 

Four distinct clusters containing Biochemical Oxygen Demand, Chemical 

Oxygen Demand, Coliform Count, Faecal Coliform and the remaining variables 

are found. Thus the clusters constituting the individual variables imply that the 

surface water quality of River Narmada is primarily governed by the four 

variables mentioned. 

 
Fig 5.2: Dendrogram obtained using Hierarchical Clustering 
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5.2 Student’s t-test 
 

Out of the twenty five water quality variables of each of the seven stations, three most significant 

variables are determined using Student’s t-test. The following table depicts the p-values of the t-

test for the three most significant parameters of each station. 

 

Table 5.7: p-Values for Student t-tests applied all the water quality variables 

Sl.No. Parameter 1 p-value Parameter 2 p-value Parameter 3 p-value 

S1 Hardness  0.002 pH 0.0032 Phosphate Ions 0.004 

S2 BOD 0.0012 TC  0.0043 TDS 0.006 

S3 Ammonia 0.0047 pH 0.0052 Fluoride 0.0071 

S4 BOD 0.0001 TC 0.0009 COD 0.0073 

S5 TDS  0.0044 BOD 0.0061 Chloride 0.0079 

S6 pH 0.0027 BOD 0.0042 EC 0.0067 

S7 Nitrate 0.001 TDS 0.0048 pH 0.0078 

 

All the water quality variables (N=277) are associated with the corresponding discharge of each 

station. (ȳ1 =38.633 cumecs and σ =4.45, ȳ2=331 cumecs and σ =4.7, ȳ3=442 cumecs and σ =8.5, 

ȳ4 =597 cumecs and σ =2.7, ȳ5=724.3 cumecs and σ =6.3, ȳ6=866.15 cumecs and σ=5.3, ȳ7=441.1 

cumecs and σ=8.2). To test the hypothesis that all the variables for each station are associated with 

statistically significantly different mean from discharge, a two-tailed independent heteroscedastic 

t-test is conducted. The distributions of all the variables are sufficiently normal for the purpose of 

conducting a t-test (i.e. skewness < |2.0| and kurtosis <|9.0|; Schmider, Ziegler, Danay, Beyer and 

Buhner, 2010). The three most significant variables from each station are chosen for further 

analysis. 

 

5.3 Conventional Water Quality Indexing: 
 

Water Quality Indices were calculated using the conventional method mentioned in Chapter IV. 

The following table depicts the water quality of the sites considered for a typical year by taking 

the average of the indices for each month from 1991 to 2013. The symbols mentioned in the Index 

table have been deciphered below it. The water quality varies from Class A (Ex) to Class C (F) for 

the river basin. According to the water quality criteria followed, the level of quality should always 

be excellent. However it is seen to be degrading in sites 2, 3 4 and 7. This can be accounted for the 

anomalous values of the significant variables deduced from the T-Test. 
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Table 5.8: Conventional Indices for a Typical Year 

Sl.No./Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

S-1 Ex Ex Ex G G Ex Ex Ex Ex Ex Ex Ex 

S-2 G Fair G G G Ex Ex Ex Ex Ex Ex Ex 

S-3 G G Ex G G Ex Ex Ex Ex Ex G G 

S-4 G Fair G G Fair G Ex Ex G G G G 

S-5 Ex G Ex G G G Ex Ex Ex Ex Ex Ex 

S-6 Ex Ex G G G Ex Ex Ex Ex Ex Ex Ex 

S-7 Ex Ex G G G Ex Ex Ex G G Ex Ex 

 

The indices can be deciphered from Table 5.8: 

 

Table 5.9: Different Classes of water with their Notations 

Ex=Excellent 80< Final Indices ≤100 Class A Conventional treatment 

not required; Only 

disinfection necessary 

G=Good 60< Final Indices ≤80 Class B Suitable for Outdoor 

Bathing 

F=Fair 40< Final Indices ≤60 Class C Conventional Treatment 

and Disinfection 

mandatory 

Poor 20< Final Indices ≤40 Class D Wildlife and Fisheries 

may be propagated 

Bad 0< Final Indices ≤20 Class E Fit for irrigation and 

coolant purposes 

 

