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Abstract

The need for large-scale storage and transmission of data is growing exponentially With the
widespread use of computers so that efficient ways of storing data have become important.
With the advancement of technology, the world has found itself amid a vast amount
of information. An efficient method has to be generated to deal with such amount of
information. Data compression is a technique which minimizes the size of a file keeping
the quality same as previous. So more amount of data can be stored in memory space with
the help of data compression.

There are various image compression standards such as JPEG, which uses discrete cosine
transform technique and JPEG 2000 which uses discrete wavelet transform technique. The
discrete cosine transform gives excellent compaction for highly correlated information. The
computational complexity is very less as it has better information packing ability. However,
it produces blocking artifacts, graininess, and blurring in the output which is overcome by
the discrete wavelet transform. The image size is reduced by discarding values less than a
prespecified quantity without losingmuch information. But it also has some limitationswhen
the complexity of the image increases. Wavelets are optimal for point singularity however
for line singularities and curve singularities these are not optimal. They do not consider the
image geometry which is a vital source of redundancy.

Here we analyze a new type of bases known as bandelets which can be constructed
from the wavelet basis which takes an important source of regularity that is the geometrical
redundancy.The image is decomposed along the direction of geometry. It is better as
compared to other methods because the geometry is described by a flow vector rather than
edges. it indicates the direction in which the intensity of image shows a smooth variation. It
gives better compression measure compared to wavelet bases. A fast subband coding is used
for the image decomposition in a bandelet basis. It has been extended for video compression.

The bandelet transform based image and video compression method compared with the
corresponding wavelet scheme. Different performance measure parameters such as peak
signal to noise ratio, compression ratio (PSNR), bits per pixel (bpp) and entropy are evaluated
for both Image and video compression.

Keywords: Bandelet Transform; DCT; DWT; Image Redudancy.



Contents

Supervisors’ Certificate ii

Declaration of Originality iii

Acknowledgment iv

Abstract v

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Theory 3
2.1 Lossless and Lossy compression . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Image Compression Methods . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Types of coding techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 predective coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Transform coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Discrete Cosine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.1 Quantization and De-quantization . . . . . . . . . . . . . . . . . . 6
2.4.2 DC and Zig Zag coding . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.3 Entropy coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.1 Continues wavelet Transform . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Two-dimensional transform . . . . . . . . . . . . . . . . . . . . . 10
2.5.3 Non-Linear approximation of wavelet transform . . . . . . . . . . 11
2.5.4 Geometrical representation . . . . . . . . . . . . . . . . . . . . . . 13
2.5.5 Comparision of signals . . . . . . . . . . . . . . . . . . . . . . . . 14

vi



3 Bandelet Transform based Image and video compression 16
3.1 Bandelets along geometric flow . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Bandelet Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Application to Image Compression . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Regularity due to the wavelet transform . . . . . . . . . . . . . . . 18
3.2.2 Regularity due to the Geometry . . . . . . . . . . . . . . . . . . . 18
3.2.3 Bandletization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Fast Discrete Bandelet Transform Algorithm . . . . . . . . . . . . . . . . . 19
3.3.1 Quadtree construction . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Application to Video Compression . . . . . . . . . . . . . . . . . . . . . . 20

4 Result and Analysis 22
4.1 Result and analysis for Image compression . . . . . . . . . . . . . . . . . . 22
4.2 Result and analysis for video compression . . . . . . . . . . . . . . . . . . 27
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

References 28

vii



List of Figures

2.1 encoding process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Decoding process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Zig Zag encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Basis functions and corresponding tilings of the time-frequency plane : (a)

Short-time Fourier transform; (b) wavelet transform. . . . . . . . . . . . . 9
2.5 Decomposition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Composition process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Triangular adaption of an Image geometry . . . . . . . . . . . . . . . . . . 13
2.8 Several different test Images . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Comparision of Approximation error decay for different images shown in

fig 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Example of an adapted dyadic squares segmentation of an image and and its
corresponding flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 quadtree segmentation of wavelet space . . . . . . . . . . . . . . . . . . . 20
3.4 Zoom of Subsections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Comparision of barb Image Approximation for DCT,DWT and Bandelet
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Comparision of lena Image Approximation for DCT,DWT and Bandelet
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Comparision of cameraman Image Approximation for DCT,DWT and
Bandelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Comparision of livingroom Image Approximation for DCT,DWT and
Bandelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Comparision of pirate Image Approximation for DCT,DWT and Bandelet
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Comparision of mandril Image Approximation for DCT,DWT and Bandelet
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Bitrate Vs PSNR of image “barbara”using Bandelet Transform and wavelet
transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



4.8 Bitrate Vs PSNR of image “lena”using Bandelet Transform and wavelet
transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.9 Bitrate Vs PSNR of image “cameraman”using Bandelet Transform and
wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



List of Tables

4.1 Comparison of Approximation of diffterent Images with DCT,DWT and
Bandelet Transform methods for Threshold value 0.1 . . . . . . . . . . . . 24