 

5.4 Water Quality Indexing Based on Functional Data Analysis: 
 

The missing data found are interpolated and retrieved. The measured values of the 

significant variables are converted into sub-indices using simple MATLAB programs. The 

conventional sub-indices for a typical year averaged from 1991-2013 for each station are 

plotted along with the sub-index curves generated using smoothing spline function in 

MATLAB. For better visualization, the final graphs are plotted in Microsoft Excel. The 

variables can be visualized with the threshold lines of 20, 40, 60 and 80. If a value lies between 80 

and 100, the state can be considered as Excellent (Level I), if between 60 and 80, Good (Level II), 

between 40 and 60, Fair (III) and below 40, Poor (IV).  
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5.4.1 Development of Sub-Index Curves 

 

From figure 5.3 shown below, it is seen that, the sub-index values of Phosphate ions 

and pH remain in Level II throughout the year except in May. The sub-index values of 

Hardness remain in Level I and deteriorate in May. The smoothing spline fits well with 

all the sub-indices thus being robust. 

 

 

 
Fig 5.3: Average sub-index curve of Station 1 

From figure 5.4 shown below, it is seen that the sub-index values of Coliform Count 

almost lie in Level III throughout the year. The values of BOD and Nitrate and 

Total Dissolved Solids lie mostly in zones II and I respectively.  
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Fig 5.4: Average sub-index curves of Station 2 

 

From figure 5.5 shown below, it is found that the sub-index values of Fluoride Ions 

and pH fluctuate between Levels II and III. The sub-index values of Ammonia Ions 

vary from Level I to III throughout. 

 

 

 
Fig 5.5: Average sub-index curves of Station 3 

 

 

From the figure 5.6 shown below, it is found that the sub-index values of Coliform 

Count fall to Level IV from February to May. The sub-index values of BOD and 

COD vary between zones of II and III. None of the variables are found to be in 

Level I throughout the year. 
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Fig 5.6: Average sub-index curves of Station 4 

 

From figure 5.7 shown below, it is found that, sub-index values Total Dissolved 

Solids lie in Level II, those of BOD lie in III and those of Chloride Ions lie in Level 

I. 

 

 
Fig 5.7: Average sub-index curves of Station 5 

 

 

From figure 5.8 shown above, it is found that, the values of Calcium Major Ions lie 

almost in Level I, those of pH lie in Level II and those of Fluoride lie in zone I 

throughout the year. 
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Fig 5.8: Average sub-index curves of Station 6 

 
 

From the figure 5.9 shown below, it is found that, the sub-index values of BOD lie 

in zone I and those of Electrical Conductivity lie in level II almost throughout the 

year. Further the values of Fluoride lie in Level III. 

If the sub-index value of a water quality variable is near 80, it can be potentially 

improved to Level I by subsequent treatment. A similar approach applies to the 

indices located at the lower levels. 

 

 

 
Fig 5.9: Average sub-index curves of Station 7 
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5.4.2 Assignment of Weights 

 

The weights corresponding to each of the significant variable are determined using 

three techniques namely, conventional, information entropy method and relative 

pollution degree. These weights are shown in the form of curves (where applicable). 

 

5.4.2.1 Conventional Weights 

 

Following are the weights assigned to the variables corresponding to all the 7 stations. 

Table 5.10: Stationary Weights of Significant Variables for all the Stations 

Stations Parameter 1 Weight Parameter 2 Weight Parameter 3 Weight 

1 pH 0.36 Hardness 0.40 Phosphate Ions 0.25 

2 BOD 0.32 TC 0.24 TDS 0.43 

3 Fluoride 0.32 pH 0.24 Ammonia Ions 0.43 

4 COD 0.35 BOD 0.37 Coliform Count 0.28 

5 Chloride Ions 0.43 TDS 0.29 BOD 0.29 

6 F 0.22 Ca-Major Ions 0.40 pH 0.38 

7 BOD 0.39 EC 0.37 F 0.24 

 

The variables bearing a smaller weight contribute less to the total water quality 

index and hence account for more contribution to pollution. 

5.4.2.2 Assignment of Weights by Information Entropy Method: 

 

The weights assigned by information entropy method are depicted in the following 

graphs. As we have seen, the entropy weight is directly proportional to the extent of 

useful information obtained from a system. The following conclusions are deduced 

from the entropy weight curves for a typical year. 

That, the weights of pH lie below those of Hardness and Phosphate, state that pH 

accounts for more entropy or more uncertainties as shown in Figure 5.10. The 

decrease of the weights during the month of May indicate that the quality is more 

prone to disturbances during this month. The reasons may be natural or anthropogenic 

or measurement uncertainties. 
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   Fig 5.10: Entropy Weight Curves for Station 1 

 

From Figure 5.11, it is seen that, Total Dissolved Solids account for more 

uncertainties than the other two variables. Further it has more uncertainty during 

the February and May, perhaps because of anthropogenic and natural conditions 

respectively. The same reason can be considered valid for the deviation of the 

weights for the other two variables. 

 
Fig 5.11: Entropy Weight Curves for Station 2 

 

Out of the three variables considered for Station 3, from figure 5.12, we find that, 

pH is most vulnerable to uncertainties. A decrease in the weights of the variables 

during May is can be because of the natural causes. 
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Fig 5.12: Entropy Weight Curves for Station 3 

 

From figure 5.13, it is found that, out of the three variables, BOD shows maximum 

entropy. There is a kink in the curves during the months of February and March 

may be, because of anthropogenic and natural causes respectively. 

 

 
Fig 5.13: Entropy Weight Curves for Station 4 

 

From figure 5.14, it is deduced that BOD shows maximum uncertainties of the three 

variables. The Chloride Ions and BOD show a decrease in weights during May due 

to the above mentioned reason. 
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Fig 5.14: Entropy Weight Curves for Station 5 

 

From figure 5.15, we see that, the weights of the variables of this station remain 

almost constant throughout the year, thus reducing the vulnerability of the water 

quality to the uncertainties. This reduction can be accounted for the presence of a 

dam near the site which changes the water quality status. pH is most vulnerable out 

of the three.  

 

 
Fig 5.15: Entropy Weight Curves for Station 6 

 

From figure 5.16, we find that, in station 7 also, the variables remain almost constant, EC 

being the most vulnerable one. The decrease of weight in May again can be accounted 

because of natural causes. 
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Fig 5.16: Entropy Weight Curves for Station 7 

 

 

5.4.2.3 Assignment of Weights by Relative Pollution Degree 

 

The weights obtained from the method of Relative Pollution Degree are averaged and 

plotted for a typical year. Lesser the relative pollution weight, less is the contribution 

of the corresponding variable to the pollution. All the results tally with the sub-index 

curves. 

The relative pollution degree curves for Station 1 are shown in figure 5.17. All the 

variables account for minimal pollution during the month of May. Out of the three 

variables, Phosphate contributes the least to the pollution. 
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Fig 5.17: Relative Pollution Weight Curves for Station 1 

 

From the figure 5.18 shown below, TDS accounts for minimum pollution and all 

the variables contribute less to pollution during May. 

 

 

 

 
Fig 5.18: Relative Pollution Weight Curves for Station 2 

 

From the figure 5.19 shown below, we find that the curve for Ammonia lies below 

the curves of the other two. Thus pH accounts for more pollution than Ammonia 

and Fluoride. The weights of Fluoride show that its concentration remains almost 

constant throughout the year. 
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Fig 5.19: Relative Pollution Weight Curves for Station 3 

 

The Relative Pollution Degree curves for Station 4 are shown in figure 5.20. Out 

of the three variables, COD accounts least for pollution. The weight of TC remains 

almost constant throughout the year.  