4.2 Comparison of bitrate vs PSNR of different images at different threshold
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

x



Chapter 1

Introduction

Data compression is necessary for the storage and transmission of images. The use of
digital technology and accessing the internet for data transmission is growing exponentially.
Without compression, the files will consume a vast amount of memory. For example, a
256 x 256 grayscale image has 65, 536 elements to store. Similarly, a color image stores
a million of elements. This large amount of data will take a large amount of bandwidth
during transmission, and hence will take a lot of time for downloading or uploading. A large
amount of multimedia data consists of images and videos and they occupy a large amount of
bandwidth. Hence, the it is necessary to develop an efficient technique for the compression
of image and video. It is a common characteristic of images that the neighboring pixels are
very much correlated and stores much redundant information. So finding a representation
where pixels are less correlated and compact in a place is the basic objective of compression
of image and video. For this, we have to remove the redundancy and irrelevancy which in
turn will remove redundancy from the image and irrelevant pixels unnoticeable to human
eyes. The various image compression standards are JPEG and JPEG 2000.

The above schemes are Discrete Cosine Transform (DCT) [1] based and discrete wavelet
transform based. There are issues like blocking artifacts at low bit rates with these schemes.
So as to wipe out these issues, scientists have as of late begun examining on wavelets for
compression applications. Taking after the determination of wavelets as the principal device
for JPEG-2000 (Joint Pictures Expert Group) standard, these endeavors start to develop
increasingly [2].

However wavelet transform has also some limitations when the complexity of the image
increases. Wavelets are optimal for point singularity however for smooth images these are
not optimal. Wavelet bases utilizes sparse approximation which in turn uses some kind of
regularity for obtaining value from the neighborhood pixels. But they do not consider an
important form of regularity which is geometry. A new class of bases can be constructed
from the wavelet bases which takes an important source of regularity that is the geometry
called bandelet bases [3].
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1.1 Thesis Organisation

The thesis is Organised as follows

• Chapter 2 is about various Transform techniques such as DCT and DWT and then
it explains the Non-linear approximation of Wavelet bases and image representation
with geometry.

• Chapter 3 describes about Bandelet Bases,the Fast Discrete Bandelet Transform
algorithm and application to image and video compression.

• Chapter 4 is Result and analysis of Image compression of various standard images and
Comparison with wavelet basis.



Chapter 2

Background and Theory

This chapter explains about the different types of compression techniques such as lossy and
lossless compression. Various coding techniques such as discrete cosine transform, discrete
wavelet transform are described. Then a brief idea about non linear approximation in wavelet
basis and the image representation in geometry is described.

2.1 Lossless and Lossy compression

The objective of Image Compression is to represent a picture with a minimal measure of bits
conceivable.In Lossy Compression, the picture quality might be degraded to meet a given
target of bandwidth for transmission and storage.In lossy coding the picture and video are
transmitted through a band limited system. The issue in Lossy Compression is the amount
we can lessen the picture quality given the information rate. In Lossy Compression, most
methods transform pixels into the transform domain utilizing the DCT (Discrete Cosine
Transform) , the DWT (Discrete Wavelet Transform) or Bandelet Transform [4]. The loss is
either quantization of the coefficients or the end of the encoding at a given information rate.
So as to meet a data rate budget, the transformed coefficients are unequivocally quantized
with a given step size as in ZTE, JPEG, H.263 andMPEG-2 . Implicit quantization is utilized
as schemes, for example, EZW and SPIHT , which can be truncated anytime in the bit stream
amid encoding.

In the lossless compression, the image after decompression is indistinguishable to that
of the first. The issue in lossless coding is the amount we can diminish the information
rate. The fundamental methodology for lossless image compression is predictive coding or
entropy encoding. For predictive coding, DPCM (Differential Pulse Code Modulation) is
regularly utilized. For entropy coding, Run-length coding , Huffman coding , or arithmetic
coding is utilized. Context modeling can be incorporated into the entropy encoding, which
is to measure the likelihood probability of the images molded on the context, to build better
compression. Themodeling comprises of a mix of neighboring pixels as of now experienced.

The structure of predictive coding is controlled by the amount of neighboring pixels
utilized for the prediction, weighting for the direct combination of the neighboring pixels

3



Chapter 2 Background and Theory

and the strategy for context modeling. The JPEG lossless mode utilizes DPCM and Huffman
coding or arithmetic coding . Another strategy for lossless encoding is to utilize the reversible
wavelet transform . The consequences of the integer wavelet transform are integers, to
recoup the originals totally with the inverse wavelet transform. The lifting scheme (LS)
is utilized to execute the integer wavelet transform.

2.2 Image Compression Methods

Numerous Image Compression schemes utilize some transform coding. Figure 2.1
demonstrates a block diagram of encoder and decoder utilizing transform coding. The initial
step is to get a transform to the image pixels keeping in mind the end goal to lessen the

Figure 2.1: encoding process

Figure 2.2: Decoding process

correlation of the pixels. The aftereffect of the change is known as the transform coefficients.
After this progression, in lossy compression, an explicit quantizer might be utilized, or an
implicit Quantizer, for example, the truncation of the bit stream might be utilized. The
wellspring of the information loss in image compression is the quantizer. In this way, in the
lossless compression case, the quantizer is not utilized. The third step is coefficient coding,
which implies that the change coefficients are redesigned keeping in mind the end goal to
endeavor properties of the transform coefficients and acquire new images to be encoded at
the fourth step. For instance, the transform coefficients can be considered as an accumulation
of quad-trees or zero-trees and treated in somewhat plane design, to give versatility to the

4



Chapter 2 Background and Theory

compacted bit stream. The images from the coefficient coding are losslessly compacted at the
entropy coding step. Entropy coding can be any strategy equipped for packing a succession
of symbols, for example, Huffman coding , arithmetic coding and Golomb coding .