 

 

 
Fig 5.20: Relative Pollution Weight Curves for Station 4 

 

From the figure 5.21 shown below, it is found that, the curve for TDS lies 

continuously below the other two variables throughout the year thus indicating less 

contribution to pollution.  
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Fig 5.21: Relative Pollution Weight Curves for Station 5 

 

The Relative Pollution Degree curves for Station 6 are shown in figure 5.22. The 

weight of Calcium Major Ions remains constant throughout the year. All the 

variables show a decrease in pollution during the month of July.  
 

 

 

 
Fig 5.22: Relative Pollution Weight Curves for Station 6 

 

The Relative Pollution Degree curves for Station 6 are shown in figure 5.23. BOD 

is accounts least for pollution while Fluoride accounts for most. The weight of EC 

remains constant throughout the year. 
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Fig 5.23: Relative Pollution Weight Curves for Station 7 

 

5.4.2.4 Development of Water Quality Index Curves: 

 

The final water quality index curves are generated using weighted sum model using 

conventional, entropy and relative pollution weights. In the following figures, W.S 

stands for Weighted Sum, C stands for Conventional Weighting, E stands for Entropy 

Weighting and R.P stands for Relative Pollution Weighting. The levels I, II, III and 

IV shown alongside the graphs depict the quality of water as per the sub-index curves. 

An overall visualization tells us that relative Pollution overestimates and Entropy 

Weight Method underestimates the water quality as compared to the conventional 

method. 

The Water Quality Index curves for Station 1 are shown in figure 5.24. The curves 

show a decreasing trend from January to May and September to December. The 

quality develops in the month of June and July. The decreasing trend may be because 

of the pH according to the conventional and entropy weight approaches. The recovery 

of the trend may be accounted for because of phosphate with tends to balance the pH. 

The water quality at Station 1 remains in Level 1 almost every time throughout the 

year. Hence sophisticated water quality treatment may not be needed. The water 

quality index curve due to relative pollution is higher because the weights assigned 

to the indicators are higher. 
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Fig 5.24: Water Quality Index Curves for Station 1 

 

The Water Quality Index curves for Station 2 are shown in figure 5.25. Here also, 

the final indices decrease during the month of May. The decreasing trend may be 

due to increase in Coliform Count and BOD according to conventional and entropy 

weights. The curves revive during the months of June and July because of decrease 

in TC and BOD according to relative pollution weights. The level of water in this 

station can be classifies into Level II, taking into consideration all the three 

approaches. Thus proper water treatment is required before its consumption at this 

station. 

 

 

 

 
Fig 5.25: Water Quality Index Curves for Station 2 
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The Water Quality Index curves for Station 3 are shown in figure 5.26.The overall 

trend of water quality decreases from March to May. This decrease may be because 

of pH which bears a lower weightage in Conventional and Entropy weight 

approaches. The water quality improves during the months of June, July and August 

because of natural conditions and also perhaps because of a balance of pH during 

these months. The overall water quality lies in Level I and Level II for half of a 

typical year. Hence, treatment is necessary before consumption.  

 

 

 
Fig 5.26: Water Quality Index Curves for Station 3 

 

 

In station 4, as shown in Figure 5.27, the decrease in trends of water quality during 

the month of February and May, may be because of TC and BOD according to 

conventional and entropy weight approaches. The water quality revives because of 

the decrease in BOD and TC count. The water level at this station can be considered 

to be in Level II throughout the year and hence proper sophisticated treatment is 

mandatory. 
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Fig 5.27: Water Quality Index Curves for Station 4 

 

The Water Quality Index curves for Station 5 are shown in figure 5.28.The water 

quality index almost remains constant at this site, thus showing negligible trend 

throughout the year. The routinely decreasing trend during the month of May is 

pronounced. This may be due to an increase in BOD during this time as per the 

conventional and entropy weight approaches. The water quality revives during the 

month of June and July perhaps because of the decrease in BOD according to the 

relative pollution weight system. The overall water quality of the station can be 

categorized as being under Level I. However, primary treatment may be essential 

during non-monsoon seasons. 

 

 

 
Fig 5.28: Water Quality Index Curves for Station 5 
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The Water Quality Index curves for Station 6 are shown in figure 5.29. Here, the 

decreasing trend from January to May can be due to low entropy and conventional 

weights of pH. The water quality improves during the months of June and July 

majorly because of adjustment of pH according to the relative pollution weight 

system. The overall water quality of this station can be categorized under Level I 

indicating that the water remains slightly polluted here. Hence just primary 

treatment is required. Other treatment processes may be introduced as per the 

requirement. 

 

 

 
Fig 5.29: Water Quality Index Curves for Station 6 

 

The Water Quality Index curves for Station 7 are shown in figure 5.30.The water 

quality decreases during the May because of a lower weight of EC as per 

conventional and entropy weight systems. The water quality revives due to 

balancing of Fluoride Ions ad EC as per the relative pollution system. The water 

quality lies in Levels I and II indicating that proper treatment is necessary before 

its use.  
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Fig 5.30: Water Quality Index Curves for Station 7 

 

5.5 Water Quality Index Based on Principal Component Analysis 
 

Principal Component is carried out in each station and the results resemble those obtained 

from t-test as mentioned before. The variable loadings of the first component and variance 

are put in the formula mentioned in Chapter 5 and the following graphs of Water Quality 

Indices are formulated. The results from incorporation of Principal Component Analysis to 

determine Water Quality Indices are almost the same as those obtained from conventional 

method, thus proving the robustness of the method. 

The Water Quality Index curves derived from Conventional method and Principal 

Component Analysis for Station 1 are shown in figure 5.31. The results from Principal 

Component Analysis overestimate the water quality as compared to that computed using 

conventional indexing. In both the cases the high loading of hardness increases the water 

quality. In conventional indexing, phosphate bears a lesser weight while in the other 

method, pH bears a lower loading. The level of water quality can be considered to lie in 

Level I throughout the year. Hence preliminary treatment is required before its 

consumption.  
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Fig 5.31: Water Quality Index Curves for Station 1 using PCA 

 

The Water Quality Index curves derived from Conventional method and Principal 

Component Analysis for Station 2 are shown in figure 5.32.The results obtained from 

Principal Component Analysis overestimate the water quality from March to July, 

otherwise they entwine around the results from conventional indexing.  According to 

Conventional Indexing, Coliform Count accounts for a lesser weight and hence decreases 

the water quality during the month of May. However TDS bears a lower loading in the first 

component. The level of water quality in this station fluctuates between Level I and II. 

Hence, proper treatment of water is important before consumption. 

 

 
Fig 5.32: Water Quality Index Curves for Station 2 using PCA 
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The Water Quality Index curves derived from Conventional method and Principal 

Component Analysis for Station 3 are shown in figure 5.33.The results from Principal 

Component Analysis over-estimate and under-estimate the water quality as compared to 

conventional indices. The decrease in water quality in because of pH according to both the 

methods. The water quality level fluctuates between I and II in this station. Hence water 

treatment is necessary before consumption. 

 

 
Fig 5.33: Water Quality Index Curves for Station 3 using PCA 

 

 

The Water Quality Index curves derived from Conventional method and Principal 

Component Analysis for Station 4 are shown in figure 5.34.The water quality deteriorates 

due to Coliform Count as per conventional indexing and Principal Component Analysis. 

The results from Principal Component Analysis sometimes overestimate and sometimes 

underestimate those obtained from conventional indexing. The small kink in the curves 

during the month of February indicate the decline of water quality which becomes more 

pronounced during the dry season.  The level of water quality drops to III during May. The 

water at this station needs sophisticated treatment before consumption.  
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Fig 5.34: Water Quality Index Curves for Station 4 using PCA 

 

The Water Quality Index curves derived from Conventional method and Principal 

Component Analysis for Station 5 are shown in figure 5.35.The results from Principal 

Component Analysis overestimate the water quality from January to mid-March and July 

to September and underestimate the quality from mid-March to July and from October and 

December. The decrease in water quality is because of BOD in conventional indexing 

while it is because of TDS according to indexing by Principal Component Analysis. The 

level of water is almost categorized under Level I and hence needs primary treatment before 

consumption. 