2.3 Types of coding techniques

2.3.1 predective coding

For most images, there are redundancies among adjourning pixel values; that is, nearby
pixels are very associated. Thus, a current pixel can be predicted sensibly all around
given the neighborhood of pixels . The error, which is gotten by subtracting the prediction
from the first pixel, has a little entropy than the first pixels. Subsequently, the prediction
error can be encoded with fewer bits. In the predictive coding, the relationship between’s
contiguous pixels is expelled, and the remaining qualities are encoded. Differential Pulse
Code Modulation is known as a predictive coding system.

2.3.2 Transform coding

The goal of image compression is to represent the image pixels with the least number of bits
possible. Thus, if the transform coefficients have a small number of non-zero values, they
can be represented with a small number of bits . Therefore, the transform needs to compact
the energy into the fewest coefficients possible. Due to the property of the orthogonality
of the transform, the average squared reconstruction error is equal to the average squared
quantization error.

In this scheme, an image is transformed from one domain to a different type of domain,
using some well-known transform techniques. Then the transformed values are coded and
thus provide greater data compression. Transform coding is an efficient coding scheme based
on utilization of interpixel correlation. At first, the pixels in space domain are converted to
the frequency domain. Then these coefficients are coded and transmitted. The transform
does not achieve any compression, but it helps in decorrelating the data and compacts the
significant coefficients into a small data. Like that, many coefficients are omitted after
quantization and before encoding.The primary goal of the transform is to make a signal
where the signal is less correlated compared to original one. At the receiver; the encoded
data are decoded and transformed back to reconstruct the signal.

2.4 Discrete Cosine Transform

The primary objective of The Discrete Cosine Transform is to de-correlate the image
information. At that point, the coefficients are encoded. The DCT changes a signal from a

5



Chapter 2 Background and Theory

spatial space into a frequency space. It represents an image as the total sum of the sinusoids
of magnitudes and frequencies. DCT has the property that, for a normal image the greater
part of the data around an image is packed in only a few coefficients of DCT. After the
calculation of DCT coefficients, they are standardized by quantization table with various
scales gave by the JPEG standard registered by psycho-visual information. Determination
of quantization table influences the entropy and image compression. The estimation of
quantization is conversely about nature of the reconstructed image, better mean square
error, and better image compression. In a lossy compression procedure, amid a stage called
Quantization, the less critical frequencies are disposed of, and afterward, the most essential
frequencies that remain are utilized to recover the image in the decomposition process. After
quantization, quantized coefficients are modified in a Zig Zagmanner for further compressed
by an effective lossy coding scheme.The forward DCT can be written as

D (i, j) =
1√
2N

C (i)C (j)
N−1∑
y=0

p (x, y)× cos
(
(2x+ 1) iπ

2N

)
cos

(
(2y + 1) iπ

2N

)
(2.1)

here, P(x, y) is the input matrix NxN, (x, y) are the coordinate of the matrix elements and
(i, j) are the coordinates of the coefficients, and

C (u) =

{
1√
2
for u = 0

1 for u > 0

The Inverse DCT can be written as

P (x, y) =
1√
2N

C (i)C (j)
N−1∑
y=0

D (i, j)× cos
(
(2x+ 1) iπ

2N

)
cos

(
(2y + 1) iπ

2N

)
(2.2)

where

C (u) =

{
1√
2
for u = 0

1 for u > 0

2.4.1 Quantization and De-quantization

The entire image is partitioned into little N×N squares. At that point working from left
to right, start to finish the DCT is applied to every square. Every square’s elements are
compressed through Quantization implies isolating by some particular 8×8 lattice called
Quantization matrix and adjusting to the closest number quality. This Quantization matrix
is chosen by the user to remember that it gives Quality levels extending from 1 to 100, here
1 gives the poor image Quality and most noteworthy image compression while 100 gives
the best Quality of decompressed picture and least compression. The standard Quantization
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matrix can be written as

Qmatrix =
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2.4.2 DC and Zig Zag coding

In this step, the quantized coefficients are arranged in a zigzag manner. The DC coefficients
are encoded as the difference between DC coefficients of adjacent blocks. Additional
compression is achieved by encoding the 63 AC coefficients. There is a strong correlation
between pixels of adjacent blocks. This correlation can be removed by arranging them in Zig
Zag manner. After arranging, we are getting a stream of frequencies from lower to higher,
so that first low-frequency components are arranged then high-frequency coefficients.

Figure 2.3: Zig Zag encoder

2.4.3 Entropy coding

In this section we can achieve loss less compression by Entropy coding which compacts the
the Ziz-Zag coded coefficients in a stream of bits. in JPEG [5] entropy coding is achieved by
Huffman coding and by Arithmetic coding. it is two step process in which the coefficients
of quantization are arranged into a succession of symbols and in the second step we encode
the symbols into a stream of data.

7



Chapter 2 Background and Theory

Huffman coding utilizes Huffman table characterized by the application of compressing
a picture and after that, the same table is used for decompression. These Huffman tables
are predefined or processed particularly for a given image during initialization, preceding
compression. Arithmetic coding doesn’t require tables like Huffman coding since it can
adjust to the image measurements as it encodes the image. Arithmetic coding is somewhat
complicated than Huffman coding for certain execution, for instance, the most high-speed
hardware usage. Transcoding between two coding technique is conceivable by essentially
entropy decoding with one strategy and entropy recording with the other.

2.5 Wavelet transform

The wavelet transform is orthogonal in nature, similar to Fourier and numerous different
transforms utilized as a part of image compression. An orthogonal transform is not only one
to one, but the relation is also very simple, due to the spectral theorem.One of the classic
tools to achieve different representations of a signal is the Fourier theory, for which a whole
set of tools exists in literature: from purely continuous time, such as the Fourier integral,
to the Discrete Fourier Transform (DFT) and the Fourier series expansion; moreover, the
Fast Fourier Transform (FFT) provides a fast calculation for the transform decomposition.
If we are given a pure frequency signal ejwt , the Fourier-based methods will isolate a peak
at the frequency w . However, for the simple case of a signal built by k pure oscillations
of different frequencies occurring at adjacent intervals in time, we obtain k peaks in the
transform domain but the precise time localization is lost. This immediately points out the
need for a time-frequency representation of a signal which could give us local information
in time and in frequency.

In the Fourier case, the most obvious way to overcome this obstacle is to localize the
sinusoids in the transform representation by windowing, that is, the basis functions now
becomew(t − τ) ejwt , wherew(t) is a “window” functionwith small support allowing for time
localization. This is traditionally called the windowed Fourier transform, or the short-time
Fourier transform (STFT) and was originally introduced by Gabor. By using the concept of
the time-frequency plane, it is easy to show that the STFT separates this plane into adjacent
square tiles. This is illustrated in the bottom part of Figure 2.4 [6], where the shaded squares
in the figure correspond to waveforms which are localized in the same time interval and in
three adjacent frequency ranges, as shown in the top part of the figure 2.4.

In the wavelet transform case, a different solution is offered: the precision of
the frequency localization is logarithmic, i.e. proportional to the frequency range.
Consequently, time localization becomes finer at the highest frequencies. This is illustrated
in the bottom part of Figure 2.4(b), and the corresponding wavelets are shown in the figure.
It is necessary to look though that one cannot obtain arbitrary localization in time and in
frequency due to the uncertainty (Heisenberg) principle [7]. Nevertheless, wavelet theory

8



Chapter 2 Background and Theory

based on multi-resolution analysis and its generalizations offer a natural way to achieve an
arbitrary tiling of the time-frequency plane that suits several applications in signal processing
[6].

Figure 2.4: Basis functions and corresponding tilings of the time-frequency plane : (a)
Short-time Fourier transform; (b) wavelet transform.

2.5.1 Continues wavelet Transform

In wavelet analysis, we use the long time intervals where more precise low-frequency
information is required and shorter regions where high-frequency information. Wavelets
are orthogonal in nature which means they are periodic signals having average value zero.
In Fourier analysis we break up a signal into sine and cosine waves of different frequencies.
Similarly, In wavelet analysis we break a signal into scaled versions and shifted versions
of the original (or mother) wavelet. In wavelets, the signal is analyzed in time-frequency
domain unlike in Fourier theory where sine and cosines are analyzed. The Fourier Transform
is the sum over all time of the signal f(t) multiplied by a blurring kernel. The constituent
sinusoidal components can be derived from the Fourier transform bymultiplying a sinusoidal
frequency component. Similarly, in wavelet, the sum of all the scaled and shifted version of
the mother wavelet yields the wavelet coefficients. The mother wavelet is given as

ψx,y (a) =
1√
x

�
(
a− y

x

)
; x, y ∈ Rand x > 0 (2.3)

Where a and b are the scaling and shifting parameters respectively. The one dimensional
continues wavelet transform can be written as

Wf (x, y) =
∞
∫

−∞
X (a) �x,y (a) da (2.4)

The inverse 1-d Inverse continues wavelet transform is given by
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Chapter 2 Background and Theory

x (a) =
1

C

∫ ∞∫
−∞

Wf (x, y) �x,y (a) dy
dx

x2
(2.5)

C is the constant and must be finite as it requires one of the property of mother wavelet.

2.5.2 Two-dimensional transform

Since we have quite recently been managing one-dimensional transform in this way, it is
not totally clear how to do a two or multi-dimensional transform. There are fundamentally
two ways, the easy way, and the difficult way possible. For the most part, the easy
way is the quickest and least complex. However, some components in the difficult way
possible make it beneficial. To make it basic, we see the image first as columns of
one-dimensional flags and change those. At that point we change them in the other
heading too. Presently a one-dimensional transform abandons us with a large portion of
the coefficients as s. Two-dimensional transform changes both the segments of scaling
coefficients and of wavelets, however, there are just the new scaling coefficients in the
sections of scaling coefficients, referred to as LL, which is utilized as a part of the following
transform. This abandons us with just 1=4 of the underlying information, which means
further changes are extraordinarily accelerated. The inconvenience is really finding this
information points.