 

 

 
Fig 5.35: Water Quality Index Curves for Station 5 using PCA 
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The Water Quality Index curves derived from Conventional method and Principal 

Component Analysis for Station 6 are shown in figure 5.36.The results from Principal 

Component Analysis underestimate the water quality from January to mid-May and over-

estimate the quality for the rest of the year. The decline in water quality is because of lower 

weightage of pH in both conventional indexing and Principal Component Analysis. The 

level of water quality remains in Level I throughout the year. Hence, primary treatment 

may be done for water purification.  

 

 
Fig 5.36: Water Quality Index Curves for Station 6 using PCA 

  

The Water Quality Index curves derived from Conventional method and Principal 

Component Analysis for Station 7 are shown in figure 5.37.The results obtained from 

Principal Component Analysis underestimate water quality almost throughout the year as 

compared to those from conventional indexing. The decline in water quality is due to the 

concentration of Fluoride Ions according to conventional indexing and due to Electrical 

Conductivity according to Principal Component Analysis. The level of water remains in 

Level I throughout the year and hence preliminary treatment is required before its 

consumption.   
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Fig 5.37: Water Quality Index Curves for Station 7 using PCA 

 

   

5.6 Error Analysis 

 

The error analysis of the Water Quality Index Models is done using Root Mean Square 

Error, Mea Absolute Error and Mean Absolute Percentage Error and the best model is 

selected. Table 5.10 shows the calculated errors. It is found that entropy weight method is 

closest to the conventional indexing for all the stations. Hence, in the final indexing entropy 

weight method is adopted. 

 

Table 5.11: Error Analysis of the WQI Methods 

Station WQI using Entropy 

Weight  

WQI using Relative 

Pollution 

WQI using Principal 

Components 

1 RMSE  0.093 

MAE 0.012 

MAPE 14% 
 

RMSE 0.115 

MAE 0.013 

MAPE 15% 
 

RMSE 0.101 

MAE 0.014 

MAPE 17% 
 

2 RMSE 0.085 

MAE 0.013 

MAPE 17% 
 

RMSE 0.118 

MAE 0.014 

MAPE 15% 
 

RMSE 0.217 

MAE 0.045 

MAPE 17% 
 

3 RMSE 0.100 

MAE 0.013 

MAPE 16% 
 

RMSE 0.133 

MAE 0.015 

MAPE 15% 
 

RMSE 0.225 

MAE 0.036 

MAPE 17% 
 

4 RMSE 0.203 

MAE 0.010 

MAPE 14% 
 

RMSE 0.248 

MAE 0.014 

MAPE 15% 
 

RMSE 0.337 

MAE 0.012 

MAPE 17% 
 

5 RMSE 0.065 

MAE 0.016 

RMSE 0.076 

MAE 0.016 

RMSE 0.118 

MAE 0.002 
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MAPE 19% 
 

MAPE 15% 
 

MAPE 17% 
 

6 RMSE 0.037 

MAE 0.013 

MAPE 14% 
 

RMSE 0.060 

MAE 0.014 

MAPE 15% 
 

RMSE 0.088 

MAE 0.002 

MAPE 17% 
 

7 RMSE 0.141 

MAE 0.014 

MAPE 18% 
 

RMSE 0.172 

MAE 0.016 

MAPE 15% 
 

RMSE 0.320 

MAE 0.063 

MAPE 17% 
 

 

 

5.7 Representation of Final Water Quality Indexing 

 

The minimum water quality indices based on entropy weighting method are illustrated in 

Fig. 5.38. The figure shows that at Station 4, the water quality is the lowest and it tends to 

rejuvenate as the river approaches its mouth. 

 

Fig 5.38 Minimum Water Quality Indices for Narmada River Basin for a typical year 
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CHAPTER VI 

CONCLUSIONS 
 

Thus the water quality analysis of River Narmada for a typical year is done using some preliminary 

methods, Functional Data Analysis and Principal Component Analysis and error analysis of the 

methods used is computed. In the preliminary analysis, descriptive statistics, hierarchical 

clustering, principal component analysis and principal factor analysis are done. Water Quality 

Indexing based on Functional Data Analysis is done by employing entropy and relative pollution 

degree weights. In case of Principal Component Analysis weights are calculated using the loadings 

of the first component. The weights are aggregated into Final Indices using Weighted Sum Model. 