Figure 2.5: Decomposition process

The image is passed through a high and low pass filter along the lines. Consequences
of every channel are downsampled by two. The two sub-signals relate to the high and
low-frequency parts of the columns, each having a size N by N/2. Each of the sub-signals is
on the other hand again passed through high and low-pass filter, yet now along the column
and the outcomes are again down-sampled by two. Thus, the first information is part into four
sub-sections each of size N/2 by N/2 and contains data from various frequency segments.

10



Chapter 2 Background and Theory

Figure 2.6: Composition process

2.5.3 Non-Linear approximation of wavelet transform

We consider an orthogonal basis B = {gm}m∈N of L2
(
[0, 1]d

)
with for instance d = 1

(signals) or d = 2 (images). We recall that the decomposition of a signal in an orthonormal
basis as

f =
∑
m ∈ z

⟨f, gm⟩gm (2.6)

gives back the original signal and thus produces no error. Processing algorithms modify
the coefficients |⟨f, gm⟩| and introduce some error. The simplest processing computes an
approximation by considering only a sub-set IM ∈ Z of M coefficients and performing the
reconstruction from this subset

fM =
∑

m ∈ IM

⟨f, gm⟩gm (2.7)

Where IM an index set of M elements, the reconstructed signal is fM is the orthogonal
projection of f onto the space

VM = Span{ψn|m ∈ IM}, (2.8)

Since VM might depend on f, this projection f → fM might be non-linear. Since the
basis is orthogonal, the approximation error is

||f − fm||2 =
∑
m/∈Im

|⟨f, gm⟩|2 (2.9)

The important question is now to choose the set IM , which might depend on the signal f
itself. A non-linear approximation is obtained by choosing IM depending on f. In particular,
one would like to choose to minimize the approximation error ||f − fm||. Since the basis is

11
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orthogonal, this is achieved by selecting the M largest coefficients in magnitude. This can
be equivalently obtained using a thresholding T such that

Im = {m ∈ N : |⟨f, gm⟩| > Tm} (2.10)

Where T depends on the number of coefficients M. For discrete pictures of N2 pixels, the
same approximations can be actualized in an orthonormal premise B ofN2. In compression
applications, the product of functions is not thresholded but rather quantized and coded.
However, it is realized that for a general quantization of step Tm, at huge compression rates
the distortion D is relative to ||f − fm||2. The bit budget plan R is relative to M. The rate
D(R) in this manner has an asymptotic decay as the guess mistake ||f−fm||2 as a component
of M. For this applications, given some earlier data on the properties of f, we in this manner
need to discover a basis B where ||f − fm||2 converges rapidly to zero when M increments.
This is the situation if there exist a little steady C and a huge type α then

||f − fm||2 ≤ CM−α (2.11)

Wavelet bases have been appeared to be especially proficient for image approximations.
A separable wavelet basis is developed from a one-dimensional wavelet Ψ (t) and a scaling
function � (t) which are scaled and shifted as

�j,m (t) =
1√
2j

�
(
t− 2jm

2j

)
(2.12)

and
∅j,m (t) =

1√
2j
∅
(
t− 2jm

2j

)
(2.13)

The resulting family of separable wavelets

{∅j,m1 (x1) �j,m2 (x1) , �j,m1 (x1) ∅j,m2 (x1) , �j,m1 (x1) �j,m2 (x1)}j∈z,(m1,m2 ∈ z2) (2.14)

Is an orthonormal basis of L2(R2),To develop a basis over a subset ofR2, one must keep
the wavelets whose supports are inside and adjust suitably the ones whose supports meet the
limit of Ω. we might in any case compose ϕj,m and ψj,m the adjusted scaling functions and
wavelets at the limit, and the subsequent basis of L2() can be composed as

{∅j,m1 (x1) �j,m2 (x1) , �j,m1 (x1) ∅j,m2 (x1) , �j,m1 (x1) �j,m2 (x1)}(j,m1,m2)∈I�
(2.15)

On the chance that the discrete image f (x1, x2) is consistently regular and if the wavelet
ψ has p > α vanishing moments then estimate fm from M wavelets fulfills

||f − fm||2 ≤ CM−α (2.16)

12



Chapter 2 Background and Theory

2.5.4 Geometrical representation

In spite of the optimality of wavelets for limited variation functions, one can frequently
enhance the estimation performance of wavelet bases for pictures, by watching that the level
arrangements of numerous images have a finite average as well as are regular geometric
curve. using this geometric normality can permit us to enhance the representation. This can
be shown by a basic example. Let us consider a set of [0, 1]2 whose limit is a piecewise C2

curve, with a limited number of corners.Assume that f (x1, x2) is a C2 capacity inside and
outside, which is intermittent along the boundary. One can confirm that there exist C1 and
C2 such that the wavelet estimate fm fulfills

C1M
−1 ≤ ||f − fm||2 ≤ C2M

−1 (2.17)

This can be enhanced with representations adjusted to the picture geometry. A basic

Figure 2.7: Triangular adaption of an Image geometry

case is found with a piece-wise linear estimate developed over an adapted triangulation
represented in Figure 2.7. The limit is secured with thin triangles whose widths areO (M−2),
and within and outside of are secured by extensive triangles so that the aggregate number
of triangles is M. Over such a triangulation, one can develop a piecewise straight estimation
fm from f that fulfills

||f − fm||2 ≤ C2M
−2 (2.18)

Here the decay rate exponent α = 2 which is superior than with wavelets, and this
estimation decay is similar to the one obtained when f is C2 over its whole support. The
presence of discontinuities does not degrade the asymptotic decay of the estimation.

This case demonstrates that utilizing the geometrical image redundancy can promptmuch
littler approximation mistakes for an fixed number of estimation components M. One should
likewise incorporate the way that these estimation components (triangles) are characterized
by numerous parameters (orientations, width, length), which can be fused in the constant C

13



Chapter 2 Background and Theory

Figure 2.8: Several different test Images

and which does not influence the asymptotic decay rate.

2.5.5 Comparision of signals

For a fixed basis (for instance wavelets), the decay of ||f − fm||2 allows one to compare the
complexity of different images.

Figure 2.9: Comparision of Approximation error decay for different images shown in fig 2.8

Figure 2.8 shows that natural images with complicated geometric structures and textures
are more difficult to approximate using wavelets. Since the approximation error often decays
in a power-low fashion , the curves are displayed in a log-log plot in figure 2.9.
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Wavelets are optimal for point singularities in natural images but for smooth cartoon
images it is not optimal. As complexity increases wavelet performance decays. Hence,
geometrical regularity can give a better approximation. Bandelets are a new basis to
approximate the ideal transform. These bases take an important form of redundancy i.e.
geometry and hence the error decay can be faster as compared to wavelet bases for smooth
images.



Chapter 3

Bandelet Transform based Image and
video compression

Bandelet bases are new class of bases which decompose the image in the direction of
geometric flow. The image gray levels have regular variations along the geometric flow.
A fast subband filtering algorithm is implemented for the decomposition of the image.
Geometrically regular images have optimal approximation rates for bandelet bases. A fast
best basis algorithm is used for optimizing the bandelet basis geometry in case of image
compression.

sparse representations are utilized for the precise approximation of signal with few
parameters in case of compression application or noise removal [4].these schemes predict
values from their neighbors by taking advantage of some regularity. Representations in
orthonormal bases have been shown to be particularly efficient for images and having
wavelet bases and cosine bases. They are having square support and can be constructed
with separable products of one-dimensional basis. these bases do not consider the geometric
regularity which is a vital source of redundancy.but representation of edges are difficult as
they have sharp transitions and hence they are costlier.

The bandelet bases can be constructed as a field of vectors which are parallel to the
direction of flow along which image intensities are changing regularly. We call this vector
field as geometric flow. This flow vector can be optimized based on the application which
is a challenging task.wavelet bases are warped along the flow vector for finding out the
bandelet bases.this method is called bandeletization.

3.1 Bandelets along geometric flow

Rather than portraying the image geometry through edges, which are frequently not well
characterized, the geometry of image is described by a field of vectors which locally give a
direction where the image has regular variations. This vector field is known as a geometric
flow.
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3.1.1 Bandelet Basis

This segment depicts the development of bandelet bases from wavelet bases that is twisted
along the geometric curve, to exploit the image redundancy along this stream. Conditions
are forced on the geometric curve to acquire orthonormal bandelet bases. In an area Ω,
a geometric stream is a vector field τ (x1, x2) characterized at each τ (x1, x2) ∈ Ω, which
shows locally a heading in which the image force f has regular variations. In the event that the
image intensity is consistently regular in the area of neighborhood a point then this course is
not extraordinarily characterized. Some type of normality is in this way forced on the curve
to determine it. To develop orthogonal bases with the subsequent flow, a first normality
condition forces that the flow is either vertically parallel , which implies that τ (x1, x2) =

τ (x1), or horizontally parallel and thus τ (x1, x2) = τ (x2). To keep up enough adaptability,
this parallel condition is forced inside sub rigions of the image support. The image S is
divided into sub rigions S = UiΩi and inside each the flow is either parallel on a level plane
or vertically. On the off chance that the image intensity f is consistently general over an
entire rigion then a geometric stream is insignificant and is in this manner not characterized.

Figure 3.1: Example of an adapted dyadic squares segmentation of an image and and its
corresponding flow

In the fig 3.1 we can see that the image intensities are regularly varying along the curves.
so we can apply a wavelet transform by warping up the vectors in these directions so that
the anisotropy which is not removed can be easily removed. This can be done by applying a
Bandeletization method which calculates the direction d weather parallel to horizontal curve
or vertical curve and applies a inverse warping operation in each sub square.
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3.2 Application to Image Compression

The correlation near the singularity of a wavelet coefficient can be removed with the help
of bandeletization method [8]. There must be some regularity in the transformed surface for
removing this redundancy. The following two source of regularity can be implemented.