The error analysis is done using Root Mean Square Error, Mea Absolute Error and Mean Absolute 

Percentage Error and the best method is selected. The best method is found to be the one using 

Functional Data Analysis by Entropy Weight Method for all the stations. The following 

conclusions are drawn on the basis of the analysis and Water Quality Status Report (2012), by 

Central Pollution Control Board: 

 The preliminary analysis show that Biochemical Oxygen Demand, Dissolved Oxygen, 

Chemical Oxygen Demand and Total and Faecal Coliform are the most crucial water 

quality variables along the mainstream of Narmada River Basin. The correlation matrix 

further proves the inter-dependencies of Dissolved Oxygen with Biochemical Oxygen 

Demand (R2=-0.87) and Chemical Oxygen Demand (R2=-0.85). Coliform Count and 

Faecal Coliform are positively correlated with an R2 value of 0.96. 

  The KMO measure of sampling adequacy is 0.717 which is implies that the degrees of 

common variances among the twenty five variables is “middling”. The factors extracted 

shall thus account for a fair amount of variance. Both Principal Component Analysis and 

Factor Analysis yield 7 components. This is further supplemented by the scree plot. The 

components/factors account for 68.573% of total variance. Using Principal Component 

Analysis, the first component is fund to strongly correlated with Dissolved Oxygen (0.854), 

Biochemical Oxygen Demand (-0.815), Chemical Oxygen Demand (-0.847), Total 

Hardness (0.711), Calcium Hardness (0.865), Calcium Major Ions (0.864), Electrical 

Conductivity (0.796), Coliform Count (-0.871) and Faecal Coliform (-0.892). The first 

component itself accounts for about 50% of the total variance explained. The first factor 

from Factor Analysis has a strong and positive correlation Calcium Hardness, Dissolved 

Oxygen and Electrical Conductivity. It is negatively correlated with Biochemical Oxygen 

Demand and Chemical Oxygen Demand. Thus agricultural runoff and industrial wastes 

account for an increase in alkalinity in the river water. This reflects the factual information 

about River Narmada. It is also concluded that the deterioration in Dissolved Oxygen is 

being rejuvenated by variables causing alkalinity in water.  

 The student’s t-test conducted gives a proper account of the significant variables of each 

of the seven stations. For example for Station 1, Hardness, pH and phosphate ions are 

considered important. This is relevant because Station 1 is basically a village with adequate 

mineral resources. Similarly, for Station 4 has Biochemical Oxygen Demand, Chemical 
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Oxygen Demand and Coliform Count are the three most significant parameters. Station 4 

is a religious hub and witnesses numerous rituals throughout the year. Hence it is subjected 

to continuous anthropogenic activities. The increase in inorganic pollution is because of 

the paper industries located at the downstream region of the station. 

 Conventional Water Quality Indexing done along the seven sites shows that for Station 

1,2,5,6 and 7, water quality remains excellent almost throughout the year. In Stations 2 and 

4 it drops down to Fair during the months of February and May. The decrease in water 

quality is due to the effect of mass bathing at Stations 2 and 4 during the given months. 

The water drawn during these seasons should be properly disinfected before consumption. 

 In Functional Data Analysis, the indices from Relative Pollution Degree overestimate 

while those of entropy weights underestimate the water quality. Both the methods show 

similar trends of water quality. The indices developed for the stations using entropy 

weights almost converge with those obtained using conventional method showing 

minimum error. Water Quality Indexing using Principal Component Analysis also shows 

similar results. The principal components obtained have strong correlations with the three 

significant parameters of each station. 

 Finally an error analysis is done on the methods used to find the best suitable water quality 

indexing technique. It is found that Functional Data Analysis using Entropy Weights has 

least error with for example, 9.3% Root Mean Square Error, 1.2% Mean Absolute Error 

and 1.4% Mean Absolute Percentage Error for Station 1. 
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