3.2.1 Regularity due to the wavelet transform

Whenever we perform a 2-d wavelet transform to an image most of the redundancy is
removed but the anisotropy near the singularity is not getting removed. however if it is
found that along the orthogonal direction of the anisotropy the image intensities are varying
regularly. hence there is a regularity along perpendicular direction of the anisotropy.

3.2.2 Regularity due to the Geometry

It is found that if we move along the direction of geometry the image intensities are smoothly
varying. So if we can re arrange the pixel values of high singularity and reorder them we
can able to compress the anisotropy which is not removed by the wavelet transform.

3.2.3 Bandletization

Reordering of the grid points(step1)

In this section we first apply a 2 dimensional wavelet transform and try to remove the
anisotropy which is not removed by the regularity due to wavelets. A square is selected
and of width L.we use directional projection to project the points on to the direction which
is orthogonal to the geometry. Then new points will be generated. Then we select every
sampling locations and project them into the perpendicular direction. These points now are
re ordered from left to right so that we will get a new 1 dimensional signal.

1D wavelet Transform(step2)

In this section we will apply a 1 dimensional wavelet transform to the resulting signal from
the previous section so that we can compress it by removing the anisotropy. we will select
a threshold value T and remove all the coefficients which are less than the specified value.
This method we will apply for every square s and for every direction d. We can find the
best direction by minimizing the approximation error between the original signal and the
reconstructed signal.
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3.3 Fast Discrete Bandelet Transform Algorithm

The following are the steps for Bandelet Transform algorithm.

• an input image is provided and a threshold is defined.

• Then a 2 dimensional orthogonal wavelet transform is computed along the horizontal,
vertical and diagonal direction. Then step 3-7 are repeated for each each of the
transform.

Figure 3.2: Overview of the algorithm

• The wavelet transformed image is partitioned into subsquares of equal size, and a
dyadic square is obtained of width L pixels.the steps 4-7 is repeated.

• then the sun space is sampled into as many as number of direction possible which is
generally 2L2. Each of the direction is selected and step 5-7 are repeated.

• The sampling locations are projected along the direction d and the result is sorted from
left to right.

• This re ordering gives us a 1 dimensional discrete signal.

• Then a 1 d discrete wavelet transform is carried out.

• The best direction is chosen from all the direction which gives least approximation
error for a given threshold T.This can be done by minimizing the Lagrangian L.

• Then the output is stored as a 2 dimensional image. A arithmetic coding is done to
ensure that the low frequency components are placed in the left corner where as the
high frequency components in the right most corner.

• After computing the approximation we have to choose the best approximation squares
which can be done by building a quad tree.
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3.3.1 Quadtree construction

While building a quadtree only one sub square is chosen and the coefficients of other
squares are discarded. figure 3.3 and 3.4 shows two different quadtrees of finest scale
2j .

Figure 3.3: quadtree segmentation of wavelet space

Figure 3.4: Zoom of Subsections

After we chose a segmentation for each finest scale 2j and an approximate direction
of geometry d inside every square, we can write the bandelet basis as X = {bm}m
, where m is the indexing parameter of the basis vector. The bandelet transform
computes the dot products i.e. the projection of a function f on this basis, {⟨f, bm⟩}m
. Thus a bandelet projection consists A quadtree segmentation for each scale 2j . For
each dyadic square and for each scale in the quadtree, the direction of geometry d,
the bandelet coefficients {⟨f, bm⟩}. wherever in the sub square the image is regular,
which means there is no geometry. In those cases we can keep the original wavelet
coefficients.

3.4 Application to Video Compression

Here our aim is to construct a single bit streamwhich can be applicable to different resolution
devices. For example, a mobile may need a lower resolution video as compared to a digital
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TV. Here we generate a bit stream which can decoded by both mobile and TV as per
the requirements. In this thesis, we have tried to compress the video based on bandelet
transform. Our initial attempt was to implement spatially scalable video compression. Later
we extended it with few changes for quality (PSNR) scalability. Core part of the model
is based on set partitioning in hierarchical tree (SPIHT) algorithm. The further content is
removed for publication purpose.



Chapter 4

Result and Analysis

4.1 Result and analysis for Image compression

The final image code is obtained by decomposing the image in the bandelet basis associated
to the optimized partition and its geometric flow. To evaluate the performance of this
bandelet compression algorithm, we compare the PSNR of the Bandelet Transformed Image
with the PSNR of Haar wavelet basis,and with the DCT approximation basis with the same
quantization and entropy coding procedure. We do not incorporate the bit-plane strategy
and the contextual coding procedure of JPEG-2000 to compare more easily the performance
of the bandelet and wavelet bases themselves. Similar bit plane and contextual coding
procedure can also be applied to bandelet coefficients.

Figure 4.1: Comparision of barb Image Approximation for DCT,DWT and Bandelet
Transform

Figure 4.1 shows the approximation of Barbara image with DCT, DWT and Bandelet
transform techniques. At first the image is Transformed with different methods. Then
the image is quantized with threshold value of 0.1 and again reconstructed with inverse
Transform method. Entropy coding scheme is not applied in this procedure.Different
Compression parameters such as Peak Signal to Noise Ratio (PSNR), Compression Ratio
(CR), No. of Bit (bpp), Entropy were derived from the three techniques. It is found that the
Bandelet approximation method outperforms the corresponding DWT and DCT schemes by
1.2 dB and 2.8 dB respectively. Similarly it is done for different standard Images. Table 4.1
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Figure 4.2: Comparision of lena Image Approximation for DCT,DWT and Bandelet
Transform

Figure 4.3: Comparision of cameraman Image Approximation for DCT,DWT and Bandelet
Transform

Figure 4.4: Comparision of livingroom Image Approximation for DCT,DWT and Bandelet
Transform

shows a whole comparison of all the parameter and Bandelet scheme performance is superior
in all the cases.

Figure 4.7, 4.8, 4.9 shows the distortion rate curves for Barbara, lena and Cameraman
Images. fifteen threshold valueswere taken and the bit rate is calculated for both bandelet and
wavelet scheme.from the curves it is found that the bandelet coder outperforms the wavelet
coder. It is important to observe that this remains valid for a bit rate going from .15 bit per
pixel to 1 bit per pixel, which covers the whole range of applications. From a visual quality
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Figure 4.5: Comparision of pirate Image Approximation for DCT,DWT and Bandelet
Transform

Figure 4.6: Comparision of mandril Image Approximation for DCT,DWT and Bandelet
Transform

Table 4.1: Comparison of Approximation of diffterent Images with DCT,DWT and Bandelet
Transform methods for Threshold value 0.1

Images Method PSNR CR No. of Bits(bpp) Entropy

Lena DCT 23.0251 2.8 0.878 0.88
DWT 25.7915 4 0.72 0.719
Bandelet Transform 26.8192 4.2 0.7 0.707

barbara DCT 23.8601 2.3 0.999 1
DWT 25.4888 3.8 0.767 0.77
Bandelet Transform 26.6644 3.9 0.723 0.72

Cameraman DCT 23.411 2.3 1 1
DWT 26.6008 4.3 0.678 0.68
Bandelet Transform 27.7083 4.42 0.663 0.66

point of view, the difference of performance between the two coders is more impressive. It
can be seen from the Table 4.2 that the Bandelet coder PSNR for Barbara image is 1.4 dB
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Figure 4.7: Bitrate Vs PSNR of image “barbara”using Bandelet Transform and wavelet
transform

Figure 4.8: Bitrate Vs PSNR of image “lena”using Bandelet Transform and wavelet
transform

more than the corresponding wavelet coder where as for Lena and cameraman it is 0.8 db and
1.1 dB approximately.Eventhough the bandelet coder introduces errors, the restored images
have a regular geometry along the direction of the computed flow, and the resulting error is
hardly visible.

On the contrary, wavelets introduce visible ringing effects that are distributed the square
grids of the wavelet sampling, which partly destroys the geometrical regularity. As a result,
the bandelet compressed images have a better visual quality than their wavelet counterparts.
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Figure 4.9: Bitrate Vs PSNR of image “cameraman”using Bandelet Transform and wavelet
transform

Table 4.2: Comparison of bitrate vs PSNR of different images at different threshold values

Images Threshold Bitrate wavelet Bitrate Bandelet PSNR Wavelet PSNR Bandelet

Barb 0.1 0.6391 0.7191 31.4576 32.8732
0.3 0.1689 0.2273 25.6994 27.0901
0.5 0.0565 0.1200 23.8128 24.4591
0.7 0.0270 0.0744 22.1868 23.7449

Lena 0.1 0.5802 0.7057 31.5822 32.1447
0.3 0.1464 0.2099 26.0586 26.6989
0.5 0.0710 0.1049 23.8826 24.5342
0.7 0.0424 0.0581 22.7794 23.0772

Cameraman 0.1 0.5747 0.7017 31.8699 32.9082
0.3 0.1651 0.2486 26.9734 27.6777
0.5 0.0777 0.1085 24.9052 25.0660
0.7 0.0484 0.0649 23.7676 24.6557

The main inefficiency of the current bandelet scheme comes from boundary effects between
regions having different geometric flow. We use a bandelet transform that includes vectors
that go across regions and thus produces no compression artefacts at the boundary of such
regions.
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4.2 Result and analysis for video compression

For video compression CITY and FOREMAN sequences are taken and compression is
performed. The further content is removed for publication purpose.

4.3 Conclusion

In this thesis, we carried out image and video compression using a new class of bases
known as bandelet bases. We took some standard images and approximated them using
discrete cosine transform, discrete wavelet transform, and bandelet transform. Then different
compression measures were evaluated and wrote it down in tabular form. In every case,
the bandelet transform based coder outperforms the DCT and DWT based coder. Curves
were plotted for different threshold values which show optimality of bandelet transform over
wavelet transform. Similarly, several standard video sequences were taken and compared
with the corresponding wavelet-based coder and results are noted down. The bandelet based
video compression scheme shows the good result as compared to the wavelet-based coder.
For video image sequences, a three-dimensional time-space geometric flow can be defined
to construct bandelet bases that are adapted to the space-time geometry of the sequence.
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